Science.gov

Sample records for substrate protein favoring

  1. Plant protein kinase substrates identification using protein microarrays.

    PubMed

    Ma, Shisong; Dinesh-Kumar, Savithramma P

    2015-01-01

    Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays. PMID:25930701

  2. Large-scale identification of membrane proteins with properties favorable for crystallization.

    PubMed

    Kim, Jared; Kagawa, Allison; Kurasaki, Kellie; Ataie, Niloufar; Cho, Il Kyu; Li, Qing X; Ng, Ho Leung

    2015-11-01

    Membrane protein crystallography is notoriously difficult due to challenges in protein expression and issues of degradation and structural stability. We have developed a novel method for large-scale screening of native sources for integral membrane proteins that have intrinsic biochemical properties favorable for crystallization. Highly expressed membrane proteins that are thermally stable and nonaggregating in detergent solutions were identified by mass spectrometry from Escherichia coli, Saccharomyces cerevisiae, and Sus scrofa cerebrum. Many of the membrane proteins identified had been crystallized previously, supporting the promise of the approach. Most identified proteins have known functions and include high-value targets such as transporters and ATPases. To validate the method, we recombinantly expressed and purified the yeast protein, Yop1, which is responsible for endoplasmic reticulum curvature. We demonstrate that Yop1 can be purified with the detergent dodecylmaltoside without aggregating.

  3. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    SciTech Connect

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua; Mullen, Daniel; Beese, Lorena S.; Barany, George; Distefano, Mark D.

    2010-11-15

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterization of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.

  4. Mechanically Durable and Biologically Favorable Protein Hydrogel Based on Elastic Silklike Protein Derived from Sea Anemone.

    PubMed

    Yang, Yun Jung; Kim, Chang Sup; Choi, Bong-Hyuk; Cha, Hyung Joon

    2015-12-14

    As biodegradable scaffolds, protein hydrogels have considerable potential, particularly for bioartificial organs and three-dimensional space-filling materials. However, their low strength and stiffness have been considered to be limitations for enduring physiological stimuli. Therefore, protein hydrogels have been commonly utilized as delivery vehicles rather than as supporting materials. In this work, sea anemone tentacle-derived recombinant silk-like protein (aneroin) was evaluated as a potential material for a mechanically durable protein hydrogel. Inspired by the natural hardening mechanism, photoinitiated dityrosine cross-linking was employed to fabricate an aneroin hydrogel. It was determined that the fabricated aneroin hydrogel was approximately 10-fold stiffer than mammalian cardiac or skeletal muscle. The aneroin hydrogel provided not only structural support but also an adequate environment for cells. It exhibited an adequate swelling ability and microstructure, which are beneficial for facilitating mass transport and cell proliferation. Based on its mechanical and biological properties, this aneroin hydrogel could be used in various biomedical applications, such as cell-containing patches, biomolecule carriers, and artificial extracellular matrices. PMID:26539814

  5. Characterization of Substrates That Have a Differential Effect on Saccharomyces cerevisiae Protein Kinase A Holoenzyme Activation*

    PubMed Central

    Galello, Fiorella; Portela, Paula; Moreno, Silvia; Rossi, Silvia

    2010-01-01

    The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s−1. We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates. PMID:20639203

  6. Bivalent inhibitors for disrupting protein surface-substrate interactions and for dual inhibition of protein prenyltransferases.

    PubMed

    Machida, Shinnosuke; Kato, Nobuo; Harada, Kazuo; Ohkanda, Junko

    2011-02-01

    Low-molecular-weight compounds that disrupt protein−protein interactions (PPIs) have tremendous potential applications as clinical agents and as chemical probes for investigating intracellular PPI networks. However, disrupting PPIs is extremely difficult due to the large, flat interfaces of many proteins, which often lack structurally defined cavities to which drug-like molecules could bind in a thermodynamically favorable manner. Here, we describe a series of bivalent compounds that anchor to the enzyme active site to deliver a minimally sized surface-binding module to the targeted surface involved in transient PPI with a substrate. These compounds are capable of significantly inhibiting enzymatic reactions involving protein surface−substrate interaction in the single-digit nanomole range. Inhibitors of farnesyltransferase (FTase), which possesses a negatively charged local area on its α-subunit, were designed by attaching a module derived from a branched monoamine-containing gallate to a conventional active-site-directed CVIM tetrapeptide using an alkyl spacer. A significant improvement in inhibitory activity (>200-fold) against farnesylation of the K-Ras4B peptide was observed when the gallate module was attached to the CVIM tetrapeptide. Furthermore, the bivalent compounds had submicromolar inhibitory activity against geranylgeranylation of the K-Ras4B peptide catalyzed by GGTase I, which has an α-subunit identical to that of FTase. The anchoring strategy we describe would be useful for designing a new class of PPI inhibitors as well as dual enzyme inhibitors targeting common surface structures.

  7. Recent advances in designing substrate-competitive protein kinase inhibitors.

    PubMed

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  8. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity.

    PubMed

    Reid, T Scott; Terry, Kimberly L; Casey, Patrick J; Beese, Lorena S

    2004-10-15

    Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.

  9. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities

    PubMed Central

    Hougland, James L.; Hicks, Katherine A.; Hartman, Heather L.; Kelly, Rebekah A.; Watt, Terry J.; Fierke, Carol A.

    2010-01-01

    Prenylation is a post-translational modification essential for the proper localization and function of many proteins. Farnesylation, the attachment of a 15-carbon farnesyl group near the C-terminus of protein substrates, is catalyzed by protein farnesyltransferase (FTase). Farnesylation has received significant interest as a target for pharmaceutical development and farnesyltransferase inhibitors (FTIs) are in clinical trials as cancer therapeutics. However, as the total complement of prenylated proteins is unknown, the FTase substrates responsible for FTI efficacy are not yet understood. Identifying novel prenylated proteins within the human proteome constitutes an important step towards understanding prenylation-dependent cellular processes. Based on sequence preferences for FTase derived from analysis of known farnesylated proteins, we selected and screened a library of small peptides representing the C-termini of 213 human proteins for activity with FTase. We identified 77 novel FTase substrates that exhibit multiple-turnover reactivity within this library; our library also contained 85 peptides that can be farnesylated by FTase only under single-turnover conditions. Based on these results, a second library was designed that yielded an additional 29 novel multiple-turnover FTase substrates and 45 single-turnover substrates. The two classes of substrates exhibit different specificity requirements. Efficient multiple-turnover reactivity correlates with the presence of a nonpolar amino acid at the a2 position and a Phe, Met, or Gln at the terminal X residue, consistent with the proposed Ca1a2X sequence model. In contrast, the sequences of the single-turnover substrates vary significantly more at both the a2 and X residues and are not well-described by current farnesylation algorithms. These results improve the definition of prenyltransferase substrate specificity, test the efficacy of substrate algorithms, and provide valuable information about therapeutic targets

  10. Mutation bias favors protein folding stability in the evolution of small populations.

    PubMed

    Mendez, Raul; Fritsche, Miriam; Porto, Markus; Bastolla, Ugo

    2010-05-01

    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.

  11. Myocardial Reloading After Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    PubMed Central

    Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.; Rosiers, Christine Des; Portman, Michael A.

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Methods and Results Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8‐hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2‐13C]‐pyruvate as an oxidative substrate and [13C6]‐L‐leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near‐baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl‐CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). Conclusions RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may

  12. An ultralow background substrate for protein microarray technology.

    PubMed

    Feng, Hui; Zhang, Qingyang; Ma, Hongwei; Zheng, Bo

    2015-08-21

    We herein report an ultralow background substrate for protein microarrays. Conventional protein microarray substrates often suffer from non-specific protein adsorption and inhomogeneous spot morphology. Consequently, surface treatment and a suitable printing solution are required to improve the microarray performance. In the current work, we improved the situation by developing a new microarray substrate based on a fluorinated ethylene propylene (FEP) membrane. A polydopamine microspot array was fabricated on the FEP membrane, with proteins conjugated to the FEP surface through polydopamine. Uniform microspots were obtained on FEP without the application of a special printing solution. The modified FEP membrane demonstrated ultralow background signal and was applied in protein and peptide microarray analysis. PMID:26134063

  13. Reactibodies generated by kinetic selection couple chemical reactivity with favorable protein dynamics.

    PubMed

    Smirnov, Ivan; Carletti, Eugénie; Kurkova, Inna; Nachon, Florian; Nicolet, Yvain; Mitkevich, Vladimir A; Débat, Hélène; Avalle, Bérangère; Belogurov, Alexey A; Kuznetsov, Nikita; Reshetnyak, Andrey; Masson, Patrick; Tonevitsky, Alexander G; Ponomarenko, Natalia; Makarov, Alexander A; Friboulet, Alain; Tramontano, Alfonso; Gabibov, Alexander

    2011-09-20

    Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (V(L)) and variable heavy (V(H)) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes. PMID:21896761

  14. Optical speckles of blood proteins embedded in porous glassy substrate

    NASA Astrophysics Data System (ADS)

    Holden, T.; Dehipawala, S.; Kokkinos, D.; Berisha, A.; Cheung, E.; Nguyen, A.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2012-03-01

    Blood protein molecules could be embedded in porous glassy substrate with 10-nm pores. The embedding principle is based on blood cell dehydration with the destruction of the cell membrane, and reconstitution and centrifuge could yield a suitable solution for doping into a porous glassy medium. The doped glassy substrate speckle pattern under laser illumination could be used to characterize the protein size distribution. Calibration with known protein embedded samples would result in an optical procedure for the characterization of a blood sample. Samples embedded with larger kilo-Dalton protein molecule show more variation in the speckle patterns, consistent with protein folding interaction inside a pore cavity. A regression model has been used to correlate the protein molecule sizes with speckle sizes. The use of diffusion mean free path information to study protein folding in the embedding process is briefly discussed.

  15. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  16. Insulin receptor substrate 1 is a substrate of the Pim protein kinases

    PubMed Central

    Song, Jin H.; Padi, Sathish K. R.; Luevano, Libia A.; Minden, Mark D.; DeAngelo, Daniel J.; Hardiman, Gary; Ball, Lauren E.; Warfel, Noel A.; Kraft, Andrew S.

    2016-01-01

    The Pim family of serine/threonine protein kinases (Pim 1, 2, and 3) contribute to cellular transformation by regulating glucose metabolism, protein synthesis, and mitochondrial oxidative phosphorylation. Drugs targeting the Pim protein kinases are being tested in phase I/II clinical trials for the treatment of hematopoietic malignancies. The goal of these studies was to identify Pim substrate(s) that could help define the pathway regulated by these enzymes and potentially serve as a biomarker of Pim activity. To identify novel substrates, bioinformatics analysis was carried out to identify proteins containing a consensus Pim phosphorylation site. This analysis identified the insulin receptor substrate 1 and 2 (IRS1/2) as potential Pim substrates. Experiments were carried out in tissue culture, animals, and human samples from phase I trials to validate this observation and define the biologic readout of this phosphorylation. Our study demonstrates in both malignant and normal cells using either genetic or pharmacological inhibition of the Pim kinases or overexpression of this family of enzymes that human IRS1S1101 and IRS2S1149 are Pim substrates. In xenograft tumor experiments and in a human phase I clinical trial, a pan-Pim inhibitor administered in vivo to animals or humans decreased IRS1S1101 phosphorylation in tumor tissues. This phosphorylation was shown to have effects on the half-life of the IRS family of proteins, suggesting a role in insulin or IGF signaling. These results demonstrate that IRS1S1101 is a novel substrate for the Pim kinases and provide a novel marker for evaluation of Pim inhibitor therapy. PMID:26956053

  17. Protein-Tyrosine Phosphatase 1B Substrates and Metabolic Regulation

    PubMed Central

    Bakke, Jesse; Haj, Fawaz G.

    2014-01-01

    Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes. PMID:25263014

  18. A protein multiplex microarray substrate with high sensitivity and specificity

    PubMed Central

    Fici, Dolores A.; McCormick, William; Brown, David W.; Herrmann, John E.; Kumar, Vikram; Awdeh, Zuheir L.

    2010-01-01

    The problems that have been associated with protein multiplex microarray immunoassay substrates and existing technology platforms include: binding, sensitivity, a low signal to noise ratio, target immobilization and the optimal simultaneous detection of diverse protein targets. Current commercial substrates for planar multiplex microarrays rely on protein attachment chemistries that range from covalent attachment to affinity ligand capture, to simple adsorption. In this pilot study, experimental performance parameters for direct monoclonal mouse IgG detection were compared for available two and three dimensional slide surface coatings with a new colloidal nitrocellulose substrate. New technology multiplex microarrays were also developed and evaluated for the detection of pathogen specific antibodies in human serum and the direct detection of enteric viral antigens. Data supports the nitrocellulose colloid as an effective reagent with the capacity to immobilize sufficient diverse protein target quantities for increased specificory signal without compromising authentic protein structure. The nitrocellulose colloid reagent is compatible with the array spotters and scanners routinely used for microarray preparation and processing. More importantly, as an alternate to fluorescence, colorimetric chemistries may be used for specific and sensitive protein target detection. The advantages of the nitrocellulose colloid platform indicate that this technology may be a valuable tool for the further development and expansion of multiplex microarray immunoassays in both the clinical and research laborat environment. PMID:20974147

  19. Substrate Specificity of the HEMK2 Protein Glutamine Methyltransferase and Identification of Novel Substrates.

    PubMed

    Kusevic, Denis; Kudithipudi, Srikanth; Jeltsch, Albert

    2016-03-18

    Bacterial HEMK2 homologs initially had been proposed to be involved in heme biogenesis or to function as adenine DNA methyltransferase. Later it was shown that this family of enzymes has protein glutamine methyltransferase activity, and they methylate the glutamine residue in the GGQ motif of ribosomal translation termination factors. The murine HEMK2 enzyme methylates Gln(185) of the eukaryotic translation termination factor eRF1. We have employed peptide array libraries to investigate the peptide sequence recognition specificity of murine HEMK2. Our data show that HEMK2 requires a GQX3R motif for methylation activity. In addition, amino acid preferences were observed between the -3 and +7 positions of the peptide substrate (considering the target glutamine as 0), including a preference for Ser, Arg, and Gly at the +1 and a preference for Arg at the +7 position. Based on our specificity profile, we identified several human proteins that contain putative HEMK2 methylation sites and show that HEMK2 methylates 58 novel peptide substrates. After cloning, expression, and purification of the corresponding protein domains, we confirmed methylation for 11 of them at the protein level. Transfected CHD5 (chromodomain helicase DNA-binding protein 5) and NUT (nuclear protein in testis) were also demonstrated to be methylated by HEMK2 in human HEK293 cells. Our data expand the range of proteins potentially subjected to glutamine methylation significantly, but further investigation will be required to understand the function of HEMK2-mediated methylation in proteins other than eRF1. PMID:26797129

  20. Role of Substrate Dynamics in Protein Prenylation Reactions

    PubMed Central

    2015-01-01

    Conspectus The role dynamics plays in proteins is of intense contemporary interest. Fundamental insights into how dynamics affects reactivity and product distributions will facilitate the design of novel catalysts that can produce high quality compounds that can be employed, for example, as fuels and life saving drugs. We have used molecular dynamics (MD) methods and combined quantum mechanical/molecular mechanical (QM/MM) methods to study a series of proteins either whose substrates are too far away from the catalytic center or whose experimentally resolved substrate binding modes cannot explain the observed product distribution. In particular, we describe studies of farnesyl transferase (FTase) where the farnesyl pyrophosphate (FPP) substrate is ∼8 Å from the zinc-bound peptide in the active site of FTase. Using MD and QM/MM studies, we explain how the FPP substrate spans the gulf between it and the active site, and we have elucidated the nature of the transition state (TS) and offered an alternate explanation of experimentally observed kinetic isotope effects (KIEs). Our second story focuses on the nature of substrate dynamics in the aromatic prenyltransferase (APTase) protein NphB and how substrate dynamics affects the observed product distribution. Through the examples chosen we show the power of MD and QM/MM methods to provide unique insights into how protein substrate dynamics affects catalytic efficiency. We also illustrate how complex these reactions are and highlight the challenges faced when attempting to design de novo catalysts. While the methods used in our previous studies provided useful insights, several clear challenges still remain. In particular, we have utilized a semiempirical QM model (self-consistent charge density functional tight binding, SCC-DFTB) in our QM/MM studies since the problems we were addressing required extensive sampling. For the problems illustrated, this approach performed admirably (we estimate for these systems an

  1. Engineering fluorescent protein substrates for the AAA+ Lon protease.

    PubMed

    Wohlever, Matthew L; Nager, Andrew R; Baker, Tania A; Sauer, Robert T

    2013-04-01

    AAA+ proteases, such as Escherichia coli Lon, recognize protein substrates by binding to specific peptide degrons and then unfold and translocate the protein into an internal degradation chamber for proteolysis. For some AAA+ proteases, attaching specific degrons to the N- or C-terminus of green fluorescent protein (GFP) generates useful substrates, whose unfolding and degradation can be monitored by loss of fluorescence, but Lon fails to degrade appropriately tagged GFP variants at a significant rate. Here, we demonstrate that Lon catalyzes robust unfolding and degradation of circularly permuted variants of GFP with a β20 degron appended to the N terminus or a sul20 degron appended to the C terminus. Lon degradation of non-permuted GFP-sul20 is very slow, in part because the enzyme cannot efficiently extract the degron-proximal C-terminal β-strand to initiate denaturation. The circularly permuted GFP substrates described here allow convenient high-throughput assays of the kinetics of Lon degradation in vitro and also permit assays of Lon proteolysis in vivo.

  2. Substrate-Bound Protein Gradients to Study Haptotaxis

    PubMed Central

    Ricoult, Sébastien G.; Kennedy, Timothy E.; Juncker, David

    2015-01-01

    Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function. PMID:25870855

  3. Substrate-bound protein gradients to study haptotaxis.

    PubMed

    Ricoult, Sébastien G; Kennedy, Timothy E; Juncker, David

    2015-01-01

    Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins - including many secreted cues - are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.

  4. The first global screening of protein substrates bearing protein-bound 3,4-dihydroxyphenylalanine in E. coli and human mitochondria

    PubMed Central

    Lee, Sangkyu; Chen, Yue; Luo, Hao; Wu, Andrew A.; Wilde, Michael; Schumacker, Paul T.; Zhao, Yingming

    2010-01-01

    Protein hydroxylation at proline and lysine residues is known to have important effects on cellular functions, such as the response to hypoxia. However, for protein hydroxylation at tyrosine residues (called protein-bound 3,4-dihydroxy-phenylalanine (PB-DOPA) has not been carefully examined. Here we report the first proteomics screening of the PB-DOPA protein substrates and their sites in E. coli and human mitochondria by nano-LC/MS/MS and protein sequence alignment using the PTMap algorithm. Our study identified 67 novel PB-DOPA sites in 43 E. coli proteins, and 9 novel PB-DOPA sites in 7 proteins from HeLa mitochondria. Bioinformatics analysis indicates that the structured region is more favored than the unstructured regions of proteins for the PB-DOPA modification. The PB-DOPA substrates in E. coli were dominantly enriched in proteins associated with carbohydrate metabolism. Our study showed that PB-DOPA may be involved in regulation of the specific activity of certain evolutionarily conserved proteins such as superoxide dismutase and glyceraldehyde 3-phosphate dehydrogenase, suggesting the conserved nature of the modification among distant biological species. The substrate proteins identified in this study offer a rich source for hunting their regulatory enzymes, and for further characterization of the possible contributions of this modification to cellular physiology and human diseases. PMID:20818827

  5. Catalysis of protein disulfide bond isomerization in a homogeneous substrate.

    PubMed

    Kersteen, Elizabeth A; Barrows, Seth R; Raines, Ronald T

    2005-09-13

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude

  6. Structural and functional basis of protein phosphatase 5 substrate specificity

    PubMed Central

    Oberoi, Jasmeen; Dunn, Diana M.; Woodford, Mark R.; Mariotti, Laura; Schulman, Jacqualyn; Bourboulia, Dimitra; Mollapour, Mehdi

    2016-01-01

    The serine/threonine phosphatase protein phosphatase 5 (PP5) regulates hormone- and stress-induced cellular signaling by association with the molecular chaperone heat shock protein 90 (Hsp90). PP5-mediated dephosphorylation of the cochaperone Cdc37 is essential for activation of Hsp90-dependent kinases. However, the details of this mechanism remain unknown. We determined the crystal structure of a Cdc37 phosphomimetic peptide bound to the catalytic domain of PP5. The structure reveals PP5 utilization of conserved elements of phosphoprotein phosphatase (PPP) structure to bind substrate and provides a template for many PPP–substrate interactions. Our data show that, despite a highly conserved structure, elements of substrate specificity are determined within the phosphatase catalytic domain itself. Structure-based mutations in vivo reveal that PP5-mediated dephosphorylation is required for kinase and steroid hormone receptor release from the chaperone complex. Finally, our data show that hyper- or hypoactivity of PP5 mutants increases Hsp90 binding to its inhibitor, suggesting a mechanism to enhance the efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors. PMID:27466404

  7. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    PubMed

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins

  8. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    PubMed

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins

  9. Phosphorylated TandeMBP: A unique protein substrate for protein phosphatase assay.

    PubMed

    Sugiyama, Yasunori; Yamashita, Sho; Uezato, Yuuki; Senga, Yukako; Katayama, Syouichi; Goshima, Naoki; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2016-11-15

    To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca(2+)/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities. PMID:27565380

  10. A more alkaline diet may enhance the favorable impact of dietary protein on lean tissue mass in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining muscle mass in aging is important to prevent falls and fractures. Dietary protein is required to preserve muscle mass, however the acid load from diets rich in acidogenic protein foods and cereal grains relative to alkalinogenic fruits and vegetables may contribute to loss of lean tissue...

  11. Dietary protein intake is associated with favorable cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study.

    PubMed

    Mirmiran, Parvin; Hajifaraji, Majid; Bahadoran, Zahra; Sarvghadi, Farzaneh; Azizi, Fereidoun

    2012-03-01

    In this study, we investigated the hypothesis that dietary protein content and type are related to cardiometabolic risk factors including body mass index, waist circumference (WC), serum triglycerides, high-density lipoprotein cholesterol (HDL-C), serum fasting glucose, and blood pressure. This population-based study was conducted on 2537 subjects aged 19 to 70 years and selected from among participants of the Tehran Lipid and Glucose Study (2006-2008). Dietary data were collected using a validated semiquantitative food frequency questionnaire. Associations between intakes of total protein as well as the animal-to-plant (A/P) protein ratio and cardiometabolic risk factors were analyzed using multivariate linear regression models. Dietary protein intakes were 13.7% and 13.6% of energy, in men and women, respectively; the A/P protein ratio in women was significantly higher than in men (1.8 ± 1.4 vs 1.4 ± 0.9). Body mass index was associated with total protein intake in men (β = 0.14, P = .01) and A/P protein ratio in women (β = 0.075, P = .01). Waist circumference was associated with total protein intake (β = -0.048, P = .03) and A/P protein ratio (β=0.031, P = .05) in women. Serum fasting glucose was associated with both total protein intake (β=0.061 and 0.11, P < .05) and the A/P proteinratio (β = -0.078 and -0.056, P < .05) in both men and women, respectively. Serum HDL-C was associated with total protein intake (β = 0.107 and 0.07, P < .05) in both men and women, whereas diastolic blood pressure in women was associated with total protein intake (β = -0.125, P = .01). In conclusion, higher dietary protein intake was associated with enhanced HDL-C levels, WC, and diastolic BP, and a higher ratio of A/P protein intake was related with lower serum fasting glucose andWC.

  12. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin.

    PubMed

    Fuchs, Julian E; Huber, Roland G; Waldner, Birgit J; Kahler, Ursula; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-01-01

    Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm "dynamics govern specificity" might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design. PMID:26496636

  13. Fe Protein-Independent Substrate Reduction by Nitrogenase MoFe Protein Variants

    SciTech Connect

    Danyal, Karamatullah; Rasmussen, Andrew J.; Keable, Stephen M.; Inglet, Boyd S.; Shaw, Sudipta; Zadvornyy, Oleg; Duval, Simon S.; Dean, Dennis R.; Raugei, Simone; Peters, John W.; Seefeldt, Lance C.

    2015-04-21

    The reduction of substrates catalyzed by nitrogenase normally requires nucleotide-dependent Fe protein delivery of electrons to the MoFe protein, which contains the active site FeMo-cofactor. Here, it is reported that independent substitution of three amino acids (ß-98Tyr→His, α-64Tyr→His, and ß-99Phe→His) located between the P cluster and FeMo-cofactor within the MoFe protein endows it with the ability to reduce protons to H2, azide to ammonia, and hydrazine to ammonia without the need for Fe protein or ATP. Instead, electrons can be provided by the low potential reductant polyaminocarboxylate ligated Eu(II) (Em -1.1 to -0.84 V vs NHE). The crystal structure of the ß-98Tyr→His variant MoFe protein was determined, revealing only small changes near the amino acid substitution that affect the solvent structure and immediate vicinity between the P cluster and the FeMo-cofactor, with no global conformational changes observed. Computational normal mode analysis on the nitrogenase complex reveal coupling in the motions of the Fe protein and the region of the MoFe protein with these three amino acids, which suggests a possible mechanism for how Fe protein might communicate deep within the MoFe protein subtle changes that profoundly affect intramolecular electron transfer and substrate reduction. This work was supported by a grant from the National Science Foundation (MCB-1330807) to JWP and LCS. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0010687 and DE-SC0010834 to LCS and DRD) and the Division of Chemical Sciences, Geosciences, and Bio-Sciences (SR). The coordinates for the ß-98His MoFe protein were deposited with the Protein Data Bank (PDB 4XPI).

  14. Protein Kinases of the Hippo Pathway: Regulation and Substrates

    PubMed Central

    Avruch, Joseph; Zhou, Dawang; Fitamant, Julien; Bardeesy, Nabeel; Mou, Fan; Barrufet, Laura Regué

    2012-01-01

    The “Hippo” signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in S. cerevisiae e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologues Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP

  15. Tailoring dialysis and resuming low-protein diets may favor chronic dialysis discontinuation: report on three cases.

    PubMed

    Piccoli, Giorgina Barbara; Guzzo, Gabriella; Vigotti, Federica Neve; Capizzi, Irene; Clari, Roberta; Scognamiglio, Stefania; Consiglio, Valentina; Aroasio, Emiliano; Gonella, Silvana; Veltri, Andrea; Avagnina, Paolo

    2014-07-01

    Renal function recovery (RFR), defined as the discontinuation of dialysis after 3 months of replacement therapy, is reported in about 1% of chronic dialysis patients. The role of personalized, intensive dialysis schedules and of resuming low-protein diets has not been studied to date. This report describes three patients with RFR who were recently treated at a new dialysis unit set up to offer intensive hemodialysis. All three patients were females, aged 73, 75, and 78 years. Kidney disease included vascular-cholesterol emboli, diabetic nephropathy and vascular and dysmetabolic disease. At time of RFR, the patients had been dialysis-dependent from 3 months to 1 year. Dialysis was started with different schedules and was progressively discontinued with a "decremental" policy, progressively decreasing number and duration of the sessions. A moderately restricted low-protein diet (proteins 0.6 g/kg/day) was started immediately after dialysis discontinuation. The most recent update showed that two patients are well off dialysis for 5 and 6 months; the diabetic patient died (sudden death) 3 months after dialysis discontinuation. Within the limits of small numbers, our case series may suggest a role for personalized dialysis treatments and for including low-protein diets in the therapy, in enhancing long-term RFR in elderly dialysis patients.

  16. Favored and disfavored pathways of protein crosslinking by glucose: glucose lysine dimer (GLUCOLD) and crossline versus glucosepane

    PubMed Central

    Nemet, Ina; Strauch, Christopher M.

    2010-01-01

    We describe the isolation and molecular characterization of a novel glucose-lysine dimer crosslink 1,3-bis-(5-amino-5-carboxypentyl)-4-(1′,2′,3′,4′-tetrahydroxybutyl)-3H-imidazolium salt, named GLUCOLD. GLUCOLD was easily formed from the Amadori product (fructose–lysine). However, when BSA was incubated with 100 mM glucose for 25 days, the levels of the lysine-lysine glucose crosslinks GLUCOLD and CROSSLINE were only 21 and <1 pmol/mg, respectively, compared to 611 pmol/mg protein for the lysine-arginine GLUCOSEPANE crosslink, in spite of more than 20 potential lysine-lysine crosslinking sites in the protein. Mechanistic investigation revealed that metal-free phosphate ions catalyzed formation of fructose–lysine and all three crosslinks from amino acids, while cationic MOPS buffer had an opposite effect. This together with the rapid formation of N6-1,4-dideoxy-5,6-dioxoglucosone derivatives by dicarbonyl trapping agents, such as 1,2-diaminobenzene or γ-guanidinobutyric acid, strongly suggests that enolization of the Amadori product and trapping of the 5,6-dioxo derivative by arginine residues constitutes the major pathway for glucose-mediated crosslinking in proteins. PMID:20607325

  17. Calcium-Dependent Protein Kinases from Arabidopsis Show Substrate Specificity Differences in an Analysis of 103 Substrates

    PubMed Central

    Curran, Amy; Chang, Ing-Feng; Chang, Chia-Lun; Garg, Shilpi; Miguel, Rodriguez Milla; Barron, Yoshimi D.; Li, Ying; Romanowsky, Shawn; Cushman, John C.; Gribskov, Michael; Harmon, Alice C.; Harper, Jeffrey F.

    2011-01-01

    The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs). While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16, and 34). Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ∼70 μM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites). Of these, 74 (27%) were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies. PMID:22645532

  18. Novel substrate (algal protein) for cultivation of Rhodospirillum rubrum.

    PubMed

    Vatsala, T M; Rekha, R; Srividhya, R

    2011-10-01

    Rhodospirillum rubrum was grown under light anaerobic conditions with phycocyanin (C-pc) extracted from Spirulina platensis as the sole source of carbon and nitrogen. When grown under these conditions cellular components like lipids, carbohydrates, protein, carotenoids, bacteriochlorophyll were similar to the one grown with malic acid and ammonium chloride. Growth of R. rubrum increased with increase in concentration of C-pc (200 to 1000 mg/l). R. rubrum also utilized C-pc under dark anaerobic condition. With both malic acid and C-pc as carbon sources C-pc was consumed only after exhaustion of malic acid under light anaerobic condition. No aberration of cell morphology was seen under scanning electron microscope (SEM). R. rubrum utilized both phycocyanobilin and phycoprotein individually as well as in combination. When grown with 1000 mg/l of phycoprotein 450 mg/l of biomass was obtained, and with combination of phycocyanobilin (75 mg/l) and phycoprotein (925 mg/l) 610 mg/l of biomass was obtained. Phycocyanobilin alone did not inhibit the growth of R. rubrum. Utilization of C-pc with protease like activity was observed in plate assay. Protease like activity was also observed as zones around the colonies in plates containing sterilized casein, gelatin and filter sterilized bovine serum albumin. No amino acids were detected in the supernatant when analyzed with ninhydrin. Extracellular protease like activity was highest when C-pc was used as substrate (2.8 U/ml). Intracellular protease like activity was not detected in cell free extracts. PMID:22013744

  19. Identification of Substrates of Protein-Group SUMOylation.

    PubMed

    Psakhye, Ivan; Jentsch, Stefan

    2016-01-01

    Protein modification by conjugation to the ubiquitin-related protein SUMO (SUMOylation) regulates numerous cellular functions and is reversible. However, unlike typical posttranslational modifications, SUMOylation often targets and regulates proteins of functionally and physically linked protein groups, rather than individual proteins. Functional studies of protein-group SUMOylation are thus particularly challenging, as they require the identification of ideally all members of a modified protein group. Here, we describe mass spectrometric approaches to detect SUMOylated protein groups in Saccharomyces cerevisiae, yet the protocols can be readily adapted for studies of SUMOylation in mammalian cells. PMID:27631809

  20. Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates.

    PubMed

    Loch, Christian M; Eddins, Michael J; Strickler, James E

    2011-06-01

    Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3's profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3's, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2's to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme's function.

  1. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    PubMed

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  2. Control of biomimetic hydroxyapatite deposition on polymer substrates using different protein adsorption abilities.

    PubMed

    Iijima, Kazutoshi; Sakai, Atsushi; Komori, Akinori; Sakamoto, Yuri; Matsuno, Hisao; Serizawa, Takeshi; Hashizume, Mineo

    2015-06-01

    We recently developed a system for coating polystyrene (PS) substrates with hydroxyapatite (HAp) by utilizing serum protein adsorption layers as mediators to induce the heterogeneous nucleation of HAp in simulated body fluids (SBFs). In this study, the selective deposition of HAp on polymer substrate surfaces with different protein adsorption abilities was investigated using PS and poly(methyl methacrylate) (PMMA). Atomic force microscopic observations and the results of a quantitative analysis using a quartz-crystal microbalance (QCM) revealed that the amounts of proteins such as human serum albumin (HSA) and human immunoglobulin G (hIgG) adsorbed on PS substrate surfaces were markedly greater than those on PMMA substrate surfaces. A markedly larger amount of HAp was deposited on protein-treated PS substrate surfaces than on PMMA substrate surfaces, reflecting protein adsorption to polymers. We also revealed that the deposition of HAp on protein-adsorbed PS substrate surfaces was enhanced by aqueous calcium chloride treatments before immersion in 1.5SBF. In the case of 2.5 M calcium chloride treatment, these surfaces were completely covered with deposits. PMID:25909182

  3. Determination of the Substrate Specificity of Protein Kinases with Peptide Micro- and Macroarrays.

    PubMed

    Lai, Shenshen; Winkler, Dirk F H; Zhang, Hong; Pelech, Steven

    2016-01-01

    Elucidation of the key determinants for the phosphorylation site specificities of protein kinases facilitates identification of their physiological substrates, and serves to better define their critical roles in the signaling networks that underlie a multitude of cellular activities. Albeit with some apparent limitations, such as the lack of contextual information for secondary substrate-binding sites, the synthetic peptide-based approach has been adopted widely for the kinase specificity profiling studies, especially when they are used in an array format, which permits the screening of large numbers of potential peptide substrates in parallel. In this chapter, we present detailed protocols for determining protein kinase substrate specificity using an approach that involves both peptide microarrays and macroarrays. In particular, SPOT synthesis on macroarrays can be used to follow up on in silico predictions of protein kinase substrate specificity with predictive algorithms. PMID:26501911

  4. Targeted reengineering of protein geranylgeranyltransferase type I selectivity functionally implicates active-site residues in protein-substrate recognition.

    PubMed

    Gangopadhyay, Soumyashree A; Losito, Erica L; Hougland, James L

    2014-01-21

    Posttranslational modifications are vital for the function of many proteins. Prenylation is one such modification, wherein protein geranylgeranyltransferase type I (GGTase-I) or protein farnesyltransferase (FTase) modify proteins by attaching a 20- or 15-carbon isoprenoid group, respectively, to a cysteine residue near the C-terminus of a target protein. These enzymes require a C-terminal Ca1a2X sequence on their substrates, with the a1, a2, and X residues serving as substrate-recognition elements for FTase and/or GGTase-I. While crystallographic structures of rat GGTase-I show a tightly packed and hydrophobic a2 residue binding pocket, consistent with a preference for moderately sized a2 residues in GGTase-I substrates, the functional impact of enzyme-substrate contacts within this active site remains to be determined. Using site-directed mutagenesis and peptide substrate structure-activity studies, we have identified specific active-site residues within rat GGTase-I involved in substrate recognition and developed novel GGTase-I variants with expanded/altered substrate selectivity. The ability to drastically alter GGTase-I selectivity mirrors similar behavior observed in FTase but employs mutation of a distinct set of structurally homologous active-site residues. Our work demonstrates that tunable selectivity may be a general phenomenon among multispecific enzymes involved in posttranslational modification and raises the possibility of variable substrate selectivity among GGTase-I orthologues from different organisms. Furthermore, the GGTase-I variants developed herein can serve as tools for studying GGTase-I substrate selectivity and the effects of prenylation pathway modifications on specific proteins. PMID:24344934

  5. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators.

    PubMed

    Loo, T W; Clarke, D M

    1997-01-10

    There is growing evidence that abnormal protein folding or trafficking (protein kinesis) leads to diseases. We have used P-glycoprotein as a model protein to develop strategies to overcome defects in protein kinesis. Misprocessed mutants of the human P-glycoprotein are retained in the endoplasmic reticulum as core-glycosylated biosynthetic intermediates and rapidly degraded. Synthesis of the mutant proteins in the presence of drug substrates or modulators such as capsaicin, cyclosporin, vinblastine, or verapamil, however, resulted in the appearance of a fully glycosylated and functional protein at the cell surface. These effects were dose-dependent and occurred within a few hours after the addition of substrate. The ability to facilitate processing of the misfolded mutants appeared to be independent of the cell lines used and location of the mutation. P-glycoproteins with mutations in transmembrane segments, extracellular or cytoplasmic loops, the nucleotide-binding domains, or the linker region were processed to the fully mature form in the presence of these substrates. These drug substrates or modulators acted as specific chemical chaperones for P-glycoprotein because they were ineffective on the deltaF508 mutant of cystic fibrosis transmembrane conductance regulator. Therefore, one possible strategy to prevent protein misfolding is to carry out synthesis in the presence of specific substrates or modulators of the protein.

  6. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles

    PubMed Central

    Zhuang, Min; Wiita, Arun P.; O’Donoghue, Anthony J.; Knudsen, Giselle M.; Craik, Charles S.; Wells, James A.

    2016-01-01

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events. PMID:27006500

  7. Prediction of Membrane Transport Proteins and Their Substrate Specificities Using Primary Sequence Information

    PubMed Central

    Mishra, Nitish K.; Chang, Junil; Zhao, Patrick X.

    2014-01-01

    Background Membrane transport proteins (transporters) move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task. Results Support vector machine (SVM)-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM), were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC) of 0.49 and a receiver operating characteristic area under the curve (AUC) of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset. Conclusions Our analyses suggest that evolutionary information (i.e., the PSSM) and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models do not provide

  8. Substrate protein folds while it is bound to the ATP-independent chaperone Spy.

    PubMed

    Stull, Frederick; Koldewey, Philipp; Humes, Julia R; Radford, Sheena E; Bardwell, James C A

    2016-01-01

    Chaperones assist in the folding of many proteins in the cell. Although the most well-studied chaperones use cycles of ATP binding and hydrolysis to assist in protein folding, a number of chaperones have been identified that promote folding in the absence of high-energy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we characterized the kinetic mechanism of substrate folding by the small ATP-independent chaperone Spy from Escherichia coli. Spy rapidly associates with its substrate, immunity protein 7 (Im7), thereby eliminating Im7's potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while it remains bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while being continuously bound to a chaperone. PMID:26619265

  9. Substrate protein folds while it is bound to the ATP-independent chaperone Spy.

    PubMed

    Stull, Frederick; Koldewey, Philipp; Humes, Julia R; Radford, Sheena E; Bardwell, James C A

    2016-01-01

    Chaperones assist in the folding of many proteins in the cell. Although the most well-studied chaperones use cycles of ATP binding and hydrolysis to assist in protein folding, a number of chaperones have been identified that promote folding in the absence of high-energy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we characterized the kinetic mechanism of substrate folding by the small ATP-independent chaperone Spy from Escherichia coli. Spy rapidly associates with its substrate, immunity protein 7 (Im7), thereby eliminating Im7's potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while it remains bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while being continuously bound to a chaperone.

  10. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    PubMed

    Comyn, Sophie A; Young, Barry P; Loewen, Christopher J; Mayor, Thibault

    2016-07-01

    Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207

  11. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility

    PubMed Central

    Young, Barry P.; Loewen, Christopher J.; Mayor, Thibault

    2016-01-01

    Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207

  12. Insight into determinants of substrate binding and transport in a multidrug efflux protein

    PubMed Central

    Alegre, Kamela O.; Paul, Stephanie; Labarbuta, Paola; Law, Christopher J.

    2016-01-01

    Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination. Using in silico homology modelling, molecular docking and mutagenesis studies in combination with substrate binding and transport assays, we identified several amino acid residues that play important roles in antimicrobial substrate recognition, binding and transport by Escherichia coli MdtM, a representative multidrug efflux protein of the major facilitator superfamily. Furthermore, our studies suggested that ‘aromatic clamps’ formed by tyrosine and phenylalanine residues located within the substrate binding pocket of MdtM may be important for antimicrobial substrate recognition and transport by the protein. Such ‘clamps’ may be a structurally and functionally important feature of all major facilitator multidrug efflux proteins. PMID:26961153

  13. Nuclear protein kinase CLK1 uses a non-traditional docking mechanism to select physiological substrates.

    PubMed

    Keshwani, Malik M; Hailey, Kendra L; Aubol, Brandon E; Fattet, Laurent; McGlone, Maria L; Jennings, Patricia A; Adams, Joseph A

    2015-12-15

    Phosphorylation-dependent cell communication requires enzymes that specifically recognize key proteins in a sea of similar, competing substrates. The protein kinases achieve this goal by utilizing docking grooves in the kinase domain or heterologous protein adaptors to reduce 'off pathway' targeting. We now provide evidence that the nuclear protein kinase CLK1 (cell division cycle2-like kinase 1) important for splicing regulation departs from these classic paradigms by using a novel self-association mechanism. The disordered N-terminus of CLK1 induces oligomerization, a necessary event for targeting its physiological substrates the SR protein (splicing factor containing a C-terminal RS domain) family of splicing factors. Increasing the CLK1 concentration enhances phosphorylation of the splicing regulator SRSF1 (SR protein splicing factor 1) compared with the general substrate myelin basic protein (MBP). In contrast, removal of the N-terminus or dilution of CLK1 induces monomer formation and reverses this specificity. CLK1 self-association also occurs in the nucleus, is induced by the N-terminus and is important for localization of the kinase in sub-nuclear compartments known as speckles. These findings present a new picture of substrate recognition for a protein kinase in which an intrinsically disordered domain is used to capture physiological targets with similar disordered domains in a large oligomeric complex while discriminating against non-physiological targets.

  14. Substrate-induced activation of a trapped IMC-mediated protein folding intermediate.

    PubMed

    Inouye, M; Fu, X; Shinde, U

    2001-04-01

    While several unfolded proteins acquire native structures through distinct folding intermediates, the physiological relevance and importance of such states in the folding kinetics remain controversial. The intramolecular chaperone (IMC) of subtilisin was used to trap a partially folded, stable crosslinked intermediate conformer (CLIC) through a disulfide bond between mutated IMC and subtilisin. The trapped CLIC contains non-native interactions. Here we show that CLIC can be induced into a catalytically active form by incubating it with small peptide substrates. The structure and catalytic properties of the activated crosslinked intermediate conformer (A-CLIC) differ from those of the fully folded enzyme in that A-CLIC lacks any endopeptidase activity toward a large protein substrate. Our results show that a disulfide-linked partially folded protein can be induced to acquire catalytic activity with a substrate specificity that is different from completely folded subtilisin. These results also suggest that protein folding intermediates may also participate in catalytic reactions.

  15. Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence.

    PubMed

    Basting, Daniel; Lorch, Mark; Lehner, Ines; Glaubitz, Clemens

    2008-02-01

    Efflux pumps of the small multidrug resistance family bind cationic, lipophilic antibiotics and transport them across the membrane in exchange for protons. The transport cycle must involve various conformational states of the protein needed for substrate binding, translocation, and release. A fluorescent substrate will therefore experience a significant change of environment while being transported, which influences its fluorescence properties. Thus the substrate itself can report intermediate states that form during the transport cycle. We show the existence of such a substrate-transporter complex for the EmrE homolog Mycobacterium tuberculosis TBsmr and its substrate ethidium bromide. The pH gradient needed for antiport has been generated by co-reconstituting TBsmr with bacteriorhodopsin. Sample illumination generates a DeltapH, which results in enhanced ethidium fluorescence intensity, which is abolished when DeltapH or DeltaPsi is collapsed or when the essential residue Glu-13 in TBsmr is exchanged with Ala. This observation shows the formation of a pH-dependent, transient substrate-protein complex between binding and release of ethidium. We have further characterized this state by determining the K(d), by inhibiting ethidium transport through titration with nonfluorescent substrate and by fluorescence anisotropy measurements. Our findings support a model with a single occluded intermediate state in which the substrate is highly immobile.

  16. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles.

    PubMed

    Kouassi, Affiba Florance; Kone, Mawa; Keita, Melalie; Esmel, Akori; Megnassan, Eugene; N'Guessan, Yao Thomas; Frecer, Vladimir; Miertus, Stanislav

    2015-01-01

    We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs) inhibitors of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTb). Three-dimensional (3D) models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB) entry code: 4U0J), the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50(exp)). First, we built a gas phase quantitative structure-activity relationships (QSAR) model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50(exp). Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom) of InhA-PCAM complex formation and IC50(exp) (pIC50(exp) = -0.1552·ΔΔGcom + 5.0448, R² = 0.94), which was further validated with a 3D-QSAR pharmacophore model generation (PH4). Structural information from the models guided us in designing of a virtual combinatorial library (VL) of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME) focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50(pre) reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles. PMID:26703572

  17. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles

    PubMed Central

    Kouassi, Affiba Florance; Kone, Mawa; Keita, Melalie; Esmel, Akori; Megnassan, Eugene; N’Guessan, Yao Thomas; Frecer, Vladimir; Miertus, Stanislav

    2015-01-01

    We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs) inhibitors of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTb). Three-dimensional (3D) models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB) entry code: 4U0J), the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50exp). First, we built a gas phase quantitative structure-activity relationships (QSAR) model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50exp. Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom) of InhA-PCAM complex formation and IC50exp (pIC50exp = −0.1552·ΔΔGcom + 5.0448, R2 = 0.94), which was further validated with a 3D-QSAR pharmacophore model generation (PH4). Structural information from the models guided us in designing of a virtual combinatorial library (VL) of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME) focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50pre reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles. PMID:26703572

  18. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions.

    PubMed

    Zverina, Elaina A; Lamphear, Corissa L; Wright, Elia N; Fierke, Carol A

    2012-12-01

    Protein post-translational modifications increase the functional diversity of the proteome by covalently adding chemical moieties onto proteins thereby changing their activation state, cellular localization, interacting partners, and life cycle. Lipidation is one such modification that enables membrane association of naturally cytosolic proteins. Protein prenyltransferases irreversibly install isoprenoid units of varying length via a thioether linkage onto proteins that exert their cellular activity at membranes. Substrates of prenyltransferases are involved in countless signaling pathways and processes within the cell. Identification of new prenylation substrates, prenylation pathway regulators, and dynamic trafficking of prenylated proteins are all avenues of intense, ongoing research that are challenging, exciting, and have the potential to significantly advance the field in the near future.

  19. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  20. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins.

    PubMed

    Thoms, Matthias; Thomson, Emma; Baßler, Jochen; Gnädig, Marén; Griesel, Sabine; Hurt, Ed

    2015-08-27

    The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.

  1. Creating two-dimensional patterned substrates for protein and cell confinement.

    PubMed

    Johnson, Dawn M; LaFranzo, Natalie A; Maurer, Joshua A

    2011-01-01

    Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology. Here, we describe a general method for the creation of well-defined protein patterns for cellular studies.(5) This process involves three steps: the production of a patterned master using photolithography, the creation of a PDMS stamp, and microcontact printing of a gold-coated substrate. Once patterned, these cell culture substrates are capable of confining proteins and/or cells (primary cells or cell lines) to the pattern. The use of self-assembled monolayer chemistry allows for precise control over the patterned protein/cell adhesive regions and non-adhesive regions; this cannot be achieved using direct protein stamping. Hexadecanethiol, the long chain alkane thiol used in the microcontact printing step, produces a hydrophobic surface that readily adsorbs protein from solution. The glycol-terminated thiol, used for backfilling the non-printed regions of the substrate, creates a monolayer that is resistant to protein adsorption and therefore cell growth.(6) These thiol monomers produce highly structured monolayers that precisely define regions of the substrate that can support protein adsorption and cell growth. As a result, these substrates are useful for a wide variety of applications from the study of intercellular behavior(7) to the creation of microelectronics.(8) While other types of monolayer chemistry have been used for cell culture studies, including work from

  2. Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro.

    PubMed

    Naumann, Christin; Mot, Augustin C; Dissmeyer, Nico

    2016-01-01

    In order to determine the stability of a protein or protein fragment dependent on its N-terminal amino acid, and therefore relate its half-life to the N-end rule pathway of targeted protein degradation (NERD), non-Methionine (Met) amino acids need to be exposed at their amino terminal in most cases. Per definition, at this position, destabilizing residues are generally unlikely to occur without further posttranslational modification of immature (pre-)proproteins. Moreover, almost exclusively, stabilizing, or not per se destabilizing residues are N-terminally exposed upon Met excision by Met aminopeptidases. To date, there exist two prominent protocols to study the impact of destabilizing residues at the N-terminal of a given protein by selectively exposing the amino acid residue to be tested. Such proteins can be used to study NERD substrate candidates and analyze NERD enzymatic components. Namely, the well-established ubiquitin fusion technique (UFT) is used in vivo or in cell-free transcription/translation systems in vitro to produce a desired N-terminal residue in a protein of interest, whereas the proteolytic cleavage of recombinant fusion proteins by tobacco etch virus (TEV) protease is used in vitro to purify proteins with distinct N-termini. Here, we discuss how to accomplish in vivo and in vitro expression and modification of NERD substrate proteins that may be used as stability tester or activity reporter proteins and to characterize potential NERD substrates.The methods to generate artificial substrates via UFT or TEV cleavage are described here and can be used either in vivo in the context of stably transformed plants and cell culture expressing chimeric constructs or in vitro in cell-free systems such as rabbit reticulocyte lysate as well as after expression and purification of recombinant proteins from various hosts. PMID:27424746

  3. Augmented biogas production from protein-rich substrates and associated metagenomic changes.

    PubMed

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Nagy, Katalin; Minárovits, János; Rákhely, Gábor; Kovács, Kornél L

    2015-02-01

    This study demonstrates that appropriate adaptation of the microbial community to protein-rich biomass can lead to sustainable biogas production. The process of acclimation to these unusual mono-substrates was controlled by the protease activity of the microbial community. Meat extract (C/N=3.32) and kitchen waste (C/N=12.43) were used as biogas substrates. Metagenome analysis highlighted several mesophilic strains that displayed a preference for protein degradation. Bacillus coagulans, Bacillus subtilis and Pseudomonas fluorescens were chosen for detailed investigation. Pure cultures were added to biogas reactors fed solely with protein-rich substrates. The bioaugmentation resulted in a 50% increase in CH4 production even without any acclimation. The survival and biological activity of the added bacteria were followed in fed-batch fermenters by qPCR. Stable biogas production was observed for an extended period of time in laboratory CSTR reactors fed with biomass of low C/N.

  4. Augmented biogas production from protein-rich substrates and associated metagenomic changes.

    PubMed

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Nagy, Katalin; Minárovits, János; Rákhely, Gábor; Kovács, Kornél L

    2015-02-01

    This study demonstrates that appropriate adaptation of the microbial community to protein-rich biomass can lead to sustainable biogas production. The process of acclimation to these unusual mono-substrates was controlled by the protease activity of the microbial community. Meat extract (C/N=3.32) and kitchen waste (C/N=12.43) were used as biogas substrates. Metagenome analysis highlighted several mesophilic strains that displayed a preference for protein degradation. Bacillus coagulans, Bacillus subtilis and Pseudomonas fluorescens were chosen for detailed investigation. Pure cultures were added to biogas reactors fed solely with protein-rich substrates. The bioaugmentation resulted in a 50% increase in CH4 production even without any acclimation. The survival and biological activity of the added bacteria were followed in fed-batch fermenters by qPCR. Stable biogas production was observed for an extended period of time in laboratory CSTR reactors fed with biomass of low C/N. PMID:25316194

  5. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

    PubMed Central

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-01-01

    Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Materials and Methods: Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. Results: UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. Conclusion: This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance. PMID:27114795

  6. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  7. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  8. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  9. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  10. Development of Long, Stiff DNA Tubes as Nanopatterned Substrates for Protein Binding

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Rothemund, Paul; Fygenson, Deborah

    2005-03-01

    We describe progress towards developing DNA Nanotubes into a tool for nano-patterning and assaying protein binding. DNA nanotubes are uniquely accessible equilibrium polymers made of motifs known as double- crossovers (DX units). They are typically 10 nm in diameter, up to 100 microns in length and correspondingly stiff (persistence length longer than 5 microns). We have predicted and thereby manipulated the tube-structure to selectively decorate the tubes along the interior or the exterior surface. This ability allows us to use DNA tubes as protein-binding substrates with unusually high density of binding-sites (around 500 within a micron), arrayed along the exterior of a tube in a regular lattice of 14.5 nm x 4 nm. We describe results showing the use of DNA Nanotubes as substrates for proteins such as ligase, restriction enzymes and regulatory proteins.

  11. Protein adsorption on tailored substrates: long-range forces and conformational changes

    NASA Astrophysics Data System (ADS)

    Bellion, M.; Santen, L.; Mantz, H.; Hähl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K.

    2008-10-01

    Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, α-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.

  12. Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates.

    PubMed

    Shi, Lei; Ji, Boyang; Kolar-Znika, Lorena; Boskovic, Ana; Jadeau, Fanny; Combet, Christophe; Grangeasse, Christophe; Franjevic, Damjan; Talla, Emmanuel; Mijakovic, Ivan

    2014-04-01

    It has often been speculated that bacterial protein-tyrosine kinases (BY-kinases) evolve rapidly and maintain relaxed substrate specificity to quickly adopt new substrates when evolutionary pressure in that direction arises. Here, we report a phylogenomic and biochemical analysis of BY-kinases, and their relationship to substrates aimed to validate this hypothesis. Our results suggest that BY-kinases are ubiquitously distributed in bacterial phyla and underwent a complex evolutionary history, affected considerably by gene duplications and horizontal gene transfer events. This is consistent with the fact that the BY-kinase sequences represent a high level of substitution saturation and have a higher evolutionary rate compared with other bacterial genes. On the basis of similarity networks, we could classify BY kinases into three main groups with 14 subgroups. Extensive sequence conservation was observed only around the three canonical Walker motifs, whereas unique signatures proposed the functional speciation and diversification within some subgroups. The relationship between BY-kinases and their substrates was analyzed using a ubiquitous substrate (Ugd) and some Firmicute-specific substrates (YvyG and YjoA) from Bacillus subtilis. No evidence of coevolution between kinases and substrates at the sequence level was found. Seven BY-kinases, including well-characterized and previously uncharacterized ones, were used for experimental studies. Most of the tested kinases were able to phosphorylate substrates from B. subtilis (Ugd, YvyG, and YjoA), despite originating from very distant bacteria. Our results are consistent with the hypothesis that BY-kinases have evolved relaxed substrate specificity and are probably maintained as rapidly evolving platforms for adopting new substrates.

  13. "Depupylation" of Prokaryotic Ubiquitin-like Protein from Mycobacterial Proteasome Substrates

    SciTech Connect

    Burns, K.E.; Li, H.; Cerda-Maira, F. A.; Wang, T.; Bishai, W. R.; Darwin, K. H.

    2010-09-10

    Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb), as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins. Dop (deamidase of Pup; Mtb Rv2112c/MT2172) deamidates the C-terminal glutamine of Pup to glutamate, preparing it for ligation to target proteins by proteasome accessory factor A (PafA). While studies have shed light on the conjugation of Pup to proteins, it was not known if Pup could be removed from substrates in a manner analogous to the deconjugation of Ub from eukaryotic proteins. Here, we show that Mycobacteria have a depupylase activity provided by Dop. The discovery of a depupylase strengthens the parallels between the Pup- and Ub-tagging systems of prokaryotes and eukaryotes, respectively.

  14. Substrate-Protein Interactions of Type II NADH:Quinone Oxidoreductase from Escherichia coli.

    PubMed

    Salewski, Johannes; Batista, Ana P; Sena, Filipa V; Millo, Diego; Zebger, Ingo; Pereira, Manuela M; Hildebrandt, Peter

    2016-05-17

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and responsible for the maintenance of NADH/NAD(+) balance in cells. NDH-2s are the only enzymes with NADH dehydrogenase activity present in the respiratory chain of many pathogens, and thus, they were proposed as suitable targets for antimicrobial therapies. In addition, NDH-2s were also considered key players for the treatment of complex I-related neurodegenerative disorders. In this work, we explored substrate-protein interaction in NDH-2 from Escherichia coli (EcNDH-2) combining surface-enhanced infrared absorption spectroscopic studies with electrochemical experiments, fluorescence spectroscopy assays, and quantum chemical calculations. Because of the specific stabilization of substrate complexes of EcNDH-2 immobilized on electrodes, it was possible to demonstrate the presence of two distinct substrate binding sites for NADH and the quinone and to identify a bound semiprotonated quinol as a catalytic intermediate. PMID:27109164

  15. Nano-patterned SERS substrate: application for protein analysis vs. temperature.

    PubMed

    Das, Gobind; Mecarini, Federico; Gentile, Francesco; De Angelis, Francesco; Mohan Kumar, Hg; Candeloro, Patrizio; Liberale, Carlo; Cuda, Giovanni; Di Fabrizio, Enzo

    2009-02-15

    We have illustrated the fabrication of nano-structures as a surface enhanced Raman scattering (SERS) substrate using electro-plating and electron-beam lithography techniques to obtain an array of gold nanograin-aggregate structures of diameter ranging between 80 and 100 nm with interstitial gap of 10-30 nm. The nanostructure based SERS substrate permits us to have better control and reproducibility on generation of plasmon polaritons. The calculation shows the possible detection of myoglobin concentration down to attomole. This SERS substrate is used to investigate the structural changes of different proteins; lysozyme, ribonuclease-B, bovin serum albumin and myoglobin in the temperature range between -65 and 90 degrees C. The in-depth analysis even for small conformational changes is performed using 2D Raman correlation analysis and difference Raman analysis in order to gain straightforward understanding of proteins undergoing thermodynamical perturbation.

  16. Strategy to target the substrate binding site of SET domain protein methyltransferases.

    PubMed

    Nguyen, Kong T; Li, Fengling; Poda, Gennadiy; Smil, David; Vedadi, Masoud; Schapira, Matthieu

    2013-03-25

    Protein methyltransferases (PMTs) are a novel gene family of therapeutic relevance involved in chromatin-mediated signaling and other biological mechanisms. Most PMTs are organized around the structurally conserved SET domain that catalyzes the methylation of a substrate lysine. A few potent chemical inhibitors compete with the protein substrate, and all are anchored in the channel recruiting the methyl-accepting lysine. We propose a novel strategy to design focused chemical libraries targeting the substrate binding site, where a limited number of warheads each occupying the lysine-channel of multiple enzymes would be decorated by different substituents. A variety of sequence and structure-based approaches used to analyze the diversity of the lysine channel of SET domain PMTs support the relevance of this strategy. We show that chemical fragments derived from published inhibitors are valid warheads that can be used in the design of novel focused libraries targeting other PMTs.

  17. Amino acid metabolism, substrate availability and the control of protein dynamics in the human kidney.

    PubMed

    Garibotto, G; Tessari, P; Sacco, P; Deferrari, G

    1999-01-01

    The mechanisms controlling protein metabolism in the human kidney are not well understood. During adult life, kidney protein content and the size of the kidney remain fairly constant, indicating that protein synthesis and degradation within the kidney are tightly regulated. However, kidney protein turnover may change in response to stimuli such as alterations in substrate availability, hormones or growth factors, acid-base balance, renal work or renal injury with a progressive decrease in the number of nephrons. These factors have been evaluated mainly in animals, in vitro or in vivo. Amino acids, the kidneys substrates for protein synthesis, are provided by several routes. Like in other organs, amino acids can reach the kidney cells through the arterial blood flow. However, they may also come from the degradation of reabsorbed low-molecular weight proteins filtered by the glomerulus. The human kidney has high rates of protein turnover and leucine oxidation. The magnitude of the protein turnover across the human kidney suggests that the protein dynamics is partly determined by intrarenal protein catabolism. As evaluated by a steady-state leucine multiple compartment analysis, kidney protein synthesis is dependent to a similar extent on intrarenal generation of amino acids from protein breakdown and from amino acids taken up from the arterial blood. Kidney mass may therefore depend not only on the availability of free amino acids, but also on filtered proteins which are degraded within the kidney. Future studies could define the mechanisms, metabolic pathways and mediators influencing kidney protein turnover in humans, with a view to better comprehension of the mechanisms of disease. PMID:10493563

  18. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release

    PubMed Central

    Liang, Fu-Cheng; Kroon, Gerard; McAvoy, Camille Z.; Chi, Chris; Wright, Peter E.; Shan, Shu-ou

    2016-01-01

    Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP’s transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems. PMID:26951662

  19. Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins

    NASA Astrophysics Data System (ADS)

    Kirchenbüchler, David; Born, Simone; Kirchgeßner, Norbert; Houben, Sebastian; Hoffmann, Bernd; Merkel, Rudolf

    2010-05-01

    Mechanosensing is a vital prerequisite for dynamic remodeling of focal adhesions and cytoskeletal structures upon substrate deformation. For example, tissue formation, directed cell orientation or cell differentiation are regulated by such mechanosensing processes. Focal adhesions and the actin cytoskeleton are believed to be involved in these processes, but where mechanosensing molecules are located and how elastic substrate, focal adhesions and the cytoskeleton couple with each other upon substrate deformation still remains obscure. To approach these questions we have developed a sensitive method to apply defined spatially decaying deformation fields to cells cultivated on ultrasoft elastic substrates and to accurately quantify the resulting displacements of the actin cytoskeleton, focal adhesions, as well as the substrate. Displacement fields were recorded in live cell microscopy by tracking either signals from fluorescent proteins or marker particles in the substrate. As model cell type we used myofibroblasts. These cells are characterized by highly stable adhesion and force generating structures but are still able to detect mechanical signals with high sensitivity. We found a rigid connection between substrate and focal adhesions. Furthermore, stress fibers were found to be barely extendable almost over their whole lengths. Plastic deformation took place only at the very ends of actin filaments close to focal adhesions. As a result, this area became elongated without extension of existing actin filaments by polymerization. Both ends of the stress fibers were mechanically coupled with detectable plastic deformations on either site. Interestingly, traction force dependent substrate deformation fields remained mostly unaffected even when stress fiber elongations were released. These data argue for a location of mechanosensing proteins at the ends of actin stress fibers and describe, except for these domains, the whole system to be relatively rigid for tensile

  20. Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex

    SciTech Connect

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2008-01-01

    Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-{beta} and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93 angstrom resolution. The polypeptide chain adopts the typical a{beta}a PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.

  1. Prediction and experimental validation of enzyme substrate specificity in protein structures

    PubMed Central

    Amin, Shivas R.; Erdin, Serkan; Ward, R. Matthew; Lua, Rhonald C.; Lichtarge, Olivier

    2013-01-01

    Structural Genomics aims to elucidate protein structures to identify their functions. Unfortunately, the variation of just a few residues can be enough to alter activity or binding specificity and limit the functional resolution of annotations based on sequence and structure; in enzymes, substrates are especially difficult to predict. Here, large-scale controls and direct experiments show that the local similarity of five or six residues selected because they are evolutionarily important and on the protein surface can suffice to identify an enzyme activity and substrate. A motif of five residues predicted that a previously uncharacterized Silicibacter sp. protein was a carboxylesterase for short fatty acyl chains, similar to hormone-sensitive-lipase–like proteins that share less than 20% sequence identity. Assays and directed mutations confirmed this activity and showed that the motif was essential for catalysis and substrate specificity. We conclude that evolutionary and structural information may be combined on a Structural Genomics scale to create motifs of mixed catalytic and noncatalytic residues that identify enzyme activity and substrate specificity. PMID:24145433

  2. Zcchc8 is a glycogen synthase kinase-3 substrate that interacts with RNA-binding proteins

    SciTech Connect

    Gustafson, Michael P.; Welcker, Markus; Hwang, Harry C.; Clurman, Bruce E. . E-mail: bclurman@fhcrc.org

    2005-12-23

    Phosphorylation of c-Myc on threonine 58 (T58) stimulates its degradation by the Fbw7-SCF ubiquitin ligase. We used a phosphorylation-specific antibody raised against the c-Myc T58 region to attempt to identify other proteins regulated by the Fbw7 pathway. We identified two predominant proteins recognized by this antibody. The first is Ebna1 binding protein 2, a nucleolar protein that, in contrast with a previous report, is likely responsible for the nucleolar staining exhibited by this antibody. The second is Zcchc8, a nuclear protein that is highly phosphorylated in cells treated with nocodazole. We show that Zcchc8 is directly phosphorylated by GSK-3 in vitro and that GSK-3 inhibition prevents Zcchc8 phosphorylation in vivo. Moreover, we found that Zcchc8 interacts with proteins involved in RNA processing/degradation. We suggest that Zcchc8 is a GSK-3 substrate with a role in RNA metabolism.

  3. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    SciTech Connect

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  4. Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family.

    PubMed

    Conejo, Maria S; Thompson, Steven M; Miller, Brian G

    2010-06-01

    The ROK (repressor, open reading frame, kinase) protein family (Pfam 00480) is a large collection of bacterial polypeptides that includes sugar kinases, carbohydrate responsive transcriptional repressors, and many functionally uncharacterized gene products. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D: -glucose, various glucose epimers, and several acetylated hexosamines. The primary sequence elements responsible for carbohydrate recognition within different functional categories of ROK polypeptides are largely unknown due to a limited structural characterization of this protein family. In order to identify the structural bases for substrate discrimination in individual ROK proteins, and to better understand the evolutionary processes that led to the divergent evolution of function in this family, we constructed an inclusive alignment of 227 representative ROK polypeptides. Phylogenetic analyses and ancestral sequence reconstructions of the resulting tree reveal a discrete collection of active site residues that dictate substrate specificity. The results also suggest a series of mutational events within the carbohydrate-binding sites of ROK proteins that facilitated the expansion of substrate specificity within this family. This study provides new insight into the evolutionary relationship of ROK glucokinases and non-ROK glucokinases (Pfam 02685), revealing the primary sequence elements shared between these two protein families, which diverged from a common ancestor in ancient times. PMID:20512568

  5. Differential substrate recognition by isozymes of plant protein-only Ribonuclease P.

    PubMed

    Howard, Michael J; Karasik, Agnes; Klemm, Bradley P; Mei, Christine; Shanmuganathan, Aranganathan; Fierke, Carol A; Koutmos, Markos

    2016-05-01

    Ribonuclease P (RNase P) catalyzes the cleavage of leader sequences from precursor tRNA (pre-tRNA). Typically, these enzymes are ribonucleic protein complexes that are found in all domains of life. However, a new class of RNase P has been discovered that is composed entirely of protein, termed protein-only RNase P (PRORP). To investigate the molecular determinants of PRORP substrate recognition, we measured the binding affinities and cleavage kinetics of Arabidopsis PRORP1 for varied pre-tRNA substrates. This analysis revealed that PRORP1 does not make significant contacts within the trailer or beyond N-1of the leader, indicating that this enzyme recognizes primarily the tRNA body. To determine the extent to which sequence variation within the tRNA body modulates substrate selectivity and to provide insight into the evolution and function of PRORP enzymes, we measured the reactivity of the three Arabidopsis PRORP isozymes (PRORP1-3) with four pre-tRNA substrates. A 13-fold range in catalytic efficiencies (10(4)-10(5)M(-1)s(-1)) was observed, demonstrating moderate selectivity for pre-tRNA substrates. Although PRORPs bind the different pre-tRNA species with affinities varying by as much as 100-fold, the three isozymes have similar affinities for a given pre-tRNA, suggesting similar binding modes. However, PRORP isozymes have varying degrees of cleavage fidelity, which is dependent on the pre-tRNA species and the presence of a 3'-discriminator base. This work defines molecular determinants of PRORP substrate recognition that provides insight into this new class of RNA processing enzymes. PMID:26966150

  6. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    NASA Astrophysics Data System (ADS)

    Nakanishi, Jun; Nakayama, Hidekazu; Yamaguchi, Kazuo; Garcia, Andres J.; Horiike, Yasuhiro

    2011-08-01

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG7). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni2+-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII7-10) to the irradiated regions. In contrast, when bovine serum albumin—a major serum protein—was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  7. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana

    PubMed Central

    Carrie, Chris; Venne, A. Saskia; Zahedi, René P.; Soll, Jürgen

    2015-01-01

    Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing. We identified 88 and seven putative substrates for Arabidopsis ICP55 and OCT1, respectively. It was determined that the Arabidopsis ICP55 contains an almost identical cleavage site to that of Icp55 from yeast. However, it can also remove a far greater range of amino acids. The OCT1 substrates from Arabidopsis displayed no consensus cleavage motif, and do not contain the classical –10R motif identified in other eukaryotes. Arabidopsis OCT1 can also cleave presequences independently, without the prior cleavage of MPP. It was concluded that while both OCT1 and ICP55 were probably acquired early on in the evolution of mitochondria, their substrate profiles and cleavage sites have either remained very similar or diverged completely. PMID:25732537

  8. Hydroxylation-Dependent Interaction of Substrates to the Von Hippel-Lindau Tumor Suppressor Protein (VHL).

    PubMed

    Heir, Pardeep; Ohh, Michael

    2016-01-01

    Oxygen-dependent hydroxylation of critical proline residues, catalyzed by prolyl hydroxylase (PHD1-3) enzymes, is a crucial posttranslational modification (PTM) within the canonical hypoxia-inducible factor (HIF)-centric cellular oxygen-sensing pathway. Alteration of substrates in this way often leads to proteasomal degradation mediated by the von Hippel-Lindau Tumor Suppressor protein (VHL) containing E3-ubiquitin ligase complex known as ECV (Elongins B/C, CUL2, VHL). Here, we outline in vitro protocols to demonstrate the ability of VHL to bind to a prolyl-hydroxylated substrate. PMID:27581016

  9. Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system.

    PubMed

    Tarry, Michael J; Schäfer, Eva; Chen, Shuyun; Buchanan, Grant; Greene, Nicholas P; Lea, Susan M; Palmer, Tracy; Saibil, Helen R; Berks, Ben C

    2009-08-11

    The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. In Escherichia coli substrate proteins initially bind to the integral membrane TatBC complex which then recruits the protein TatA to effect translocation. Overproduction of TatBC and the substrate protein SufI in the absence of TatA led to the accumulation of TatBC-SufI complexes that could be purified using an affinity tag on the substrate. Three-dimensional structures of the TatBC-SufI complexes and unliganded TatBC were obtained by single-particle electron microscopy and random conical tilt reconstruction. Comparison of the structures shows that substrate molecules bind on the periphery of the TatBC complex and that substrate binding causes a significant reduction in diameter of the TatBC part of the complex. Although the TatBC complex contains multiple copies of the signal peptide-binding TatC protomer, purified TatBC-SufI complexes contain only 1 or 2 SufI molecules. Where 2 substrates are present in the TatBC-SufI complex, they are bound at adjacent sites. These observations imply that only certain TatC protomers within the complex interact with substrate or that there is a negative cooperativity of substrate binding. Similar TatBC-substrate complexes can be generated by an alternative in vitro reconstitution method and using a different substrate protein.

  10. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range

    PubMed Central

    Tabakman, Scott M.; Lau, Lana; Robinson, Joshua T.; Price, Jordan; Sherlock, Sarah P.; Wang, Hailiang; Zhang, Bo; Chen, Zhuo; Tangsombatvisit, Stephanie; Jarrell, Justin A.; Utz, Paul J.; Dai, Hongjie

    2012-01-01

    Protein chips are widely used for high-throughput proteomic analysis, but to date, the low sensitivity and narrow dynamic range have limited their capabilities in diagnostics and proteomics. Here we present protein microarrays on a novel nanostructured, plasmonic gold film with near-infrared fluorescence enhancement of up to 100-fold, extending the dynamic range of protein detection by three orders of magnitude towards the fM regime. We employ plasmonic protein microarrays for the early detection of a cancer biomarker, carcinoembryonic antigen, in the sera of mice bearing a xenograft tumour model. Further, we demonstrate a multiplexed autoantigen array for human autoantibodies implicated in a range of autoimmune diseases with superior signal-to-noise ratios and broader dynamic range compared with commercial nitrocellulose and glass substrates. The high sensitivity, broad dynamic range and easy adaptability of plasmonic protein chips presents new opportunities in proteomic research and diagnostics applications. PMID:21915108

  11. Peroxidase as the Major Protein Constituent in Areca Nut and Identification of Its Natural Substrates

    PubMed Central

    Liu, Yu-Ching; Chen, Chao-Jung; Lee, Miau-Rong; Li, Mi; Hsieh, Wen-Tsong; Chung, Jing-Gung; Ho, Heng-Chien

    2013-01-01

    Numerous reports illustrate the diverse effects of chewing the areca nut, most of which are harmful and have been shown to be associated with oral cancer. Nearly all of the studies are focused on the extract and/or low molecular weight ingredients in the areca nut. The purpose of this report is to identify the major protein component in the areca nut. After ammonium sulfate fractionation, the concentrated areca nut extract is subjected to DEAE-cellulose chromatography. A colored protein is eluted at low NaCl concentration and the apparently homogeneous eluent represents the major protein component compared to the areca nut extract. The colored protein shares partial sequence identity with the royal palm tree peroxidase and its peroxidase activity is confirmed using an established assay. In the study, the natural substrates of areca nut peroxidase are identified as catechin, epicatechin, and procyanidin B1. The two former substrates are similarly oxidized to form a 576 Da product with concomitant removal of four hydrogen atoms. Interestingly, oxidation of procyanidin B1 occurs only in the presence of catechin or epicatechin and an additional product with an 864 Da molecular mass. In addition, procyanidin B1 is identified as a peroxidase substrate for the first time. PMID:24250715

  12. Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis.

    PubMed

    Schoborg, Jennifer A; Hodgman, C Eric; Anderson, Mark J; Jewett, Michael C

    2014-05-01

    Cell-free protein synthesis (CFPS) platforms are now considered a powerful tool for synthesizing a variety of proteins at scales from pL to 100 L with accelerated process development pipelines. We previously reported the advancement of a novel yeast-based CFPS platform. Here, we studied factors that cause termination of yeast CFPS batch reactions. Specifically, we characterized the substrate and byproduct concentrations in batch, fed-batch, and semi-continuous reaction formats through high-performance liquid chromatography (HPLC) and chemical assays. We discovered that creatine phosphate, the secondary energy substrate, and nucleoside triphosphates were rapidly degraded during batch CFPS, causing a significant drop in the reaction's energy charge (E.C.) and eventual termination of protein synthesis. As a consequence of consuming creatine phosphate, inorganic phosphate accumulated as a toxic byproduct. Additionally, we measured amino acid concentrations and found that aspartic acid was rapidly consumed. By adopting a semi-continuous reaction format, where passive diffusion enables substrate replenishment and byproduct removal, we achieved over a 70% increase in active superfolder green fluorescent protein (sfGFP) as compared with the batch system. This study identifies targets for the future improvement of the batch yeast CFPS reaction. Moreover, it outlines a detailed, generalized method to characterize and improve other CFPS platforms.

  13. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    PubMed

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.

  14. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    PubMed Central

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  15. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity

    PubMed Central

    2014-01-01

    Background Protein O-GlcNAcylation, involving the attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues. Elucidation of O-GlcNAcylation sites on proteins is required in order to decipher its crucial roles in regulating cellular processes and aid in drug design. With an increasing number of O-GlcNAcylation sites identified by mass spectrometry (MS)-based proteomics, several methods have been proposed for the computational identification of O-GlcNAcylation sites. However, no development that focuses on the investigation of O-GlcNAcylated substrate motifs has existed. Thus, we were motivated to design a new method for the identification of protein O-GlcNAcylation sites with the consideration of substrate site specificity. Results In this study, 375 experimentally verified O-GlcNAcylation sites were collected from dbOGAP, which is an integrated resource for protein O-GlcNAcylation. Due to the difficulty in characterizing the substrate motifs by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. To construct the predictive models learned from the identified substrate motifs, we adopted Support Vector Machines (SVMs). A five-fold cross validation was used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 0.76, 0.80, and 0.78, respectively. Additionally, an independent testing set, which was really blind to the training data of predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (0.94) and outperform three other O-GlcNAcylation site prediction tools. Conclusion This work proposed a computational method to identify informative substrate motifs for O-GlcNAcylation sites. The evaluation of cross validation and independent testing indicated that the identified motifs were effective in the identification of O-GlcNAcylation sites. A case study demonstrated that the

  16. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis

    PubMed Central

    Banko, Max R.; Allen, Jasmina J.; Schaffer, Bethany E.; Wilker, Erik W.; Tsou, Peiling; White, Jamie L.; Villén, Judit; Wang, Beatrice; Kim, Sara R.; Sakamoto, Kei; Gygi, Steven P.; Cantley, Lewis C.; Yaffe, Michael B.; Shokat, Kevan M.; Brunet, Anne

    2011-01-01

    SUMMARY The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21 -activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism’s response to low nutrients during development, or in adult stem and cancer cells. PMID:22137581

  17. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions.

    PubMed

    Buechner, Claudia N; Tessmer, Ingrid

    2013-12-01

    Protein-DNA interactions provide fundamental control mechanisms over biologically essential processes such as DNA replication, transcription, and repair. However, many details of these mechanisms still remain unclear. Atomic force microscopy (AFM) analyses provide unique and important structural and functional information on such protein-DNA interactions at the level of the individual molecules. The high sensitivity of the method with topographical visualization of all sample components also demands for extremely clean and pure materials. Here, we provide an overview of molecular biology-based approaches to produce DNA substrates for AFM imaging as well as other types of experiments, such as optical or magnetic tweezers, that profit from controllable substrate properties in long DNA fragments. We present detailed strategies to produce different types of motifs in DNA that are frequently employed targets of protein interactions. Importantly, the presented preparation techniques imply exact knowledge of the location of the introduced specific target sites within the DNA fragments, allowing for a distinction between specific and non-specific protein-DNA interactions in the AFM images and for separate conformational analyses of the different types of protein-DNA complexes.

  18. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  19. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    SciTech Connect

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A.; Lees-Miller, S.P.; Lintott, L.G.; Sakaguchi, Kazuyasu; Appella, E.

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  20. Binding thermodynamics of ferredoxin:NADP+ reductase: two different protein substrates and one energetics.

    PubMed

    Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián

    2009-06-17

    The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics.

  1. Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase.

    PubMed

    Magnani, Roberta; Nayak, Nihar R; Mazarei, Mitra; Dirk, Lynnette M A; Houtz, Robert L

    2007-09-21

    Rubisco large subunit methyltransferase (PsLSMT) is a SET domain protein responsible for the trimethylation of Lys-14 in the large subunit of Rubisco. The polypeptide substrate specificity determinants for pea Rubisco large subunit methyltransferase were investigated using a fusion protein construct between the first 23 amino acids from the large subunit of Rubisco and human carbonic anhydrase II. A total of 40 conservative and non-conservative amino acid substitutions flanking the target Lys-14 methylation site (positions P(-3) to P(+3)) were engineered in the fusion protein. The catalytic efficiency (k(cat)/K(m)) of PsLSMT was determined using each of the substitutions and a polypeptide consensus recognition sequence deduced from the results. The consensus sequence, represented by X-(Gly/Ser)-(Phe/Tyr)-Lys-(Ala/Lys/Arg)-(Gly/Ser)-pi, where X is any residue, Lys is the methylation site, and pi is any aromatic or hydrophobic residue, was used to predict potential alternative substrates for PsLSMT. Four chloroplast-localized proteins were identified including gamma-tocopherol methyltransferase (gamma-TMT). In vitro methylation assays using PsLSMT and a bacterially expressed form of gamma-TMT from Perilla frutescens confirmed recognition and methylation of gamma-TMT by PsLSMT in vitro. RNA interference-mediated knockdown of the PsLSMT homologue (NtLSMT) in transgenic tobacco plants resulted in a 2-fold decrease of alpha-tocopherol, the product of gamma-TMT. The results demonstrate the efficacy of consensus sequence-driven identification of alternative substrates for PsLSMT as well as identification of functional attributes of protein methylation catalyzed by LSMT.

  2. Alkyne Substrate Interaction within the Nitrogenase MoFe Protein

    PubMed Central

    Dos Santos, Patricia C.; Mayer, Suzanne M.; Barney, Brett M.; Seefeldt, Lance C.; Dean, Dennis R.

    2009-01-01

    Nitrogenase catalyzes the biological reduction of N2 to ammonia (nitrogen fixation), as well as the two-electron reduction of the non-physiological alkyne substrate acetylene (HC≡CH). A complex metallo-organic species called FeMo-cofactor provides the site of substrate reduction within the MoFe protein, but exactly where and how substrates interact with FeMo-cofactor remains unknown. Recent results have shown that the MoFe protein α-70Val residue, whose side-chain approaches one Fe-S face of FeMo-cofactor, plays a significant role in defining substrate access to the active site. For example, substitution of α-70Val by alanine results in an increased capacity for the reduction of the larger alkyne propyne (HC≡C-CH3), whereas substitution by isoleucine at this position nearly eliminates the capacity for the reduction of acetylene. These and complementary spectroscopic studies led us to propose that binding of short chain alkynes occurs with side-on binding to Fe atom 6 within FeMo-cofactor. In the present work, the α-70Val residue was substituted by glycine and this MoFe protein variant shows an increased capacity for reduction of the terminal alkyne, 1-butyne (HC≡C-CH2-CH3). This protein shows no detectable reduction of the internal alkyne 2-butyne (H3C-C≡C-CH3). In contrast, substitution of the nearby α-191Gln residue by alanine, in combination with the α-70Ala substitution, does result in significant reduction 2-butyne, with the exclusive product being 2-cis-butene. These results indicate that the reduction of alkynes by nitrogenases involves side-on binding of the alkyne to Fe6 within FeMo-cofactor, and that a terminal acidic proton is not required for reduction. The successful design of amino acid substitutions that permit the targeted accommodation of an alkyne that otherwise is not a nitrogenase substrate provides evidence to support the current model for alkyne interaction within the nitrogenase MoFe protein. PMID:17610955

  3. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate.

    PubMed

    Zhang, Pingfeng; Leu, Julia I-Ju; Murphy, Maureen E; George, Donna L; Marmorstein, Ronen

    2014-01-01

    The HSP70 family of molecular chaperones function to maintain protein quality control and homeostasis. The major stress-induced form, HSP70 (also called HSP72 or HSPA1A) is considered an important anti-cancer drug target because it is constitutively overexpressed in a number of human cancers and promotes cancer cell survival. All HSP70 family members contain two functional domains: an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate-binding domain (SBD); the latter is subdivided into SBDα and SBDβ subdomains. The NBD and SBD structures of the bacterial ortholog, DnaK, have been characterized, but only the isolated NBD and SBDα segments of eukaryotic HSP70 proteins have been determined. Here we report the crystal structure of the substrate-bound human HSP70-SBD to 2 angstrom resolution. The overall fold of this SBD is similar to the corresponding domain in the substrate-bound DnaK structures, confirming a similar overall architecture of the orthologous bacterial and human HSP70 proteins. However, conformational differences are observed in the peptide-HSP70-SBD complex, particularly in the loop L(α, β) that bridges SBDα to SBDβ, and the loop L(L,1) that connects the SBD and NBD. The interaction between the SBDα and SBDβ subdomains and the mode of substrate recognition is also different between DnaK and HSP70. This suggests that differences may exist in how different HSP70 proteins recognize their respective substrates. The high-resolution structure of the substrate-bound-HSP70-SBD complex provides a molecular platform for the rational design of small molecule compounds that preferentially target this C-terminal domain, in order to modulate human HSP70 function. PMID:25058147

  4. Substrate recognition and specificity of double-stranded RNA binding proteins.

    PubMed

    Vuković, Lela; Koh, Hye Ran; Myong, Sua; Schulten, Klaus

    2014-06-01

    Recognition of double-stranded (ds) RNA is an important part of many cellular pathways, including RNA silencing, viral recognition, RNA editing, processing, and transport. dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs). We use atomistic molecular dynamics simulations to examine the binding interface of the transactivation response RNA binding protein (TRBP) dsRBDs to dsRNA substrates. Our results explain the exclusive selectivity of dsRBDs toward dsRNA and against DNA-RNA hybrid and dsDNA duplexes. We also provide corresponding experimental evidence. The dsRNA duplex is recognized by dsRBDs through the A-form of three duplex grooves and by the chemical properties of RNA bases, which have 2'-hydroxyl groups on their sugar rings. Our simulations show that TRBP dsRBD discriminates dsRNA- from DNA-containing duplexes primarily through interactions at two duplex grooves. The simulations also reveal that the conformation of the DNA-RNA duplex can be altered by dsRBD proteins, resulting in a weak binding of dsRBDs to DNA-RNA hybrids. Our study reveals the structural and molecular basis of protein-RNA interaction that gives rise to the observed substrate specificity of dsRNA binding proteins. PMID:24801449

  5. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates*

    PubMed Central

    Gao, Feng; Kight, Alicia D.; Henderson, Rory; Jayanthi, Srinivas; Patel, Parth; Murchison, Marissa; Sharma, Priyanka; Goforth, Robyn L.; Kumar, Thallapuranam Krishnaswamy Suresh; Henry, Ralph L.; Heyes, Colin D.

    2015-01-01

    Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP. PMID:25918165

  6. The RNA-binding protein RNP29 is an unusual Toc159 transport substrate.

    PubMed

    Grimmer, Julia; Rödiger, Anja; Hoehenwarter, Wolfgang; Helm, Stefan; Baginsky, Sacha

    2014-01-01

    The precursors of RNP29 and Ferredoxin (Fd2) were previously identified in the cytosol of ppi2 plant cells with their N-terminal amino acid acetylated. Here, we explore whether precursor accumulation in ppi2 is characteristic for Toc159 client proteins, by characterizing the import properties of the RNP29 precursor in comparison to Fd2 and other Toc159-dependent or independent substrates. We find specific accumulation of the RNP29 precursor in ppi2 but not in wild type or ppi1 protoplasts. With the exception of Lhcb4, precursor accumulation is also detected with all other tested constructs in ppi2. However, RNP29 is clearly different from the other proteins because only precursor but almost no mature protein is detectable in protoplast extracts. Co-transformation of RNP29 with Toc159 complements its plastid import, supporting the hypothesis that RNP29 is a Toc159-dependent substrate. Exchange of the second amino acid in the RNP29 transit peptide to Glu or Asn prevents methionine excision but not N-terminal acetylation, suggesting that different N-acetyltransferases may act on chloroplast precursor proteins in vivo. All different RNP29 constructs are efficiently imported into wild type but not into ppi2 plastids, arguing for a minor impact of the N-terminal amino acid on the import process. PMID:24982663

  7. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates

    PubMed Central

    Burns, Kristin E.; Cerda-Maira, Francisca A.; Wang, Tao; Li, Huilin; Bishai, William R.; Darwin, K. Heran

    2010-01-01

    Summary Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb) as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins. Dop (deamidase of Pup; Mtb Rv2112c/MT2172) deamidates the carboxyl-terminal glutamine of Pup to glutamate, preparing it for ligation to target proteins by proteasome accessory factor A (PafA). While studies have shed light on the conjugation of Pup to proteins, it was not known if Pup could be removed from substrates in a manner analogous to the deconjugation of Ub from eukaryotic proteins. Here, we show that Mycobacteria have a “depupylase” activity provided by Dop. The discovery of a depupylase strengthens the parallels between the Pup and Ub tagging systems of prokaryotes and eukaryotes, respectively. PMID:20705495

  8. Development of conformation independent computational models for the early recognition of breast cancer resistance protein substrates.

    PubMed

    Gantner, Melisa Edith; Di Ianni, Mauricio Emiliano; Ruiz, María Esperanza; Talevi, Alan; Bruno-Blanch, Luis E

    2013-01-01

    ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively. PMID:23984415

  9. The human immunodeficiency virus type 1 Nef protein functions as a protein kinase C substrate in vitro.

    PubMed

    Coates, K; Harris, M

    1995-04-01

    The human immunodeficiency virus type 1 Nef protein was expressed in Escherichia coli as a C-terminal fusion with glutathione S-transferase (GST). The ability of GST-Nef to act as a substrate for cellular kinases in vitro was examined by incubation of purified GST-Nef fusion proteins, immobilized on glutathione-agarose beads, with cytoplasmic extracts from a number of human cell lines. In the presence of [gamma32P]ATP, phosphorylation of Nef occurred predominantly on serine residues. Studies with protein kinase inhibitors suggested that protein kinase C (PKC) was involved in Nef phosphorylation. This was supported further by the demonstration that purified PKC was also able to phosphorylate Nef in the absence of cell extract. Serine/threonine phosphorylation of Nef was also observed in vivo when Nef was expressed with a C-terminal GST or 6-histidine tag in Spodoptera frugiperda insect cells by recombinant baculoviruses. In extracts from Jurkat T cells and U937 monocyte/macrophages Nef also associated with a 57 kDa cellular protein that was itself phosphorylated in vitro. Phosphorylation of this Nef-associated protein was inhibited by heparin and is thus likely to be mediated by casein kinase II. The observation that PKC can phosphorylate Nef in vitro raises the possibility that PKC might play a role in regulating both Nef function and the physical interactions between Nef and cellular components.

  10. The energetic network of hotspot residues between Cdc25B phosphatase and its protein substrate

    PubMed Central

    Sohn, Jungsan; Rudolph, Johannes

    2006-01-01

    Summary We have investigated the functional network of hotspot residues at the remote docking site of two cell cycle regulators, namely Cdc25B phosphatase and its native protein substrate Cdk2-pTpY/CycA. Specifically, we have studied the roles of energetically important residues (Arg488, Arg492, Tyr497 on Cdc25B and Asp206 and Asp210 on Cdk2-pTpY/CycA) by generating a diverse set of substitutions and performing double- and triple mutant cycle analyses. This transient protein-protein interaction is particularly well-suited for this mutagenic approach because various control experiments ensure that the effect of each mutation is limited to the interaction of interest. We find binary coupling energies for ion pairs and hydrogen bonds ranging from 0.7 to 3.9 kcal/mol and ternary coupling energies of 1.9 and 2.8 kcal/mol. Overall our biochemical analyses are in good agreement with the docked structure of the complex and suggest the following roles for the individual hotspot residues on Cdc25B. The most important contributor, Arg492, forms a specific and tight bidentate interaction with Asp206 and a weaker interaction with Asp210 that cannot be replaced by a Lys. Although Tyr497 does not directly participate in this ionic network, it is important for buttressing Arg492 using both its hydrophobic (aromatic ring) and hydrophilic characteristics (hydrogen bonding). Arg488 participates less specifically in the electrostatic network with Asp206 and Asp210 of the protein substrate as it can partially be replaced by Lys. Our data provide insight how a cluster of residues in a docking site remote from the site of the chemical reaction can bring about efficient and specific substrate recognition. PMID:16950393

  11. Chemical and gamma-ray-modified bagasse as substrates for bioproduction of cellulases and protein

    SciTech Connect

    Lillehoj, E.B.; Han, Y.W.

    1983-08-01

    Production of enzymes in the cellulolytic complex was determined in culture filtrates of six fungal isolates grown on chemically treated or gamma-irradiated bagasse. The enzymatic activities of the filtrates were determined by measurement of glucose release from cotton, filter paper, carboxymethylcellulose, cellobiose, and cellobiose octaacetate. Cultures grown on basetreated and gamma-irradiated plus acid-treated bagasse provided culture filtrates with the highest enzymatic activities whereas alpha-cellulose, untreated, and acid-treated bagasse were the poorest substrates for enzyme production. Filtrates of trichoderma reesei QM 9414 yielded the highest cellulolytic activity in all test media. The largest accumulation of fungal-derived, extracellular protein was observed in media containing gamma-irradiated bagasse as the carbon substrate. (14 Refs.)

  12. Prolonged Fasting Identifies Heat Shock Protein 10 as a Sirtuin 3 Substrate

    PubMed Central

    Lu, Zhongping; Chen, Yong; Aponte, Angel M.; Battaglia, Valentina; Gucek, Marjan; Sack, Michael N.

    2015-01-01

    Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function. PMID:25505263

  13. The peroxisomal protein import machinery displays a preference for monomeric substrates

    PubMed Central

    Freitas, Marta O.; Francisco, Tânia; Rodrigues, Tony A.; Lismont, Celien; Domingues, Pedro; Pinto, Manuel P.; Grou, Cláudia P.; Fransen, Marc; Azevedo, Jorge E.

    2015-01-01

    Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient. PMID:25854684

  14. Controlling the Integration of Polyvinylpyrrolidone onto Substrate by Quartz Crystal Microbalance with Dissipation To Achieve Excellent Protein Resistance and Detoxification.

    PubMed

    Zheng, Jian; Wang, Lin; Zeng, Xiangze; Zheng, Xiaoyan; Zhang, Yan; Liu, Sa; Shi, Xuetao; Wang, Yingjun; Huang, Xuhui; Ren, Li

    2016-07-27

    Blood purification systems, in which the adsorbent removes exogenous and endogenous toxins from the blood, are widely used in clinical practice. To improve the protein resistance of and detoxification by the adsorbent, researchers can modify the adsorbent with functional molecules, such as polyvinylpyrrolidone (PVP). However, achieving precise control of the functional molecular density, which is crucial to the activity of the adsorbent, remains a significant challenge. In the present study, we prepared a model system for blood purification adsorbents in which we controlled the integration density of PVP molecules of different molecular weights on an Au substrate by quartz crystal microbalance with dissipation (QCM-D). We characterized the samples with atomic force microscopy, X-ray photoelectron spectroscopy, and QCM-D and found that the molecular density and the chain length of the PVP molecules played important roles in determining the properties of the sample. At the optimal condition, the modified sample demonstrated strong resistance to plasma proteins, decreasing the adsorption of human serum albumin (HSA) and fibrinogen (Fg) by 92.5% and 79.2%, respectively. In addition, the modified sample exhibited excellent detoxification, and the adsorption of bilirubin increased 2.6-fold. Interestingly, subsequent atomistic molecular dynamics simulations indicated that the favorable interactions between PVP and bilirubin were dominated by hydrophobic interactions. An in vitro platelet adhesion assay showed that the adhesion of platelets on the sample decreased and that the platelets were maintained in an inactivated state. The CCK-8 assay indicated that the modified sample exhibited negligible cytotoxicity to L929 cells. These results demonstrated that our method holds great potential for the modification of adsorbents in blood purification systems. PMID:27363467

  15. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer.

    PubMed Central

    Madhusudan; Trafny, E. A.; Xuong, N. H.; Adams, J. A.; Ten Eyck, L. F.; Taylor, S. S.; Sowadski, J. M.

    1994-01-01

    The crystal structure of ternary and binary substrate complexes of the catalytic subunit of cAMP-dependent protein kinase has been refined at 2.2 and 2.25 A resolution, respectively. The ternary complex contains ADP and a 20-residue substrate peptide, whereas the binary complex contains the phosphorylated substrate peptide. These 2 structures were refined to crystallographic R-factors of 17.5 and 18.1%, respectively. In the ternary complex, the hydroxyl oxygen OG of the serine at the P-site is 2.7 A from the OD1 atom of Asp 166. This is the first crystallographic evidence showing the direct interaction of this invariant carboxylate with a peptide substrate, and supports the predicted role of Asp 166 as a catalytic base and as an agent to position the serine -OH for nucleophilic attack. A comparison of the substrate and inhibitor ternary complexes places the hydroxyl oxygen of the serine 2.7 A from the gamma-phosphate of ATP and supports a direct in-line mechanism for phosphotransfer. In the binary complex, the phosphate on the Ser interacts directly with the epsilon N of Lys 168, another conserved residue. In the ternary complex containing ATP and the inhibitor peptide, Lys 168 interacts electrostatically with the gamma-phosphate of ATP (Zheng J, Knighton DR, Ten Eyck LF, Karlsson R, Xuong NH, Taylor SS, Sowadski JM, 1993, Biochemistry 32:2154-2161). Thus, Lys 168 remains closely associated with the phosphate in both complexes. A comparison of this binary complex structure with the recently solved structure of the ternary complex containing ATP and inhibitor peptide also reveals that the phosphate atom traverses a distance of about 1.5 A following nucleophilic attack by serine and transfer to the peptide. No major conformational changes of active site residues are seen when the substrate and product complexes are compared, although the binary complex with the phosphopeptide reveals localized changes in conformation in the region corresponding to the glycine

  16. Identification of the human DEAD-box protein p68 as a substrate of Tlk1

    SciTech Connect

    Kodym, Reinhard . E-mail: reinhard.kodym@meduniwien.ac.at; Henoeckl, Christian; Fuerweger, Christoph

    2005-07-29

    The activity of the human protein kinase Tlk1 is down-regulated within minutes after exposure of cells to ionizing radiation. In order to identify signaling pathways which might be relevant in the radiation response of mammalian cells we screened nuclear proteins for substrates of Tlk1. Among several proteins one could be identified as p68 RNA helicase. Furthermore, it could be shown that Tlk1 phosphorylates immunoprecipitated p68. The phosphorylation of the C-terminal fragment of p68 by rTlk1 reduced its affinity to single stranded RNA in a gel shift assay. In addition, it could be demonstrated that increasing the Tlk1 activity in HT1080 cells by forced Tlk1 overexpression leads to an increased phosphorylation of endogenous p68, arguing that p68 might be a physiological substrate of Tlk1. These findings open the possibility that Tlk1 might participate in diverse biologic functions like cell growth and differentiation, pre-mRNA splicing, and transcriptional coactivation.

  17. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition.

    PubMed

    Wienk, Hans; Slootweg, Jack C; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2013-07-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition. PMID:23661679

  18. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    PubMed Central

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  19. Electrospray deposition in vacuum as method to create functionally active protein immobilization on polymeric substrates.

    PubMed

    Fornari, Enzo; Roberts, Clive J; Temperton, Robert H; O'Shea, James N

    2015-09-01

    We demonstrate in this work the deposition of a large biological molecule (fibronectin) on polymeric substrates in a high vacuum environment using an electrospray deposition system. Fibronectin was deposited and its distribution and structure investigated and retention of function (ability to promote cell adhesion) on return to liquid environment is shown. AFM was used to monitor changes in the morphology of the surface before and after fibronectin deposition, whilst the biological activity of the deposited protein is assessed through a quantitative analysis of the biomolecular adhesion and migration of fibroblast cells to the modified surfaces. For the first time we have demonstrated that using high vacuum electrospray deposition it is possible to deposit large protein molecules on polymeric surfaces whilst maintaining the protein activity. The deposition of biological molecules such as proteins with the retention of their activity onto clean well-controlled surfaces under vacuum condition, offers the possibility for future studies utilizing high resolution vacuum based techniques at the atomic and molecular scale providing a greater understanding of protein-surface interface behaviour of relevance to a wide range of applications such as in sensors, diagnostics and tissue engineering.

  20. Conversion of a Chaperonin GroEL-independent Protein into an Obligate Substrate*

    PubMed Central

    Ishimoto, Takuya; Fujiwara, Kei; Niwa, Tatsuya; Taguchi, Hideki

    2014-01-01

    Chaperones assist protein folding by preventing unproductive protein aggregation in the cell. In Escherichia coli, chaperonin GroEL/GroES (GroE) is the only indispensable chaperone and is absolutely required for the de novo folding of at least ∼60 proteins. We previously found that several orthologs of the obligate GroE substrates in Ureaplasma urealyticum, which lacks the groE gene in the genome, are E. coli GroE-independent folders, despite their significant sequence identities. Here, we investigated the key features that define the GroE dependence. Chimera or random mutagenesis analyses revealed that independent multiple point mutations, and even single mutations, were sufficient to confer GroE dependence on the Ureaplasma MetK. Strikingly, the GroE dependence was well correlated with the propensity to form protein aggregates during folding. The results reveal the delicate balance between GroE dependence and independence. The function of GroE to buffering the aggregation-prone mutations plays a role in maintaining higher genetic diversity of proteins. PMID:25288795

  1. A Fusion Protein of RGD4C and β-Lactamase Has a Favorable Targeting Effect in Its Use in Antibody Directed Enzyme Prodrug Therapy

    PubMed Central

    Wang, Hao; Zhou, Xiao-Liang; Long, Wei; Liu, Jin-Jian; Fan, Fei-Yue

    2015-01-01

    Antibody directed enzyme prodrug therapy (ADEPT) utilizing β-lactamase is a promising treatment strategy to enhance the therapeutic effect and safety of cytotoxic agents. In this method, a conjugate (antibody-β-lactamase fusion protein) is employed to precisely activate nontoxic cephalosporin prodrugs at the tumor site. A major obstacle to the clinical translation of this method, however, is the low catalytic activity and high immunogenicity of the wild-type enzymes. To overcome this challenge, we fused a cyclic decapeptide (RGD4C) targeting to the integrin with a β-lactamase variant with reduced immunogenicity which retains acceptable catalytic activity for prodrug hydrolysis. Here, we made a further investigation on its targeting effect and pharmacokinetic properties, the results demonstrated that the fusion protein retains a targeting effect on integrin positive cells and has acceptable pharmacokinetic characteristics, which benefits its use in ADEPT. PMID:25927583

  2. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  3. Regeneration of Aplysia Bag Cell Neurons is Synergistically Enhanced by Substrate-Bound Hemolymph Proteins and Laminin

    NASA Astrophysics Data System (ADS)

    Hyland, Callen; Dufrense, Eric R.; Forscher, Paul

    2014-04-01

    We have investigated Aplysia hemolymph as a source of endogenous factors to promote regeneration of bag cell neurons. We describe a novel synergistic effect between substrate-bound hemolymph proteins and laminin. This combination increased outgrowth and branching relative to either laminin or hemolymph alone. Notably, the addition of hemolymph to laminin substrates accelerated growth cone migration rate over ten-fold. Our results indicate that the active factor is either a high molecular weight protein or protein complex and is not the respiratory protein hemocyanin. Substrate-bound factor(s) from central nervous system-conditioned media also had a synergistic effect with laminin, suggesting a possible cooperation between humoral proteins and nervous system extracellular matrix. Further molecular characterization of active factors and their cellular targets is warranted on account of the magnitude of the effects reported here and their potential relevance for nervous system repair.

  4. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV.

    PubMed

    Sundar, Shankar; McGinness, Kathleen E; Baker, Tania A; Sauer, Robert T

    2010-10-29

    Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in V(max). By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease. PMID:20837023

  5. The yeast mitochondrial citrate transport protein: molecular determinants of its substrate specificity.

    PubMed

    Aluvila, Sreevidya; Kotaria, Rusudan; Sun, Jiakang; Mayor, June A; Walters, D Eric; Harrison, David H T; Kaplan, Ronald S

    2010-08-27

    The objective of this study was to identify the role of individual amino acid residues in determining the substrate specificity of the yeast mitochondrial citrate transport protein (CTP). Previously, we showed that the CTP contains at least two substrate-binding sites. In this study, utilizing the overexpressed, single-Cys CTP-binding site variants that were functionally reconstituted in liposomes, we examined CTP specificity from both its external and internal surfaces. Upon mutation of residues comprising the more external site, the CTP becomes less selective for citrate with numerous external anions able to effectively inhibit [(14)C]citrate/citrate exchange. Thus, the site 1 variants assume the binding characteristics of a nonspecific anion carrier. Comparison of [(14)C]citrate uptake in the presence of various internal anions versus water revealed that, with the exception of the R189C mutant, the other site 1 variants showed substantial uniport activity relative to exchange. Upon mutation of residues comprising site 2, we observed two types of effects. The K37C mutant displayed a markedly enhanced selectivity for external citrate. In contrast, the other site 2 mutants displayed varying degrees of relaxed selectivity for external citrate. Examination of internal substrates revealed that, in contrast to the control transporter, the R181C variant exclusively functioned as a uniporter. This study provides the first functional information on the role of specific binding site residues in determining mitochondrial transporter substrate selectivity. We interpret our findings in the context of our homology-modeled CTP as it cycles between the outward-facing, occluded, and inward-facing states.

  6. Unbiased identification of substrates of protein tyrosine phosphatase ptp-3 in C. elegans.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Zhong, Jun; Nirujogi, Raja Sekhar; Bose, Anjun K; Pandey, Akhilesh

    2016-06-01

    The leukocyte antigen related (LAR) family of receptor-like protein tyrosine phosphatases has three members in humans - PTPRF, PTPRD and PTPRS - that have been implicated in diverse processes including embryonic development, inhibition of cell growth and axonal guidance. Mutations in the LAR family are associated with developmental defects such as cleft palate as well as various cancers including breast, neck, lung, colon and brain. Although this family of tyrosine phosphatases is important for many developmental processes, little is known of their substrates. This is partially due to functional redundancy within the LAR family, as deletion of a single gene in the LAR family does not have an appreciable phenotype, but a dual knockout is embryonically lethal in mouse models. To circumvent the inability to knockout multiple members of the LAR family in mouse models, we used a knockout of ptp-3, which is the only known ortholog of the LAR family in Caenorhabditis elegans and allows for the study of the LAR family at the organismal level. Using SILAC-based quantitative phosphoproteomics, we identified 255 putative substrates of ptp-3, which included four of the nine known annotated substrates of the LAR family. A motif analysis of the identified phosphopeptides allowed for the determination of sequences that appear to be preferentially dephosphorylated. Finally, we discovered that kinases were overrepresented in the list of identified putative substrates and tyrosine residues whose phosphorylation is known to increase kinase activity were dephosphorylated by ptp-3. These data are suggestive of ptp-3 as a potential negative regulator of several kinase families, such as the mitogen activated kinases (MAPKs), and multiple tyrosine kinases including FER, MET, and NTRK2.

  7. The sulfated conjugate of biochanin A is a substrate of breast cancer resistant protein (ABCG2).

    PubMed

    An, Guohua; Morris, Marilyn E

    2011-11-01

    The aim of the study was to investigate the role of breast cancer resistance protein (BCRP, ABCG2) in the transport of biochanin A and its metabolites. Transport studies were carried out in MDCK/bcrp1 as well as in control cells, and samples were analysed for biochanin A aglycone and metabolites using LC/MS/MS. In bidirectional transport studies biochanin A sulfate was detected in both apical and basolateral chambers after the addition of biochanin A. Analysis by RT-PCR revealed that the enzyme sulfotransferase 1A1 is expressed in Madin-Darby canine kidney (MDCK)-II cells. After its intracellular formation, biochanin A sulfate was preferentially transported to the basolateral side in MDCK/Mock cells, whereas apical transport of biochanin A sulfate was predominant in MDCK/Bcrp1 cells. Genistein, an additional metabolite of biochanin A formed intracellularly, was also found to be a bcrp1 substrate. Studies with MDCK/MRP2 (ABCC2) cells demonstrated that both genistein and biochanin A sulfate are not MRP2 substrates. In contrast, biochanin A aglycone was not transported by murine or human BCRP; nor is it a substrate of MRP2 or P-glycoprotein. Therefore, BCRP may play an important role in the enteric cycling of biochanin A sulfate and through this mechanism may alter the bioavailability of its non-substrate parent compound biochanin A. Moreover, MDCK-II cells might be a suitable model to investigate the synergistic role of sulfotransferase enzymes with efflux transporters. PMID:21910126

  8. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.

    PubMed

    Gilbert, Vanessa; Rouabhia, Mahmoud; Wang, Hongxum; Arnould, Anne-Lise; Remondetto, Gabriel; Subirade, Muriel

    2005-12-01

    Whey proteins-based biofilms were prepared using different plasticizers in order to obtain a biomaterial for the human keratinocytes and fibroblasts in vitro culture. The film properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) technique and mechanical tests. A relationship was found between the decrease of intermolecular hydrogen bond strength and film mechanical behavior changes, expressed by a breaking stress and Young modulus values diminishing. These results allow stating that the film molecular configuration could induce dissimilarities in its mechanical properties. The films toxicity was assessed by evaluating the cutaneous cells adherence, growth, proliferation and structural stratification. Microscopic observation demonstrated that both keratinocytes and fibroblasts adhered to the biofilms. The trypan blue exclusion test showed that keratinocytes grew at a significantly high rate on all the biofilms. Structural analysis demonstrated that keratinocytes stratified when cultured on the whey protein-based biofilms and gave rise to multi-layered epidermal structures. The most organized epidermis was obtained with whey protein isolate/DEG biofilm. This structure had a well-organized basal layer under supra-basal and corneous layers. This study demonstrated that whey proteins, an inexpensive renewable resource which can be obtained readily, were non-toxic to cutaneous cells and thus they could be useful substrates for a variety of biomedical applications, including tissue engineering.

  9. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  10. PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms.

    PubMed

    Deres, Laszlo; Bartha, Eva; Palfi, Anita; Eros, Krisztian; Riba, Adam; Lantos, Janos; Kalai, Tamas; Hideg, Kalman; Sumegi, Balazs; Gallyas, Ferenc; Toth, Kalman; Halmosi, Robert

    2014-01-01

    Spontaneously hypertensive rat (SHR) is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose) polymerase enzyme (PARP) plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286) treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group) or placebo (SHR-C group) for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group). Echocardiography was performed, brain-derived natriuretic peptide (BNP) activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps) and the phosphorylation state of Akt-1(Ser473), glycogen synthase kinase (GSK)-3β(Ser9), forkhead transcription factor (FKHR)(Ser256), mitogen activated protein kinases (MAPKs), and protein kinase C (PKC) isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV) hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2(Thr183-Tyr185), Akt-1(Ser473), GSK-3β(Ser9), FKHR(Ser256), and PKC ε(Ser729) and the level of Hsp90 were increased, while the activity of PKC α/βII(Thr638/641), ζ/λ(410/403) were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling. PMID

  11. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate

    PubMed Central

    Bornstein, Gil; Ganoth, Dvora; Hershko, Avram

    2006-01-01

    The activity of cullin-containing ubiquitin protein ligase complexes is stimulated by linkage to cullin of the ubiquitin-like protein Nedd8 (“neddylation”). Neddylation is inhibited by the tight binding of cullins to CAND1 (cullin-associated and neddylation-dissociated 1) protein, and Nedd8 is removed from cullins by specific isopeptidase activity of the COP9/signalosome (CSN) complex. The mechanisms that regulate neddylation and deneddylation of cullins were unknown. We examined this problem for the case of SCFSkp2, a cullin1 (Cul1)-containing ubiquitin ligase complex that contains the S phase-associated protein Skp2 as the substrate-binding F-box protein subunit. SCFSkp2 targets for degradation the cyclin-dependent kinase (cdk) inhibitor p27 in the G1-to-S phase transition, a process that requires its phosphorylation and binding to cdk2-cyclin E. Because levels of Skp2, cyclin E, and the accessory protein Cks1 (cyclin kinase subunit 1) all rise at the end of G1 phase, it seemed possible that the neddylation of Cul1 in SCFSkp2 is regulated by the availability of the F-box protein and/or the substrate. We found that the supplementation of Skp2–Skp1 and substrate (along with further components necessary for substrate presentation to the ubiquitin ligase) to extracts of HeLa cells synergistically increased levels of neddylated Cul1. Skp2–Skp1 abrogates the inhibitory influence of CAND1 on the neddylation of Cul1 by promoting the dissociation of the cullin–CAND1 complex, whereas substrate, together with substrate-presenting components, prevents the action of CSN to deneddylate cullin. We propose a sequence of events in which the increased availability of Skp2 and substrate in the transition of cells to S phase promotes the neddylation and assembly of the SCFSkp2 ubiquitin ligase complex. PMID:16861300

  12. Identification of p130(cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST.

    PubMed Central

    Garton, A J; Flint, A J; Tonks, N K

    1996-01-01

    PTP-PEST is a ubiquitously expressed, cytosolic, mammalian protein tyrosine phosphatase (PTP) which exhibits high specific activity in vitro. We have investigated the substrate specificity of PTP-PEST by a novel substrate-trapping approach in combination with in vitro dephosphorylation experiments. We initially identified a prominent 130-kDa tyrosine-phosphorylated protein in pervanadate-treated HeLa cell lysates which was preferentially dephosphorylated by PTP-PEST in vitro. In order to identify this potential substrate, mutant (substrate-trapping) forms of PTP-PEST were generated which lack catalytic activity but retain the ability to bind substrates. These mutant proteins associated in stable complexes exclusively with the same 130-kDa protein, which was identified as p130(cas) by immunoblotting. This exclusive association was observed in lysates from several cell lines and in transfected COS cells, but was not observed with other members of the PTP family, strongly suggesting that p130(cas) represents a major physiologically relevant substrate for PTP-PEST. Our studies suggest potential roles for PTP-PEST in regulation of p130(cas) function. These functions include mitogen- and cell adhesion-induced signalling events and probable roles in transformation by various oncogenes. These results provide the first demonstration of a PTP having an inherently restricted substrate specificity in vitro and in vivo. The methods used to identify p130(cas) as a specific substrate for PTP-PEST are potentially applicable to any PTP and should therefore prove useful in determining the physiological substrates of other members of the PTP family. PMID:8887669

  13. The Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with its Substrate Reveals Transient, Well-defined Contacts

    PubMed Central

    Goodrich, Andrew C.; Harden, Bradley J.; Frueh, Dominique P.

    2015-01-01

    Nonribosomal peptide synthetases (NRPSs) are microbial enzymes that produce a wealth of important natural products by condensing substrates in an assembly line manner. The proper sequence of substrates is obtained by tethering them to phosphopantetheinyl arms of holo carrier proteins (CPs) via a thioester bond. CPs in holo and substrate-loaded forms visit NRPS catalytic domains in a series of transient interactions. A lack of structural information on substrate-loaded carrier proteins has hindered our understanding of NRPS synthesis. Here, we present the first structure of an NRPS aryl carrier protein loaded with its substrate via a native thioester bond, together with the structure of its holo form. We also present the first quantification of NRPS CP backbone dynamics. Our results indicate that prosthetic moieties in both holo and loaded forms are in contact with the protein core, but they also sample states in which they are disordered and extend in solution. We observe that substrate loading induces a large conformational change in the phosphopantetheinyl arm, thereby modulating surfaces accessible for binding to other domains. Our results are discussed in the context of NRPS domain interactions. PMID:26334259

  14. Analysis of Substrates of Protein Kinase C Isoforms in Human Breast Cells By The Traceable Kinase Method

    PubMed Central

    Chen, Xiangyu; Zhao, Xin; Abeyweera, Thushara P.; Rotenberg, Susan A.

    2012-01-01

    A previous report (Biochemistry 46: 2364–2370, 2007) described the application of The Traceable Kinase Method to identify substrates of PKCα in non-transformed human breast MCF-10A cells. Here, a non-radioactive variation of this method compared the phospho-protein profiles of three traceable PKC isoforms (α, δ and ζ) for the purpose of identifying novel, isoform-selective substrates. Each FLAG-tagged traceable kinase was expressed and co-immunoprecipitated along with high affinity substrates. The isolated kinase and its associated substrates were subjected to an in vitro phosphorylation reaction with traceable kinase-specific N6-phenyl-ATP, and the resulting phospho-proteins were analyzed by Western blot with an antibody that recognizes the phosphorylated PKC consensus site. Phospho-protein profiles generated by PKC-α and -δ were similar and differed markedly from that of PKC-ζ. Mass spectrometry of selected bands revealed known PKC substrates and several potential substrates that included the small GTPase-associated effector protein Cdc42 effector protein-4 (CEP4). Of those potential substrates tested, only CEP4 was phosphorylated by pure PKC-α, –δ, and −ζ isoforms in vitro, and by endogenous PKC isoforms in MCF-10A cells treated with DAG-lactone, a membrane permeable PKC activator. Under these conditions, the stoichiometry of CEP4 phosphorylation was 3.2 ± 0.5 (mol phospho-CEP4/mol CEP4). Following knock-down with isoform-specific shRNA-encoding plasmids, phosphorylation of CEP4 was substantially decreased in response to silencing of each of the three isoforms (PKC–α, –δ, or –ζ), whereas testing of kinase-dead mutants supported a role for only PKC-α and –δ in CEP4 phosphorylation. These findings identify CEP4 as a novel intracellular PKC substrate that is phosphorylated by multiple PKC isoforms. PMID:22897107

  15. Roles of nucleic acid substrates and cofactors in the vhs protein activity of pseudorabies virus.

    PubMed

    Liu, Ya-Fen; Tsai, Pei-Yun; Lin, Fong-Yuan; Lin, Kuan-Hsun; Chang, Tien-Jye; Lin, Hui-Wen; Chulakasian, Songkhla; Hsu, Wei-Li

    2015-12-24

    Pseudorabies virus (PrV) belongs to the α-herpesvirinae of which human simplex virus (HSV) is the prototype virus. One of the hallmarks of HSV infection is shutoff of protein synthesis that is mediated by various viral proteins including vhs (virion host shutoff), which is encoded by the UL41 gene. However, the function of PrV vhs is poorly understood. Due to the low sequence similarity (39.3%) between the HSV and PrV UL41 proteins, vhs might not share the same biochemistry characteristics. The purpose of this study was to characterize the nuclease activity of the PrV vhs protein with respect to substrate specificity, its requirements in terms of cofactors, and the protein regions, as well as key amino acids, which contribute to vhs activity. Our results indicated that, similar to HSV vhs, PrV vhs is able to degrade ssRNA and mRNA. However, PrV vhs also targeted rRNA for degradation, which is novel compared to the HSV-1 vhs. Activity assays indicated that Mg(2+) alone enhances RNA degradation mediated by PrV vhs, while K(+) and ATP are not sufficient to induce activity. Finally, we demonstrated that each of the four highly conserved functional boxes of PrV vhs contributes to RNA degradation and that, in particular, residues 152, 169, 171, 172, 173 343, 345, 352 and 356, which are conserved among α-herpesviruses, are key amino acids needed for PrV vhs ribonuclease activity.

  16. Splicing kinase SRPK1 conforms to the landscape of its SR protein substrate.

    PubMed

    Aubol, Brandon E; Jamros, Michael A; McGlone, Maria L; Adams, Joseph A

    2013-10-29

    The splicing function of SR proteins is regulated by multisite phosphorylation of their C-terminal RS (arginine-serine rich) domains. SRPK1 has been shown to phosphorylate the prototype SR protein SRSF1 using a directional mechanism in which 11 serines flanked by arginines are sequentially fed from a docking groove in the large lobe of the kinase domain to the active site. Although this process is expected to operate on lengthy arginine-serine repeats (≥8), many SR proteins contain smaller repeats of only 1-4 dipeptides, raising the question of how alternate RS domain configurations are phosphorylated. To address this, we studied a splice variant of Tra2β that contains a C-terminal RS domain with short arginine-serine repeats [Tra2β(ΔN)]. We showed that SRPK1 selectively phosphorylates several serines near the C-terminus of the RS domain. SRPK1 uses a distributive mechanism for Tra2β(ΔN) where the rate-limiting step is the dissociation of the protein substrate rather than nucleotide exchange as in the case of SRSF1. Although a functioning docking groove is required for efficient SRSF1 phosphorylation, this conserved structural element is dispensable for Tra2β(ΔN) phosphorylation. These large shifts in mechanism are likely to account for the slower net turnover rate of Tra2β(ΔN) compared to SRSF1 and may signal fundamental differences in phosphorylation among SR proteins with distinctive arginine-serine profiles. Overall, these data indicate that SRPK1 conforms to changes in RS domain architecture using a flexible kinetic mechanism and selective usage of a conserved docking groove. PMID:24074032

  17. The Trigger Factor Chaperone Encapsulates and Stabilizes Partial Folds of Substrate Proteins

    PubMed Central

    Singhal, Kushagra; Vreede, Jocelyne; Mashaghi, Alireza; Tans, Sander J.; Bolhuis, Peter G.

    2015-01-01

    How chaperones interact with protein chains to assist in their folding is a central open question in biology. Obtaining atomistic insight is challenging in particular, given the transient nature of the chaperone-substrate complexes and the large system sizes. Recent single-molecule experiments have shown that the chaperone Trigger Factor (TF) not only binds unfolded protein chains, but can also guide protein chains to their native state by interacting with partially folded structures. Here, we used all-atom MD simulations to provide atomistic insights into how Trigger Factor achieves this chaperone function. Our results indicate a crucial role for the tips of the finger-like appendages of TF in the early interactions with both unfolded chains and partially folded structures. Unfolded chains are kinetically trapped when bound to TF, which suppresses the formation of transient, non-native end-to-end contacts. Mechanical flexibility allows TF to hold partially folded structures with two tips (in a pinching configuration), and to stabilize them by wrapping around its appendages. This encapsulation mechanism is distinct from that of chaperones such as GroEL, and allows folded structures of diverse size and composition to be protected from aggregation and misfolding interactions. The results suggest that an ATP cycle is not required to enable both encapsulation and liberation. PMID:26512985

  18. Amyloid β-Protein as a Substrate Interacts with Extracellular Matrix to Promote Neurite Outgrowth

    NASA Astrophysics Data System (ADS)

    Koo, Edward H.; Park, Lisa; Selkoe, Dennis J.

    1993-05-01

    Progressive deposition of amyloid β-protein (Aβ) in brain parenchyma and blood vessels is a characteristic feature of Alzheimer disease. Recent evidence suggests that addition of solubilized synthetic Aβ to medium may produce toxic or trophic effects on cultured hippocampal neurons. Because soluble Aβ may not accumulate in significant quantities in brain, we asked whether immobilized Aβ peptide as a substrate alters neurite outgrowth from cultured rat peripheral sensory neurons. This paradigm may closely mimic the conditions in Alzheimer disease brain tissue, in which neurites contact insoluble, extracellular aggregates of β-amyloid. We detected no detrimental effects of Aβ substrate on neurite outgrowth. Rather, Aβ in combination with low doses of laminin or fibronectin enhanced neurite out-growth from these neuronal explants. Our results suggest that insoluble Aβ in the cerebral neuropil may serve as a neurite-promoting matrix, perhaps explaining the apparent regenerative response of neurites observed around amyloid plaques in Alzheimer disease. Moreover, in concert with the recent discovery of Aβ production by cultured neurons, our data suggest that Aβ plays a normal physiological role in brain by complexing with the extracellular matrix.

  19. Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins.

    PubMed

    Chada, Nagaraju; Sigdel, Krishna P; Gari, Raghavendar Reddy Sanganna; Matin, Tina Rezaie; Randall, Linda L; King, Gavin M

    2015-07-31

    Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates.

  20. Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins.

    PubMed

    Chada, Nagaraju; Sigdel, Krishna P; Gari, Raghavendar Reddy Sanganna; Matin, Tina Rezaie; Randall, Linda L; King, Gavin M

    2015-01-01

    Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates. PMID:26228793

  1. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase

    PubMed Central

    Jacobs, Dave; Glossip, Danielle; Xing, Heming; Muslin, Anthony J.; Kornfeld, Kerry

    1999-01-01

    MAP kinases phosphorylate specific groups of substrate proteins. Here we show that the amino acid sequence FXFP is an evolutionarily conserved docking site that mediates ERK MAP kinase binding to substrates in multiple protein families. FXFP and the D box, a different docking site, form a modular recognition system, as they can function independently or in combination. FXFP is specific for ERK, whereas the D box mediates binding to ERK and JNK MAP kinase, suggesting that the partially overlapping substrate specificities of ERK and JNK result from recognition of shared and unique docking sites. These findings enabled us to predict new ERK substrates and design peptide inhibitors of ERK that functioned in vitro and in vivo. PMID:9925641

  2. A short peptide is a protein kinase C (PKC) alpha-specific substrate.

    PubMed

    Kang, Jeong-Hun; Asai, Daisuke; Yamada, Satoshi; Toita, Riki; Oishi, Jun; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2008-05-01

    The purpose of this study was to find protein kinase C (PKC) isozyme-specific peptides. A peptide library containing 1772 sequences was designed using Scansite and screened by MALDI-TOF MS and kinase activity assays for PKC isozyme-specificity. A peptide (Alphatomega; H-FKKQGSFAKKK-NH(2)) with high specificity for PKC alpha relative to other isozymes was identified. The peptide was phosphorylated to a greater extent by tissue lysates from B16 melanoma, HepG2, and human breast cancer, which had higher levels of activated PKC alpha, when compared to normal skin, liver, and human breast tissue lysates, respectively. Moreover, addition of Ro-31-7549, an inhibitor with great specificity for PKC alpha, to the phosphorylation reaction caused a dose-dependent reduction in phosphorylation, but no inhibition was identified with the addition of rottlerin and H-89. These results show that this peptide has great potential as a PKC alpha-specific substrate.

  3. Creating highly dense and uniform protein and DNA microarrays through photolithography and plasma modification of glass substrates.

    PubMed

    Malainou, A; Petrou, P S; Kakabakos, S E; Gogolides, E; Tserepi, A

    2012-04-15

    We demonstrate a method to create high density protein microarrays with excellent spot uniformity using photolithography and plasma processing on low cost commercially available microscope glass slides. Protein deposition and fluorescence signal evaluation on these substrates are performed by standard arrayers and scanners. To this end, spots of commercial photoresists (AZ5214, SU8 and Ormocomp(®)) were defined through lithography on glass substrates followed by short SF(6) plasma treatment and selective protein adsorption on these spots with respect to glass (spot to background fluorescence signal ratios 30:1 to 40:1) was demonstrated using model protein binding assays. Among the photoresists tested, Ormocomp was selected since it provided the highest protein binding capacity. No ageing of Ormocomp/glass substrates in terms of protein binding capacity was observed for at least two months. Besides to protein microarrays, DNA microarrays were also developed by spotting streptavidin-biotinylated oligonucleotide conjugates corresponding to wild- and mutant-type sequences of four deleterious BRCA1 gene mutations. For all of the examined mutations, higher specific hybridization signals (1.5-4 times) and improved discrimination ratios between wild- and mutant-type sequences as well as higher spot uniformity and repeatability were demonstrated on Ormocomp/glass substrates with intra- and inter-spot CVs of 8.0% and 4.5%, respectively, compared to commercial polystyrene (intra- and inter-spot CVs 36% and 18%) and epoxy-coated glass (intra- and inter-spot CVs 26% and 20%) slides. Thus, the proposed substrates can be readily applied to protein and DNA microarrays fabrication and, moreover, the described method for selective protein adsorption can be advantageously implemented in various analytical microdevices for multi-analyte detection.

  4. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    PubMed Central

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  5. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.

    PubMed

    Loch, Christian M; Strickler, James E

    2012-11-01

    Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.

  6. Identification of New Substrates of the Protein-tyrosine Phosphatase PTP1B by Bayesian Integration of Proteome Evidence*

    PubMed Central

    Ferrari, Emanuela; Tinti, Michele; Costa, Stefano; Corallino, Salvatore; Nardozza, Aurelio Pio; Chatraryamontri, Andrew; Ceol, Arnaud; Cesareni, Gianni; Castagnoli, Luisa

    2011-01-01

    There is growing evidence that tyrosine phosphatases display an intrinsic enzymatic preference for the sequence context flanking the target phosphotyrosines. On the other hand, substrate selection in vivo is decisively guided by the enzyme-substrate connectivity in the protein interaction network. We describe here a system wide strategy to infer physiological substrates of protein-tyrosine phosphatases. Here we integrate, by a Bayesian model, proteome wide evidence about in vitro substrate preference, as determined by a novel high-density peptide chip technology, and “closeness” in the protein interaction network. This allows to rank candidate substrates of the human PTP1B phosphatase. Ultimately a variety of in vitro and in vivo approaches were used to verify the prediction that the tyrosine phosphorylation levels of five high-ranking substrates, PLC-γ1, Gab1, SHP2, EGFR, and SHP1, are indeed specifically modulated by PTP1B. In addition, we demonstrate that the PTP1B-mediated dephosphorylation of Gab1 negatively affects its EGF-induced association with the phosphatase SHP2. The dissociation of this signaling complex is accompanied by a decrease of ERK MAP kinase phosphorylation and activation. PMID:21123182

  7. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.

    PubMed

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J; Zhang, Huiming; Tao, W Andy; Zhu, Jian-Kang

    2013-07-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.

  8. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action

    PubMed Central

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J.; Zhang, Huiming; Tao, W. Andy; Zhu, Jian-Kang

    2013-01-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments. PMID:23776212

  9. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  10. Ribosomal protein S7 is both a regulator and a substrate of MDM2.

    PubMed

    Zhu, Yan; Poyurovsky, Masha V; Li, Yingchun; Biderman, Lynn; Stahl, Joachim; Jacq, Xavier; Prives, Carol

    2009-08-14

    MDM2 associates with ribosomal protein S7, and this interaction is required to inhibit MDM2's E3 ligase activity, leading to stabilization of MDM2 and p53. Notably, the MDM2 homolog MDMX facilitates the inhibition of MDM2 E3 ligase activity by S7. Further, ablation of S7 inhibits MDM2 and p53 accumulation induced by different stress signals in some cell types. Thus, ribosomal/nucleolar stress is likely a key integrating event in DNA damage signaling to p53. Interestingly, S7 is itself a substrate for MDM2 E3 ligase activity both in vitro and in vivo. An S7-ubiquitin fusion protein (S7-Ub) selectively inhibits MDM2 degradation of p53 and is unaffected by MDMX. S7-Ub promotes apoptosis to a greater extent than S7 alone. This indicates that MDM2 ubiquitination of S7 is involved in sustaining the p53 response. Thus, S7 functions as both effector and affector of MDM2 to ensure a proper cellular response to different stress signals.

  11. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays.

    PubMed

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila

    2015-03-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  12. Alteration of Substrate Specificity: The Variable N-Terminal Domain of Tobacco Ca2+-Dependent Protein Kinase Is Important for Substrate Recognition[W

    PubMed Central

    Ito, Takeshi; Nakata, Masaru; Fukazawa, Jutarou; Ishida, Sarahmi; Takahashi, Yohsuke

    2010-01-01

    Protein kinases are major signaling molecules that are involved in a variety of cellular processes. However, the molecular mechanisms whereby protein kinases discriminate specific substrates are still largely unknown. Ca2+-dependent protein kinases (CDPKs) play central roles in Ca2+ signaling in plants. Previously, we found that a tobacco (Nicotiana tabacum) CDPK1 negatively regulated the transcription factor REPRESSION OF SHOOT GROWTH (RSG), which is involved in gibberellin feedback regulation. Here, we found that the variable N-terminal domain of CDPK1 is necessary for the recognition of RSG. A mutation (R10A) in the variable N-terminal domain of CDPK1 reduced both RSG binding and RSG phosphorylation while leaving kinase activity intact. Furthermore, the R10A mutation suppressed the in vivo function of CDPK1. The substitution of the variable N-terminal domain of an Arabidopsis thaliana CDPK, At CPK9, with that of Nt CDPK1 conferred RSG kinase activities. This chimeric CDPK behaved according to the identity of the variable N-terminal domain in transgenic plants. Our results open the possibility of engineering the substrate specificity of CDPK by manipulation of the variable N-terminal domain, enabling a rational rewiring of cellular signaling pathways. PMID:20442373

  13. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    SciTech Connect

    Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.; Proost, Paul; Van Aelst, Ilse; Blockmans, Daniel; Opdenakker, Ghislain

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.

  14. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    SciTech Connect

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  15. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators

    PubMed Central

    Mathias, Rommel A.; Greco, Todd M.; Cristea, Ileana M.

    2016-01-01

    Recent studies have highlighted the three mitochondrial human sirtuins (SIRT3, SIRT4, and SIRT5) as critical regulators of a wide range of cellular metabolic pathways. A key factor to understanding their impact on metabolism has been the discovery that, in addition to their ability to deacetylate substrates, mitochondrial sirtuins can have other prominent enzymatic activities. SIRT4, one of the least characterized mitochondrial sirtuins, was shown to be the first known cellular lipoamidase, removing lipoyl modifications from lysine residues of substrates. Specifically, SIRT4 was found to delipoylate and modulate the activity of the pyruvate dehydrogenase complex (PDH), a protein complex critical for the production of acetyl-CoA. Furthermore, SIRT4 is well known to have ADP-ribosyltransferase activity and to regulate the activity of the glutamate dehydrogenase complex (GDH). Adding to its impressive range of enzymatic activities are its ability to deacetylate malonyl-CoA decarboxylase (MCD) to regulate lipid catabolism, and its newly recognized ability to remove biotinyl groups from substrates that remain to be defined. Given the wide range of enzymatic activities and the still limited knowledge of its substrates, further studies are needed to characterize its protein interactions and its impact on metabolic pathways. Here, we present several proven protocols for identifying SIRT4 protein interaction networks within the mitochondria. Specifically, we describe methods for generating human cell lines expressing SIRT4, purifying mitochondria from crude organelles, and effectively capturing SIRT4 with its interactions and substrates. PMID:27246218

  16. A Substrate-Fusion Protein Is Trapped inside the Type III Secretion System Channel in Shigella flexneri

    PubMed Central

    Dohlich, Kim; Zumsteg, Anna Brotcke; Goosmann, Christian; Kolbe, Michael

    2014-01-01

    The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion. PMID:24453973

  17. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins

    PubMed Central

    Piao, Lianhua; Nakakido, Makoto; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    We previously reported that the histone lysine methyltransferase SUV39H2, which is overexpressed in various types of human cancer, plays a critical role in the DNA repair after double strand breakage, and possesses oncogenic activity. Although its biological significance in tumorigenesis has been elucidated, the regulatory mechanism of SUV39H2 activity through post-translational modification is not well known. In this study, we demonstrate in vitro and in vivo automethylation of SUV39H2 at lysine 392. Automethylation of SUV39H2 led to impairment of its binding affinity to substrate proteins such as histone H3 and LSD1. Furthermore, we observed that hyper-automethylated SUV39H2 reduced methylation activities to substrates through affecting the binding affinity to substrate proteins. Our finding unveils a novel autoregulatory mechanism of SUV39H2 through lysine automethylation. PMID:26988914

  18. The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules.

    PubMed

    Matos, Cristina F R O; Robinson, Colin; Di Cola, Alessandra

    2008-08-01

    The twin-arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane, including FeS proteins that receive their cofactors in the cytoplasm. We have studied two Escherichia coli Tat substrates, NrfC and NapG, to examine how, or whether, the system exports only correctly folded and assembled FeS proteins. With NrfC, substitutions in even one of four predicted FeS centres completely block export, indicating an effective proofreading activity. The FeS mutants are rapidly degraded but only if they interact with the Tat translocon; they are stable in a tat deletion strain and equally stable in wild-type cells if the signal peptide twin-arginine motif is removed to block targeting. Basically similar results are obtained with NapG. The Tat apparatus thus proofreads these substrates and directly initiates the turnover of rejected molecules. Turnover of mutated FeS substrates is completely dependent on the TatA/E subunits that are believed to be involved in the late stages of translocation, and we propose that partial translocation triggers substrate turnover within an integrated quality control system for FeS proteins.

  19. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines

    NASA Astrophysics Data System (ADS)

    Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George

    2013-09-01

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  20. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines.

    PubMed

    Kravats, Andrea N; Tonddast-Navaei, Sam; Bucher, Ryan J; Stan, George

    2013-09-28

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  1. EWS is a substrate of type I protein arginine methyltransferase, PRMT8.

    PubMed

    Kim, Jun-Dal; Kako, Koichiro; Kakiuchi, Misako; Park, Gwi Gun; Fukamizu, Akiyoshi

    2008-09-01

    EWS, a pro-oncoprotein which is encoded by the Ewing sarcoma (EWS) gene, contains arginine-glycine-glycine repeats (RGG box) in its COOH-terminus. We previously found that the RGG box of EWS is a target for dimethylation catalyzed by protein arginine methyltransferases (PRMTs). Although it has been observed that arginine residues in EWS are dimethylated in vivo, the endogenous enzyme(s) responsible for this reaction have not been identified to date. In the present study, we determined that EWS was physically associated with PRMT8, the novel eighth member of the PRMT family, through the COOH-terminal region of EWS including RGG3 with the NH2-terminal region of PRMT8 encompassing the S-adenosyl-L-methionine binding domain, and that arginine residues in EWS were asymmetrically dimethylated by PRMT8 using amino acid analysis with thin-layer chromatography. These results suggested that EWS is a substrate for PRMT8, as efficient as for PRMT1.

  2. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.

    PubMed

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey

    2016-07-15

    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.

  3. Prediction of substrate specificity and preliminary kinetic characterization of the hypothetical protein PVX_123945 from Plasmodium vivax.

    PubMed

    Srinivasan, Bharath; Kempaiah Nagappa, Lakshmeesha; Shukla, Arpit; Balaram, Hemalatha

    2015-01-01

    Members of the haloacid dehalogenase (HAD) superfamily are emerging as an important group of enzymes by virtue of their role in diverse chemical reactions. In different Plasmodium species their number varies from 16 to 21. One of the HAD superfamily members, PVX_123945, a hypothetical protein from Plasmodium vivax, was selected for examining its substrate specificity. Based on distant homology searches and structure comparisons, it was predicted to be a phosphatase. Thirty-eight metabolites were screened to identify potential substrates. Further, to validate the prediction, biochemical and kinetic studies were carried out that showed that the protein was a monomer with high catalytic efficiency for β-glycerophosphate followed by pyridoxal 5'-phosphate. The enzyme also exhibited moderate catalytic efficiencies for α-glycerophosphate, xanthosine 5'-monophosphate and adenosine 5'-monophosphate. It also hydrolyzed the artificial substrate p-nitrophenyl phosphate (pNPP). Mg(2+) was the most preferred divalent cation and phosphate inhibited the enzyme activity. The study is the first attempt at understanding the substrate specificity of a hypothetical protein belonging to HAD superfamily from the malarial parasite P. vivax. PMID:25655405

  4. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma

    PubMed Central

    WU, YAN-HUI; AI, XI; LIU, FU-YAO; LIANG, HUI-FANG; ZHANG, BI-XIANG; CHEN, XIAO-PING

    2016-01-01

    Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC. PMID:26648552

  5. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma.

    PubMed

    Wu, Yan-Hui; Ai, Xi; Liu, Fu-Yao; Liang, Hui-Fang; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-02-01

    Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC.

  6. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange

    PubMed Central

    Ye, Xiang; Lorimer, George H.

    2013-01-01

    The complex kinetics of Pi and ADP release by the chaperonin GroEL/GroES is influenced by the presence of unfolded substrate protein (SP). Without SP, the kinetics of Pi release are described by four phases: a “lag,” a “burst” of ATP hydrolysis by the nascent cis ring, a “delay” caused by ADP release from the nascent trans ring, and steady-state ATP hydrolysis. The release of Pi precedes the release of ADP. The rate-determining step of the asymmetric cycle is the release of ADP from the trans ring of the GroEL-GroES1 “bullet” complex that is, consequently, the predominant species. In the asymmetric cycle, the two rings of GroEL function alternately, 180° out of phase. In the presence of SP, a change in the kinetic mechanism occurs. With SP present, the kinetics of ADP release are also described by four phases: a lag, a “surge” of ADP release attributable to SP-induced ADP/ATP exchange, and a “pause” during which symmetrical “football” particles are formed, followed by steady-state ATP hydrolysis. SP catalyzes ADP/ATP exchange on the trans ring. Now ADP release precedes the release of Pi, and the rate-determining step of the symmetric cycle becomes the hydrolysis of ATP by the symmetric GroEL-GroES2 football complex that is, consequently, the predominant species. A FRET-based analysis confirms that asymmetric GroEL-GroES1 bullets predominate in the absence of SP, whereas symmetric GroEL-GroES2 footballs predominate in the presence of SP. This evidence suggests that symmetrical football particles are the folding functional form of the chaperonin machine in vivo. PMID:24167257

  7. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained. PMID:27049528

  8. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality.

    PubMed

    Lei, Zhen; Gao, Jiaxue; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-04-27

    We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.

  9. A Single Protein S-acyl Transferase Acts through Diverse Substrates to Determine Cryptococcal Morphology, Stress Tolerance, and Pathogenic Outcome

    PubMed Central

    Santiago-Tirado, Felipe H.; Peng, Tao; Yang, Meng; Hang, Howard C.; Doering, Tamara L.

    2015-01-01

    Cryptococcus neoformans is an opportunistic yeast that kills over 625,000 people yearly through lethal meningitis. Host phagocytes serve as the first line of defense against this pathogen, but fungal engulfment and subsequent intracellular proliferation also correlate with poor patient outcome. Defining the interactions of this facultative intracellular pathogen with host phagocytes is key to understanding the latter’s opposing roles in infection and how they contribute to fungal latency, dissemination, and virulence. We used high-content imaging and a human monocytic cell line to screen 1,201 fungal mutants for strains with altered host interactions and identified multiple genes that influence fungal adherence and phagocytosis. One of these genes was PFA4, which encodes a protein S-acyl transferase (PAT), one of a family of DHHC domain-containing proteins that catalyzes lipid modification of proteins. Deletion of PFA4 caused dramatic defects in cryptococcal morphology, stress tolerance, and virulence. Bioorthogonal palmitoylome-profiling identified Pfa4-specific protein substrates involved in cell wall synthesis, signal transduction, and membrane trafficking responsible for these phenotypic alterations. We demonstrate that a single PAT is responsible for the modification of a subset of proteins that are critical in cryptococcal pathogenesis. Since several of these palmitoylated substrates are conserved in other pathogenic fungi, protein palmitoylation represents a potential avenue for new antifungal therapeutics. PMID:25970403

  10. The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy.

    PubMed

    Falke, Scott; Tama, Florence; Brooks, Charles L; Gogol, Edward P; Fisher, Mark T

    2005-04-22

    The 13 angstroms resolution structures of GroEL bound to a single monomer of the protein substrate glutamine synthetase (GS(m)), as well as that of unliganded GroEL have been determined from a heterogeneous image population using cryo-electron microscopy (cryo-EM) coupled with single-particle image classification and reconstruction techniques. We combined structural data from cryo-EM maps and dynamic modeling, taking advantage of the known X-ray crystallographic structure and normal mode flexible fitting (NMFF) analysis, to describe the changes that occur in GroEL structure induced by GS(m) binding. The NMFF analysis reveals that the molecular movements induced by GS(m) binding propagate throughout the GroEL structure. The modeled molecular motions show that some domains undergo en bloc movements, while others show more complex independent internal movements. Interestingly, the substrate-bound apical domains of both the cis (GS(m)-bound ring) and trans (the opposite substrate-free ring) show counterclockwise rotations, in the same direction (though not as dramatic) as those documented for the ATP-GroEL-induced structure changes. The structural changes from the allosteric substrate protein-induced negative cooperativity between the GroEL rings involves upward concerted movements of both cis and trans equatorial domains toward the GS(m)-bound ring, while the inter-ring distances between the heptamer contact residues are maintained. Furthermore, the NMFF analysis identifies the secondary structural elements that are involved in the observed approximately 5 angstroms reduction in the diameter of the cavity opening in the unbound trans ring. Understanding the molecular basis of these substrate protein-induced structural changes across the heptamer rings provides insight into the origins of the allosteric negative cooperative effects that are transmitted over long distances (approximately 140 angstroms). PMID:15808865

  11. Probing the leucyl/phenylalanyl tRNA protein transferase active site with tRNA substrate analogues.

    PubMed

    Fung, Angela Wai Shan; Ebhardt, H Alexander; Krishnakumar, Kollappillil S; Moore, Jack; Xu, Zhizhong; Strazewski, Peter; Fahlman, Richard P

    2014-07-01

    Aminoacyl-tRNA protein transferases post-translationally conjugate an amino acid from an aminoacyl-tRNA onto the N-terminus of a target polypeptide. The eubacterial aminoacyl-tRNA protein transferase, L/F transferase, utilizes both leucyl-tRNA(Leu) and phenylalanyl-tRNA(Phe) as substrates. X-ray crystal structures with substrate analogues, the minimal substrate phenylalanyl adenosine (rA-Phe) and inhibitor puromycin, have been used to characterize tRNA recognition by L/F transferase. However analyses of these two X-ray crystal structures reveal significant differences in binding. Through structural analyses, mutagenesis, and enzymatic activity assays, we rationalize and demonstrate that the substrate analogues bind to L/F transferase with similar binding affinities using a series of different interactions by the various chemical groups of the analogues. Our data also demonstrates that enlarging the hydrophobic pocket of L/F transferase selectively enhances puromycin inhibition and may aid in the development of improved inhibitors for this class of enzymes.

  12. Fabrication of a Dual Substrate Display to Test Roles of Cell Adhesion Proteins in Vesicle Targeting to Plasma Membrane Domains

    PubMed Central

    Hunt, Stephen J.; Nelson, W. James

    2009-01-01

    While much is known of the molecular machinery involved in protein sorting during exocytosis, less is known about the spatial regulation of exocytosis at the plasma membrane (PM). This study outlines a novel method, Dual Substrate Display, used to formally test the hypothesis that E-cadherin-mediated adhesion directs basolateral vesicle exocytosis to specific sites at the PM. We show that vesicles containing the basolateral marker protein VSV-G preferentially target to sites of adhesion to E-cadherin rather than collagen VI or a control peptide. These results support the hypothesis that E-cadherin adhesion initiates signaling at the PM resulting in targeted sites for exocytosis. PMID:17803993

  13. Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins.

    PubMed

    Agarwal, Vinayak; Diethelm, Stefan; Ray, Lauren; Garg, Neha; Awakawa, Takayoshi; Dorrestein, Pieter C; Moore, Bradley S

    2015-09-18

    A chemoenzymatic approach to generate fully functional acyl coenzyme A molecules that are then used as substrates to drive in situ acyl transfer reactions is described. Mass spectrometry based assays to verify the identity of acyl coenzyme A enzymatic products are also illustrated. The approach is responsive to a diverse array of carboxylic acids that can be elaborated to their corresponding coenzyme A thioesters, with potential applications in wide-ranging chemical biology studies that utilize acyl coenzyme A substrates.

  14. Dematin, a human erythrocyte cytoskeletal protein, is a substrate for a recombinant FIKK kinase from Plasmodium falciparum.

    PubMed

    Brandt, Gabriel S; Bailey, Scott

    2013-09-01

    P. falciparum causes the most deadly form of malaria, resulting from the adherence of infected red blood cells to blood vessels. During the blood stage of infection, the parasite secretes a large number of proteins into the host erythrocyte. The secretion of a 20-member family of protein kinases known as FIKK kinases, after a conserved Phe-Ile-Lys-Lys sequence motif, is unique to P. falciparum. Identification of physiological substrates of these kinases may provide perspective on the importance of FIKK kinase activity to P. falciparum virulence. We demonstrate, for the first time, the heterologous expression and purification of a FIKK kinase (PfFk4.1, PFD1165w). The recombinant kinase is active against general substrates and phosphorylates itself. Having demonstrated kinase activity, we incubated recombinant Fk4.1 with parasite and human erythrocyte lysates. No parasite-derived substrates were identified. However, treatment of erythrocyte ghosts shows that the FIKK kinase Fk4.1 phosphorylates dematin, a cytoskeletal protein found at the red blood cell spectrin-actin junction.

  15. Identification of a novel PSR as the substrate of an SR protein kinase in the true slime mold.

    PubMed

    Zhang, Yong-Xia; Xing, Miao; Fei, Xuan; Zhang, Jian-Hua; Tian, Sheng-Li; Li, Ming-Hua; Liu, Shi-De

    2011-03-01

    Here, a novel cDNA encoding a serine/arginine (SR)-rich protein, designated PSR, was isolated from the true slime mold Physarum polycephalum and expressed in Escherichia coli. The deduced amino acid (aa) sequence reveals that PSR contains RS repeats at its C-terminus, similar to the conventional PSRPK substrate ASF/SF2. To study the novel protein, we generated a variety of mutant constructs by PCR and site-directed mutagenesis. Our analysis indicated that the purified recombinant PSR was phosphorylated by PSRPK in vitro and the SR-rich domain (amino acids 460-469) in the PSR protein was required for phosphorylation. In addition, removal of the docking motif (amino acids 424-450) from PSR significantly reduced the overall catalytic efficiency of the phosphorylation reaction. We also found that the conserved ATP-binding region (62)LGWGHFSTVWLAIDEKNGGREVALK(86) and the serine/threonine protein kinases active-site signature (184)IIHTDLKPENVLL(196) of PSRPK played a crucial role in substrate phosphorylation and Lys(86) and Asp(188) were crucial for PSRPK phosphorylation of PSR. These results suggest that PSR is a novel SR-related protein that is phosphorylated by PSRPK.

  16. Possible participation of brain-specific proteins of the S100 group in the regulation of processes of phosphorylation-dephosphorylation of endogenous substrates of nerve tissue

    SciTech Connect

    Gruden, M.A.; Poletaev, A.B.

    1986-06-10

    The influence of brain-specific proteins of the S-100 group (BSP S100) and their endogenous cationic and anionic protein ligands on the phosphorylation of macromolecular substrates of the rat brain and liver was investigated. It was shown that BSP S100 has a substantial influence both on the phosphorylation and on the dephosphorylation of various substrates, primarily of nerve tissue; moreover, this action depends on endogenous protein ligands of BSP S100 and has characteristics of organ specificity.

  17. Structure of Protein Geranylgeranyltransferase-I from the Human Pathogen Candida albicans Complexed with a Lipid Substrate

    SciTech Connect

    Hast, Michael A.; Beese, Lorena S.

    2008-11-21

    Protein geranylgeranyltransferase-I (GGTase-I) catalyzes the transfer of a 20-carbon isoprenoid lipid to the sulfur of a cysteine residue located near the C terminus of numerous cellular proteins, including members of the Rho superfamily of small GTPases and other essential signal transduction proteins. In humans, GGTase-I and the homologous protein farnesyltransferase (FTase) are targets of anticancer therapeutics because of the role small GTPases play in oncogenesis. Protein prenyltransferases are also essential for many fungal and protozoan pathogens that infect humans, and have therefore become important targets for treating infectious diseases. Candida albicans, a causative agent of systemic fungal infections in immunocompromised individuals, is one pathogen for which protein prenylation is essential for survival. Here we present the crystal structure of GGTase-I from C. albicans (CaGGTase-I) in complex with its cognate lipid substrate, geranylgeranylpyrophosphate. This structure provides a high-resolution picture of a non-mammalian protein prenyltransferase. There are significant variations between species in critical areas of the active site, including the isoprenoid-binding pocket, as well as the putative product exit groove. These differences indicate the regions where specific protein prenyltransferase inhibitors with antifungal activity can be designed.

  18. An allosteric model for control of pore opening by substrate binding in the EutL microcompartment shell protein

    PubMed Central

    Thompson, Michael C; Cascio, Duilio; Leibly, David J; Yeates, Todd O

    2015-01-01

    The ethanolamine utilization (Eut) microcompartment is a protein-based metabolic organelle that is strongly associated with pathogenesis in bacteria that inhabit the human gut. The exterior shell of this elaborate protein complex is composed from a few thousand copies of BMC-domain shell proteins, which form a semi-permeable diffusion barrier that provides the interior enzymes with substrates and cofactors while simultaneously retaining metabolic intermediates. The ability of this protein shell to regulate passage of substrate and cofactor molecules is critical for microcompartment function, but the details of how this diffusion barrier can allow the passage of large cofactors while still retaining small intermediates remain unclear. Previous work has revealed two conformations of the EutL shell protein, providing substantial evidence for a gated pore that might allow the passage of large cofactors. Here we report structural and biophysical evidence to show that ethanolamine, the substrate of the Eut microcompartment, acts as a negative allosteric regulator of EutL pore opening. Specifically, a series of X-ray crystal structures of EutL from Clostridium perfringens, along with equilibrium binding studies, reveal that ethanolamine binds to EutL at a site that exists in the closed-pore conformation and which is incompatible with opening of the large pore for cofactor transport. The allosteric mechanism we propose is consistent with the cofactor requirements of the Eut microcompartment, leading to a new model for EutL function. Furthermore, our results suggest the possibility of redox modulation of the allosteric mechanism, opening potentially new lines of investigation. PMID:25752492

  19. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions.

    PubMed

    Sun, Fang; Ella-Menye, Jean-Rene; Galvan, Daniel David; Bai, Tao; Hung, Hsiang-Chieh; Chou, Ying-Nien; Zhang, Peng; Jiang, Shaoyi; Yu, Qiuming

    2015-03-24

    Reliable surface-enhanced Raman scattering (SERS) based biosensing in complex media is impeded by nonspecific protein adsorptions. Because of the near-field effect of SERS, it is challenging to modify SERS-active substrates using conventional nonfouling materials without introducing interference from their SERS signals. Herein, we report a stealth surface modification strategy for sensitive, specific and accurate detection of fructose in protein solutions using SERS by forming a mixed self-assembled monolayer (SAM). The SAM consists of a short zwitterionic thiol, N,N-dimethyl-cysteamine-carboxybetaine (CBT), and a fructose probe 4-mercaptophenylboronic acid (4-MPBA). The specifically designed and synthesized CBT not only resists protein fouling effectively, but also has very weak Raman activity compared to 4-MPBA. Thus, the CBT SAM provides a stealth surface modification to SERS-active substrates. The surface compositions of mixed SAMs were investigated using X-ray photoelectron spectroscopy (XPS) and SERS, and their nonfouling properties were studied with a surface plasmon resonance (SPR) biosensor. The mixed SAM with a surface composition of 94% CBT demonstrated a very low bovine serum albumin (BSA) adsorption (∼3 ng/cm(2)), and moreover, only the 4-MPBA signal appeared in the SERS spectrum. With the use of this surface-modified SERS-active substrate, quantification of fructose over clinically relevant concentrations (0.01-1 mM) was achieved. Partial least-squares regression (PLS) analysis showed that the detection sensitivity and accuracy were maintained for the measurements in 1 mg/mL BSA solutions. This stealth surface modification strategy provides a novel route to introduce nonfouling property to SERS-active substrates for SERS biosensing in complex media.

  20. Effects of Substrate, Protein Environment, and Proximal Ligand Mutation on Compound I and Compound 0 of Chloroperoxidase

    NASA Astrophysics Data System (ADS)

    Lai, Wenzhen; Chen, Hui; Cho, Kyung-Bin; Shaik, Sason

    2009-07-01

    This paper investigates the enzyme chloroperoxidase (CPO) by means of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. The effects of anionic substrate, protein environment, and proximal ligand mutation on the high-valent iron-oxo species, compound I (Cpd I), and the ferric hydroperoxide complex, compound 0 (Cpd 0), are studied. The results indicate that the presence of an anionic substrate (acetate) and the protonation state of one critical residue (Glu104) have a considerable impact on the relative stabilities of Cpd I and Cpd 0. In the absence of the substrate or when the substrate is protonated, Cpd I is considerably more stable, and its formation barrier is smaller than in the case where the substrate is in its anionic state and when Glu104 is deprotonated. This trend, which is shown to be a simple manifestation of the Hammond principle, reproduces the experimental observation that the working pH of the enzyme is acidic. Furthermore, in the absence of substrate (or when it is protonated), the relative Cpd 0/Cpd I energies are found to be a good index of Cpd I stability in heme enzymes and to follow the experimental order: horseradish peroxidase (HRP) > CPO > P450. In silico mutation of the proximal ligand from cysteine to selenocysteine was found to have no effect at all on the properties of Cpd I (e.g., spin density on the chalcogen, Mössbauer parameters, etc.) and its relative stability to Cpd 0 or on the corresponding barrier for formation. This surprising finding shows that the polar CPO pocket applies a leveling effect that stabilizes the anionic forms of the proximal ligands (CysS- and CysSe-). This in turn means that the Se-Cpd I of the mutant CPO is observable.

  1. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein.

    PubMed

    Cascales, Eric; Atmakuri, Krishnamohan; Liu, Zhenying; Binns, Andrew N; Christie, Peter J

    2005-10-01

    Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus. PMID:16194240

  2. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    PubMed

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  3. Lentiviral vector-mediated genetic modification of cell substrates for the manufacture of proteins and other biologics.

    PubMed

    Baranyi, Lajos; Roy, Andre; Embree, Heather D; Dropulic, Boro

    2010-01-01

    Transduction with Lentiviral vectors has been shown to be the most efficient method for the stable delivery of nucleic acid sequences into mammalian cells. Lentiviral vectors have been widely used in research and have recently shown success in clinical trials for human gene therapy. In this paper, we describe the use of lentiviral vectors to generate genetically modified cell substrates for the manufacture of proteins and other complex biologics. The use of lentiviral vectors for the generation of genetically modified cell substrates for the production of biologic material has several advantages over other systems: (1) highly productive mammalian cell lines can be rapidly generated without selection or gene amplification; (2) the high number of vector copies are distributed throughout the open chromatin of the genome, resulting in cell lines that are extremely stable for high levels of gene expression and, consequently, protein production; and (3) high levels of protein glycosylation are maintained despite very high levels of protein production. These advantages offer the potential to significantly improve the quality, time-to-market, and manufacturing cost of biologics for human use.

  4. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferasel identified using phage display and biopanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of PROTEIN ISOASPARTYL-METHYLTRANSFERASE (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of specific PIMT target proteins in p...

  5. Substrate binding stabilizes a pre-translocation intermediate in the ATP-binding cassette transport protein MsbA.

    PubMed

    Doshi, Rupak; van Veen, Hendrik W

    2013-07-26

    ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP. PMID:23766512

  6. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System.

    PubMed

    Guharoy, Mainak; Bhowmick, Pallab; Tompa, Peter

    2016-03-25

    The ubiquitin-proteasome system (UPS) regulates diverse cellular pathways by the timely removal (or processing) of proteins. Here we review the role of structural disorder and conformational flexibility in the different aspects of degradation. First, we discuss post-translational modifications within disordered regions that regulate E3 ligase localization, conformation, and enzymatic activity, and also the role of flexible linkers in mediating ubiquitin transfer and reaction processivity. Next we review well studied substrates and discuss that substrate elements (degrons) recognized by E3 ligases are highly disordered: short linear motifs recognized by many E3s constitute an important class of degrons, and these are almost always present in disordered regions. Substrate lysines targeted for ubiquitination are also often located in neighboring regions of the E3 docking motifs and are therefore part of the disordered segment. Finally, biochemical experiments and predictions show that initiation of degradation at the 26S proteasome requires a partially unfolded region to facilitate substrate entry into the proteasomal core.

  7. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease.

    PubMed

    Bissonnette, Sarah A; Rivera-Rivera, Izarys; Sauer, Robert T; Baker, Tania A

    2010-03-01

    Small heat-shock proteins (sHSPs) are a widely conserved family of molecular chaperones, all containing a conserved alpha-crystallin domain flanked by variable N- and C-terminal tails. We report that IbpA and IbpB, the sHSPs of Escherichia coli, are substrates for the AAA+ Lon protease. This ATP-fueled enzyme degraded purified IbpA substantially more slowly than purified IbpB, and we demonstrate that this disparity is a consequence of differences in maximal Lon degradation rates and not in substrate affinity. Interestingly, however, IbpB stimulated Lon degradation of IbpA both in vitro and in vivo. Furthermore, although the variable N- and C-terminal tails of the Ibps were dispensable for proteolytic recognition, these tails contain critical determinants that control the maximal rate of Lon degradation. Finally, we show that E. coli Lon degrades variants of human alpha-crystallin, indicating that Lon recognizes conserved determinants in the folded alpha-crystallin domain itself. These results suggest a novel mode for Lon substrate recognition and provide a highly suggestive link between the degradation and sHSP branches of the protein quality-control network.

  8. Identification of Myb-binding protein 1A (MYBBP1A) as a novel substrate for aurora B kinase.

    PubMed

    Perrera, Claudia; Colombo, Riccardo; Valsasina, Barbara; Carpinelli, Patrizia; Troiani, Sonia; Modugno, Michele; Gianellini, Laura; Cappella, Paolo; Isacchi, Antonella; Moll, Jurgen; Rusconi, Luisa

    2010-04-16

    Aurora kinases are mitotic enzymes involved in centrosome maturation and separation, spindle assembly and stability, and chromosome condensation, segregation, and cytokinesis and represent well known targets for cancer therapy because their deregulation has been linked to tumorigenesis. The availability of suitable markers is of crucial importance to investigate the functions of Auroras and monitor kinase inhibition in in vivo models and in clinical trials. Extending the knowledge on Aurora substrates could help to better understand their biology and could be a source for clinical biomarkers. Using biochemical, mass spectrometric, and cellular approaches, we identified MYBBP1A as a novel Aurora B substrate and serine 1303 as the major phosphorylation site. MYBBP1A is phosphorylated in nocodazole-arrested cells and is dephosphorylated upon Aurora B silencing or by treatment with Danusertib, a small molecule inhibitor of Aurora kinases. Furthermore, we show that MYBBP1A depletion by RNA interference causes mitotic progression delay and spindle assembly defects. MYBBP1A has until now been described as a nucleolar protein, mainly involved in transcriptional regulation. The results presented herein show MYBBP1A as a novel Aurora B kinase substrate and reveal a not yet recognized link of this nucleolar protein to mitosis. PMID:20177074

  9. Regulation of phosphorylation level and distribution of PTP36, a putative protein tyrosine phosphatase, by cell-substrate adhesion.

    PubMed

    Ogata, M; Takada, T; Mori, Y; Uchida, Y; Miki, T; Okuyama, A; Kosugi, A; Sawada, M; Oh-hora, M; Hamaoka, T

    1999-07-16

    Recently we have cloned a putative protein tyrosine phosphatase, PTP36/PTPD2/pez, which possesses a domain homologous to the N-terminal half of band 4.1 protein. In mouse fibroblasts adhered to substrates, PTP36 was phosphorylated on serine residues. PTP36 was found to make complexes with serine/threonine kinase(s), which phosphorylated PTP36 in vitro. PTP36 was dephosphorylated rapidly when the cell-substrate adhesion was disrupted and it was phosphorylated again along with the reattachment of the cells to fibronectin. Rephosphorylation of PTP36 seemed to depend on actin polymerization since it was inhibited by cytochalasin D. The cell detachment also induced the translocation of PTP36 into the membrane-associated cytoskeletal fraction. Staurosporine and ML-9, which inhibited the phosphorylation of PTP36 in vivo, induced the translocation of PTP36 too. On the contrary, when the dephosphorylation of PTP36 was inhibited by okadaic acid, no translocation of PTP36 was induced by the cell detachment. These results demonstrate that the cell-substrate adhesion and cell spreading regulates the intracellular localization of PTP36 most likely through its phosphorylation and therefore, PTP36 may play important roles in the signal transduction pathway of cell-adhesion. PMID:10400706

  10. Identification of Myb-binding protein 1A (MYBBP1A) as a novel substrate for aurora B kinase.

    PubMed

    Perrera, Claudia; Colombo, Riccardo; Valsasina, Barbara; Carpinelli, Patrizia; Troiani, Sonia; Modugno, Michele; Gianellini, Laura; Cappella, Paolo; Isacchi, Antonella; Moll, Jurgen; Rusconi, Luisa

    2010-04-16

    Aurora kinases are mitotic enzymes involved in centrosome maturation and separation, spindle assembly and stability, and chromosome condensation, segregation, and cytokinesis and represent well known targets for cancer therapy because their deregulation has been linked to tumorigenesis. The availability of suitable markers is of crucial importance to investigate the functions of Auroras and monitor kinase inhibition in in vivo models and in clinical trials. Extending the knowledge on Aurora substrates could help to better understand their biology and could be a source for clinical biomarkers. Using biochemical, mass spectrometric, and cellular approaches, we identified MYBBP1A as a novel Aurora B substrate and serine 1303 as the major phosphorylation site. MYBBP1A is phosphorylated in nocodazole-arrested cells and is dephosphorylated upon Aurora B silencing or by treatment with Danusertib, a small molecule inhibitor of Aurora kinases. Furthermore, we show that MYBBP1A depletion by RNA interference causes mitotic progression delay and spindle assembly defects. MYBBP1A has until now been described as a nucleolar protein, mainly involved in transcriptional regulation. The results presented herein show MYBBP1A as a novel Aurora B kinase substrate and reveal a not yet recognized link of this nucleolar protein to mitosis.

  11. The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins.

    PubMed

    Reith, M E A; Zhen, J; Chen, N

    2006-01-01

    SLC6 transporters, which include transporters for gamma-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl- for their function, and this review covers the interaction between transporters of this family with Na+ and Cl- from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl- with substrate (SLClA2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl-, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl- movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.

  12. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation

    PubMed Central

    Wang, Tao; Darwin, K. Heran; Li, Huilin

    2010-01-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analogue of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein bearing little sequence or structural resemblance to the highly structured ubiquitin. Thus it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled-coils that recognize Pup. Mpa binds unstructured Pup via hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an α-helix in Pup. Our work revealed a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This critical difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment of tuberculosis. PMID:20953180

  13. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    SciTech Connect

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  14. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    SciTech Connect

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  15. Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets

    PubMed Central

    Kimple, Adam J.; Bosch, Dustin E.; Giguère, Patrick M.

    2011-01-01

    Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the “regulators of G-protein signaling” (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of “RGS-insensitivity” and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gαq selectivity. PMID:21737532

  16. Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling

    PubMed Central

    Vogt, Janis; Dingwell, Kevin S.; Herhaus, Lina; Gourlay, Robert; Macartney, Thomas; Campbell, David; Smith, James C.; Sapkota, Gopal P.

    2014-01-01

    Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway. PMID:24554596

  17. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes.

    PubMed

    Phillips, K Scott; Han, Jong-Ho; Martinez, Marilyn; Wang, Zhuangzhi; Carter, David; Cheng, Quan

    2006-01-15

    Surface plasmon resonance (SPR) spectroscopy, a powerful tool for biosensing and protein interaction analysis, is currently confined to gold substrates and the relevant surface chemistries involving dextran and functional thiols. Drawbacks of using self-assembled monolayers (SAMs) for SPR-related surface modification include limited stability, pinhole defects, bioincompatibility, and nonspecific protein adsorption. Here we report the development of stable nanometer-scale glass (silicate) layers on gold substrates for SPR analysis of protein toxins. The nanoscale silicate layers were built up with layer-by-layer deposition of poly(allylamine hydrochloride) and sodium silicate, followed by calcination at high temperature. The resulting silicate films have a thickness ranging from 2 to 15 nm and demonstrate outstanding stability in flow cell conditions. The use of these surfaces as a platform to construct supported bilayer membranes (SBMs) is demonstrated, and improved performance against protein adsorption on SBM-coated surfaces is quantified by SPR measurements. SBMs can be formed reproducibly on the silicate surface via vesicle fusion and quantitatively removed using injection of 5% Triton X-100 solution, generating a fresh surface for each test. Membrane properties such as lateral diffusion of the SBMs on the silicate films are characterized with photobleaching methods. Studies of protein binding with biotin/avidin and ganglioside/cholera toxin systems show detection limits lower than 1 microg/mL (i.e., nanomolar range), and the response reproducibility is better than 7% RSD. The method reported here allows many assay techniques developed for glass surfaces to be transferred to label-free SPR analysis without the need for adaptation of protocols and time-consuming synthetic development of thiol-based materials and opens new avenues for developing novel bioanalytical technologies for protein analysis. PMID:16408945

  18. Substrate-Based Fragment Identification for the Development of Selective, Nonpeptidic Inhibitors of Striatal-Enriched Protein Tyrosine Phosphatase

    PubMed Central

    Baguley, Tyler D.; Xu, Hai-Chao; Chatterjee, Manavi; Nairn, Angus C.; Lombroso, Paul J.; Ellman, Jonathan A.

    2013-01-01

    High levels of striatal-enriched protein tyrosine phosphatase (STEP) activity are observed in a number of neuropsychiatric disorders such as Alzheimer’s disease. Over-expression of STEP results in the dephosphorylation and inactivation of many key neuronal signaling molecules, including ionotropic glutamate receptors. Moreover, genetically reducing STEP levels in AD mouse models significantly reversed cognitive deficits and decreased glutamate receptor internalization. These results support STEP as a potential target for drug discovery for the treatment of Alzheimer’s disease. Herein, a substrate-based approach for the discovery and optimization of fragments called substrate activity screening (SAS) has been applied to the development of low molecular weight (<450 Da) and non-peptidic, single-digit micromolar mechanism-based STEP inhibitors with greater than 20-fold selectivity across multiple tyrosine and dual specificity phosphatases. Significant levels of STEP inhibition in rat cortical neurons are also observed. PMID:24083656

  19. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans—A Nucleic Acid Binding Protein with Broad Substrate Specificity

    PubMed Central

    Olszewski, Marcin; Balsewicz, Jan; Nowak, Marta; Maciejewska, Natalia; Cyranka-Czaja, Anna; Zalewska-Piątek, Beata; Piątek, Rafał; Kur, Józef

    2015-01-01

    Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids. PMID:25973760

  20. ER-Bound Protein Tyrosine Phosphatase PTP1B Interacts with Src at the Plasma Membrane/Substrate Interface

    PubMed Central

    Burdisso, Juan E.; Conde, Cecilia; Cáceres, Alfredo; Arregui, Carlos O.

    2012-01-01

    PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research. PMID:22701734

  1. Radiolabelling of bovine myristoylated alanine-rich protein kinase C substrate (MARCKS) in an ADP-ribosylation reaction.

    PubMed

    Chao, D; Severson, D L; Zwiers, H; Hollenberg, M D

    1994-01-01

    In an ADP-ribosylation reaction, we have observed the radiolabelling of a protein in a crude bovine brain homogenate, which upon two-dimensional gel electrophoresis migrated with an acidic pI (< 4.5) and an apparent molecular mass (80-90 kDa) consistent with the properties of the myristoylated, alanine-rich, protein kinase C substrate protein termed MARCKS. To establish the identity of this radiolabelled constituent in brain homogenates, we first purified bovine brain MARCKS using calmodulin-Sepharose affinity chromatography and we then supplemented the crude ADP-ribosylation reaction mixture with this purified MARCKS fraction. Concordant increases in radiolabelling and silver staining of the same protein component from the MARCKS-supplemented ADP-ribosylation reaction, as compared with the ADP-ribosylated crude homogenate, established the identity of this constituent as MARCKS. The radiolabelling of MARCKS was lower in comparison with the ADP-ribosylation of the related neuronal protein B-50/GAP-43 under identical reaction conditions. The potential functional consequences of the ADP-ribosylation of MARCKS are discussed and the possibility is raised that other members of the MARCKS family, such as the F52/MacMARCKS/MRP protein, may also be subject to ADP-ribosylation. PMID:7605610

  2. Substrate Binding Protein SBP2 of a Putative ABC Transporter as a Novel Vaccine Antigen of Moraxella catarrhalis

    PubMed Central

    Otsuka, Taketo; Kirkham, Charmaine; Johnson, Antoinette; Jones, Megan M.

    2014-01-01

    Moraxella catarrhalis is a common respiratory tract pathogen that causes otitis media in children and infections in adults with chronic obstructive pulmonary disease. Since the introduction of the pneumococcal conjugate vaccines with/without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high-priority pathogen in otitis media. For the development of antibacterial vaccines and therapies, substrate binding proteins of ATP-binding cassette transporters are important targets. In this study, we identified and characterized a substrate binding protein, SBP2, of M. catarrhalis. Among 30 clinical isolates tested, the sbp2 gene sequence was highly conserved. In 2 different analyses (whole-cell enzyme-linked immunosorbent assay and flow cytometry), polyclonal antibodies raised to recombinant SBP2 demonstrated that SBP2 expresses epitopes on the bacterial surface of the wild type but not the sbp2 mutant. Mice immunized with recombinant SBP2 showed significantly enhanced clearance of M. catarrhalis from the lung compared to that in the control group at both 25-μg and 50-μg doses (P < 0.001). We conclude that SBP2 is a novel, attractive candidate as a vaccine antigen against M. catarrhalis. PMID:24914218

  3. Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE.

    PubMed

    Ahmadifard, Nasrollah; Murueta, Julio Humberto Cordova; Abedian-Kenari, Abdolmohammad; Motamedzadegan, Ali; Jamali, Hadi

    2016-02-01

    In this research enzymatic hydrolysis of rice bran protein concentrate (RBPC) and soybean Protein (SBP) as control were studied with 3 commercial enzymes (Alcalase®, Papain and acommercial 3-enzyme cocktail containing of 1.6 mg ml(-1) Trypsin, 3.1 mg ml(-1) Chymotrypsin, 1.3 mg ml(-1)Aminopeptidase (SIGMA P7500) and 7.95 mg ml(-1)pronase type XIV (SIGMA P5147) by the pH stat method. The hydrolysis was carried out at temperature of 28 C, 60 min and pH 8.00. Results were showed that RBPC, and SBP had higher Degree hydrolysis (DH %) with Alcalase® enzyme. Alcalase®had stronger capability for hydrolysis compared to the other tested enzymes. After 60 minute of hydrolysis time, the DH% of Alcalase® for RBPC and SBP was 12.69 and 12.50 %, respectively. In contrast, papain enzyme was showed lowest DH% in three substrates that 1.56 and 1.24 % were for SBP and RBPC, respectively.The hydrolysis of the protein fraction performed the three enzymes on the two substrates was followed in SDS-PAGE. RBPC and SBP showed almost complete digestion with Alcalase® enzyme after 60 minutes. 3-enzyme cocktail enzyme hydrolyzed better the RBPC than the SBP. Papain enzyme had less effect on the two substrates than other 2 enzymes. It was found that Alcalase® has highest capability for hydrolysis compared to other enzyme preparations. The high value protein hydrolysates prepared by Alcalase® can be used as value added ingredients in many food formulations. They are also suitable for a broad range of industrial food applications and also for cosmetic and personal care products. PMID:27162408

  4. RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals.

    PubMed

    Huang, Kai-Yao; Wu, Hsin-Yi; Chen, Yi-Ju; Lu, Cheng-Tsung; Su, Min-Gang; Hsieh, Yun-Chung; Tsai, Chih-Ming; Lin, Kuo-I; Huang, Hsien-Da; Lee, Tzong-Yi; Chen, Yu-Ju

    2014-01-01

    Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase-substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein-protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/

  5. Ubiquitin proteasome pathway-mediated degradation of proteins: effects due to site-specific substrate deamidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation, aggregation, and precipitation of proteins are etiologic for age-related diseases, particularly cataract, because the precipitates cloud the lens. Deamidation of crystallins is associated with protein precipitation, aging, and cataract. Among the roles of the ubiquitin proteasome p...

  6. Substrate oscillations boost recombinant protein release from Escherichia coli.

    PubMed

    Jazini, Mohammadhadi; Herwig, Christoph

    2014-05-01

    Intracellular production of recombinant proteins in prokaryotes necessitates subsequent disruption of cells for protein recovery. Since the cell disruption and subsequent purification steps largely contribute to the total production cost, scalable tools for protein release into the extracellular space is of utmost importance. Although there are several ways for enhancing protein release, changing culture conditions is rather a simple and scalable approach compared to, for example, molecular cell design. This contribution aimed at quantitatively studying process technological means to boost protein release of a periplasmatic recombinant protein (alkaline phosphatase) from E. coli. Quantitative analysis of protein in independent bioreactor runs could demonstrate that a defined oscillatory feeding profile was found to improve protein release, about 60 %, compared to the conventional constant feeding rate. The process technology included an oscillatory post-induction feed profile with the frequency of 4 min. The feed rate was oscillated triangularly between a maximum (1.3-fold of the maximum feed rate achieved at the end of the fed-batch phase) and a minimum (45 % of the maximum). The significant improvement indicates the potential to maximize the production rate, while this oscillatory feed profile can be easily scaled to industrial processes. Moreover, quantitative analysis of the primary metabolism revealed that the carbon dioxide yield can be used to identify the preferred feeding profile. This approach is therefore in line with the initiative of process analytical technology for science-based process understanding in process development and process control strategies.

  7. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system

    PubMed Central

    Lefebre, Matthew D.; Galán, Jorge E.

    2014-01-01

    Type III secretion machines are essential for the biology of many bacteria that are pathogenic or symbiotic for animals, plants, or insects. They exert their function by delivering bacterial effector proteins into target eukaryotic cells. The core component of these machines is the needle complex, a multiprotein structure that spans the bacterial envelope and serves as a conduit for proteins that transit this secretion pathway. The needle complex is composed of a multiring base embedded in the bacterial envelope and a filament-like structure, the needle, that projects from the bacterial surface and is linked to the base by the inner rod. Assembly of the needle complex proceeds in a step-wise fashion that is initiated by the assembly of the base and is followed by the export of the building subunits for the needle and inner rod substructures. Once assembled, the needle complex reprograms its specificity and becomes competent for the secretion of effector proteins. Here through genetic, biochemical, and electron microscopy analyses of the Salmonella inner rod protein subunit PrgJ we present evidence that the assembly of the inner rod dictates the timing of substrate switching and needle length. Furthermore, the identification of mutations in PrgJ that specifically alter the hierarchy of protein secretion provides additional support for a complex role of the inner rod substructure in type III secretion. PMID:24379359

  8. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage.

    PubMed

    Hardt, W D; Urlaub, H; Galán, J E

    1998-03-01

    Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium) that is homologous to the SopE protein of Salmonella dublin implicated in bacterial entry into cultured epithelial cells. The sopE locus is located within a cluster of genes that encode tail and tail fiber proteins of a cryptic P2-like prophage, outside of the centisome 63 pathogenicity island that encodes the invasion-associated type III secretion system. Southern hybridization analysis revealed that sopE is present in only a subset of S. enterica serovars and that the flanking bacteriophage genes are also highly polymorphic. Encoding effector proteins that are delivered through type III secretion systems in highly mobile genetic elements may allow pathogens to adapt rapidly by facilitating the assembly of an appropriate set of effector proteins required for successful replication in a new environment.

  9. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function.

    PubMed

    Lu, Zhongping; Chen, Yong; Aponte, Angel M; Battaglia, Valentina; Gucek, Marjan; Sack, Michael N

    2015-01-23

    Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function. PMID:25505263

  10. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications.

    PubMed

    Lu, Cheng-Tsung; Huang, Kai-Yao; Su, Min-Gang; Lee, Tzong-Yi; Bretaña, Neil Arvin; Chang, Wen-Chi; Chen, Yi-Ju; Chen, Yu-Ju; Huang, Hsien-Da

    2013-01-01

    Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein-protein interaction and domain-domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.

  11. Protein repair L-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds.

    PubMed Central

    Mudgett, M B; Lowenson, J D; Clarke, S

    1997-01-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability. PMID:9414558

  12. Anomeric specificity and protein-substrate interactions support the 3D model for the hemagglutinin-neuraminidase from sendai virus.

    PubMed

    Bellini, T; Pasti, C; Manfrinato, M C; Tomasi, M; Dallocchio, F

    1999-08-27

    The 3D structure of paramyxovirus hemagglutinin-neuraminidase has not yet been resolved; however, a theoretical model has been built by using influenza virus and bacterial neuraminidases as template [V. C. Epa (1997) Proteins Struct. Funct. Gen. 29, 264-281]. Two common features of the catalytic mechanism of the neuraminidases of known 3D structure are the anomeric specificity and the involvement of a tyrosine residue in the stabilization of the transition state. These key features have been investigated on the water-soluble ectodomain of the hemagglutinin-neuraminidase from Sendai virus (cHN). The anomeric specificity of the hydrolysis of the substrate by cHN has been investigated by NMR spectroscopy. The immediate product of the reaction was the alpha-anomer, meaning that cHN belongs between glycohydrolases retaining anomeric configuration like influenza virus neuraminidase. Measurements of the UV difference spectrum upon binding of the substrate analogue 2,3-dehydro 2-deossi N-acetyl neuraminic acid indicate the ionization of a tyrosine residue and decreased polarity in the environment of a tryptophan residue. Functional significance of the spectral data was derived from the known structure of influenza neuraminidase, where a tyrosinate ion is involved in the stabilization of the transition-state carbonium ion, and a tryptophan residue is involved in the binding of the acetyl moiety of the substrate. The data give experimental support to the 3D model of paramyxovirus neuraminidase.

  13. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2*

    PubMed Central

    Hadjikyriacou, Andrea; Yang, Yanzhong; Espejo, Alexsandra; Bedford, Mark T.; Clarke, Steven G.

    2015-01-01

    Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides. PMID:25979344

  14. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins.

    PubMed

    Wang, Yue-Yue; Luo, Hong-Dou; Zhang, Xiao-Sheng; Lin, Tao; Jiang, Hui; Li, Yong-Quan

    2016-03-01

    Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs.

  15. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).

    PubMed

    Wheadon, Helen; Edmead, Christine; Welham, Melanie J

    2003-11-15

    The cytosolic SHP-2 (Src homology protein tyrosine phosphatase 2) has previously been implicated in IL-3 (interleukin-3) signalling [Bone, Dechert, Jirik, Schrader and Welham (1997) J. Biol. Chem. 272, 14470 -14476; Craddock and Welham (1997) J. Biol. Chem. 272, 29281-29289; Welham, Dechert, Leslie, Jirik and Schrader (1994) J. Biol. Chem. 269, 23764-23768; Qu, Nguyen, Chen and Feng (2001) Blood 97, 911-914]. To investigate the role of SHP-2 in IL-3 signalling in greater detail, we have inducibly expressed WT (wild-type) or two potentially substrate-trapping mutant forms of SHP-2, generated by mutation of Asp-425 to Ala (D425A) or Cyst-459 to Ser (C459S), in IL-3-dependent BaF/3 cells. Effects on IL-3-induced tyrosine phosphorylation, signal transduction and functional responses were examined. Expression of C459S SHP-2 protected the beta-chain of the murine IL-3R (IL-3 receptor), the adaptor protein Gab2 (Grb2-associated binder 2), and a cytosolic protein of 48 kDa from tyrosine dephosphorylation, consistent with them being bona fide substrates of SHP-2 in IL-3 signalling. The tyrosine phosphorylation of a 135 kDa transmembrane protein was also protected upon expression of C459S SHP-2. We have identified the inhibitory immunoreceptor PECAM-1 (platelet endothelial cell adhesion molecule-1)/CD31 (cluster determinant 31) as a component of this 135 kDa substrate and also show that IL-3 can induce tyrosine phosphorylation of PECAM-1. Expression of WT, C459S and D425A forms of SHP-2 had little effect on IL-3-driven proliferation or STAT5 (signal transduction and activators of transcription) phosphorylation or activation of protein kinase B. However, expression of WT SHP-2 increased ERK (extracellular-signal-regulated kinase) activation. Interestingly, expression of C459S SHP-2 decreased ERK activation at later times after IL-3 stimulation, but potentiated IL-3-induced activation of Jun N-terminal kinases. In addition, expression of C459S SHP-2 decreased cell survival in

  16. [The influence of substrate from extracellular matrix proteins on karyotypic variability of the Indian muntjac skin fibroblast two cell lines].

    PubMed

    Polianskaia, G G; Kol'tsova, A M

    2013-01-01

    The effect of cell culture conditions on numerical and structural karyotypic variability was investigated in two Indian muntjac skin fibroblast "markerless" cell lines, M and MT. The cells cultivated on the substrate consisting of extracellular matrix proteins (ECM), synthesized by human mesenchymal stem cells (SC5-MSC). The character of cell distribution for chromosome number of cell line M changed after cultivation for 1 and 4 days as compared to control cells, which were cultured on hydrophilic surface without ECM-coating. These changes involve a significant decrease in frequency of cells with modal numbers of chromosomes and an increase in frequency of cells with lower chromosome numbers. Many new types of additional structural variants of the karyotype (SVK) appear. MT cell line, differing from M line in the number of homologous chromosomes, demonstrated similar with M line the character of cell distribution for chromosome number only for 1 day after cultivating on the ECM-substrate, but not after 4 days in the same culture conditions, no difference from the control cells was observed. The observed alterations seem to be due to disturbances in correct chromosome segregation process, which were caused by abrupt shift in the cell culture conditions. The analysis of the structural karyotypic variability revealed significant increase in frequency of chromosomal aberrations in M cell line for 1 and 4 days in culture on the ECM-substrate as compared to the control cells. The frequency of dicentric chromosomes (telomeric associations) was increased and constituted more than 50% of all chromosome aberrations. No increase in frequency of chromosome aberrations was observed for MT cells cultured in the same conditions. The obtained results show that the cell lines of the same origin but of different karyotypic structure react to substrate in a different way. In contrast to M line, in MT line a fast normalization of numerical karyotypic characteristics and no enhancement

  17. O-demethylase from Acetobacterium dehalogenans--substrate specificity and function of the participating proteins.

    PubMed

    Kaufmann, F; Wohlfarth, G; Diekert, G

    1998-05-01

    The ether-cleaving O-demethylase isolated from syringate-grown cells of Acetobacterium dehalogenans (formerly named strain MC) consists of four proteins, components A, B, C and D. The enzyme system converts only phenyl methyl ethers with a hydroxyl group in the ortho position to the methoxyl moiety. The presence of a carboxyl group in the aromatic compound was not required for O-demethylase reaction. Component B mediated the conversion of vanillate to 3,4-dihydroxybenzoate in the presence of the Ti(III)-reduced corrinoid-containing component A. After addition of component D and tetrahydrofolate, methyl tetrahydrofolate was formed from vanillate in stoichiometric amounts. Titanium(III) citrate as a reductant could be replaced by H2, methyl viologen or ferredoxin, partially purified hydrogenase, purified component C obtained from A. dehalogenans, and ATP. From these findings, it was deduced that component B serves as vanillate:corrinoid protein methyltransferase (methyltransferase I) mediating the methyl transfer from vanillate to the reduced corrinoid protein component A. Component D functions as methylcorrinoid protein:tetrahydrofolate transferase (methyltransferase II). The role of component C is probably that of an activating protein reversing accidental oxidation of the protein-bound cob(I)alamin to cob(II)alamin in the presence of ATP and reducing equivalents supplied by the enzymatic oxidation of hydrogen.

  18. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts. PMID:27457081

  19. Flexibility of the Thrombin-activatable Fibrinolysis Inhibitor Pro-domain Enables Productive Binding of Protein Substrates*

    PubMed Central

    Valnickova, Zuzana; Sanglas, Laura; Arolas, Joan L.; Petersen, Steen V.; Schar, Christine; Otzen, Daniel; Aviles, Francesc X.; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2010-01-01

    We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo. PMID:20880845

  20. Rac1 changes the substrate specificity of gamma-secretase between amyloid precursor protein and Notch1.

    PubMed

    Boo, Jung Hyun; Sohn, Ji Hoon; Kim, Ji Eun; Song, Hyundong; Mook-Jung, Inhee

    2008-08-01

    Beta amyloid peptide is generated from amyloid precursor protein (APP) by proteolytic cleavage of beta- and gamma-secretases, and plays a critical role in the pathogenesis of Alzheimer's disease. Since gamma-secretase cleaves several proteins including APP and Notch in a number of cell types, it is important to understand the conditions determining gamma-secretase substrate specificity. In the present study, inhibition of Rac1 attenuated gamma-secretase activity for APP, resulting in decreased production of the APP intracellular domain but accumulated C-terminal fragments (APP-CTF). In contrast, Rac1 inhibitor, NSC23766 increased production of the Notch1 intracellular domain but slightly decreased the ectodomain-shed form of Notch1 (NotchDeltaE). To elucidate the mechanism underlying these observations, we performed co-immunoprecipitation experiments to analyze the interaction between Rac1 and presenilin1 (PS1), a component of the gamma-secretase complex. Inhibition of Rac1 enhanced its interaction with PS1. Under the same condition, PS1 interacted more strongly with NotchDeltaE than with APP-CTF. Our results suggested that PS1 determines the preferred substrate for gamma-secretase between APP and Notch1, depending on the activation status of Rac1.

  1. Generation of protein kinase Ck1α mutants which discriminate between canonical and non-canonical substrates

    PubMed Central

    Bustos, Victor H.; Marin, Oriano; Meggio, Flavio; Cesaro, Luca; Allende, Catherine C.; Allende, Jorge E.; Pinna, Lorenzo A.

    2005-01-01

    Protein kinase CK1 denotes a family of pleiotropic serine/threonine protein kinases implicated in a variety of cellular functions. Typically, CK1 acts as a ‘phosphate-directed’ kinase whose targeting is primed by a single phosphorylated side chain at position n−3 or n−4 relative to serine/threonine, but increasing evidence is accumulating that CK1 can also engage some of its substrates at sites that do not conform to this canonical consensus. In the present paper, we show that CK1α phosphorylates with the same efficiency phosphopeptides primed by a phosphoserine residue at either n−3 [pS(−3)] or n−4 [pS(−4)] positions. The phosphorylation efficiency of the pS(−4) peptide, and to a lesser extent that of the pS(−3) peptide, is impaired by the triple mutation of the lysine residues in the K229KQK232 stretch to alanine residues, promoting 40-fold and 6-fold increases of Km respectively. In both cases, the individual mutation of Lys232 is as detrimental as the triple mutation. A kinetic alanine-scan analysis with a series of substituted peptide substrates in which the priming phosphoserine residue was effectively replaced by a cluster of four aspartate residues was also consistent with a crucial role of Lys232 in the recognition of the acidic determinant at position n−4. In sharp contrast, the phosphorylation of β-catenin and of a peptide including the non-canonical β-catenin site (Ser45) lacking acidic/phosphorylated determinants upstream is not significantly affected by mutations in the KKQK stretch. These data provide a molecular insight into the structural features that underlie the site specificity of CK1α and disclose the possibility of developing strategies for the preferential targeting of subsets of CK1 substrates. PMID:15975091

  2. Structural insights into substrate and coenzyme preference by SDR family protein Gox2253 from Gluconobater oxydans.

    PubMed

    Yin, Bo; Cui, Dongbing; Zhang, Lujia; Jiang, Shuiqin; Machida, Satoru; Yuan, Y Adam; Wei, Dongzhi

    2014-11-01

    Gox2253 from Gluconobacter oxydans belongs to the short-chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme. We report the crystal structure of Gox2253 at 2.6 Å resolution, ternary models of Gox2253 mutants in complex with NADH/short-chain aldehydes, and propose a structural mechanism of substrate selection. Molecular dynamics simulation shows that hydrogen bonds could form between 2'-hydroxyl group in the adenosine moiety of NADH and the side chain of Gox2253 mutant after arginine at position 42 is replaced with tyrosine or lysine. Consistent with the molecular dynamics prediction, Gox2253-R42Y/K mutants can use both NADH and NADPH as a coenzyme. Hence, the strategies here could provide a practical platform to engineer coenzyme selectivity for any given oxidoreductase and could serve as an additional consideration to engineer substrate-binding pockets.

  3. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins.

    PubMed

    Cervenka, Igor; Valnohova, Jana; Bernatik, Ondrej; Harnos, Jakub; Radsetoulal, Matej; Sedova, Katerina; Hanakova, Katerina; Potesil, David; Sedlackova, Miroslava; Salasova, Alena; Steinhart, Zachary; Angers, Stephane; Schulte, Gunnar; Hampl, Ales; Zdrahal, Zbynek; Bryja, Vitezslav

    2016-08-16

    Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling. PMID:27486244

  4. Miniaturized protein separation using a liquid chromatography column on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yang, Yongmo; Chae, Junseok

    2008-12-01

    We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.

  5. Gentamicin inhibits HSP70-assisted protein folding by interfering with substrate recognition.

    PubMed

    Yamamoto, Soh; Nakano, Shunsuke; Owari, Kensuke; Fuziwara, Kazuhiko; Ogawa, Nobuaki; Otaka, Michiro; Tamaki, Kumiko; Watanabe, Sumio; Komatsuda, Atsushi; Wakui, Hideki; Sawada, Ken-Ichi; Kubota, Hiroshi; Itoh, Hideaki

    2010-02-19

    We previously reported that gentamicin (GM) specifically binds to heat-shock protein with subunit molecular masses of 70 kDa (HSP70). In the present study, we have investigated the effects of GM binding on HSP70-assisted protein folding in vitro. The C-terminal, and not the N-terminal of HSP70 was found to bind to GM. GM significantly suppressed refolding of firefly luciferase in the presence of HSP70 and HSP40, although the ATPase activity of HSP70 was unaffected by GM. A surface plasmon resonance analysis revealed that GM specifically interferes with the binding of HSP70 to a model peptide that mimics the exposed hydrophobic surface of the folding intermediates. These results indicated that GM inhibits the chaperone activity of HSP70 and may suppress protein folding via inhibition of HSP70 in vivo.

  6. Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards

    PubMed Central

    Vázquez, José A.; Pastrana, Lorenzo; Piñeiro, Carmen; Teixeira, José A.; Pérez-Martín, Ricardo I.; Amado, Isabel R.

    2015-01-01

    This work investigates the production of hyaluronic acid (H) by Streptococcus equi subsp. zooepidemicus in complex media formulated with peptones obtained from Scyliorhinus canicula viscera by-products. Initially, in batch cultures, the greatest productions were achieved using commercial media (3.03 g/L) followed by peptones from alcalase hydrolyzed viscera (2.32 g/L) and peptones from non-hydrolyzed viscera (2.26 g/L). An increase of between 12% and 15% was found in subsequent fed-batch cultures performed on waste peptones. Such organic nitrogen sources were shown to be an excellent low-cost substrate for microbial H, saving more than 50% of the nutrient costs. PMID:26512678

  7. Extreme Substrate Promiscuity of the Neisseria Oligosaccharyl Transferase Involved in Protein O-Glycosylation*S⃞

    PubMed Central

    Faridmoayer, Amirreza; Fentabil, Messele A.; Haurat, M. Florencia; Yi, Wen; Woodward, Robert; Wang, Peng George; Feldman, Mario F.

    2008-01-01

    Neisseria meningitidis PglL belongs to a novel family of bacterial oligosaccharyltransferases (OTases) responsible for O-glycosylation of type IV pilins. Although members of this family are widespread among pathogenic bacteria, there is little known about their mechanism. Understanding the O-glycosylation process may uncover potential targets for therapeutic intervention, and can open new avenues for the exploitation of these pathways for biotechnological purposes. In this work, we demonstrate that PglL is able to transfer virtually any glycan from the undecaprenyl pyrophosphate (UndPP) carrier to pilin in engineered Escherichia coli and Salmonella cells. Surprisingly, PglL was also able to interfere with the peptidoglycan biosynthetic machinery and transfer peptidoglycan subunits to pilin. This represents a previously unknown post-translational modification in bacteria. Given the wide range of glycans transferred by PglL, we reasoned that substrate specificity of PglL lies in the lipid carrier. To test this hypothesis we developed an in vitro glycosylation system that employed purified PglL, pilin, and the lipid farnesyl pyrophosphate (FarPP) carrying a pentasaccharide that had been synthesized by successive chemical and enzymatic steps. Although FarPP has different stereochemistry and a significantly shorter aliphatic chain than the natural lipid substrate, the pentasaccharide was still transferred to pilin in our system. We propose that the primary roles of the lipid carrier during O-glycosylation are the translocation of the glycan into the periplasm, and the positioning of the pyrophosphate linker and glycan adjacent to PglL. The unique characteristics of PglL make this enzyme a promising tool for glycoengineering novel glycan-based vaccines and therapeutics. PMID:18930921

  8. Analysis of protein tyrosine phosphatase interactions with microarrayed phosphopeptide substrates using imaging mass spectrometry

    PubMed Central

    McKee, Christopher J.; Hines, Harry B.; Ulrich, Robert G.

    2013-01-01

    Microarrays of peptide and recombinant protein libraries are routinely used for high-throughput studies of protein-protein interactions and enzymatic activities. Imaging mass spectrometry (IMS) is currently applied as a method to localize analytes on thin tissue sections and other surfaces. Here, we have applied IMS as a label-free means to analyze protein-peptide interactions in a microarray-based phosphatase assay. This IMS strategy visualizes the entire microarray in one composite image by collecting a pre-defined raster of MALDI-TOF MS spectra over the surface of the chip. Examining the bacterial tyrosine phosphatase YopH, we used IMS as a label-free means to visualize enzyme binding and activity with a microarrayed phosphopeptide library printed on chips coated with either gold or indium-tin oxide. Further, we demonstrate that microarray-based IMS can be coupled with surface plasmon resonance imaging to add kinetic analyses to measured binding interactions. The method described here is within the capabilities of many modern MALDI-TOF instruments and has general utility for the label-free analysis of microarray assays. PMID:23906642

  9. Process for protein enrichment of cassava by solid substrate fermentation in rural conditions

    SciTech Connect

    Daubresse, P.; Ntibashirwa, S.; Gheysen, A.; Meyer, J.A.

    1987-06-01

    An artisanal static process for protein enrichment of cassava by solid-state fermentation, developed in laboratory and tested on pilot units in Burundi (Central Africa), provides enriched cassava containing 10.7% of dry matter protein versus 1% before fermentation. Cassava chips, processed into granules of 2-4-mm diameter, are moistened (40% water content) and steamed. After cooling to 40 degrees C, cassava is mixed with a nutritive solution containing the inoculum (Rhizopus oryzae, strain MUCL 28627) and providing the following per 100 g dry matter: 3.4 g urea, 1.5 g KH/sub 2/PO/sub 4/, O.8 g MgSO/sub 4/.7H/sub 2/O, and 22.7 g citric acid. For the fermentation, cassava, with circa 60% moisture content, is spread in a thin layer (2-3 cm thick) on perforated trays and slid into an aerated humidified enclosure. The incubation lasts more or less 65 hours. The production of protein enriched cassava is 3.26 kg dry matter/square m tray. The effects of the variation of the nutritive solution composition and the inoculum conservation period on the protein production are equally discussed. (Refs. 37).

  10. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases.

    PubMed Central

    Ito, T; Sasaki, Y; Wands, J R

    1996-01-01

    The receptor insulin substrate 1 protein (IRS-1) is a specific substrate for insulin receptor tyrosine kinase. Expression and tyrosyl phosphorylation of IRS-1 play an important role during normal hepatocyte growth, and the gene is overexpressed in hepatocellular carcinoma tissue. We determined if IRS-1 overexpression directly contributes to cellular transformation. The human IRS-1 gene was subcloned into a mammalian expression vector driven by the cytomegalovirus early promoter. NIH 3T3 cells transiently transfected with this vector subsequently developed transformed foci. Several stably transfected cell lines were established, and they grew efficiently under low-serum conditions and formed colonies when plated in soft agar. Cell lines overexpressing IRS-1 displayed increased tyrosyl phosphorylation of IRS-1 and association with Grb2 but not with the p85 subunit of phosphatidylinositol 3' kinase. Since Grb2 is a component of the son-of-sevenless-Ras pathway and upstream in the mitogen-activated protein kinase (MAPK) cascade, enzymatic activities of the major components of this cascade, such as MAPK kinase and MAPK were evaluated and found to be substantially increased in three independent cell lines with IRS-1 protein overexpression. Such cells, when injected into nude mice, were highly tumorigenic, and there may be a correlation between the degree of MAPK activation and tumor growth rate. This report describes the generation of a transformed phenotype by overexpression of a molecule without a catalytic domain far upstream in the signal transduction cascade and suggests that prolonged activation of MAPKs by this mechanism may be one of the molecular events related to hepatocellular transformation. PMID:8622697

  11. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart.

    PubMed

    Heather, Lisa C; Cole, Mark A; Atherton, Helen J; Coumans, Will A; Evans, Rhys D; Tyler, Damian J; Glatz, Jan F C; Luiken, Joost J F P; Clarke, Kieran

    2010-01-01

    Thyroid hormones can modify cardiac metabolism via multiple molecular mechanisms, yet their integrated effect on overall substrate metabolism is poorly understood. Here we determined the effect of hyperthyroidism on substrate metabolism in the isolated, perfused, contracting rat heart. Male Wistar rats were injected for 7 d with T(3) (0.2 mg/kg x d ip). Plasma free fatty acids increased by 97%, heart weights increased by 33%, and cardiac rate pressure product, an indicator of contractile function, increased by 33% in hyperthyroid rats. Insulin-stimulated glycolytic rates and lactate efflux rates were increased by 33% in hyperthyroid rat hearts, mediated by an increased insulin-stimulated translocation of the glucose transporter GLUT4 to the sarcolemma. This was accompanied by a 70% increase in phosphorylated AMP-activated protein kinase (AMPK) and a 100% increase in phosphorylated acetyl CoA carboxylase, confirming downstream signaling from AMPK. Fatty acid oxidation rates increased in direct proportion to the increased heart weight and rate pressure product in the hyperthyroid heart, mediated by synchronized changes in mitochondrial enzymes and respiration. Protein levels of the fatty acid transporter, fatty acid translocase (FAT/CD36), were reduced by 24% but were accompanied by a 19% increase in the sarcolemmal content of fatty acid transport protein 1 (FATP1). Thus, the relationship between fatty acid metabolism, cardiac mass, and contractile function was maintained in the hyperthyroid heart, associated with a sarcolemmal reorganization of fatty acid transporters. The combined effects of T(3)-induced AMPK activation and insulin stimulation were associated with increased sarcolemmal GLUT4 localization and glycolytic flux in the hyperthyroid heart. PMID:19940039

  12. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  13. Crystal structure of a substrate-engaged SecY protein-translocation channel

    PubMed Central

    Ling, JingJing; Ingram, Jessica; Ploegh, Hidde; Rapoport, Tom A.

    2016-01-01

    Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid1-10. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation 11. How a translocating polypeptide inserts into the channel is uncertain, as cryo-EM structures of the active channel have a relatively low resolution (~10Å) or are of insufficient quality 6-8. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The C-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase. PMID:26950603

  14. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  15. Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine.

    PubMed

    Tonddast-Navaei, Sam; Stan, George

    2013-10-01

    ATPases associated with various cellular activities (AAA+) form a superfamily of ring-shaped motor proteins that utilize cyclical allosteric motions to remodel or translocate substrate proteins (SP) through a narrow central pore. The p97 ATPase is a homohexameric, double-ring member of this superfamily that encloses a central channel with nonuniform width. A narrow compartment is present within the D1 ring and a larger cavity within the D2 ring, separated by a constriction formed by six His amino acids. We use molecular dynamics simulations to probe the interaction between p97 and an extended peptide substrate. Mechanical pulling of the substrate through the p97 pore reveals that smaller work is required for translocation from the D1 toward the D2 compartment than in the opposite direction. These distinct energetic requirements originate in structural aspects and chemical properties of the pore lining. Whereas van der Waals interactions are dominant within the D1 pore, interaction within the D2 pore are strongly electrostatic. Two charged amino acids in the D2 pore, Arg599 and Glu554, provide the largest contribution to the interaction and hinder translocation from the D2 pore. SP threading requires smaller forces when the SP is pulled from the D1 side due to lower barrier to rotation of the His side chains in the direction of the D2 pore. Based on additional simulations of SP binding to two allosteric conformations of p97, we propose that transient binding and release of SP from the pore involves a lever mechanism. Binding to the open pore conformation of p97 occurs primarily at the Arg599 side chain, where the SP backbone is engaged through electrostatic interactions and hydrogen bonds. ATP-driven conformational transitions within the D2 ring alter the chemical environment inside the p97 cavity in the closed pore state. In this state, Glu554 side chains project further into the pore and interacts strongly through van der Waals contacts with the SP backbone. Based

  16. Ehrlichia chaffeensis Tandem Repeat Proteins and Ank200 are Type 1 Secretion System Substrates Related to the Repeats-in-Toxin Exoprotein Family

    PubMed Central

    Wakeel, Abdul; den Dulk-Ras, Amke; Hooykaas, Paul J. J.; McBride, Jere W.

    2011-01-01

    Ehrlichia chaffeensis has type 1 and 4 secretion systems (T1SS and T4SS), but the substrates have not been identified. Potential substrates include secreted tandem repeat protein (TRP) 47, TRP120, and TRP32, and the ankyrin repeat protein, Ank200, that are involved in molecular host–pathogen interactions including DNA binding and a network of protein–protein interactions with host targets associated with signaling, transcriptional regulation, vesicle trafficking, and apoptosis. In this study we report that E. chaffeensis TRP47, TRP32, TRP120, and Ank200 were not secreted in the Agrobacterium tumefaciens Cre recombinase reporter assay routinely used to identify T4SS substrates. In contrast, all TRPs and the Ank200 proteins were secreted by the Escherichia coli complemented with the hemolysin secretion system (T1SS), and secretion was reduced in a T1SS mutant (ΔTolC), demonstrating that these proteins are T1SS substrates. Moreover, T1SS secretion signals were identified in the C-terminal domains of the TRPs and Ank200, and a detailed bioinformatic analysis of E. chaffeensis TRPs and Ank200 revealed features consistent with those described in the repeats-in-toxins (RTX) family of exoproteins, including glycine- and aspartate-rich tandem repeats, homology with ATP-transporters, a non-cleavable C-terminal T1SS signal, acidic pIs, and functions consistent with other T1SS substrates. Using a heterologous E. coli T1SS, this investigation has identified the first Ehrlichia T1SS substrates supporting the conclusion that the T1SS and corresponding substrates are involved in molecular host–pathogen interactions that contribute to Ehrlichia pathobiology. Further investigation of the relationship between Ehrlichia TRPs, Ank200, and the RTX exoprotein family may lead to a greater understanding of the importance of T1SS substrates and specific functions of T1SS in the pathobiology of obligately intracellular bacteria. PMID:22919588

  17. Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris.

    PubMed

    Hohenblum, Hubertus; Gasser, Brigitte; Maurer, Michael; Borth, Nicole; Mattanovich, Diethard

    2004-02-20

    The expression of heterologous proteins may exert severe stress on the host cells at different levels. Depending on the specific features of the product, different steps may be rate-limiting. For the secretion of recombinant proteins from yeast cells, folding and disulfide bond formation were identified as rate-limiting in several cases and the induction of the chaperone BiP (binding protein) is described. During the development of Pichia pastoris strains secreting human trypsinogen, a severe limitation of the amount of secreted product was identified. Strains using either the AOX1 or the GAP promoter were compared at different gene copy numbers. With the constitutive GAP promoter, no effect on the expression level was observed, whereas with the inducible AOX1 promoter an increase of the copy number above two resulted in a decrease of expression. To identify whether part of the product remained in the cells, lysates were fractionated and significant amounts of the product were identified in the insoluble fraction containing the endoplasmic reticulum, while the soluble cytosolic fraction contained product only in clones using the GAP promoter. An increase of BiP was observed upon induction of expression, indicating that the intracellular product fraction exerts an unfolded protein response in the host cells. A strain using the GAP promoter was grown both on glucose and methanol and trypsinogen was identified in the insoluble fractions of both cultures, but only in the soluble fraction of the glucose grown cultures, indicating that the amounts and distribution of intracellularly retained product depends on the culture conditions, especially the carbon source. PMID:14755554

  18. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.

    PubMed

    Tapia, Julio C; Bolanos-Garcia, Victor M; Sayed, Muhammed; Allende, Catherine C; Allende, Jorge E

    2004-04-01

    The protein kinase CK2 is constituted by two catalytic (alpha and/or alpha') and two regulatory (beta) subunits. CK2 phosphorylates more than 300 proteins with important functions in the cell cycle. This study has looked at the relation between CK2 and p27(KIP1), which is a regulator of the cell cycle and a known inhibitor of cyclin-dependent kinases (Cdk). We demonstrated that in vitro recombinant Xenopus laevis CK2 can phosphorylate recombinant human p27(KIP1), but this phosphorylation occurs only in the presence of the regulatory beta subunit. The principal site of phosphorylation is serine-83. Analysis using pull down and surface plasmon resonance (SPR) techniques showed that p27(KIP1) interacts with the beta subunit through two domains present in the amino and carboxyl ends, while CD spectra showed that p27(KIP1) phosphorylation by CK2 affects its secondary structure. Altogether, these results suggest that p27(KIP1) phosphorylation by CK2 probably involves a docking event mediated by the CK2beta subunit. The phosphorylation of p27(KIP1) by CK2 may affect its biological activity.

  19. Cooperative Regulation of Substrate Stiffness and Extracellular Matrix Proteins in Skin Wound Healing of Axolotls

    PubMed Central

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques. PMID:25839038

  20. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls.

    PubMed

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques.

  1. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls.

    PubMed

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques. PMID:25839038

  2. The Src Substrate SKAP2 Regulates Actin Assembly by Interacting with WAVE2 and Cortactin Proteins*

    PubMed Central

    Shimamura, Shintaro; Sasaki, Kazuki; Tanaka, Masamitsu

    2013-01-01

    In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression. PMID:23161539

  3. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  4. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer. PMID:27156192

  5. Excretion of fluorescent substrates of mammalian multidrug resistance-associated protein (MRP) in the Schistosoma mansoni excretory system.

    PubMed

    Sato, H; Kusel, J R; Thornhill, J

    2004-01-01

    The protonephridium of platyhelminths including Schistosoma mansoni plays a pivotal role in their survival by excretion of metabolic wastes as well as xenobiotics, and can be revealed in the living adult parasite by certain fluorescent compounds which are concentrated in excretory tubules and collecting ducts. To determine the presence of the multidrug resistance-associated protein (MRP) as a possible transporter in protonephridial epithelium, adult schistosomes were exposed to a fluorescent Ca2+ indicator, fluo-3 acetyloxymethyl ester, which is a potential substrate of mammalian MRP. Specific fluorescence related to fluo-3/Ca2+ chelate delineated the whole length of the protonephridial system. Simultaneously, a fluorescent substance was accumulated in the posterior part of collecting ducts and the excretory bladder. Similarly, when other fluorogenic substrates for mammalian MRP such as monoclorobimane, fluorescein diacetate, and 5(6)-carboxyfluorescein diacetate were applied to adult schistosomes, these fluorescent markers were observed in the excretory tubules through to the excretory bladder. The excretory system of mechanically-transformed schistosomula was not labelled with any of these 4 fluorescent markers. These findings suggest that the protonephridial epithelium of adult schistosomes, but not schistosomula, might express the homologue of the mammalian MRP transporting organic anionic conjugates with glutathione, glucuronate or sulphate as well as unconjugated amphiphilic organic anions.

  6. Heteromeric geranyl diphosphate synthase from mint: construction of a functional fusion protein and inhibition by bisphosphonate substrate analogs.

    PubMed

    Burke, Charles; Klettke, Karin; Croteau, Rodney

    2004-02-01

    Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate (C(5)) with isopentenyl diphosphate (C(5)) to produce geranyl diphosphate (C(10)), the essential precursor of monoterpenes. The enzyme from peppermint and spearmint (Menthaxpiperita and Mentha spicata, respectively) functions as a heterodimer or heterotetramer consisting of a 40kDa subunit and 33kDa subunit. The DNAs encoding each subunit were joined with different sized linkers and in both possible orders, and expressed in Escherichia coli to yield the corresponding fused protein. The properties of the recombinant fused version, in which the small subunit was followed by the large subunit with a 10 amino acid linker, resembled those of the native heteromeric enzyme in kinetics, product chain-length specificity, and architecture, and this form thus provided a suitable single gene transcript for biotechnological purposes. Bisphosphonate substrate analogs of the type that inhibit farnesyl diphosphate synthase (C(15)) and geranylgeranyl diphosphate synthase (C(20)) also inhibited the fused geranyl diphosphate synthase, apparently by interacting at both the allylic and homoallylic co-substrate binding sites. The results of inhibition studies, along with the previously established role of the small subunit and related mutagenesis experiments, suggest that geranyl diphosphate synthase employs a different mechanism for chain-length determination than do other short-chain prenyltransferases.

  7. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane-protein interactions.

    PubMed

    Millo, Diego; Bonifacio, Alois; Moncelli, Maria Rosa; Sergo, Valter; Gooijer, Cees; van der Zwan, Gert

    2010-11-01

    Hybrid bilayer lipid membranes (HBMs) were built on roughened silver electrodes exhibiting surface-enhanced Raman scattering (SERS) activity. The HBM consisted of a first layer of octadecanethiol (ODT) directly bound to the electrode surface, on which a second layer of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) was obtained by self-assembled phospholipid vesicle fusion. The electrochemical properties of the HBM were investigated in situ by cyclic voltammetry (CV), AC voltammetry and electrochemical impedance spectroscopy (EIS). The results indicate that our HBMs are well-formed, and their insulating properties are comparable to those observed for HBM supported by smooth metal substrates. The interaction between the bilayer and the human enzyme cytochrome P450 2D6 (CYP2D6) was investigated. Surface-enhanced resonance Raman scattering (SERRS) measurements in combination with AC and EIS, performed on the same electrode sample, proved that the CYP2D6 is immobilized on the HBM without evident alterations of its active site and without significant perturbations of the bilayer architecture. This study yields novel insights into the properties of HBMs built on roughened surfaces, providing in situ electrochemical characterization of a substrate which is suitable for studying peripheral membrane proteins with SERRS spectroscopy.

  8. THE ACTIN BUNDLING PROTEIN PALLADIN IS AN AKT1-SPECIFIC SUBSTRATE THAT REGULATES BREAST CANCER CELL MIGRATION

    PubMed Central

    Chin, Y. Rebecca; Toker, Alex

    2010-01-01

    Summary The phosphoinositide 3-kinase (PI 3-K) signaling pathway is frequently deregulated in cancer. Downstream of PI 3-K, Akt1 and Akt2 have opposing roles in breast cancer invasive migration leading to metastatic dissemination. Here we identify palladin, an actin-associated protein, as an Akt1-specific substrate that modulates breast cancer cell invasive migration. Akt1, but not Akt2, phosphorylates palladin at S507 in a domain that is critical for F-actin bundling. Downregulation of palladin enhances migration and invasion of breast cancer cells and induces abnormal branching morphogenesis in 3D cultures. Palladin phosphorylation at S507 is required for Akt1-mediated inhibition of breast cancer cell migration and also for F-actin bundling leading to the maintenance of an organized actin cytoskeleton. These findings identify palladin as an Akt1-specific substrate that regulates cell motility and provide a molecular mechanism that accounts for the functional distinction between Akt isoforms in breast cancer cell signaling to cell migration. PMID:20471940

  9. The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance.

    PubMed

    Tarpey, Michael D; Roberts, Justin D; Kass, Lindsy S; Tarpey, Richard J; Roberts, Michael G

    2013-12-01

    The study investigated the ingestion of maltodextrin, fructose, and protein on exogenous carbohydrate oxidation (CHOEXO) and exercise performance. Seven trained cyclists and (or) triathletes (maximal oxygen consumption, 59.20 ± 9.00 mL · kg(-1) · min(-1)) performed 3 exercise trials that consisted of 150 min of cycling at 50% maximal power output (160 ± 11 W), followed by a 60-km time trial. One of 3 beverages were randomly assigned during each trial and consumed at 15-min intervals: (i) 0.84 g · min(-1) maltodextrin + 0.52 g · min(-1) fructose + 0.34 g · min(-1) protein (MD+F+P); (ii) 1.10 g · min(-1) maltodextrin + 0.60 g · min(-1) fructose (MD+F); or (iii) 1.70 g · min(-1) maltodextrin (MD). CHO(EXO) and fuel utilisation were assessed via measurement of expired air (13)C content and indirect calorimetry, respectively. Mean total CHO oxidation (CHOTOT) rates were 2.35 ± 0.18, 2.76 ± 0.08, and 2.61 ± 0.17 g · min(-1) with MD, MD+F, and MD+F+P, respectively, although not significantly different. Peak CHO(EXO) rates with MD+F were significantly greater by 41.4% (p = 0.001) and 45.4% (p = 0.0001) compared with MD+F+P and MD, respectively (1.57 ± 0.22 g · min(-1), 1.11 ± 0.08 g · min(-1), and 1.08 ± 0.11 g · min(-1), respectively). Performance times were 2.2% and 5.0% faster with MD+F compared with MD+F+P and MD, respectively; however, they were not statistically significant. Ingestion of an MD-fructose-protein commercial sports beverage significantly reduced peak and mean CHO(EXO) rates compared with MD+F, but did not significantly influence CHOTOT. The addition of protein to an MD+F beverage did not enhance performance times.

  10. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate.

    PubMed

    Nitayavardhana, Saoharit; Issarapayup, Kerati; Pavasant, Prasert; Khanal, Samir Kumar

    2013-04-01

    The potential for large-scale production of an edible fungus, Rhizopus oligosporus, on a liquid residue from sugar-to-ethanol production, vinasse, was investigated. An airlift bioreactor (2.5-L working volume) was used for cultivating the fungus on 75% (v/v) vinasse with nutrient supplementation (nitrogen and phosphorus) at 37°C and pH 5.0. Aeration rates were varied from 0.5, 1.0, 1.5 to 2.0 volume(air)/volume(liquid)/min (vvm). The fungal biomass yield depended on the aeration rate, and the highest fungal biomass obtained was 8.04±0.80 (g(biomass increase)/g(initial biomass)) at 1.5vvm. The observed reductions in organic content by 80% (as soluble chemical oxygen demand) suggest the potential of recycling treated effluent as process water for in-plant use or for land applications. The fungal biomass contained ~50% crude protein and the essential amino acids contents were comparable to commercial protein sources for aquatic feeds (fishmeal and soybean meal), with the exception of methionine and phenylalanine. PMID:23434806

  11. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases

    PubMed Central

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J.; Hastie, C. James; Lamont, Douglas J.; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J.; Keyse, Stephen M.; Cuenda, Ana

    2016-01-01

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  12. Gamma secretase activating protein is a substrate for caspase-3: implications for Alzheimer’s disease

    PubMed Central

    Chu, Jin; Li, Jian-Guo; Joshi, Yash B.; Giannopoulos, Phillip F.; Hoffman, Nicholas E.; Madesh, Muniswamy; Praticò, Domenico

    2014-01-01

    SUMMARY Background A major hallmark feature of Alzheimer’s disease (AD) is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ-secretase complex and its activating protein (also known as GSAP). Because GSAP interacts with the γ-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aβ therapy. However, despite much interest in this protein, the mechanisms involved in its neurobiology are not known. Methods Post-mortem brain tissues from AD patients, transgenic mouse models of AD and neuronal cells were used to investigate the molecular mechanism involved in GSAP formation and subsequent amyloidogenesis. Results We identify a caspase-3 processing domain in the GSAP sequence and provide experimental evidence that this caspase is essential for GSAP activation and biogenesis of Aβ peptides. Furthermore, we demonstrate that caspase-3-dependent GSAP formation occurs in brains of individuals with AD and two different mouse models of AD, and that the process is biologically relevant since its pharmacological blockade reduces Aβ pathology in vivo. Interpretation Our data by identifying caspase-3 as the endogenous modulator of GSAP and Aβ production establish it as a novel, attractive and viable Aβ lowering therapeutic target for AD. PMID:25052851

  13. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins.

    PubMed

    Hung, Miao-Chiu; Humbert, María Victoria; Laver, Jay R; Phillips, Renee; Heckels, John E; Christodoulides, Myron

    2015-08-26

    The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre <4) in a human serum bactericidal assay (hSBA) using anti-rNMB1612 sera, although another strain (MC168) expressing the same protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new

  14. Identification and Validation of Inhibitor-Responsive Kinase Substrates using a New Paradigm to Measure Kinase-Specific Protein Phosphorylation Index

    PubMed Central

    Li, Xiang; Rao, Varsha; Jin, Jin; Guan, Bin; Anderes, Kenna L.; Bieberich, Charles J.

    2012-01-01

    Regulation of all cellular processes requires dynamic regulation of protein phosphorylation. We have developed an unbiased system to globally quantify the phosphorylation index for substrates of a specific kinase by independently quantifying phosphorylated and total substrate molecules in a reverse in-gel kinase assay. Non-phosphorylated substrate molecules are first quantified in the presence and absence of a specific stimulus. Total substrate molecules are then measured after complete chemical de-phosphorylation, and a ratio of phosphorylated to total substrate is derived. To demonstrate the utility of this approach, we profiled and quantified changes in phosphorylation index for Protein Kinase CK2 substrates that respond to a small-molecule inhibitor. A broad range of inhibitor-induced changes in phosphorylation was observed in cultured cells. Differences among substrates in the kinetics of phosphorylation change were also revealed. Comparison of CK2 inhibitor-induced changes in phosphorylation in cultured cells and in mouse peripheral blood lymphocytes in vivo revealed distinct kinetic and depth-of-response profiles. This technology provides a new approach to facilitate functional analyses of kinase-specific phosphorylation events. This strategy can be used to dissect the role of phosphorylation in cellular events, to facilitate kinase inhibitor target validation studies, and to inform in vivo analyses of kinase inhibitor drug efficacy. PMID:22663298

  15. Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues.

    PubMed

    Fu, Xinmiao; Shi, Xiaodong; Yin, Linxiang; Liu, Jiafeng; Joo, Keehyoung; Lee, Jooyoung; Chang, Zengyi

    2013-04-26

    As ubiquitous molecular chaperones, small heat shock proteins (sHSPs) are crucial for protein homeostasis. It is not clear why sHSPs are able to bind a wide spectrum of non-native substrate proteins and how such binding is enhanced by heat shock. Here, by utilizing a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we systematically characterized the substrate-binding residues in IbpB (a sHSP from Escherichia coli) in living cells over a wide spectrum of temperatures (from 20 to 50 °C). A total of 20 and 48 residues were identified at normal and heat shock temperatures, respectively. They are not necessarily hydrophobic and can be classified into three types: types I and II were activated at low and normal temperatures, respectively, and type III mediated oligomerization at low temperature but switched to substrate binding at heat shock temperature. In addition, substrate binding of IbpB in living cells began at temperatures as low as 25 °C and was further enhanced upon temperature elevation. Together, these in vivo data provide novel structural insights into the wide substrate spectrum of sHSPs and suggest that sHSP is able to hierarchically activate its multi-type substrate-binding residues and thus act as a robust chaperone in cells under fluctuating growth conditions.

  16. Comparative modeling and molecular docking of orphan human CYP4V2 protein with fatty acid substrates: Insights into substrate specificity

    PubMed Central

    Kumar, Suresh

    2011-01-01

    Cytochromes P450 (CYPs) are a super family of heme-containing enzymes well-known for their monooxgenase reaction. There are 57 CYP isoenzymes found in human which exhibit specific physiological functions. Thirteen members of this super family are classified as “orphan” CYP because of their unknown enzymatic functions. CYP4V2 is found to be a potential drug target for Bietti crystalline corneoretinal dystrophy (BCD). However, three-dimensional structure, the active site topology and substrate binding modes of CYP4V2 remain unclear. In this study, the three-dimensional model of CYP4V2 was constructed using the homology modeling method. Four possible fatty acid substrates namely, caprylic, lauric, myrisitc and palmitic acids were optimized and evaluated for drug likeness using Lipinski's rule of five. Further, these substrates were docked into active sites of CYP4V2 and several key residues responsible for substrate binding were identified. These findings will be helpful for the structure-based drug design and detailed characterization of the biological roles of CYP4V2. PMID:22355237

  17. Extralysosomal turnover of cellular proteins: Targeting substrates in the ubiquitin, ATP-dependent degradation system

    SciTech Connect

    Marriott, D.

    1988-01-01

    Calmodulin derived from a cloned chicken gene can be ubiquitinated and degraded by an in vitro reticulocyte lysate system. The chemical reactivity and the surface accessibility of the {epsilon}-amino group on lysine 115 in the calmodulin polypeptide chain were studied by trace labeling with acetic anhydride and with a ubiquitin derivative containing an azido group at the C-terminal glycine residue. Fractionation of reticulocyte lysate proteins separated the activity which degrades the calmodulin moiety of ubiquitin-calmodulin conjugates from that which acts on the isopeptide linkage. Neither of these two activities act on a synthetic isopeptide, which mimics the junction of ubiquitin-calmodulin, indicating the importance of the folding of ubiquitin for recognition. Based on recent findings that the ubiquitin moieties linked to {beta}galactosidase exist as a single multiubiquitin chain, studies were carried out to determine the structure of the ubiquitin-ubiquitin linkage. Ubiquitin was in vivo labeled with ({sup 3}H) and conjugated to {beta}galactosidase. Individual conjugates were isolated and subjected to peptide mapping by trypsin digestion, and tryptic fragments were analyzed of HPLC. The results indicated that the ubiquitin-ubiquitin linkage involves lysine residue 48 in the ubiquitin sequence.

  18. Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase.

    PubMed

    Kravats, Andrea; Jayasinghe, Manori; Stan, George

    2011-02-01

    Clp ATPases are ring-shaped AAA+ motors in the degradation pathway that perform critical actions of unfolding and translocating substrate proteins (SPs) through narrow pores to deliver them to peptidase components. These actions are effected by conserved diaphragm-forming loops found in the central channel of the Clp ATPase hexamer. Conformational changes, that take place in the course of repetitive ATP-driven cycles, result in mechanical forces applied by the central channel loops onto the SP. We use coarse-grained simulations to elucidate allostery-driven mechanisms of unfolding and translocation of a tagged four-helix bundle protein by the ClpY ATPase. Unfolding is initiated at the tagged C-terminal region via an obligatory intermediate. The resulting nonnative conformation is competent for translocation, which proceeds on a different time scale than unfolding and involves sharp stepped transitions. Completion of the translocation process requires assistance from the ClpQ peptidase. These mechanisms contrast nonallosteric mechanical unfolding of the SP. In atomic force microscopy experiments, multiple unfolding pathways are available and large mechanical forces are required to unravel the SP relative to those exerted by the central channel loops of ClpY. SP threading through a nonallosteric ClpY nanopore involves simultaneous unfolding and translocation effected by strong pulling forces.

  19. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    PubMed Central

    Yang, Ting; Arslanova, Dilyara; Gu, Yongli; Augelli-Szafran, Corinne; Xia, Weiming

    2008-01-01

    Background Deposition of amyloid-β protein (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP). In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E) and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H) binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ*) peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in zebrafish provides a novel

  20. Direct Detection of Transcription Factors in Cotyledons during Seedling Development Using Sensitive Silicon-Substrate Photonic Crystal Protein Arrays1[OPEN

    PubMed Central

    Jones, Sarah I.; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T.; Vodkin, Lila

    2015-01-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  1. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding

    PubMed Central

    Peleh, Valentina; Cordat, Emmanuelle; Herrmann, Johannes M

    2016-01-01

    Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a ‘holding trap’ rather than a ‘folding trap’ mechanism. DOI: http://dx.doi.org/10.7554/eLife.16177.001 PMID:27343349

  2. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding.

    PubMed

    Peleh, Valentina; Cordat, Emmanuelle; Herrmann, Johannes M

    2016-01-01

    Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a 'holding trap' rather than a 'folding trap' mechanism. PMID:27343349

  3. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.

    PubMed

    Oda, Akifumi; Noji, Ikuhiko; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2015-12-10

    Because the aspartic acid (Asp) residues in proteins are occasionally isomerized in the human body, not only l-α-Asp but also l-β-Asp, D-α-Asp and D-β-Asp are found in human proteins. In these isomerized aspartic acids, the proportion of D-β-Asp is the largest and the proportions of l-β-Asp and D-α-Asp found in human proteins are comparatively small. To explain the proportions of aspartic acid isomers, the possibility of an enzyme able to repair l-β-Asp and D-α-Asp is frequently considered. The protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) is considered one of the possible repair enzymes for l-β-Asp and D-α-Asp. Human PIMT is an enzyme that recognizes both l-β-Asp and D-α-Asp, and catalyzes the methylation of their side chains. In this study, the binding modes between PIMT and peptide substrates containing l-β-Asp or D-α-Asp residues were investigated using computational protein-ligand docking and molecular dynamics simulations. The results indicate that carboxyl groups of both l-β-Asp and D-α-Asp were recognized in similar modes by PIMT and that the C-terminal regions of substrate peptides were located in similar positions on PIMT for both the l-β-Asp and D-α-Asp peptides. In contrast, for peptides containing l-α-Asp or D-β-Asp residues, which are not substrates of PIMT, the computationally constructed binding modes between PIMT and peptides greatly differed from those between PIMT and substrates. In the nonsubstrate peptides, not inter- but intra-molecular hydrogen bonds were observed, and the conformations of peptides were more rigid than those of substrates. Thus, the in silico analytical methods were able to distinguish substrates from nonsubstrates and the computational methods are expected to complement experimental analytical methods.

  4. GRIZZLY/FAVOR Interface Project Report

    SciTech Connect

    Dickson, Terry L; Williams, Paul T; Yin, Shengjun; Klasky, Hilda B; Tadinada, Sashi; Bass, Bennett Richard

    2013-06-01

    As part of the Light Water Reactor Sustainability (LWRS) Program, the objective of the GRIZZLY/FAVOR Interface project is to create the capability to apply GRIZZLY 3-D finite element (thermal and stress) analysis results as input to FAVOR probabilistic fracture mechanics (PFM) analyses. The one benefit of FAVOR to Grizzly is the PROBABILISTIC capability. This document describes the implementation of the GRIZZLY/FAVOR Interface, the preliminary verification and tests results and a user guide that provides detailed step-by-step instructions to run the program.

  5. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    SciTech Connect

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.; Bauerle, Matthew R.; Green, Michael T.; Rosenzweig, Amy C.; Boal, Amie K.; Booker, Squire J.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process

  6. Substrate Specificity of Lymphoid-specific Tyrosine Phosphatase (Lyp) and Identification of Src Kinase-associated Protein of 55 kDa Homolog (SKAP-HOM) as a Lyp Substrate

    SciTech Connect

    Yu, Xiao; Chen, Ming; Zhang, Sheng; Yu, Zhi-Hong; Sun, Jin-Peng; Wang, Lina; Liu, Sijiu; Imasaki, Tsuyoshi; Takagi, Yuichiro; Zhang, Zhong-Yin

    2012-02-08

    A missense single-nucleotide polymorphism in the gene encoding the lymphoid-specific tyrosine phosphatase (Lyp) has been identified as a causal factor in a wide spectrum of autoimmune diseases. Interestingly, the autoimmune-predisposing variant of Lyp appears to represent a gain-of-function mutation, implicating Lyp as an attractive target for the development of effective strategies for the treatment of many autoimmune disorders. Unfortunately, the precise biological functions of Lyp in signaling cascades and cellular physiology are poorly understood. Identification and characterization of Lyp substrates will help define the chain of molecular events coupling Lyp dysfunction to diseases. In the current study, we identified consensus sequence motifs for Lyp substrate recognition using an 'inverse alanine scanning' combinatorial library approach. The intrinsic sequence specificity data led to the discovery and characterization of SKAP-HOM, a cytosolic adaptor protein required for proper activation of the immune system, as a bona fide Lyp substrate. To determine the molecular basis for Lyp substrate recognition, we solved crystal structures of Lyp in complex with the consensus peptide as well as the phosphopeptide derived from SKAP-HOM. Together with the biochemical data, the structures define the molecular determinants for Lyp substrate specificity and provide a solid foundation upon which novel therapeutics targeting Lyp can be developed for multiple autoimmune diseases.

  7. Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: implications for their functional cooperation in substrate refolding.

    PubMed

    Shi, Xiaodong; Yan, Linxuan; Zhang, Hanlin; Sun, Kai; Chang, Zengyi; Fu, Xinmiao

    2014-09-26

    Small heat shock proteins (sHSPs), as a conserved family of ATP-independent molecular chaperones, are known to bind non-native substrate proteins and facilitate the substrate refolding in cooperation with ATP-dependent chaperones (e.g., DnaK and ClpB). However, how different sHSPs function in coordination is poorly understood. Here we report that IbpA and IbpB, the two sHSPs of Escherichia coli, are coordinated by synchronizing their differential in vivo degradation. Whereas the individually expressed IbpA and IbpB are respectively degraded slowly and rapidly in cells cultured under both heat shock and normal conditions, their simultaneous expression leads to a synchronized degradation at a moderate rate. Apparently, such synchronization is linked to their hetero-oligomerization and cooperation in binding substrate proteins. In addition, truncation of the flexible N- and C-terminal tails dramatically suppresses the IbpB degradation, and somehow accelerates the IbpA degradation. In view of these in vivo data, we propose that the synchronized degradation for IbpA and IbpB are crucial for their synergistic promoting effect on DnaK/ClpB-mediated substrate refolding, conceivably via the formation of IbpA-IbpB-substrate complexes. This scenario may be common for different sHSPs that interact with each other in cells.

  8. Identification of Phosphoinositide-Binding Protein PATELLIN2 as a Substrate of Arabidopsis MPK4 MAP Kinase during Septum Formation in Cytokinesis

    PubMed Central

    Suzuki, Takamasa; Matsushima, Chiyuki; Nishimura, Shingo; Higashiyama, Tetsuya; Sasabe, Michiko; Machida, Yasunori

    2016-01-01

    The phosphorylation of proteins by protein kinases controls many cellular and physiological processes, which include intracellular signal transduction. However, the underlying molecular mechanisms of such controls and numerous substrates of protein kinases remain to be characterized. The mitogen-activated protein kinase (MAPK) cascade is of particular importance in a variety of extracellular and intracellular signaling processes. In plant cells, the progression of cytokinesis is an excellent example of an intracellular phenomenon that requires the MAPK cascade. However, the way in which MAPKs control downstream processes during cytokinesis in plant cells remains to be fully determined. We show here that comparisons, by two-dimensional difference gel electrophoresis, of phosphorylated proteins from wild-type Arabidopsis thaliana and mutant plants defective in a MAPK cascade allow identification of substrates of a specific MAPK. Using this method, we identified the PATELLIN2 (PATL2) protein, which has a SEC14 domain, as a substrate of MPK4 MAP kinase. PATL2 was concentrated at the cell division plane, as is MPK4, and had binding affinity for phosphoinositides. This binding affinity was altered after phosphorylation of PATL2 by MPK4, suggesting a role for the MAPK cascade in the formation of cell plates via regeneration of membranes during cytokinesis. PMID:27335345

  9. New potential eukaryotic substrates of the mycobacterial protein tyrosine phosphatase PtpA: hints of a bacterial modulation of macrophage bioenergetics state.

    PubMed

    Margenat, Mariana; Labandera, Anne-Marie; Gil, Magdalena; Carrion, Federico; Purificação, Marcela; Razzera, Guilherme; Portela, María Magdalena; Obal, Gonzalo; Terenzi, Hernán; Pritsch, Otto; Durán, Rosario; Ferreira, Ana María; Villarino, Andrea

    2015-01-01

    The bacterial protein tyrosine phosphatase PtpA is a key virulence factor released by Mycobacterium tuberculosis in the cytosol of infected macrophages. So far only two unrelated macrophage components (VPS33B, GSK3α) have been identified as PtpA substrates. As tyrosine phosphatases are capable of using multiple substrates, we developed an improved methodology to pull down novel PtpA substrates from an enriched P-Y macrophage extract using the mutant PtpA D126A. This methodology reduced non-specific protein interactions allowing the identification of four novel putative PtpA substrates by MALDI-TOF-MS and nano LC-MS: three mitochondrial proteins - the trifunctional enzyme (TFP), the ATP synthase, and the sulfide quinone oxidoreductase - and the cytosolic 6-phosphofructokinase. All these proteins play a relevant role in cell energy metabolism. Using surface plasmon resonance, PtpA was found to bind immunopurified human TFP through its catalytic site since TFP-PtpA association was inhibited by a specific phosphatase inhibitor. Moreover, PtpA wt was capable of dephosphorylating immunopurified human TFP in vitro supporting that TFP may be a bona fide PtpA susbtrate. Overall, these results suggest a novel scenario where PtpA-mediated dephosphorylation may affect pathways involved in cell energy metabolism, particularly the beta oxidation of fatty acids through modulation of TFP activity and/or cell distribution. PMID:25743628

  10. Protein kinase C substrate phosphorylation in relation to neural growth and synaptic plasticity: a common molecular mechanism underlying multiple neural functions

    SciTech Connect

    Nelson, R.B.

    1987-01-01

    In these studies, we addressed the issues of: (1) whether neural protein kinase C (PKC) substrates might be altered in phosphorylation following induction of long-term potentiation (LTP); (2) whether PKC substrate phosphorylation might be specifically related to a model of neural plasticity other than LTP; and (3) whether the PKC substrates implicated in adult synaptic plasticity might be present in axonal growth cones given reports that high concentrations of PKC are found in these structures. Using quantitative analysis of multiple two-dimensional gels, we found that the two major substrates of exogenous purified PKC in adult hippocampal homogenate are both directly correlated to persistence of LTP. In rhesus monkey cerebral cortex, the proteins corresponding to protein F1 and 80k displayed topographical gradients in /sup 32/P-incorporation along the occipitotemporal visual processing pathway. The phosphorylation of both proteins was 11- and 14-fold higher, respectively, in temporal regions of this pathway implicated in the storage of visual representations, than in occipital regions, which do not appear to directly participate in visual memory functions.

  11. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters.

    PubMed

    Lee, Po-Hsien; Kuo, Kuei-Ling; Chu, Pei-Ying; Liu, Eric M; Lin, Jung-Hsin

    2009-07-01

    Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.

  12. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  13. Basic Leucine Zipper Protein Cnc-C Is a Substrate and Transcriptional Regulator of the Drosophila 26S Proteasome▿ †

    PubMed Central

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M.; Young, Patrick

    2011-01-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n’ collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis. PMID:21149573

  14. Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P

    PubMed Central

    Brillante, Nadia; Gößringer, Markus; Lindenhofer, Dominik; Toth, Ursula; Rossmanith, Walter; Hartmann, Roland K.

    2016-01-01

    RNase P is the enzyme that removes 5′ extensions from tRNA precursors. With its diversity of enzyme forms—either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins—the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5′ or 3′ extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship. PMID:26896801

  15. Synchrotron Protein Footprinting Supports Substrate Translocation by ClpA via ATP-Induced Movements of the D2 Loop

    PubMed Central

    Bohon, Jen; Jennings, Laura D.; Phillips, Christine M.; Licht, Stuart; Chance, Mark R.

    2010-01-01

    SUMMARY Synchrotron x-ray protein footprinting is used to study structural changes upon formation of the ClpA hexamer. Comparative solvent accessibilities between ClpA monomer and ClpA hexamer samples are in agreement throughout most of the sequence with calculations based on two previously proposed hexameric models. The data differ substantially from the proposed models in two parts of the structure: the D1 sensor 1 domain and the D2 loop region. The results suggest that these two regions can access alternate conformations in which their solvent protection is greater than in the structural models based on crystallographic data. In combination with previously reported structural data, the footprinting data provide support for a revised model in which the D2 loop contacts the D1 sensor 1 domain in the ATP-bound form of the complex. These data provide the first direct experimental support for the nucleotide-dependent D2 loop conformational change previously proposed to mediate substrate translocation. PMID:18682217

  16. Self-Assembly of Synthetic Metabolons through Synthetic Protein Scaffolds: One-Step Purification, Co-immobilization, and Substrate Channeling

    SciTech Connect

    You, C; Zhang, YHP

    2013-02-01

    One-step purification of a multi-enzyme complex was developed based on a mixture of cell extracts containing three dockerin-containing enzymes and one family 3 cellulose-binding module (CBM3)-containing scaffoldin through high-affinity adsorption on low-cost solid regenerated amorphous cellulose (RAC). The three-enzyme complex, called synthetic metabolon, was self-assembled through the high-affinity interaction between the dockerin in each enzyme and three cohesins in the synthetic scaffoldin. The metabolons were either immobilized on the external surface of RAC or free when the scaffoldin contained an intein between the CBM3 and three cohesins. The immobilized and free metabolons containing triosephosphate isomerase, aldolase, and fructose 1,6-biphosphatase exhibited initial reaction rates 48 and 38 times, respectively, that of the non-complexed three-enzyme mixture at the same enzyme loading. Such reaction rate enhancements indicated strong substrate channeling among synthetic metabolons due to the close spatial organization among cascade enzymes. These results suggested that the construction of synthetic metabolons by using cohesins, dockerins, and cellulose-binding modules from cellulosomes not only decreased protein purification labor and cost for in vitro synthetic biology projects but also accelerated reaction rates by 1 order of magnitude compared to non-complexed enzymes. Synthetic metabolons would be an important biocatalytic module for in vitro and in vivo synthetic biology projects.

  17. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation.

    PubMed

    Drake, Joshua C; Bruns, Danielle R; Peelor, Frederick F; Biela, Laurie M; Miller, Richard A; Hamilton, Karyn L; Miller, Benjamin F

    2014-11-01

    Increasing mouse litter size [crowded litter (CL)] presumably imposes a transient nutrient stress during suckling and extends lifespan through unknown mechanisms. Chronic calorically restricted and rapamycin-treated mice have decreased DNA synthesis and mTOR complex 1 (mTORC1) signaling but maintained protein synthesis, suggesting maintenance of existing cellular structures. We hypothesized that CL would exhibit similar synthetic and signaling responses to other long-lived models and, by comparing synthesis of new protein to new DNA, that insight may be gained into the potential preservation of existing cellular structures in the CL model. Protein and DNA synthesis was assessed in gastroc complex, heart, and liver of 4- and 7-mo CL mice. We also examined mTORC1 signaling in 3- and 7-mo aged animals. Compared with controls, 4-mo CL had greater DNA synthesis in gastroc complex with no differences in protein synthesis or mTORC1 substrate phosphorylation across tissues. Seven-month CL had less DNA synthesis than controls in heart and greater protein synthesis and mTORC1 substrate phosphorylation across tissues. The increased new protein-to-new DNA synthesis ratio suggests that new proteins are synthesized more so in existing cells at 7 mo, differing from 4 mo, in CL vs. controls. We propose that, in CL, protein synthesis shifts from being directed toward new cells (4 mo) to maintenance of existing cellular structures (7 mo), independently of decreased mTORC1.

  18. Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K.

    PubMed

    Tao, Yan; Rao, Zi-He; Liu, Shu-Qun

    2010-10-01

    Because of the significant industrial, agricultural and biotechnological importance of serine protease proteinase K, it has been extensively investigated using experimental approaches such as X-ray crystallography, site-directed mutagenesis and kinetic measurement. However, detailed aspects of enzymatic mechanism such as substrate binding, release and relevant regulation remain unstudied. Molecular dynamics (MD) simulations of the proteinase K alone and in complex with the peptide substrate AAPA were performed to investigate the effect of substrate binding on the dynamics/molecular motions of proteinase K. The results indicate that during simulations the substrate-complexed proteinase K adopt a more compact and stable conformation than the substrate-free form. Further essential dynamics (ED) analysis reveals that the major internal motions are confined within a subspace of very small dimension. Upon substrate binding, the overall flexibility of the protease is reduced; and the noticeable displacements are observed not only in substrate-binding regions but also in regions opposite the substrate-binding groove/pockets. The dynamic pockets caused by the large concerted motions are proposed to be linked to the substrate recognition, binding, orientation and product release; and the significant displacements in regions opposite the binding groove/pockets are considered to play a role in modulating the dynamics of enzyme-substrate interaction. Our simulation results complement the biochemical and structural studies, highlighting the dynamic mechanism of the functional properties of proteinase K.

  19. Adsorption mechanism of myelin basic protein on model substrates and its bridging interaction between the two surfaces.

    PubMed

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Min, Younjin; Ramachandran, Arun; Boggs, Joan M; Israelachvili, Jacob N

    2015-03-17

    Myelin basic protein (MBP) is an intrinsically disordered (unstructured) protein known to play an important role in the stability of myelin's multilamellar membrane structure in the central nervous system. The adsorption of MBP and its capacity to interact with and bridge solid substrates has been studied using a surface forces apparatus (SFA) and a quartz crystal microbalance with dissipation (QCM-D). Adsorption experiments show that MBP molecules adsorb to the surfaces in a swollen state before undergoing a conformational change into a more compact structure with a thickness of ∼3 nm. Moreover, this compact structure is able to interact with nearby mica surfaces to form adhesive bridges. The measured adhesion force (energy) between two bridged surfaces is 1.0 ± 0.1 mN/m, (Ead = 0.21 ± 0.02 mJ/m(2)), which is slightly smaller than our previously reported adhesion force of 1.7 mN/m (Ead = 0.36 mJ/m(2)) for MBP adsorbed on two supported lipid bilayers (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775). The saturated surface concentration of compact MBP on a single SiO2 surface reaches a stable value of 310 ± 10 ng/cm(2) regardless of the bulk MBP concentration. A kinetic three-step adsorption model was developed that accurately fits the adsorption data. The developed model is a general model, not limited to intrinsically disordered proteins, that can be extended to the adsorption of various chemical compounds that undergo chemical reactions and/or conformational changes upon adsorbing to surfaces. Taken together with our previously published data (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775), the present results confirm that conformational changes of MBP upon adsorption are a key for strong adhesion, and that such conformational changes are strongly dependent on the nature of the surfaces. PMID:25706854

  20. Analysis of secreted protein profile and enzymatic activities from Corynebacterium diphtheriae and Bordetella pertussis on production batch media using peptide quenched fluorescent substrates.

    PubMed

    Perpetuo, Elen A; Lebrun, Ivo; Juliano, Luis; Juliano, Maria Aparecida; Sakauchi, Maria Aparecida; Prado, Sally M A

    2007-01-01

    Proteases were identified and characterized from the culture supernatant of the C. diphtheriae and B. pertussis bacteria. The proteases were secreted in the media and detected at the end of the exponential growth phase. Activity was detected in some fluorescent substrates, based on selected protein sequences such as insuline beta-chain, bradykinin, and synaptobrevin. The proteases were purified by means of gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified proteins indicated, for the main secreted proteins, an estimated molecular mass of 30 kDa in C. diphtheriae and 69 kDa in B. pertussis culture media. The proteases were stable and presented enzymatic activity at 37 degrees C. These proteases were not related to the main toxic compounds described in these two bacteria, but could represent good markers for the fermentation process when the enzyme activity was measured with the fluorescent substrates. PMID:17849290

  1. In search of Brucella abortus Type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system

    PubMed Central

    Marchesini, María Inés; Herrmann, Claudia K.; Salcedo, Suzana P.; Gorvel, Jean-Pierre; Comerci, Diego J.

    2011-01-01

    SUMMARY Type IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells. Brucella T4SS (VirB) is essential to subvert lysosome fusion and to create an organelle permissive for replication. One possible role for VirB is to translocate effector proteins that modulate host cellular functions for the biogenesis of the replicative organelle. We hypothesized that proteins with eukaryotic domains or protein-protein interaction domains, among others, would be good candidates for modulation of host cell functions. To identify these candidates, we performed an in silico screen looking for proteins with distinctive features. Translocation of 84 potential substrates was assayed using adenylate cyclase reporter. By this approach, we identified six proteins that are delivered to the eukaryotic cytoplasm upon infection of macrophage-like cells and we could determine that four of them, encoded by genes BAB1_1043, BAB1_2005, BAB1_1275 and BAB2_0123, require a functional T4SS for their delivery. We confirmed VirB-mediated translocation of one of the substrates by immunofluorescence confocal microscopy, and we found that the N-terminal 25 amino acids are required for its delivery into cells. PMID:21707904

  2. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway.

    PubMed

    Liaud, M F; Lichtlé, C; Apt, K; Martin, W; Cerff, R

    2000-02-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) are essential to glycolysis, the major route of carbohydrate breakdown in eukaryotes. In animals and other heterotrophic eukaryotes, both enzymes are localized in the cytosol; in photosynthetic eukaryotes, GAPDH and TPI exist as isoenzymes that function in the glycolytic pathway of the cytosol and in the Calvin cycle of chloroplasts. Here, we show that diatoms--photosynthetic protists that acquired their plastids through secondary symbiotic engulfment of a eukaryotic rhodophyte--possess an additional isoenzyme each of both GAPDH and TPI. Surprisingly, these new forms are expressed as an TPI-GAPDH fusion protein which is imported into mitochondria prior to its assembly into a tetrameric bifunctional enzyme complex. Homologs of this translational fusion are shown to be conserved and expressed also in nonphotosynthetic, heterokont-flagellated oomycetes. Phylogenetic analyses show that mitochondrial GAPDH and its N-terminal TPI fusion branch deeply within their respective eukaryotic protein phylogenies, suggesting that diatom mitochondria may have retained an ancestral state of glycolytic compartmentation that existed at the onset of mitochondrial symbiosis. These findings strongly support the view that nuclear genes for enzymes of glycolysis in eukaryotes were acquired from mitochondrial genomes and provide new insights into the evolutionary history (host-symbiont relationships) of diatoms and other heterokont-flagellated protists.

  3. [cDNA cloning, expression and determination of substrate specificity of mice selenocysteine-containing protein SelV (Selenoprotein V)].

    PubMed

    Varlamova, E G; Novoselov, S V; Novoselov, V I

    2015-01-01

    To date various bioinformatics tools allowed to identify 25 selenocysteine-containing mammalian proteins. The name of these proteins assumes that they contain the amino acid selenocysteine (Sec). Functionally characterized selenocysteine-containing proteins are oxidoreductases with various functions, including glutathione peroxidases, thioredoxin reductases, deiodinases etc. However, the functions of more than half of identified proteins are still unclear, and mammalian selenoprotein SeIV is among them. We studied the selV in all stages of postnatal development with the maximum level of mRNA expression during puberty, whereas in adult mice (8-18 months) we observed a gradual decrease of expression. In order to get closer to the functional role of Selenoprotein V, we have carried out experiments on the substrate specificity and enzymatic activity measurement of this selenocysteine-containing protein. It was shown that SelV posseses glutathionperoxidase and thioredoxinreductase activities. PMID:26510596

  4. Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction.

    PubMed

    Schaffer, Bethany E; Levin, Rebecca S; Hertz, Nicholas T; Maures, Travis J; Schoof, Michael L; Hollstein, Pablo E; Benayoun, Bérénice A; Banko, Max R; Shaw, Reuben J; Shokat, Kevan M; Brunet, Anne

    2015-11-01

    AMP-activated protein kinase (AMPK) is a central energy gauge that regulates metabolism and has been increasingly involved in non-metabolic processes and diseases. However, AMPK's direct substrates in non-metabolic contexts are largely unknown. To better understand the AMPK network, we use a chemical genetics screen coupled to a peptide capture approach in whole cells, resulting in identification of direct AMPK phosphorylation sites. Interestingly, the high-confidence AMPK substrates contain many proteins involved in cell motility, adhesion, and invasion. AMPK phosphorylation of the RHOA guanine nucleotide exchange factor NET1A inhibits extracellular matrix degradation, an early step in cell invasion. The identification of direct AMPK phosphorylation sites also facilitates large-scale prediction of AMPK substrates. We provide an AMPK motif matrix and a pipeline to predict additional AMPK substrates from quantitative phosphoproteomics datasets. As AMPK is emerging as a critical node in aging and pathological processes, our study identifies potential targets for therapeutic strategies. PMID:26456332

  5. Role of the C-terminus of Saccharomyces cerevisiae ubiquitin-conjugating enzyme (Rad6) in substrate and ubiquitin-protein-ligase (E3-R) interactions.

    PubMed

    Raboy, B; Kulka, R G

    1994-04-01

    The product of the RAD6 (UBC2) gene of Saccharomyces cerevisiae is a ubiquitin-conjugating enzyme (Rad6) which is implicated in DNA repair, induced mutagenesis, retrotransposition, sporulation and the degradation of proteins with destabilizing N-terminal amino acid residues. Deletion of the 23-residue acidic C-terminus of Rad6 impairs sporulation and N-end rule protein degradation in vivo but does not affect other functions such as DNA repair and induced mutagenesis. We have investigated the role of the C-terminus of Rad6 in in vitro interactions with various substrates and with a putative ubiquitin-protein ligase, E3-R. The removal of the Rad6 C-terminus had significant different effects on enzyme activity for individual substrates. Although the 23-residue truncated Rad6-149 protein had markedly impaired activity for histone H2B and micrococcal nuclease, the activity for cytochrome c was the same as that of the intact Rad6 protein. Similarly, truncation of Rad6 had no effect on its activity for several poor substrates, namely, beta-casein, beta-lactoglobulin and oxidized RNase. E3-R stimulated the activities of both Rad6 and Rad6-149 for the latter three substrates to similar degrees. E3-R appears to act by enhancing the low intrinsic affinity of Rad6 and Rad6-149 for these substrates. Thus Rad6 can act in three different modes in vitro depending on the substrate, namely unassisted C-terminus-dependent, unassisted C-terminus-independent and E3-R-assisted C-terminus-independent modes. We also examined the results of removing the C-terminal acidic region of Cdc34 (Ubc3), a ubiquitin-conjugating enzyme closely related to Rad6. Truncation of Cdc34 like that of Rad6 had no effect on activity for beta-casein, beta-lactoglobulin or oxidized RNase in the presence or absence of E3-R.

  6. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens.

    PubMed

    Atmakuri, Krishnamohan; Ding, Zhiyong; Christie, Peter J

    2003-09-01

    Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens - a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) - and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector-coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. PMID:12950931

  7. VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens

    PubMed Central

    Atmakuri, Krishnamohan; Ding, Zhiyong; Christie, Peter J.

    2013-01-01

    Summary Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens – a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) – and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector–coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. PMID:12950931

  8. The FLT3 and PDGFR inhibitor crenolanib is a substrate of the multidrug resistance protein ABCB1 but does not inhibit transport function at pharmacologically relevant concentrations.

    PubMed

    Mathias, Trevor J; Natarajan, Karthika; Shukla, Suneet; Doshi, Kshama A; Singh, Zeba N; Ambudkar, Suresh V; Baer, Maria R

    2015-04-01

    Background Crenolanib (crenolanib besylate, 4-piperidinamine, 1-[2-[5-[(3-methyl-3-oxetanyl)methoxy]-1H-benzimidazol-1-yl]-8-quinolinyl]-, monobenzenesulfonate) is a potent and specific type I inhibitor of fms-like tyrosine kinase 3 (FLT3) that targets the active kinase conformation and is effective against FLT3 with internal tandem duplication (ITD) with point mutations induced by, and conferring resistance to, type II FLT3 inhibitors in acute myeloid leukemia (AML) cells. Crenolanib is also an inhibitor of platelet-derived growth factor receptor alpha and beta and is in clinical trials in both gastrointestinal stromal tumors and gliomas. Methods We tested crenolanib interactions with the multidrug resistance-associated ATP-binding cassette proteins ABCB1 (P-glycoprotein), ABCG2 (breast cancer resistance protein) and ABCC1 (multidrug resistance-associated protein 1), which are expressed on AML cells and other cancer cells and are important components of the blood-brain barrier. Results We found that crenolanib is a substrate of ABCB1, as evidenced by approximate five-fold resistance of ABCB1-overexpressing cells to crenolanib, reversal of this resistance by the ABCB1-specific inhibitor PSC-833 and stimulation of ABCB1 ATPase activity by crenolanib. In contrast, crenolanib was not a substrate of ABCG2 or ABCC1. Additionally, it did not inhibit substrate transport by ABCB1, ABCG2 or ABCC1, at pharmacologically relevant concentrations. Finally, incubation of the FLT3-ITD AML cell lines MV4-11 and MOLM-14 with crenolanib at a pharmacologically relevant concentration of 500 nM did not induce upregulation of ABCB1 cell surface expression. Conclusions Thus ABCB1 expression confers resistance to crenolanib and likely limits crenolanib penetration of the central nervous system, but crenolanib at therapeutic concentrations should not alter cellular exposure to ABC protein substrate chemotherapy drugs.

  9. Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Patching, Simon G; Brough, Adrian R; Herbert, Richard B; Rajakarier, J Anton; Henderson, Peter J F; Middleton, David A

    2004-03-17

    We have devised methods in which cross-polarization magic-angle spinning (CP-MAS) solid-state NMR is exploited to measure rigorous parameters for binding of (13)C-labeled substrates to membrane transport proteins. The methods were applied to two proteins from Escherichia coli: a nucleoside transporter, NupC, and a glucuronide transporter, GusB. A substantial signal for the binding of methyl [1-(13)C]-beta-d-glucuronide to GusB overexpressed in native membranes was achieved with a sample that contained as little as 20 nmol of GusB protein. The data were fitted to yield a K(D) value of 4.17 mM for the labeled ligand and 0.42 mM for an unlabeled ligand, p-nitrophenyl beta-d-glucuronide, which displaced the labeled compound. CP-MAS was also used to measure binding of [1'-(13)C]uridine to overexpressed NupC. The spectrum of NupC-enriched membranes containing [1'-(13)C]uridine exhibited a large peak from substrate bound to undefined sites other than the transport site, which obscured the signal from substrate bound to NupC. In a novel application of a cross-polarization/polarization-inversion (CPPI) NMR experiment, the signal from undefined binding was eliminated by use of appropriate inversion pulse lengths. By use of CPPI in a titration experiment, a K(D) value of 2.6 mM was determined for uridine bound to NupC. These approaches are broadly applicable to quantifying binding of substrates, inhibitors, drugs, and antibiotics to numerous membrane proteins. PMID:15012136

  10. Study of the Affinity between the Protein Kinase PKA and Peptide Substrates Derived from Kemptide Using Molecular Dynamics Simulations and MM/GBSA

    PubMed Central

    Mena-Ulecia, Karel; Vergara-Jaque, Ariela; Poblete, Horacio; Tiznado, William; Caballero, Julio

    2014-01-01

    We have carried out a protocol in computational biochemistry including molecular dynamics (MD) simulations and MM/GBSA free energy calculations on the complex between the protein kinase A (PKA) and the specific peptide substrate Kemptide (LRRASLG). We made the same calculations on other PKA complexes that contain Kemptide derivatives (with mutations of the arginines, and with deletions of N and C-terminal amino acids). We predicted shifts in the free energy changes from the free PKA to PKA-substrate complex (ΔΔGE→ES) when Kemptide structure is modified (we consider that the calculated shifts correlate with the experimental shifts of the free energy changes from the free PKA to the transition states (ΔΔGE→TS) determined by the catalytic efficiency (kcat/KM) changes). Our results demonstrate that it is possible to predict the kinetic properties of protein kinases using simple computational biochemistry methods. As an additional benefit, these methods give detailed molecular information that permit the analysis of the atomic forces that contribute to the affinity between protein kinases and their substrates. PMID:25275314

  11. Study of the affinity between the protein kinase PKA and peptide substrates derived from kemptide using molecular dynamics simulations and MM/GBSA.

    PubMed

    Mena-Ulecia, Karel; Vergara-Jaque, Ariela; Poblete, Horacio; Tiznado, William; Caballero, Julio

    2014-01-01

    We have carried out a protocol in computational biochemistry including molecular dynamics (MD) simulations and MM/GBSA free energy calculations on the complex between the protein kinase A (PKA) and the specific peptide substrate Kemptide (LRRASLG). We made the same calculations on other PKA complexes that contain Kemptide derivatives (with mutations of the arginines, and with deletions of N and C-terminal amino acids). We predicted shifts in the free energy changes from the free PKA to PKA-substrate complex (ΔΔG(E→ES)) when Kemptide structure is modified (we consider that the calculated shifts correlate with the experimental shifts of the free energy changes from the free PKA to the transition states (ΔΔG(E→TS)) determined by the catalytic efficiency (k(cat)/K(M)) changes). Our results demonstrate that it is possible to predict the kinetic properties of protein kinases using simple computational biochemistry methods. As an additional benefit, these methods give detailed molecular information that permit the analysis of the atomic forces that contribute to the affinity between protein kinases and their substrates. PMID:25275314

  12. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance

    PubMed Central

    Lim, Sung Don; Cho, Hyun Yong; Park, Yong Chan; Ham, Deok Jae; Lee, Ju Kyong; Jang, Cheol Seong

    2013-01-01

    Thermotolerance is very important for plant survival when plants are subjected to lethally high temperature. However, thus far little is known about the functions of RING E3 ligase in response to heat shock in plants. This study found that one rice gene encoding the RING finger protein was specifically induced by heat and cold stress treatments but not by salinity or dehydration and named it OsHCI1 (Oryza sativa heat and cold induced 1). Subcellular localization results showed that OsHCI1 was mainly associated with the Golgi apparatus and moved rapidly and extensively along the cytoskeleton. In contrast, OsHCI1 may have accumulated in the nucleus under high temperatures. OsHCI1 physically interacted with nuclear substrate proteins including a basic helix-loop-helix transcription factor. Transient co-overexpression of OsHCI1 and each of three nuclear proteins showed that their fluorescent signals moved into the cytoplasm as punctuate formations. Heterogeneous overexpression of OsHCI1 in Arabidopsis highly increased survival rate through acquired thermotolerance. It is proposed that OsHCI1 mediates nuclear–cytoplasmic trafficking of nuclear substrate proteins via monoubiquitination and drives an inactivation device for the nuclear proteins under heat shock. PMID:23698632

  13. New Study Says CAI May Favor Introverts.

    ERIC Educational Resources Information Center

    Hopmeier, George

    1981-01-01

    A personality research study using the Myers-Briggs Type Indicator indicates that computer-assisted instruction programs favor introverts, i.e., those learners who can concentrate on details, memorize facts, and stay with a task until it is completed. (JJD)

  14. To Form a Favorable Idea of Chemistry

    ERIC Educational Resources Information Center

    Heikkinen, Henry W.

    2010-01-01

    "To confess the truth, Mrs. B., I am not disposed to form a very favorable idea of chemistry, nor do I expect to derive much entertainment from it." That 200-year-old statement by Caroline to Mrs. Bryan, her teacher, appeared on the first page of Jane Marcet's pioneering secondary school textbook, "Conversations on Chemistry". It was published 17…

  15. High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity.

    PubMed

    Pandey, Suman; Modak, Arnab; Phale, Prashant S; Bhaumik, Prasenjit

    2016-04-01

    Periplasmic substrate-binding proteins (SBPs) bind to the specific ligand with high affinity and mediate their transport into the cytoplasm via the cognate inner membrane ATP-binding cassette proteins. Because of low sequence identities, understanding the structural basis of substrate recognition by SBPs has remained very challenging. There are several structures available for the ligand-bound sugar SBPs, but very few unliganded structures are reported. No structural data are available for sugar SBPs fromPseudomonassp. to date. This study reports the first high resolution crystal structures of periplasmic glucose-binding protein fromPseudomonas putidaCSV86 (ppGBP) in unliganded form (2.5 Å) and complexed with glucose (1.25 Å) and galactose (1.8 Å). Asymmetric domain closure of ppGBP was observed upon substrate binding. The ppGBP was found to have an affinity of ∼ 0.3 μmfor glucose. The structural analysis showed that the sugars are bound to the protein mainly by hydrogen bonds, and the loss of two strong hydrogen bonds between ppGBP and galactose compared with glucose may be responsible for lowering its affinity toward galactose. The higher stability of ppGBP-glucose complex was also indicated by an 8 °C increase in the melting temperature compared with unliganded form and ppGBP-galactose complex. ppGBP binds to monosaccharide, but the structural features revealed it to have an oligosaccharide-binding protein fold, indicating that during evolution the sugar binding pocket may have undergone structural modulation to accommodate monosaccharide only.

  16. Epidermal growth factor (EGF) ligand release by substrate-specific a disintegrin and metalloproteases (ADAMs) involves different protein kinase C (PKC) isoenzymes depending on the stimulus.

    PubMed

    Dang, Michelle; Dubbin, Karen; D'Aiello, Antonio; Hartmann, Monika; Lodish, Harvey; Herrlich, Andreas

    2011-05-20

    The dysregulation of EGF family ligand cleavage has severe consequences for the developing as well as the adult organism. Therefore, their production is highly regulated. The limiting step is the ectodomain cleavage of membrane-bound precursors by one of several a disintegrin and metalloprotease (ADAM) metalloproteases, and understanding the regulation of cleavage is an important goal of current research. We have previously reported that in mouse lung epithelial cells, the pro-EGF ligands TGFα, neuregulin 1β (NRG), and heparin-binding EGF are differentially cleaved depending on the cleavage stimulus (Herrlich, A., Klinman, E., Fu, J., Sadegh, C., and Lodish, H. (2008) FASEB J.). In this study in mouse embryonic fibroblasts that lack different ADAMs, we show that induced cleavage of EGF ligands can involve the same substrate-specific metalloprotease but does require different stimulus-dependent signaling pathways. Cleavage was stimulated by phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA), a mimic of diacylglycerol and PKC activator), hypertonic stress, lysophosphatidic acid (LPA)-induced G protein-coupled receptor activation, or by ionomycin-induced intracellular calcium release. Although ADAMs showed substrate preference (ADAM17, TGFα and heparin-binding EGF; and ADAM9, NRG), substrate cleavage differed substantially with the stimulus, and cleavage of the same substrate depended on the presence of different, sometimes multiple, PKC isoforms. For instance, classical PKC was required for TPA-induced but not hypertonic stress-induced cleavage of all EGF family ligands. Inhibition of PKCζ enhanced NRG release upon TPA stimulation, but it blocked NRG release in response to hypertonic stress. Our results suggest a model in which substantial regulation of ectodomain cleavage occurs not only on the metalloprotease level but also on the level of the substrate or of a third protein.

  17. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly.

    PubMed

    Pandey, Alok; Gordon, Donna M; Pain, Jayashree; Stemmler, Timothy L; Dancis, Andrew; Pain, Debkumar

    2013-12-27

    For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the "buried" substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.

  18. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover.

    PubMed

    van Nocker, S; Sadis, S; Rubin, D M; Glickman, M; Fu, H; Coux, O; Wefes, I; Finley, D; Vierstra, R D

    1996-11-01

    The 26S proteasome is an essential proteolytic complex that is responsible for degrading proteins conjugated with ubiquitin. It has been proposed that the recognition of substrates by the 26S proteasome is mediated by a multiubiquitin-chain-binding protein that has previously been characterized in both plants and animals. In this study, we identified a Saccharomyces cerevisiae homolog of this protein, designated Mcb1. Mcb1 copurified with the 26S proteasome in both conventional and nickel chelate chromatography. In addition, a significant fraction of Mcb1 in cell extracts was present in a low-molecular-mass form free of the 26S complex. Recombinant Mcb1 protein bound multiubiquitin chains in vitro and, like its plant and animal counterparts, exhibited a binding preference for longer chains. Surprisingly, (delta)mcb1 deletion mutants were viable, grew at near-wild-type rates, degraded the bulk of short-lived proteins normally, and were not sensitive to UV radiation or heat stress. These data indicate that Mcb1 is not an essential component of the ubiquitin-proteasome pathway in S.cerevisiae. However, the (delta)mcb1 mutant exhibited a modest sensitivity to amino acid analogs and had increased steady-state levels of ubiquitin-protein conjugates. Whereas the N-end rule substrate, Arg-beta-galactosidase, was degraded at the wild-type rate in the (delta)mcb1 strain, the ubiquitin fusion degradation pathway substrate, ubiquitin-Pro-beta-galactosidase, was markedly stabilized. Collectively, these data suggest that Mcb1 is not the sole factor involved in ubiquitin recognition by the 26S proteasome and that Mcb1 may interact with only a subset of ubiquitinated substrates.

  19. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    PubMed

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production. PMID:26272089

  20. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    PubMed

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.

  1. The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate binding site

    SciTech Connect

    Zhu, M.; Shao, F.; Innes, R.W.; Dixon, J.E.; Xu, Z.

    2010-03-08

    AvrPphB is an avirulence (Avr) protein from the plant pathogen Pseudomonas syringae that can trigger a disease-resistance response in a number of host plants including Arabidopsis. AvrPphB belongs to a novel family of cysteine proteases with the charter member of this family being the Yersinia effector protein YopT. AvrPphB has a very stringent substrate specificity, catalyzing a single proteolytic cleavage in the Arabidopsis serine/threonine kinase PBS1. We have determined the crystal structure of AvrPphB by x-ray crystallography at 1.35-{angstrom} resolution. The structure is composed of a central antiparallel {beta}-sheet, with {alpha}-helices packing on both sides of the sheet to form a two-lobe structure. The core of this structure resembles the papain-like cysteine proteases. The similarity includes the AvrPphB active site catalytic triad of Cys-98, His-212, and Asp-227 and the oxyanion hole residue Asn-93. Based on analogy with inhibitor complexes of the papain-like proteases, we propose a model for the substrate-binding mechanism of AvrPphB. A deep and positively charged pocket (S2) and a neighboring shallow surface (S3) likely bind to aspartic acid and glycine residues in the substrate located two (P2) and three (P3) residues N terminal to the cleavage site, respectively. Further implications about the specificity of plant pathogen recognition are also discussed.

  2. Novel substrates.

    PubMed

    Wahed, Mahmood; Geoghegan, Michael; Powell-Tuck, Jeremy

    2007-05-01

    Enteral and parenteral feeds need at least to contain adequate amounts of water, energy, protein, electrolytes, vitamins and trace elements. Ready-manufactured parenteral feeds for example are incomplete because of shelf-life constraints and require the addition of vitamins (especially) and trace elements. Acute vitamin deficiencies, notably thiamine deficiency, can be precipitated if this is not adhered to. An increasing interest, however, exists in the use of feeds containing substrates, which are intended to improve patient outcome in particular clinical circumstances. The purpose of this article is to examine as to what is available and make recommendations on their use. It deals with artificial feeds only - disease-specific diets are outside our remit.

  3. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    SciTech Connect

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.; Bertrand, Luc

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.

  4. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  5. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.; Bertrand, Luc

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  6. Partial deletion of beta9 loop in pancreatic lipase-related protein 2 reduces enzyme activity with a larger effect on long acyl chain substrates.

    PubMed

    Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène

    2013-07-01

    Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions. PMID:24046870

  7. Regulation of the substrate preference of p190RhoGAP by protein kinase C-mediated phosphorylation of a phospholipid binding site.

    PubMed

    Lévay, Magdolna; Settleman, Jeffrey; Ligeti, Erzsébet

    2009-09-15

    The Rho family GTPases are stringently regulated through the action of a large family of GTPase activating proteins (GAPs) that stimulate their relatively weak intrinsic GTP hydrolyzing activity. The p190RhoGAPs, which include the p190A and p190B proteins, are potent and widely expressed GAPs acting on both Rho and Rac GTPases. We have observed that several acidic phospholipids inhibit the RhoGAP activity and promote the RacGAP activity of p190 proteins. In liposome binding assays we have demonstrated that binding of p190A to phospholipids is controlled by electrostatic interactions. Using mapping techniques, we determined that a small polybasic peptide stretch within p190A is a common site for both the phospholipid binding and PKC phosphorylation. Moreover, PKC-mediated phosphorylation of two amino acids (serine-1221 and threonine-1226) within this region of p190A prevents the binding and substrate specificity regulation by phospholipids. Transfection of COS-7 cells with mutant forms of p190A either unable to bind to phospholipids or unable to become phosphorylated induced distinct morphological changes. Together, these findings reveal a novel GAP regulatory mechanism in which phosphorylation indirectly alters GTPase substrate preference by affecting the interaction with acidic phospholipids. Our observations provide a potential mechanism of Rac/Rho antagonism described in several cellular functions.

  8. The Arabidopsis Transcription Factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 Is a Direct Substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and Regulates Immunity1

    PubMed Central

    Kang, Sining; Yang, Fan; Li, Lin; Chen, Huamin; Chen, She; Zhang, Jie

    2015-01-01

    Pathogen-associated molecular patterns (PAMPs) are recognized by plant pattern recognition receptors to activate PAMP-triggered immunity (PTI). Mitogen-activated protein kinases (MAPKs), as well as other cytoplasmic kinases, integrate upstream immune signals and, in turn, dissect PTI signaling via different substrates to regulate defense responses. However, only a few direct substrates of these signaling kinases have been identified. Here, we show that PAMP perception enhances phosphorylation of BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1), a transcription factor involved in brassinosteroid (BR) signaling pathway, through pathogen-induced MAPKs in Arabidopsis (Arabidopsis thaliana). BES1 interacts with MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and is phosphorylated by MPK6. bes1 loss-of-function mutants display compromised resistance to bacterial pathogen Pseudomonas syringae pv tomato DC3000. BES1 S286A/S137A double mutation (BES1SSAA) impairs PAMP-induced phosphorylation and fails to restore bacterial resistance in bes1 mutant, indicating a positive role of BES1 phosphorylation in plant immunity. BES1 is phosphorylated by glycogen synthase kinase3 (GSK3)-like kinase BR-insensitive2 (BIN2), a negative regulator of BR signaling. BR perception inhibits BIN2 activity, allowing dephosphorylation of BES1 to regulate plant development. However, BES1SSAA does not affect BR-mediated plant growth, suggesting differential residue requirements for the modulation of BES1 phosphorylation in PTI and BR signaling. Our study identifies BES1 as a unique direct substrate of MPK6 in PTI signaling. This finding reveals MAPK-mediated BES1 phosphorylation as another BES1 modulation mechanism in plant cell signaling, in addition to GSK3-like kinase-mediated BES1 phosphorylation and F box protein-mediated BES1 degradation. PMID:25609555

  9. PSTPIP: A Tyrosine Phosphorylated Cleavage Furrow–associated Protein that Is a Substrate for a PEST Tyrosine Phosphatase

    PubMed Central

    Spencer, Susan; Dowbenko, Donald; Cheng, Jill; Li, Wenlu; Brush, Jennifer; Utzig, Suzan; Simanis, Viesturs; Lasky, Laurence A.

    1997-01-01

    We have investigated proteins which interact with the PEST-type protein tyrosine phosphatase, PTP hematopoietic stem cell fraction (HSCF), using the yeast two-hybrid system. This resulted in the identification of proline, serine, threonine phosphatase interacting protein (PSTPIP), a novel member of the actin- associated protein family that is homologous to Schizosaccharomyces pombe CDC15p, a phosphorylated protein involved with the assembly of the actin ring in the cytokinetic cleavage furrow. The binding of PTP HSCF to PSTPIP was induced by a novel interaction between the putative coiled-coil region of PSTPIP and the COOH-terminal, proline-rich region of the phosphatase. PSTPIP is tyrosine phosphorylated both endogenously and in v-Src transfected COS cells, and cotransfection of dominant-negative PTP HSCF results in hyperphosphorylation of PSTPIP. This dominant-negative effect is dependent upon the inclusion of the COOH-terminal, proline-rich PSTPIP-binding region of the phosphatase. Confocal microscopy analysis of endogenous PSTPIP revealed colocalization with the cortical actin cytoskeleton, lamellipodia, and actin-rich cytokinetic cleavage furrow. Overexpression of PSTPIP in 3T3 cells resulted in the formation of extended filopodia, consistent with a role for this protein in actin reorganization. Finally, overexpression of mammalian PSTPIP in exponentially growing S. pombe results in a dominant-negative inhibition of cytokinesis. PSTPIP is therefore a novel actin-associated protein, potentially involved with cytokinesis, whose tyrosine phosphorylation is regulated by PTP HSCF. PMID:9265651

  10. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage

    PubMed Central

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-01-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage. PMID:24423875

  11. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  12. Short-term, increasing dietary protein and fat moderately affect energy expenditure, substrate oxidation and uncoupling protein gene expression in rats.

    PubMed

    Petzke, Klaus J; Riese, Cornelia; Klaus, Susanne

    2007-06-01

    Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.

  13. The nitrosated bile acid DNA lesion O6-carboxymethylguanine is a substrate for the human DNA repair protein O6-methylguanine-DNA methyltransferase

    PubMed Central

    Senthong, Pattama; Millington, Christopher L.; Wilkinson, Oliver J.; Marriott, Andrew S.; Watson, Amanda J.; Reamtong, Onrapak; Eyers, Claire E.; Williams, David M.; Margison, Geoffrey P.; Povey, Andrew C.

    2013-01-01

    The consumption of red meat is a risk factor in human colorectal cancer (CRC). One hypothesis is that red meat facilitates the nitrosation of bile acid conjugates and amino acids, which rapidly convert to DNA-damaging carcinogens. Indeed, the toxic and mutagenic DNA adduct O6-carboxymethylguanine (O6-CMG) is frequently present in human DNA, increases in abundance in people with high levels of dietary red meat and may therefore be a causative factor in CRC. Previous reports suggested that O6-CMG is not a substrate for the human version of the DNA damage reversal protein O6-methylguanine-DNA methyltransferase (MGMT), which protects against the genotoxic effects of other O6-alkylguanine lesions by removing alkyl groups from the O6-position. We now show that synthetic oligodeoxyribonucleotides containing the known MGMT substrate O6-methylguanine (O6-MeG) or O6-CMG effectively inactivate MGMT in vitro (IC50 0.93 and 1.8 nM, respectively). Inactivation involves the removal of the O6-alkyl group and its transfer to the active-site cysteine residue of MGMT. O6-CMG is therefore an MGMT substrate, and hence MGMT is likely to be a protective factor in CRC under conditions where O6-CMG is a potential causative agent. PMID:23335782

  14. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    SciTech Connect

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. )

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  15. A Novel Basal Body Protein That Is a Polo-like Kinase Substrate Is Required for Basal Body Segregation and Flagellum Adhesion in Trypanosoma brucei.

    PubMed

    Hu, Huiqing; Zhou, Qing; Li, Ziyin

    2015-10-01

    The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.

  16. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions

    PubMed Central

    Aachmann, Finn L.; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2012-01-01

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu2+ (Kd = 55 nM; from isothermal titration calorimetry) and higher preference for Cu1+ (Kd ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu2+ of 275 mV using a thermodynamic cycle). Strong binding of Cu1+ was also reflected in a reduction in the pKa values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a 2H/1H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  17. Allosteric regulation and substrate channeling in multifunctional pyrimidine biosynthetic complexes: analysis of isolated domains and yeast-mammalian chimeric proteins.

    PubMed

    Serre, V; Guy, H; Liu, X; Penverne, B; Hervé, G; Evans, D

    1998-08-14

    The initial steps of pyrimidine biosynthesis in yeast and mammals are catalyzed by large multifunctional proteins of similar size, sequence and domain structure, but appreciable functional differences. The mammalian protein, CAD, has carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities. The yeast protein, ura2, catalyzes the first two reactions and has a domain, called pDHO, which is homologous to mammalian DHOase, but is inactive. In CAD, only CPSase is regulated, whereas both CPSase and ATCase in the yeast protein are inhibited by UTP. These functional differences were explored by constructing a series of mammalian yeast chimeras. The isolated ATCase domain is catalytically active, but is not regulated. The inclusion of the yeast sequences homologous to the mammalian regulatory domain (B3) and the intervening pDHO domain did not confer regulation. Chimeric proteins in which the homologous regions of the mammalian protein were replaced by the corresponding domains of ura2 exhibited full catalytic activity, as well regulation of the CPSase, but not the ATCase, activities. The yeast B3 subdomain confers UTP sensitivity on the mammalian CPSase, suggesting that it is the locus of CPSase regulation in ura2. Taken together, these results indicate that there are regulatory site(s) in ura2. Channeling is impaired in all the chimeric complexes and completely abolished in the chimera in which the pDHO domain of yeast is replaced by the mammalian DHO domain. PMID:9698553

  18. RioK1, a New Interactor of Protein Arginine Methyltransferase 5 (PRMT5), Competes with pICln for Binding and Modulates PRMT5 Complex Composition and Substrate Specificity*

    PubMed Central

    Guderian, Gernot; Peter, Christoph; Wiesner, Julia; Sickmann, Albert; Schulze-Osthoff, Klaus; Fischer, Utz; Grimmler, Matthias

    2011-01-01

    Protein arginine methylation plays a critical role in differential gene expression through modulating protein-protein and protein-DNA/RNA interactions. Although numerous proteins undergo arginine methylation, only limited information is available on how protein arginine methyltransferases (PRMTs) identify their substrates. The human PRMT5 complex consists of PRMT5, WD45/MEP50 (WD repeat domain 45/methylosome protein 50), and pICln and catalyzes the symmetrical arginine dimethylation of its substrate proteins. pICln recruits the spliceosomal Sm proteins to the PRMT5 complex for methylation, which allows their subsequent loading onto snRNA to form small nuclear ribonucleoproteins. To understand how the PRMT5 complex is regulated, we investigated its biochemical composition and identified RioK1 as a novel, stoichiometric component of the PRMT5 complex. We show that RioK1 and pICln bind to PRMT5 in a mutually exclusive fashion. This results in a PRMT5-WD45/MEP50 core structure that either associates with pICln or RioK1 in distinct complexes. Furthermore, we show that RioK1 functions in analogy to pICln as an adapter protein by recruiting the RNA-binding protein nucleolin to the PRMT5 complex for its symmetrical methylation. The exclusive interaction of PRMT5 with either pICln or RioK1 thus provides the first mechanistic insight into how a methyltransferase can distinguish between its substrate proteins. PMID:21081503

  19. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates.

    PubMed

    Wasilewska, Monika; Adamczyk, Zbigniew; Basinska, Teresa; Gosecka, Monika; Lupa, Dawid

    2016-09-20

    The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions.

  20. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates.

    PubMed

    Wasilewska, Monika; Adamczyk, Zbigniew; Basinska, Teresa; Gosecka, Monika; Lupa, Dawid

    2016-09-20

    The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions. PMID:27552337

  1. Systematic Proteomic Analysis Identifies β-Site Amyloid Precursor Protein Cleaving Enzyme 2 and 1 (BACE2 and BACE1) Substrates in Pancreatic β-Cells*

    PubMed Central

    Stützer, Ina; Selevsek, Nathalie; Esterházy, Daria; Schmidt, Alexander; Aebersold, Ruedi; Stoffel, Markus

    2013-01-01

    Expansion of functional islet β-cell mass is a physiological process to compensate for increased insulin demand. Deficiency or pharmacological inhibition of the plasma membrane protease BACE2 enhances pancreatic β-cell function and proliferation, and therefore BACE2 is a putative target for the therapeutic intervention under conditions of β-cell loss and dysfunction. To gain a molecular understanding of BACE2 function, we performed a systematic and quantitative proteomic analysis to map the natural substrate repertoire of BACE2 and its homologue BACE1 in β-cells. Loss- and gain-of-function studies of in vitro and in vivo models identified specific and functionally heterogeneous targets. Our analysis revealed non-redundant roles of BACE1/2 in ectodomain shedding with BACE1 regulating a broader and BACE2 a more distinct set of β-cell-enriched substrates including two proteins of the seizure 6 protein family (SEZ6L and SEZ6L2). Lastly, our study provides insights into the global β-cell sheddome and secretome, an important prerequisite to uncover novel mechanisms contributing to β-cell homeostasis and a resource for therapeutic target and biomarker discoveries. PMID:23430253

  2. Modification of the catalytic subunit of bovine heart cAMP-dependent protein kinase with affinity labels related to peptide substrates.

    PubMed

    Bramson, H N; Thomas, N; Matsueda, R; Nelson, N C; Taylor, S S; Kaiser, E T

    1982-09-25

    The modification and concomitant inactivation of the catalytic subunit of bovine heart cAMP-dependent protein kinase with affinity analogs of peptide substrates potentially capable of undergoing disulfide interchange with enzyme-bound sulfhydryl groups have been used to probe the active site associated with peptide binding. The regeneration of catalytic activity on treatment of the modified enzymes with dithiothreitol and the observation that prior reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) blocks the modification of the kinase by these reagents are consistent with the proposal that only thiol residues are reacting. The affinity analog Leu-Arg-Arg-Ala-Cys(3-nitro-2-pyridinesulfenyl)-Leu-Gly, 1, and the closely related peptide AcLeu-Arg-Arg-Ala-Cys(3-nitro-2-pyridinesulfenyl)-Leu-Gly-OEt, 3, react with a single sulfhydryl as shown by the stoichiometry of the release of the 3-nitro-2-pyridinesulfenyl group and the amount of label incorporated in the enzyme when the radioactively labeled peptide analog of 3 (peptide 4) is employed as the modifying agent. The kinetics of the reaction of 1 with 4.3 microM catalytic subunit was monophasic (employing substrate in excess conditions), yielding an apparent value of KI of approximately 40 microM and a k2 value of approximately 0.25 s-1. The low value of the observed KI, together with the observation that protein kinase substrates inhibit the modification reactions, suggest strongly that the cysteine residue undergoing reaction is in the vicinity of the active site. By trypsin-catalyzed degradation and identification of the peptide segment modified by covalent attachment of the peptide portion of the radioactive analog 4, the single cysteine modified was identified as cysteine-198.

  3. A requirement of hydrophobic and basic amino acid residues for substrate recognition by Ca2+/calmodulin-dependent protein kinase Ia.

    PubMed Central

    Lee, J C; Kwon, Y G; Lawrence, D S; Edelman, A M

    1994-01-01

    The substrate recognition determinants of Ca2+/calmodulin-dependent protein kinase Ia were investigated by using peptide analogues based on the amino acid sequence around Ser-9 of synapsin I. The Km and Vmax for the synthetic peptide Leu-Arg-Arg-Arg-Leu-Ser-Asp-Ala-Asn-Phe are 3.9 microM and 18.5 mumol/(min.mg), respectively. Deletion of Leu at the -5 position lowers the Vmax/Km by 470-fold. The requirement for a hydrophobic residue at -5 was confirmed by the 90- to 2400-fold reduction in Vmax/Km produced by Arg, Ala, or Asp substitutions, but only 2.6-fold decrease after Phe substitution at this position. A hydrophobic residue is similarly required at the +4 position. Deletion of Phe at this position produces a 67-fold reduction, and substitution of Ala for Phe a 43-fold reduction in Vmax/Km. In contrast, substitution with Leu increases Vmax/Km by 1.8-fold. Arg at -3 is also required for recognition as shown by an approximately 240-fold decrease in Vmax/Km after Ala substitution at this position. Positions -2, -4, and +1 appear to play secondary roles in substrate recognition. Arg at -2 and -4 are positive determinants, since Ala substitution at these positions decreases Vmax/Km by 4.7- and 11-fold, respectively. Asp at +1 is a negative influence, since Ala and Leu substitutions at this position increase Vmax/Km by 2.3- and 6.3-fold, respectively. Substitution of Ala for Leu at -1 or Thr for Ser at the 0 position has little effect on phosphorylation kinetics. Thus, Ca2+/calmodulin-dependent protein kinase Ia has the minimal substrate recognition motif of Hyd-Xaa-Arg-Xaa-Xaa-(Ser*/Thr*)-Xaa-Xaa-Xaa-Hyd, where Hyd represents a hydrophobic amino acid residue. PMID:8022798

  4. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.

    PubMed

    Kao, Hui-Ju; Huang, Chien-Hsun; Bretaña, Neil Arvin; Lu, Cheng-Tsung; Huang, Kai-Yao; Weng, Shun-Long; Lee, Tzong-Yi

    2015-01-01

    Protein O-GlcNAcylation, involving the β-attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues, is an O-linked glycosylation catalyzed by O-GlcNAc transferase (OGT). Molecular level investigation of the basis for OGT's substrate specificity should aid understanding how O-GlcNAc contributes to diverse cellular processes. Due to an increasing number of O-GlcNAcylated peptides with site-specific information identified by mass spectrometry (MS)-based proteomics, we were motivated to characterize substrate site motifs of O-GlcNAc transferases. In this investigation, a non-redundant dataset of 410 experimentally verified O-GlcNAcylation sites were manually extracted from dbOGAP, OGlycBase and UniProtKB. After detection of conserved motifs by using maximal dependence decomposition, profile hidden Markov model (profile HMM) was adopted to learn a first-layered model for each identified OGT substrate motif. Support Vector Machine (SVM) was then used to generate a second-layered model learned from the output values of profile HMMs in first layer. The two-layered predictive model was evaluated using a five-fold cross validation which yielded a sensitivity of 85.4%, a specificity of 84.1%, and an accuracy of 84.7%. Additionally, an independent testing set from PhosphoSitePlus, which was really non-homologous to the training data of predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (84.05%) and outperform other O-GlcNAcylation site prediction tools. A case study indicated that the proposed method could be a feasible means of conducting preliminary analyses of protein O-GlcNAcylation and has been implemented as a web-based system, OGTSite, which is now freely available at http://csb.cse.yzu.edu.tw/OGTSite/. PMID:26680539

  5. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.

    PubMed

    Pozzi, Cecilia; Di Pisa, Flavio; Lalli, Daniela; Rosa, Camilla; Theil, Elizabeth; Turano, Paola; Mangani, Stefano

    2015-04-01

    Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.

  6. Time-lapse anomalous X-ray diffraction shows how Fe2+ substrate ions move through ferritin protein nanocages to oxidoreductase sites

    PubMed Central

    Pozzi, Cecilia; Di Pisa, Flavio; Lalli, Daniela; Rosa, Camilla; Theil, Elizabeth; Turano, Paola; Mangani, Stefano

    2015-01-01

    Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe2+ and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe2+and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe2+ substrate and its progression before the enzymatic cycle 2Fe2+ + O2 → Fe3+—O—O—Fe3+ → Fe3+—O(H)—Fe3+ and turnover. The crystal structures also revealed different Fe2+ coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage. PMID:25849404

  7. Gold Nanorods as Colorful Chromogenic Substrates for Semiquantitative Detection of Nucleic Acids, Proteins, and Small Molecules with the Naked Eye.

    PubMed

    Ma, Xiaoming; Chen, Zhitao; Kannan, Palanisamy; Lin, Zhenyu; Qiu, Bin; Guo, Longhua

    2016-03-15

    Herein, we report for the first time a colorful chromogenic substrate, which displays vivid color responses in the presence of different concentration of analytes. Our investigation reveals that the selective shortening of gold nanorods (AuNRs) could generate a series of distinct colors that covers nearly the whole visible range from 400 to 760 nm. These vivid colors can be easily distinguished by the naked eye; as a result, the accuracy of visual inspection could be greatly improved. Next, we demonstrate the utility of AuNRs as multicolor chromogenic substrate to develop a number of colorimetric immunoassay methods, e.g., multicolor enzyme-linked immunosorbent assay (ELISA), multicolor competitive ELISA, and multicolor magnetic immunoassay (MIA). These methods allow us to visually quantify the concentration of a broad range of target molecules with the naked eye, and the obtained results are highly consistent with those state-of-the-art techniques that are tested by the sophisticated apparatus. These multicolor portable and cost-effective immunoassay approaches could be potentially useful for a number of applications, for example, in-home personal healthcare, on-site environmental monitoring, and food inspection in the field.

  8. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions.

    PubMed

    Clerico, Eugenia M; Tilitsky, Joseph M; Meng, Wenli; Gierasch, Lila M

    2015-04-10

    Hsp70 molecular chaperones are implicated in a wide variety of cellular processes, including protein biogenesis, protection of the proteome from stress, recovery of proteins from aggregates, facilitation of protein translocation across membranes, and more specialized roles such as disassembly of particular protein complexes. It is a fascinating question to ask how the mechanism of these deceptively simple molecular machines is matched to their roles in these wide-ranging processes. The key is a combination of the nature of the recognition and binding of Hsp70 substrates and the impact of Hsp70 action on their substrates. In many cases, the binding, which relies on interaction with an extended, accessible short hydrophobic sequence, favors more unfolded states of client proteins. The ATP-mediated dissociation of the substrate thus releases it in a relatively less folded state for downstream folding, membrane translocation, or hand-off to another chaperone. There are cases, such as regulation of the heat shock response or disassembly of clathrin coats, however, where binding of a short hydrophobic sequence selects conformational states of clients to favor their productive participation in a subsequent step. This Perspective discusses current understanding of how Hsp70 molecular chaperones recognize and act on their substrates and the relationships between these fundamental processes and the functional roles played by these molecular machines.

  9. Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidase-α protein (PMPCA) cause a severe mitochondrial disease.

    PubMed

    Joshi, Mugdha; Anselm, Irina; Shi, Jiahai; Bale, Tejus A; Towne, Meghan; Schmitz-Abe, Klaus; Crowley, Laura; Giani, Felix C; Kazerounian, Shideh; Markianos, Kyriacos; Lidov, Hart G; Folkerth, Rebecca; Sankaran, Vijay G; Agrawal, Pankaj B

    2016-05-01

    We describe a large Lebanese family with two affected members, a young female proband and her male cousin, who had multisystem involvement including profound global developmental delay, severe hypotonia and weakness, respiratory insufficiency, blindness, and lactic acidemia-findings consistent with an underlying mitochondrial disorder. Whole-exome sequencing was performed on DNA from the proband and both parents. The proband and her cousin carried compound heterozygous mutations in the PMPCA gene that encodes for α-mitochondrial processing peptidase (α-MPP), a protein likely involved in the processing of mitochondrial proteins. The variants were located close to and postulated to affect the substrate binding glycine-rich loop of the α-MPP protein. Functional assays including immunofluorescence and western blot analysis on patient's fibroblasts revealed that these variants reduced α-MPP levels and impaired frataxin production and processing. We further determined that those defects could be rescued through the expression of exogenous wild-type PMPCA cDNA. Our findings link defective α-MPP protein to a severe mitochondrial disease. PMID:27148589

  10. Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidase-α protein (PMPCA) cause a severe mitochondrial disease

    PubMed Central

    Joshi, Mugdha; Anselm, Irina; Shi, Jiahai; Bale, Tejus A.; Towne, Meghan; Schmitz-Abe, Klaus; Crowley, Laura; Giani, Felix C.; Kazerounian, Shideh; Markianos, Kyriacos; Lidov, Hart G.; Folkerth, Rebecca; Sankaran, Vijay G.; Agrawal, Pankaj B.

    2016-01-01

    We describe a large Lebanese family with two affected members, a young female proband and her male cousin, who had multisystem involvement including profound global developmental delay, severe hypotonia and weakness, respiratory insufficiency, blindness, and lactic acidemia—findings consistent with an underlying mitochondrial disorder. Whole-exome sequencing was performed on DNA from the proband and both parents. The proband and her cousin carried compound heterozygous mutations in the PMPCA gene that encodes for α-mitochondrial processing peptidase (α-MPP), a protein likely involved in the processing of mitochondrial proteins. The variants were located close to and postulated to affect the substrate binding glycine-rich loop of the α-MPP protein. Functional assays including immunofluorescence and western blot analysis on patient's fibroblasts revealed that these variants reduced α-MPP levels and impaired frataxin production and processing. We further determined that those defects could be rescued through the expression of exogenous wild-type PMPCA cDNA. Our findings link defective α-MPP protein to a severe mitochondrial disease. PMID:27148589

  11. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains

    PubMed Central

    Raymond, Lynne D.; Hughson, Andrew G.; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-01-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far – a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  12. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested.

  13. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  14. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs.

    PubMed

    Myers, Cullen L; Ireland, Ronald G; Garrett, Teresa A; Brown, Eric D

    2015-07-31

    The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities. PMID:26085106

  15. Klebsiella pneumoniae nitrogenase: pre-steady-state absorbance changes show that redox changes occur in the MoFe protein that depend on substrate and component protein ratio; a role for P-centres in reducing dinitrogen?

    PubMed Central

    Lowe, D J; Fisher, K; Thorneley, R N

    1993-01-01

    The pre-steady-state absorbance changes that occur during the first 0.6 s of reaction of the nitrogenase of Klebsiella pneumoniae can be simulated by associating redox changes with the different states of the MoFe protein described by our published kinetic model for nitrogenase [Lowe and Thorneley (1984) Biochem. J. 224, 877-886]. When the substrate is changed, from H+ to C2H2 (acetylene) or N2, or the nitrogenase component protein ratio is altered, these pre-steady-state absorbance changes are affected in a manner that is quantitatively predicted by our model. The results, together with parallel e.p.r. studies, are interpreted as showing that the P-clusters become oxidized when the MoFe protein is in the state where bound N2 is irreversibly committed to being reduced and is protonated to the hydrazido(2-) level. PMID:8389132

  16. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins

    PubMed Central

    Takahashi, Hirotaka; Uematsu, Atsushi; Yamanaka, Satoshi; Imamura, Mei; Nakajima, Tatsuro; Doi, Kousuke; Yasuoka, Saki; Takahashi, Chikako; Takeda, Hiroyuki; Sawasaki, Tatsuya

    2016-01-01

    Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3). Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1) targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3—which there have been no report to bind p53—were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein. PMID:27249653

  17. Control of endogenous phosphorylation of the major cAMP-dependent protein kinase substrate in adipocytes by insulin and beta-adrenergic stimulation.

    PubMed

    Egan, J J; Greenberg, A S; Chang, M K; Londos, C

    1990-11-01

    In isolated, 32Pi-loaded, rat adipocytes, we have examined phosphorylation of the major cAMP-dependent protein kinase (A-kinase) substrate, a protein that appears to be associated with the lipid storage droplet and migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 65-67-kDa doublet. In control cells, a strong phosphorylation signal is detected as the (+/- cAMP) A-kinase activity ratio ranges from approximately 0.1 to approximately 0.3-0.4 with increasing isoproterenol concentrations. By contrast, insulin-treated cells exhibiting A-kinase activity ratios over the range of 0.1-0.25 contain less 32P in the 65-67-kDa protein than control cells exhibiting identical A-kinase activity ratios. At higher activity ratios (greater than 0.3), this reduction in phosphorylation of the 65-67-kDa protein by insulin disappears. It is concluded that insulin stimulates a phosphatase activity that acts on the 65-67-kDa protein. Insulin actions aside, these studies reveal two interesting phenomena. 1) Whereas elevated, steady-state A-kinase activities are established rapidly (1-2 min) upon isoproterenol stimulation, phosphorylation of the 65-67-kDa substrate proceeds through a burst, followed by a decline to a steady-state level by 10-12 min. An "adaptation" mechanism, providing for a constant response to a constant stimulus, may underlie this lack of parallelism between the time course of phosphorylation and A-kinase activity. 2) Removal of [32Pi] orthophosphate immediately before isoproterenol stimulation leads to a rapid (t approximately 10 min) loss in labeling of the 65-67-kDa protein, whereas the phosphorylation state of other phosphoproteins are not changed. These data suggest that elevation of A-kinase activity leads to a rapid exchange of external Pi with an ATP pool that is used by A-kinase. PMID:2172232

  18. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.

    PubMed

    Sanyal, Nikhilesh; Arentson, Benjamin W; Luo, Min; Tanner, John J; Becker, Donald F

    2015-01-23

    Proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as separate monofunctional enzymes. Substrate channeling has previously been shown for bifunctional PutAs, but whether the monofunctional enzymes utilize an analogous channeling mechanism has not been examined. Here, we report the first evidence of substrate channeling in a PRODH-P5CDH two-enzyme pair. Kinetic data for the coupled reaction of PRODH and P5CDH from Thermus thermophilus are consistent with a substrate channeling mechanism, as the approach to steady-state formation of NADH does not fit a non-channeling two-enzyme model. Furthermore, inactive P5CDH and PRODH mutants inhibit NADH production and increase trapping of the P5C intermediate in coupled assays of wild-type PRODH-P5CDH enzyme pairs, indicating that the mutants disrupt PRODH-P5CDH channeling interactions. A dissociation constant of 3 μm was estimated for a putative PRODH-P5CDH complex by surface plasmon resonance (SPR). Interestingly, P5CDH binding to PRODH was only observed when PRODH was immobilized with the top face of its (βα)8 barrel exposed. Using the known x-ray crystal structures of PRODH and P5CDH from T. thermophilus, a model was built for a proposed PRODH-P5CDH enzyme channeling complex. The structural model predicts that the core channeling pathway of bifunctional PutA enzymes is conserved in monofunctional PRODH-P5CDH enzyme pairs. PMID:25492892

  19. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    SciTech Connect

    Gao, Jinlan; Li, Xiaolu; Feng, Yue; Zhang, Bo; Miao, Shiying; Wang, Linfang; Wang, Na

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  20. Multiple Legionella pneumophila Type II Secretion Substrates, Including a Novel Protein, Contribute to Differential Infection of the Amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis

    PubMed Central

    Tyson, Jessica Y.; Pearce, Meghan M.; Vargas, Paloma; Bagchi, Sreya; Mulhern, Brendan J.

    2013-01-01

    Type II protein secretion (T2S) by Legionella pneumophila is required for intracellular infection of host cells, including macrophages and the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Previous proteomic analysis revealed that T2S by L. pneumophila 130b mediates the export of >25 proteins, including several that appeared to be novel. Following confirmation that they are unlike known proteins, T2S substrates NttA, NttB, and LegP were targeted for mutation. nttA mutants were impaired for intracellular multiplication in A. castellanii but not H. vermiformis or macrophages, suggesting that novel exoproteins which are specific to Legionella are especially important for infection. Because the importance of NttA was host cell dependent, we examined a panel of T2S substrate mutants that had not been tested before in more than one amoeba. As a result, RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all proved to be required for optimal intracellular multiplication in H. vermiformis but not A. castellanii. Further examination of an lspF mutant lacking the T2S apparatus documented that T2S is also critical for infection of the amoeba Naegleria lovaniensis. Mutants lacking SrnA, PlaC, or ProA, but not those deficient for NttA, were defective in N. lovaniensis. Based upon analysis of a double mutant lacking PlaC and ProA, the role of ProA in H. vermiformis was connected to its ability to activate PlaC, whereas in N. lovaniensis, ProA appeared to have multiple functions. Together, these data document that the T2S system exports multiple effectors, including a novel one, which contribute in different ways to the broad host range of L. pneumophila. PMID:23429532

  1. Children's need for favorable acoustics in schools

    NASA Astrophysics Data System (ADS)

    Nelson, Peggy B.

    2003-10-01

    Children continue to improve their understanding of speech in noise and reverberation throughout childhood and adolescence. They do not typically achieve adult performance levels until their late teenage years. As a result, schools that are designed to be acoustically adequate for adult understanding may be insufficient for full understanding by young children. In addition, children with hearing loss, those with attention problems, and those learning in a non-native language require even more favorable signal-to-noise ratios. This tutorial will review the literature gathered by the ANSl/ASA working group on classroom acoustics that shaped the recommendations of the working group. Special topics will include speech perception data from typically developing infants and children, from children with hearing loss, and from adults and children listening in a non-native language. In addition, the tutorial will overview recommendations contained within ANSI standard 12.60-2002: Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools. The discussion will also include issues related to designing quiet classrooms and working with local schools and professionals.

  2. Functional mechanics of the ATP-dependent Lon protease- lessons from endogenous protein and synthetic peptide substrates.

    PubMed

    Lee, Irene; Suzuki, Carolyn K

    2008-05-01

    Lon, also known as the protease La, is a homo-oligomeric ATP-dependent protease, which is highly conserved in archaea, eubacteria and eukaryotic mitochondria and peroxisomes. Since its discovery, studies have shown that Lon activity is essential for cellular homeostasis, mediating protein quality control and metabolic regulation. This article highlights the discoveries made over the past decade demonstrating that Lon selectively degrades abnormal as well as certain regulatory proteins and thus plays significant roles in maintaining bacterial and mitochondrial function and integrity. In addition, Lon is required in certain pathogenic bacteria, for rendering pathogenicity and host infectivity. Recent research endeavors have been directed toward elucidating the reaction mechanism of the Lon protease by different biochemical and structural biological techniques. In this mini-review, the authors survey the diverse biological roles of Lon, and also place special emphasis on recent findings that clarify the mechanistic aspects of the Lon reaction cycle.

  3. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates.

    PubMed

    Seras-Franzoso, Joaquin; Peebo, Karl; García-Fruitós, Elena; Vázquez, Esther; Rinas, Ursula; Villaverde, Antonio

    2014-03-01

    Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types.

  4. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    PubMed

    Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

  5. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation

    PubMed Central

    Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors

  6. The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate.

    PubMed

    Ge, Ying-Ying; Xiang, Qi-Wang; Wagner, Christian; Zhang, Di; Xie, Zhi-Ping; Staehelin, Christian

    2016-04-01

    Pathogenic bacteria utilize type 3 secretion systems to inject type 3 effectors (T3Es) into host cells, thereby subverting host defense reactions. Similarly, T3Es of symbiotic nitrogen-fixing rhizobia can affect nodule formation on roots of legumes. Previous work showed that NopL (nodulation outer protein L) of Sinorhizobium(Ensifer) sp. strain NGR234 is multiply phosphorylated in eukaryotic cells and that this T3E suppresses responses mediated by mitogen-activated protein (MAP) kinase signaling in yeast (mating pheromone signaling) and plant cells (expression of pathogenesis-related defense proteins). Here, we show that NopL is a MAP kinase substrate. Microscopic observations of fluorescent fusion proteins and bimolecular fluorescence complementation analysis in onion cells indicated that NopL is targeted to the nucleus and forms a complex with SIPK (salicylic acid-induced protein kinase), a MAP kinase of tobacco. In vitro experiments demonstrated that NopL is phosphorylatyed by SIPK. At least nine distinct spots were observed after two-dimensional gel electrophoresis, indicating that NopL can be hyperphosphorylated by MAP kinases. Senescence symptoms in nodules of beans (Phaseolus vulgaris cv. Tendergreen) were analyzed to determine the symbiotic effector activity of different NopL variants with serine to alanine substitutions at identified and predicted phosphorylation sites (serine-proline motif). NopL variants with six or eight serine to alanine substitutions were partially active, whereas NopL forms with 10 or 12 substituted serine residues were inactive. In conclusion, our findings provide evidence that NopL interacts with MAP kinases and reveals the importance of serine-proline motifs for effector activity during symbiosis. PMID:26931172

  7. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    PubMed

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  8. Fabrication of fracture-free nanoglassified substrates by layer-by-layer deposition with a paint gun technique for real-time monitoring of protein-lipid interactions.

    PubMed

    Linman, Matthew J; Culver, Sean P; Cheng, Quan

    2009-03-01

    New sensing materials that are robust, biocompatible, and amenable to array fabrication are vital to the development of novel bioassays. Herein we report the fabrication of ultrathin (ca. 5-8 nm) glass (silicate) layers on top of a gold surface for surface plasmon resonance (SPR) biosensing applications. The nanoglass layers are fabricated by layer-by-layer (LbL) deposition of poly(allylamine) hydrochloride (PAH) and sodium silicate (SiO(x)), followed by calcination at high temperature. To deposit these layers in a uniform and reproducible manner, we employed a high-volume, low-pressure (HVLP) paint gun technique that offers high precision and better control through pressurized nitrogen gas. The new substrates are stable in solution for a long period of time, and scanning electron microscopy (SEM) images confirm that these films are nearly fracture-free. In addition, atomic force microscopy (AFM) indicates that the surface roughness of the silicate layers is low (rms = 2 to 3 nm), similar to that of bare glass slides. By tuning the experimental parameters such as HVLP gun pressure and layers deposited, different surface morphology could be obtained as revealed by fluorescence microscopy and SEM images. To demonstrate the utility of these ultrathin, fracture-free substrates, lipid bilayer membranes composed of phosphorylated derivatives of phosphoinositides (PIs) were deposited on the new substrates for biosensing applications. Fluorescence recovery after photobleaching (FRAP) data indicated that these lipid components in the membranes were highly mobile. Furthermore, interactions of PtdIns(4,5)P2 and PtdIns(4)P lipids with their respective binding proteins were detected with high sensitivity by using SPR spectroscopy. This method of glass deposition can be combined with already well-developed surface chemistry for a range of planar glass assay applications, and the process is amenable to automation for mass production of nanometer thick silicate chips in a highly

  9. The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP).

    PubMed

    González-Sarrías, Antonio; Miguel, Verónica; Merino, Gracia; Lucas, Ricardo; Morales, Juan C; Tomás-Barberán, Francisco; Alvarez, Ana I; Espín, Juan C

    2013-05-01

    The breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter that can affect the pharmacological and toxicological properties of many molecules. Urolithins, metabolites produced by the gut microbiota from ellagic acid (EA) and ellagitannins, have been acknowledged with in vivo anti-inflammatory and cancer chemopreventive properties. This study evaluated whether urolithins (Uro-A, -B, -C, and -D) and their main phase II metabolites Uro-A sulfate, Uro-A glucuronide, and Uro-B glucuronide as well as their precursor EA were substrates for ABCG2/BCRP. Parental and Bcrp1-transduced MDCKII cells were used for active transport assays. Uro-A and, to a lesser extent, Uro-A sulfate showed a significant increase in apically directed translocation in Bcrp1-transduced cells. Bcrp1 did not show affinity for the rest of the tested compounds. Data were confirmed for murine, human, bovine, and ovine BCRP-transduced subclones as well as with the use of the selective BCRP inhibitor Ko143. The transport inhibition by Uro-A was analyzed by flow cytometry compared to Ko143 using the antineoplastic agent mitoxantrone as a model substrate. Results showed that Uro-A was able to inhibit mitoxantrone transport in a dose-dependent manner. This study reports for the first time that Uro-A and its sulfate conjugate are ABCG2/BCRP substrates. The results suggest that physiologically relevant concentrations of these gut microbiota-derived metabolites could modulate ABCG2/BCRP-mediated transport processes and mechanisms of cancer drug resistance. Further in vivo investigations are warranted.

  10. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  11. The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP).

    PubMed

    González-Sarrías, Antonio; Miguel, Verónica; Merino, Gracia; Lucas, Ricardo; Morales, Juan C; Tomás-Barberán, Francisco; Alvarez, Ana I; Espín, Juan C

    2013-05-01

    The breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter that can affect the pharmacological and toxicological properties of many molecules. Urolithins, metabolites produced by the gut microbiota from ellagic acid (EA) and ellagitannins, have been acknowledged with in vivo anti-inflammatory and cancer chemopreventive properties. This study evaluated whether urolithins (Uro-A, -B, -C, and -D) and their main phase II metabolites Uro-A sulfate, Uro-A glucuronide, and Uro-B glucuronide as well as their precursor EA were substrates for ABCG2/BCRP. Parental and Bcrp1-transduced MDCKII cells were used for active transport assays. Uro-A and, to a lesser extent, Uro-A sulfate showed a significant increase in apically directed translocation in Bcrp1-transduced cells. Bcrp1 did not show affinity for the rest of the tested compounds. Data were confirmed for murine, human, bovine, and ovine BCRP-transduced subclones as well as with the use of the selective BCRP inhibitor Ko143. The transport inhibition by Uro-A was analyzed by flow cytometry compared to Ko143 using the antineoplastic agent mitoxantrone as a model substrate. Results showed that Uro-A was able to inhibit mitoxantrone transport in a dose-dependent manner. This study reports for the first time that Uro-A and its sulfate conjugate are ABCG2/BCRP substrates. The results suggest that physiologically relevant concentrations of these gut microbiota-derived metabolites could modulate ABCG2/BCRP-mediated transport processes and mechanisms of cancer drug resistance. Further in vivo investigations are warranted. PMID:23586460

  12. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  13. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  14. Cohesion Group Approach for Evolutionary Analysis of TyrA, a Protein Family with Wide-Ranging Substrate Specificities

    PubMed Central

    Bonner, Carol A.; Disz, Terrence; Hwang, Kaitlyn; Song, Jian; Vonstein, Veronika; Overbeek, Ross; Jensen, Roy A.

    2008-01-01

    Summary: Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated. PMID:18322033

  15. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation

    PubMed Central

    Komalavilas, Padmini; Penn, Raymond B.; Flynn, Charles R.; Thresher, Jeffrey; Lopes, Luciana B.; Furnish, Elizabeth J.; Guo, Manhong; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.; Brophy, Colleen M.

    2009-01-01

    Activation of the cAMP/cAMP-dependent PKA pathway leads to relaxation of airway smooth muscle (ASM). The purpose of this study was to examine the role of the small heat shock-related protein HSP20 in mediating PKA-dependent ASM relaxation. Human ASM cells were engineered to constitutively express a green fluorescent protein-PKA inhibitory fusion protein (PKI-GFP) or GFP alone. Activation of the cAMP-dependent signaling pathways by isoproterenol (ISO) or forskolin led to increases in the phosphorylation of HSP20 in GFP but not PKI-GFP cells. Forskolin treatment in GFP but not PKI-GFP cells led to a loss of central actin stress fibers and decreases in the number of focal adhesion complexes. This loss of stress fibers was associated with dephosphorylation of the actin-depolymerizing protein cofilin in GFP but not PKI-GFP cells. To confirm that phosphorylated HSP20 plays a role in PKA-induced ASM relaxation, intact strips of bovine ASM were precontracted with serotonin followed by ISO. Activation of the PKA pathway led to relaxation of bovine ASM, which was associated with phosphorylation of HSP20 and dephosphorylation of cofilin. Finally, treatment with phosphopeptide mimetics of HSP20 possessing a protein transduction domain partially relaxed precontracted bovine ASM strips. In summary, ISO-induced phosphorylation of HSP20 or synthetic phosphopeptide analogs of HSP20 decreases phosphorylation of cofilin and disrupts actin in ASM, suggesting that one possible mechanism by which HSP20 mediates ASM relaxation is via regulation of actin filament dynamics. PMID:17993590

  16. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease.

    PubMed

    Peters, Judith; Rittger, Andrea; Weisner, Rebecca; Knabbe, Johannes; Zunke, Friederike; Rothaug, Michelle; Damme, Markus; Berkovic, Samuel F; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2015-02-13

    The lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) has been identified as a receptor for enterovirus 71 uptake and mannose-6-phosphate-independent lysosomal trafficking of the acid hydrolase β-glucocerebrosidase. Here we show that LIMP-2 undergoes proteolytic cleavage mediated by lysosomal cysteine proteases. Heterologous expression and in vitro studies suggest that cathepsin-F is mainly responsible for the lysosomal processing of wild-type LIMP-2. Furthermore, examination of purified lysosomes revealed that LIMP-2 undergoes proteolysis in vivo. Mutations in the gene encoding cathepsin-F (CTSF) have recently been associated with type-B-Kufs-disease, an adult form of neuronal ceroid-lipofuscinosis. In this study we show that disease-causing cathepsin-F mutants fail to cleave LIMP-2. Our findings provide evidence that LIMP-2 represents an in vivo substrate of cathepsin-F with relevance for understanding the pathophysiology of type-B-Kufs-disease.

  17. Substrate specificity and structure-function analysis of the 3'-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D.

    PubMed

    Zhu, Hui; Shuman, Stewart

    2006-05-19

    DNA ligase D (LigD) performs end remodeling and end sealing reactions during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at the 3' end of the primer strand of a primer-template. The phosphodiesterase cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus. The phosphomonoesterase converts a terminal ribonucleoside 3'-PO4 or deoxyribonucleoside 3'-PO4 of a primer-template to a 3'-OH. Here we report that the phosphodiesterase and phosphomonoesterase activities are both dependent on the presence and length of the 5' single-strand tail of the primer-template substrate. Although the phosphodiesterase activity is strictly dependent on the 2'-OH of the penultimate ribose, it is indifferent to a 2'-OH versus a2'-H on the terminal nucleoside. Incision at the ribonucleotide linkage is suppressed when the 2'-OH is moved by 1 nucleotide in the 5' direction, suggesting that LigD is an exoribonuclease that cleaves the 3'-terminal phosphodiester. We report the effects of conservative amino acid substitutions at residues: (i) His42, His48, Asp50, Arg52, His84, and Tyr88, which are essential for both the ribonuclease and 3'-phosphatase activities; (ii) Arg14, Asp15, Glu21, and Glu82, which are critical for 3'-phosphatase activity but not 3'-ribonucleoside removal; and (iii) at Lys66 and Arg76, which participate selectively in the 3'-ribonuclease reaction. The results suggest roles for individual functional groups in metal binding and/or phosphoesterase chemistry.

  18. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5.

    PubMed

    Nemmara, Venkatesh V; Nicholas, Robert A; Pratt, R F

    2016-07-26

    Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5. PMID:27420403

  19. Conformation of a Protein Kinase C Substrate, NG(28-43), and Its Analog in Aqueous and Sodium Dodecyl Sulfate Micell Solutions

    PubMed Central

    Chang, Ding-Kwo; Chien, Wei-Jyun; Arunkumar, A. I.

    1997-01-01

    A peptide corresponding to the neuronal protein neurogranin (NG) residues 28-43, NG(28-43), and its analog, [A35]NG(28-43), have been investigated by NMR, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies. The peptides existed in aqueous solution predominantly in radom form. However, a nascent helical structure was detected in the central region of the parent peptide from NMR data. Furthermore, a helical structure can be detected for both peptides with greater induced secondary structure for the parent peptide in the presence of sodium dodecyl sulfate (SDS) micelle. The formation of micelles for SDS was confirmed by results from EPR as well as 13C NMR. As shown by CD experiments, helical conformer was induced for NG(28-43) in vesicular solution containing phosphatidyl serine (PS), whereas no helix can be discerned for the peptide in phosphatidyl choline (PC)-containing vesicular solution. Together with the induction of the peptide into helix in SDS micellar solution as suggested by both NMR and CD data, these results underscored the electrostatic contribution to the interaction of the PKC substrate peptides and proteins with membrane. According to NMR and CD data, a dynamic equilibrium existed between free and micelle-bound states for the peptide. Moreover, proton-deuterium exchange results and SDS-induced linewidth broadening of proton resonances allowed delineation of the orientation of the amphipathic helix on the surface of SDS micelle. The result was supported by spin label experiments that indicated F35 of NG(28-43) interacted strongly with the hydrocarbon interior of micelle. Based on the experimental findings, a working model was proposed that attempted to partly explain the roles played by the nonpolar amino acid near the phosphorylation site, by the negatively charged phospholipids, and by the basic amino acids of the substrate. ImagesFIGURE 15 PMID:9017186

  20. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum

    PubMed Central

    VieBrock, Lauren; Evans, Sean M.; Beyer, Andrea R.; Larson, Charles L.; Beare, Paul A.; Ge, Hong; Singh, Smita; Rodino, Kyle G.; Heinzen, Robert A.; Richards, Allen L.; Carlyon, Jason A.

    2015-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway. PMID:25692099

  1. Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring.

    PubMed

    Agnoux, Aurore Martin; Antignac, Jean-Philippe; Simard, Gilles; Poupeau, Guillaume; Darmaun, Dominique; Parnet, Patricia; Alexandre-Gouabau, Marie-Cécile

    2014-07-15

    Epidemiological and experimental evidence suggests that a suboptimal environment during perinatal life programs offspring susceptibility to the development of metabolic syndrome and Type 2 diabetes. We hypothesized that the lasting impact of perinatal protein deprivation on mitochondrial fuel oxidation and insulin sensitivity would depend on the time window of exposure. To improve our understanding of underlying mechanisms, an integrative approach was used, combining the assessment of insulin sensitivity and untargeted mass spectrometry-based metabolomics in the offspring. A hyperinsulinemic-euglycemic clamp was performed in adult male rats born from dams fed a low-protein diet during gestation and/or lactation, and subsequently exposed to a Western diet (WD) for 10 wk. Metabolomics was combined with targeted acylcarnitine profiling and analysis of liver gene expression to identify markers of adaptation to WD that influence the phenotype outcome evaluated by body composition analysis. At adulthood, offspring of protein-restricted dams had impaired insulin secretion when fed a standard diet. Moreover, rats who demonstrated catch-up growth at weaning displayed higher gluconeogenesis and branched-chain amino acid catabolism, and lower fatty acid β-oxidation compared with control rats. Postweaning exposure of intrauterine growth restriction-born rats to a WD exacerbated incomplete fatty acid β-oxidation and excess fat deposition. Control offspring nursed by protein-restricted mothers showed peculiar low-fat accretion through adulthood and preserved insulin sensitivity even after WD-exposure. Altogether, our findings suggest a testable hypothesis about how maternal diet might influence metabolic outcomes (insulin sensitivity) in the next generation such as mitochondrial overload and/or substrate oxidation inflexibility dependent on the time window of perinatal dietary manipulation. PMID:24808498

  2. The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein.

    PubMed

    Robb, Craig S; Robb, Melissa; Nano, Francis E; Boraston, Alisdair B

    2016-02-01

    Tse2 is a cytoactive toxin secreted by a type six secretion apparatus of Pseudomonas aeruginosa. The Tse2 toxin naturally attacks a target in the cytoplasm of bacterial cells, and can cause toxicity if artificially introduced into eukaryotic cells. The X-ray crystal structure of the complex of Tse2 and its cognate immunity protein Tsi2 revealed a heterotetrameric structure with an extensive binding interface. Structural identity was found between Tse2 and NAD-dependent enzymes, especially ADP-ribosylating toxins, which facilitated the identification of the Tse2 active site and revealed it to be occluded upon binding the inhibitor Tsi2. The structural identity shared with NAD-dependent enzymes, including conserved catalytic residues, suggests that the mechanism of Tse2 toxicity may be NAD dependent.

  3. Prediction of protein-peptide interactions: application of the XPairIt API to anthrax lethal factor and substrates

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret M.; Sellers, Michael S.

    2013-05-01

    As software and methodology develop, key aspects of molecular interactions such as detailed energetics and flexibility are continuously better represented in docking simulations. In the latest iteration of the XPairIt API and Docking Protocol, we perform a blind dock of a peptide into the cleavage site of the Anthrax lethal factor (LF) metalloprotein. Molecular structures are prepared from RCSB:1JKY and we demonstrate a reasonably accurate docked peptide through analysis of protein motion and, using NCI Plot, visualize and characterize the forces leading to binding. We compare our docked structure to the 1JKY crystal structure and the more recent 1PWV structure, and discuss both captured and overlooked interactions. Our results offer a more detailed look at secondary contact and show that both van der Waals and electrostatic interactions from peptide residues further from the enzyme's catalytic site are significant.

  4. Expression of uncoupling protein 1 in skeletal muscle decreases muscle energy efficiency and affects thermoregulation and substrate oxidation.

    PubMed

    Klaus, Susanne; Rudolph, Bettina; Dohrmann, Cord; Wehr, Roland

    2005-04-14

    Skeletal muscle uncoupling by ectopic expression of mitochondrial uncoupling protein 1 (UCP1) has been shown to result in a lean phenotype in mice characterized by increased energy expenditure (EE), resistance to diet-induced obesity, and improved glucose tolerance. Here, we investigated in detail the effect of ectopic UCP1 expression in skeletal muscle on thermoregulation and energy homeostasis in HSA-mUCP1 transgenic mice. Thermoneutrality was determined to be approximately 30 degrees C for both wild-type (WT) and transgenic mice. EE, body temperature (Tb), activity, and respiratory quotient (RQ) were then measured over 24 h at ambient temperatures (Ta) of 30, 22, and 5 degrees C. HSA-mUCP1 transgenic mice showed increased activity-related EE and heat loss but similar basal metabolic rate compared with WT. Tb at resting periods was progressively decreased with declining Ta in HSA-mUCP1 transgenic mice but not in WT. Compared with WT littermates, the transgenic HSA-mUCP1 mice displayed increased RQ levels during night time, indicative of increased overall glucose oxidation, and failed to decrease their RQ levels with declining Ta. Thus increased EE caused by skeletal muscle uncoupling is clearly due to a decreased muscle energy efficiency during activity combined with increased glucose oxidation and a compromised thermoregulation associated with increased overall heat loss. At Tas below thermoneutrality, this puts increasing energy demands on the animals, whereas at thermoneutrality most differences in energy metabolism are not apparent any more.

  5. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter - substrate binding protein complex

    PubMed Central

    Nguyen, Phong T.; Li, Qi Wen; Kadaba, Neena S.; Lai, Jeffrey Y.; Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    Despite the ubiquitous role of ATP Binding Cassette (ABC) importers in nutrient uptake, only the E. coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250–253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nM. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ~40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system. PMID:25803078

  6. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage.

    PubMed

    Li, Huaqiong; Wen, Feng; Chen, Huizhi; Pal, Mintu; Lai, Yuekun; Zhao, Allan Zijian; Tan, Lay Poh

    2016-01-13

    In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine. PMID:26654444

  7. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage.

    PubMed

    Li, Huaqiong; Wen, Feng; Chen, Huizhi; Pal, Mintu; Lai, Yuekun; Zhao, Allan Zijian; Tan, Lay Poh

    2016-01-13

    In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine.

  8. Molecular interactions between prions as seeds and recombinant prion proteins as substrates resemble the biological interspecies barrier in vitro.

    PubMed

    Panza, Giannantonio; Luers, Lars; Stöhr, Jan; Nagel-Steger, Luitgard; Weiss, Jürgen; Riesner, Detlev; Willbold, Dieter; Birkmann, Eva

    2010-12-09

    Prion diseases like Creutzfeldt-Jakob disease in humans, Scrapie in sheep or bovine spongiform encephalopathy are fatal neurodegenerative diseases, which can be of sporadic, genetic, or infectious origin. Prion diseases are transmissible between different species, however, with a variable species barrier. The key event of prion amplification is the conversion of the cellular isoform of the prion protein (PrP(C)) into the pathogenic isoform (PrP(Sc)). We developed a sodiumdodecylsulfate-based PrP conversion system that induces amyloid fibril formation from soluble α-helical structured recombinant PrP (recPrP). This approach was extended applying pre-purified PrP(Sc) as seeds which accelerate fibrillization of recPrP. In the present study we investigated the interspecies coherence of prion disease. Therefore we used PrP(Sc) from different species like Syrian hamster, cattle, mouse and sheep and seeded fibrillization of recPrP from the same or other species to mimic in vitro the natural species barrier. We could show that the in vitro system of seeded fibrillization is in accordance with what is known from the naturally occurring species barriers.

  9. The effect of heavy metals on the total protein concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus wastewater.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2002-09-01

    Typha latifolia plants, commonly known as cattails, were grown in a mixture of sewage sludge compost, commercial compost and perlite. Large 6.5 L pots were used with one well developed plant in each pot, divided in five groups. Four groups were irrigated with a solution containing different concentrations of Cd, Cu, Ni, Pb and Zn for a period of 10 weeks, where the fifth was used as a blank. Changes in the concentration of total protein in the leaves/stems were monitored aiming to study the effect of heavy metals from both the substrate and the wastewater on the plants' development and health. At the end of the experiment in the leaves/stems of Typha latifolia the mean concentration of Ni and Zn reached values of 27.50 and 60.83 mg/kg of d.w. respectively. Similar high concentrations were recorded for all five metals. This, however, did not resulted in an inhibition of the plants development and health in three of the four groups as evidenced by the increasing concentrations of the total protein in the leaves' tissue. Only in the fourth group, where the stronger solution was used, some evidence of inhibition occurred after the 8th week. The presence of NO- as part of the metals' salts (growth factor), the short period of the experiment and the natural tolerance of Typha latifolia in heavy metals toxicity could explain such phenomenon.

  10. Human Naa50 Protein Displays Broad Substrate Specificity for Amino-terminal Acetylation: DETAILED STRUCTURAL AND BIOCHEMICAL ANALYSIS USING TETRAPEPTIDE LIBRARY.

    PubMed

    Reddi, Ravikumar; Saddanapu, Venkateshwarlu; Chinthapalli, Dinesh Kumar; Sankoju, Priyanka; Sripadi, Prabhakar; Addlagatta, Anthony

    2016-09-23

    Amino-terminal acetylation is a critical co-translational modification of the newly synthesized proteins in a eukaryotic cell carried out by six amino-terminal acetyltransferases (NATs). All NATs contain at least one catalytic subunit, and some contain one or two additional auxiliary subunits. For example, NatE is a complex of Naa10, Naa50, and Naa15 (auxiliary). In the present study, the crystal structure of human Naa50 suggested the presence of CoA and acetylated tetrapeptide (AcMMXX) that have co-purified with the protein. Biochemical and thermal stability studies on the tetrapeptide library with variations in the first and second positions confirm our results from the crystal structure that a peptide with Met-Met in the first two positions is the best substrate for this enzyme. In addition, Naa50 acetylated all MXAA peptides except for MPAA. Transcriptome analysis of 10 genes that make up six NATs in humans from eight different cell lines suggests that components of NatE are transcribed in all cell lines, whereas others are variable. Because Naa10 is reported to acetylate all amino termini that are devoid of methionine and Naa50 acetylates all other peptides that are followed by methionine, we believe that NatE complex can be a major contributor for amino-terminal acetylation at the ribosome exit tunnel.

  11. The effect of heavy metals on the total protein concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus wastewater.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2002-09-01

    Typha latifolia plants, commonly known as cattails, were grown in a mixture of sewage sludge compost, commercial compost and perlite. Large 6.5 L pots were used with one well developed plant in each pot, divided in five groups. Four groups were irrigated with a solution containing different concentrations of Cd, Cu, Ni, Pb and Zn for a period of 10 weeks, where the fifth was used as a blank. Changes in the concentration of total protein in the leaves/stems were monitored aiming to study the effect of heavy metals from both the substrate and the wastewater on the plants' development and health. At the end of the experiment in the leaves/stems of Typha latifolia the mean concentration of Ni and Zn reached values of 27.50 and 60.83 mg/kg of d.w. respectively. Similar high concentrations were recorded for all five metals. This, however, did not resulted in an inhibition of the plants development and health in three of the four groups as evidenced by the increasing concentrations of the total protein in the leaves' tissue. Only in the fourth group, where the stronger solution was used, some evidence of inhibition occurred after the 8th week. The presence of NO- as part of the metals' salts (growth factor), the short period of the experiment and the natural tolerance of Typha latifolia in heavy metals toxicity could explain such phenomenon. PMID:12369637

  12. Human Naa50 Protein Displays Broad Substrate Specificity for Amino-terminal Acetylation: DETAILED STRUCTURAL AND BIOCHEMICAL ANALYSIS USING TETRAPEPTIDE LIBRARY.

    PubMed

    Reddi, Ravikumar; Saddanapu, Venkateshwarlu; Chinthapalli, Dinesh Kumar; Sankoju, Priyanka; Sripadi, Prabhakar; Addlagatta, Anthony

    2016-09-23

    Amino-terminal acetylation is a critical co-translational modification of the newly synthesized proteins in a eukaryotic cell carried out by six amino-terminal acetyltransferases (NATs). All NATs contain at least one catalytic subunit, and some contain one or two additional auxiliary subunits. For example, NatE is a complex of Naa10, Naa50, and Naa15 (auxiliary). In the present study, the crystal structure of human Naa50 suggested the presence of CoA and acetylated tetrapeptide (AcMMXX) that have co-purified with the protein. Biochemical and thermal stability studies on the tetrapeptide library with variations in the first and second positions confirm our results from the crystal structure that a peptide with Met-Met in the first two positions is the best substrate for this enzyme. In addition, Naa50 acetylated all MXAA peptides except for MPAA. Transcriptome analysis of 10 genes that make up six NATs in humans from eight different cell lines suggests that components of NatE are transcribed in all cell lines, whereas others are variable. Because Naa10 is reported to acetylate all amino termini that are devoid of methionine and Naa50 acetylates all other peptides that are followed by methionine, we believe that NatE complex can be a major contributor for amino-terminal acetylation at the ribosome exit tunnel. PMID:27484799

  13. Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation.

    PubMed

    Duncan, Francesca E; Padilla-Banks, Elizabeth; Bernhardt, Miranda L; Ord, Teri S; Jefferson, Wendy N; Moss, Stuart B; Williams, Carmen J

    2014-03-01

    Fully grown oocytes in the ovary are arrested at prophase of meiosis I because of high levels of intraoocyte cAMP that maintain increased levels of cAMP-dependent protein kinase (PKA) activity. Following the luteinizing hormone surge at the time of ovulation, cAMP levels drop, resulting in a reduction in PKA activity that triggers meiotic resumption. Although much is known about the molecular mechanisms of how PKA activity fluctuations initiate the oocyte's reentry into meiosis, significantly less is known about the requirement for PKA activity in the oocyte after exit from the prophase I arrest. Here we show that although PKA activity decreases in the oocyte upon meiotic resumption, it increases throughout meiotic progression from the time of germinal vesicle breakdown (GVBD) until the metaphase II (MII) arrest. Blocking this meiotic maturation-associated increase in PKA activity using the pharmacological inhibitor H89 resulted in altered kinetics of GVBD, defects in chromatin and spindle dynamics, and decreased ability of oocytes to reach MII. These effects appear to be largely PKA specific because inhibitors targeting other kinases did not have the same outcomes. To determine potential proteins that may require PKA phosphorylation during meiosis, we separated oocyte protein extracts on an SDS-PAGE gel, extracted regions of the gel that had corresponding immune reactivity towards an anti-PKA substrate antibody, and performed mass spectrometry and microsequencing. Using this approach, we identified transducin-like enhancer of split-6 (TLE6)-a maternal effect gene that is part of the subcortical maternal complex-as a putative PKA substrate. TLE6 localized to the oocyte cortex throughout meiosis in a manner that is spatially and temporally consistent with the localization of critical PKA subunits. Moreover, we demonstrated that TLE6 becomes phosphorylated in a narrow window following meiotic resumption, and H89 treatment can completely block this phosphorylation

  14. Breast Cancer Anti-estrogen Resistance 3 (BCAR3) Protein Augments Binding of the c-Src SH3 Domain to Crk-associated Substrate (p130cas)*

    PubMed Central

    Makkinje, Anthony; Vanden Borre, Pierre; Near, Richard I.; Patel, Prayag S.; Lerner, Adam

    2012-01-01

    The focal adhesion adapter protein p130cas regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130cas. AND-34/BCAR3, one of three NSP family members, binds the p130cas carboxyl terminus, adjacent to a bipartite p130cas Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130cas. Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130cas complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130cas to bind the Src SH3 domain through an RPLPSPP motif in the p130cas SBD. Although our prior work identified phosphorylation of the serine within the p130cas RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130cas. The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130cas complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130cas substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130cas. Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130cas and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130cas complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130cas SBD. PMID:22711540

  15. Mutations in the substrate binding site of human heat-shock protein 70 indicate specific interaction with HLA-DR outside the peptide binding groove.

    PubMed

    Rohrer, Karin M; Haug, Markus; Schwörer, Daniela; Kalbacher, Hubert; Holzer, Ursula

    2014-06-01

    Heat-shock protein 70 (Hsp70)-peptide complexes are involved in MHC class I- and II-restricted antigen presentation, enabling enhanced activation of T cells. As shown previously, mammalian cytosolic Hsp70 (Hsc70) molecules interact specifically with HLA-DR molecules. This interaction might be of significance as Hsp70 molecules could transfer bound antigenic peptides in a ternary complex into the binding groove of HLA-DR molecules. The present study provides new insights into the distinct interaction of Hsp70 with HLA-DR molecules. Using a quantitative binding assay, it could be demonstrated that a point mutation of amino acids alanine 406 and valine 438 in the substrate binding pocket led to reduced peptide binding compared with the wild-type Hsp70 whereas HLA-DR binding remains unaffected. The removal of the C-terminal lid neither altered the substrate binding capacity nor the Hsp70 binding characteristics to HLA-DR. A truncated variant lacking the nucleotide binding domain showed no binding interactions with HLA-DR. Furthermore, the truncated ATPase subunit of constitutively expressed Hsc70 revealed similar binding affinities to HLA-DR compared with the complete Hsc70. Hence, it can be assumed that the Hsp70-HLA-DR interaction takes place outside the peptide binding groove and is attributed to the ATPase domain of HSP70 molecules. The Hsp70-chaperoned peptides might thereby be directly transferred into the binding groove of HLA-DR, so enabling enhanced presentation of the peptide on antigen-presenting cells and leading to an improved proliferation of responding T cells as shown previously.

  16. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  17. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  18. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  19. Expression of the energy substrate transporters in uterine fibroids.

    PubMed

    Knapp, Paweł; Chabowski, Adrian; Posmyk, Renata; Górski, Jan

    2016-03-01

    Proliferating cells exhibit accelerated rates of substrate utilization, favoring glucose over fatty acids (FA's) oxidation. Protein-mediated transport is thought to play a predominant role in facilitating either glucose or FA routing into the cells. In the present study, we examined the expression of glucose transporters (GLUT-1, GLUT-4) and fatty acids transporters (FAT/CD36, FATP-1, FATP-4) at transcript and protein levels as well as cytosolic fatty acid binding proteins (H-FABP, ACBP) in human fibroids (n=74, size up to 3cm diameter) and compared with pair-matched healthy myometrium. Additionally lipid content (diacylglycerols, triacylglycerols and ceramide) was estimated by gas liquid chromatography (GLC). Uterine fibroids displayed decreased expression of both FAT/CD36 and FATP-1 proteins along with lower diacylglycerol (DAG) and triacylglycerol (TAG) content as compared to healthy pair-matched myometrium. The expression of glucose transport proteins (GLUT-4 and GLUT-1) remained relatively constant, although the higher expression of GLUT-1 in uterine fibroids did not reach the minimum significance threshold (p=0.056). However, no change in either cytochrome c oxidase (COX IV) or hydroxyacyl-CoA dehydrogenase (HADHSC) was observed and these data confirm a possible metabolic shift favoring glucose utilization over fatty acid oxidation in human uterine fibroids. PMID:26932421

  20. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    SciTech Connect

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S.

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  1. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR.

    PubMed

    Shi, Jingxue; He, Yan; Hewett, Sandra J; Hewett, James A

    2016-01-22

    System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.

  2. Insulin Receptor Substrate 2 (IRS2)-Deficient Mice Show Sensorineural Hearing Loss That Is Delayed by Concomitant Protein Tyrosine Phosphatase 1B (PTP1B) Loss of Function

    PubMed Central

    Murillo-Cuesta, Silvia; Camarero, Guadalupe; González-Rodríguez, Águeda; de la Rosa, Lourdes Rodríguez; Burks, Deborah J; Avendaño, Carlos; Valverde, Ángela M; Varela-Nieto, Isabel

    2012-01-01

    The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes. PMID:22160220

  3. Eukaryotic Catalase-Peroxidase: The Role of the Trp-Tyr-Met Adduct in Protein Stability, Substrate Accessibility, and Catalysis of Hydrogen Peroxide Dismutation.

    PubMed

    Gasselhuber, Bernhard; Carpena, Xavi; Graf, Michael M H; Pirker, Katharina F; Nicolussi, Andrea; Sündermann, Axel; Hofbauer, Stefan; Zamocky, Marcel; Furtmüller, Paul G; Jakopitsch, Christa; Oostenbrink, Chris; Fita, Ignacio; Obinger, Christian

    2015-09-01

    Recently, it was demonstrated that bifunctional catalase-peroxidases (KatGs) are found not only in archaea and bacteria but also in lower eukaryotes. Structural studies and preliminary biochemical data of the secreted KatG from the rice pathogen Magnaporthe grisea (MagKatG2) suggested both similar and novel features when compared to those of the prokaryotic counterparts studied so far. In this work, we demonstrate the role of the autocatalytically formed redox-active Trp140-Tyr273-Met299 adduct of MagKatG2 in (i) the maintenance of the active site architecture, (ii) the catalysis of hydrogen peroxide dismutation, and (iii) the protein stability by comparing wild-type MagKatG2 with the single mutants Trp140Phe, Tyr273Phe, and Met299Ala. The impact of disruption of the covalent bonds between the adduct residues on the spectral signatures and heme cavity architecture was small. By contrast, loss of its integrity converts bifunctional MagKatG2 to a monofunctional peroxidase of significantly reduced thermal stability. It increases the accessibility of ligands due to the increased flexibility of the KatG-typical large loop 1 (LL1), which contributes to the substrate access channel and anchors at the adduct Tyr. We discuss these data with respect to those known from prokaryotic KatGs and in addition present a high-resolution structure of an oxoiron compound of MagKatG2.

  4. The Vaccine Candidate Substrate Binding Protein SBP2 Plays a Key Role in Arginine Uptake, Which Is Required for Growth of Moraxella catarrhalis

    PubMed Central

    Otsuka, Taketo; Kirkham, Charmaine; Brauer, Aimee; Koszelak-Rosenblum, Mary; Malkowski, Michael G.

    2015-01-01

    Moraxella catarrhalis is an exclusively human pathogen that is an important cause of otitis media in children and lower respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent M. catarrhalis infections would have an enormous global impact in reducing morbidity resulting from these infections. Substrate binding protein 2 (SBP2) of an ABC transporter system has recently been identified as a promising vaccine candidate antigen on the bacterial surface of M. catarrhalis. In this study, we showed that SBP1, -2, and -3 individually bind different basic amino acids with exquisite specificity. We engineered mutants that each expressed a single SBP from this gene cluster and showed in growth experiments that SBP1, -2, and -3 serve a nutritional function through acquisition of amino acids for the bacterium. SBP2 mediates uptake of arginine, a strict growth requirement of M. catarrhalis. Adherence and invasion assays demonstrated that SBP1 and SBP3 play a role in invasion of human respiratory epithelial cells, consistent with a nutritional role in intracellular survival in the human respiratory tract. This work demonstrates that the SBPs of an ABC transporter system function in the uptake of basic amino acids to support growth of M. catarrhalis. The critical role of SBP2 in arginine uptake may contribute to its potential as a vaccine antigen. PMID:26597985

  5. Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex

    SciTech Connect

    Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga; Brunzelle, Joseph S.; Shuvalova, Ludmilla; Anderson, Wayne F.

    2012-06-19

    The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.

  6. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    PubMed

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  7. Prominent 85-kDa oligomannosidic glycoproteins of rat brain are signal regulatory proteins and include the SHP substrate-1 for tyrosine phosphatases.

    PubMed

    Bartoszewicz, Z P; Jaffe, H; Sasaki, M; Möller, J R; Stebbins, J W; Gebrekristos, H; Quarles, R H

    1999-04-01

    The glycoprotein component in rat brain reacting most strongly with Galanthus nivalis agglutinin (GNA) on western blots migrates as an 85-kDa band. GNA identifies mannose-rich oligosaccharides because it is highly specific for terminal alpha-mannose residues. After purification of this 85-kDa glycoprotein band by chromatography on GNA-agarose and preparative gel electrophoresis, binding of other lectins demonstrated the presence of fucose and a trace of galactose, but no sialic acid. Treatment with N-Glycanase or endoglycosidase H produced a 65-kDa band, indicating that it consisted of about one-fourth N-linked oligomannosidic carbohydrate moieties. High-performance anion-exchange chromatography and fluorescence-assisted carbohydrate electrophoresis indicated that the major carbohydrate moiety is a heptasaccharide with the structure Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4Glc-NAcbeta1-4GlcNAc (Man5GlcNAc2). Determination of amino acid sequences of peptides produced by endoproteinase digestion demonstrated that this 85-kDa mannose-rich glycoprotein component contained the SHP substrate-1 for phosphotyrosine phosphatases and at least one other member of the signal-regulatory protein (SIRP) family. The unusually high content of oligomannosidic carbohydrate moieties on these receptor-like members of the immunoglobulin superfamily in neural tissue could be of functional significance for intercellular adhesion or signaling.

  8. Differential Phospholipid Substrates and Directional Transport by ATP-binding Cassette Proteins ABCA1, ABCA7, and ABCA4 and Disease-causing Mutants*♦

    PubMed Central

    Quazi, Faraz; Molday, Robert S.

    2013-01-01

    ABCA1, ABCA7, and ABCA4 are members of the ABCA subfamily of ATP-binding cassette transporters that share extensive sequence and structural similarity. Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol homeostasis and high density lipoprotein (HDL) deficiency. Mutations in ABCA4 are responsible for Stargardt disease, a degenerative disorder associated with severe loss in central vision. Although cell-based studies have implicated ABCA proteins in lipid transport, the substrates and direction of transport have not been firmly established. We have purified and reconstituted ABCA1, ABCA7, and ABCA4 into liposomes for fluorescent-lipid transport studies. ABCA1 actively exported or flipped phosphatidylcholine, phosphatidylserine, and sphingomyelin from the cytoplasmic to the exocytoplasmic leaflet of membranes, whereas ABCA7 preferentially exported phosphatidylserine. In contrast, ABCA4 transported phosphatidylethanolamine in the reverse direction. The same phospholipids stimulated the ATPase activity of these ABCA transporters. The transport and ATPase activities of ABCA1 and ABCA4 were reduced by 25% in the presence of 20% cholesterol. Nine ABCA1 Tangier mutants and the corresponding ABCA4 Stargardt mutants showed significantly reduced phospholipid transport activity and subcellular mislocalization. These studies provide the first direct evidence for ABCA1 and ABCA7 functioning as phospholipid transporters and suggest that this activity is an essential step in the loading of apoA-1 with phospholipids for HDL formation. PMID:24097981

  9. Mechanical Heterogeneity Favors Fragmentation of Strained Actin Filaments

    PubMed Central

    De La Cruz, Enrique M.; Martiel, Jean-Louis; Blanchoin, Laurent

    2015-01-01

    We present a general model of actin filament deformation and fragmentation in response to compressive forces. The elastic free energy density along filaments is determined by their shape and mechanical properties, which were modeled in terms of bending, twisting, and twist-bend coupling elasticities. The elastic energy stored in filament deformation (i.e., strain) tilts the fragmentation-annealing reaction free-energy profile to favor fragmentation. The energy gradient introduces a local shear force that accelerates filament intersubunit bond rupture. The severing protein, cofilin, renders filaments more compliant in bending and twisting. As a result, filaments that are partially decorated with cofilin are mechanically heterogeneous (i.e., nonuniform) and display asymmetric shape deformations and energy profiles distinct from mechanically homogenous (i.e., uniform), bare actin, or saturated cofilactin filaments. The local buckling strain depends on the relative size of the compliant segment as well as the bending and twisting rigidities of flanking regions. Filaments with a single bare/cofilin-decorated boundary localize energy and force adjacent to the boundary, within the compliant cofilactin segment. Filaments with small cofilin clusters were predicted to fragment within the compliant cofilactin rather than at boundaries. Neglecting contributions from twist-bend coupling elasticity underestimates the energy density and gradients along filaments, and thus the net effects of filament strain to fragmentation. Spatial confinement causes compliant cofilactin segments and filaments to adopt higher deformation modes and store more elastic energy, thereby promoting fragmentation. The theory and simulations presented here establish a quantitative relationship between actin filament fragmentation thermodynamics and elasticity, and reveal how local discontinuities in filament mechanical properties introduced by regulatory proteins can modulate both the severing efficiency

  10. Evoked and spontaneous transmission favored by distinct sets of synapses

    PubMed Central

    Peled, Einat S.; Newman, Zachary L.; Isacoff, Ehud Y.

    2014-01-01

    Summary Background Spontaneous “miniature” transmitter release takes place at low rates at all synapses. Long thought as an unavoidable leak, spontaneous release has recently been suggested to be mediated by distinct pre- and post-synaptic molecular machineries and to have a specialized role in setting up and adjusting neuronal circuits. It remains unclear how spontaneous and evoked transmission are related at individual synapses, how they are distributed spatially when an axon makes multiple contacts with a target and whether they are commonly regulated. Results Electrophysiological recordings in the Drosophila larval neuromuscular junction, in the presence of the use-dependent glutamate receptor (GluR) blocker Philanthotoxin, indicated that spontaneous and evoked transmission employ distinct sets of GluRs. In vivo imaging of transmission using synaptically-targeted GCaMP3 to detect Ca2+ influx through the GluRs revealed little spatial overlap between synapses participating in spontaneous and evoked transmission. Spontaneous and evoked transmission were oppositely correlated with presynaptic levels of the protein Brp: synapses with high Brp favored evoked transmission, whereas synapses with low Brp were more active spontaneously. High frequency stimulation did not increase the overlap between evoked and spontaneous transmission, and instead decreased the rate of spontaneous release from synapses that were highly active in evoked transmission. Conclusions While individual synapses can participate in both evoked and spontaneous transmission, highly-active synapses show a preference for one mode of transmission. The presynaptic protein Brp promotes evoked transmission and suppresses spontaneous release. These findings suggest the existence of presynaptic mechanisms that promote synaptic specialization to either evoked or spontaneous transmission. PMID:24560571

  11. High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa.

    PubMed

    Pletzer, Daniel; Lafon, Corinne; Braun, Yvonne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Weingart, Helge

    2014-01-01

    In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1-A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa. PMID:25338022

  12. Insights into O-Linked N-Acetylglucosamine ([0-9]O-GlcNAc) Processing and Dynamics through Kinetic Analysis of O-GlcNAc Transferase and O-GlcNAcase Activity on Protein Substrates*

    PubMed Central

    Shen, David L.; Gloster, Tracey M.; Yuzwa, Scott A.; Vocadlo, David J.

    2012-01-01

    Cellular O-linked N-acetylglucosamine (O-GlcNAc) levels are modulated by two enzymes: uridine diphosphate-N-acetyl-d-glucosamine:polypeptidyltransferase (OGT) and O-GlcNAcase (OGA). To quantitatively address the activity of these enzymes on protein substrates, we generated five structurally diverse proteins in both unmodified and O-GlcNAc-modified states. We found a remarkably invariant upper limit for kcat/Km values for human OGA (hOGA)-catalyzed processing of these modified proteins, which suggests that hOGA processing is driven by the GlcNAc moiety and is independent of the protein. Human OGT (hOGT) activity ranged more widely, by up to 15-fold, suggesting that hOGT is the senior partner in fine tuning protein O-GlcNAc levels. This was supported by the observation that Km,app values for UDP-GlcNAc varied considerably (from 1 μm to over 20 μm), depending on the protein substrate, suggesting that some OGT substrates will be nutrient-responsive, whereas others are constitutively modified. The ratios of kcat/Km values obtained from hOGT and hOGA kinetic studies enable a prediction of the dynamic equilibrium position of O-GlcNAc levels that can be recapitulated in vitro and suggest the relative O-GlcNAc stoichiometries of target proteins in the absence of other factors. We show that changes in the specific activities of hOGT and hOGA measured in vitro on calcium/calmodulin-dependent kinase IV (CaMKIV) and its pseudophosphorylated form can account for previously reported changes in CaMKIV O-GlcNAc levels observed in cells. These studies provide kinetic evidence for the interplay between O-GlcNAc and phosphorylation on proteins and indicate that these effects can be mediated by changes in hOGT and hOGA kinetic activity. PMID:22311971

  13. Favorable and Unfavorable Book Reviews: A Quantitative Study.

    ERIC Educational Resources Information Center

    Greene, Robert J.; Spornick, Charles D.

    1995-01-01

    A periodical database was searched to investigate the occurrence of favorable and unfavorable book reviews to determine the role of reviews in library selection. Compares book reviews with other types of reviews, examines relationships between review evaluations and other review characteristics, and compares the number of favorable and unfavorable…

  14. Ratcheting up protein translocation with anthrax toxin

    PubMed Central

    Feld, Geoffrey K; Brown, Michael J; Krantz, Bryan A

    2012-01-01

    Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation. PMID:22374876

  15. Effects of insulin and phorbol esters on MARCKS (myristoylated alanine-rich C-kinase substrate) phosphorylation (and other parameters of protein kinase C activation) in rat adipocytes, rat soleus muscle and BC3H-1 myocytes.

    PubMed Central

    Arnold, T P; Standaert, M L; Hernandez, H; Watson, J; Mischak, H; Kazanietz, M G; Zhao, L; Cooper, D R; Farese, R V

    1993-01-01

    To evaluate the question of whether or not insulin activates protein kinase C (PKC), we compared the effects of insulin and phorbol esters on the phosphorylation of the PKC substrate, i.e. myristoylated alanine-rich C-kinase substrate (MARCKS). In rat adipocytes, rat soleus muscle and BC3H-1 myocytes, maximally effective concentrations of insulin and phorbol esters provoked comparable, rapid, 2-fold (on average), non-additive increases in the phosphorylation of immunoprecipitable MARCKS. These effects of insulin and phorbol esters on MARCKS phosphorylation in intact adipocytes and soleus muscles were paralleled by similar increases in the phosphorylation of an exogenous, soluble, 85 kDa PKC substrate (apparently a MARCKS protein) during incubation of post-nuclear membrane fractions in vitro. Increases in the phosphorylation of this 85 kDa PKC substrate in vitro were also observed in assays of both plasma membranes and microsomes obtained from rat adipocytes that had been treated with insulin or phorbol esters. These insulin-induced increases in PKC-dependent phosphorylating activities of adipocyte plasma membrane and microsomes were associated with increases in membrane contents of diacylglycerol, PKC-beta 1 and PKC-beta 2. Our findings suggest that insulin both translocates and activates PKC in rat adipocytes, rat soleus muscles and BC3H-1 myocytes. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 PMID:8216211

  16. 36 CFR 905.735-202 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., entertainment, and favors. Pursuant to paragraph (b) of 5 CFR 735.202, the following exceptions to the... of value under circumstances which arise from an obvious family or personal relationship(s) (such...

  17. 36 CFR 905.735-202 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., entertainment, and favors. Pursuant to paragraph (b) of 5 CFR 735.202, the following exceptions to the... advertising or promotional materials, such as pens, pencils, note pads, calendars and other items of...

  18. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  19. Substrate Specificity of the Bacillus subtilis BY-Kinase PtkA Is Controlled by Alternative Activators: TkmA and SalA

    PubMed Central

    Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan

    2016-01-01

    Bacterial protein-tyrosine kinases (BY-kinases) are known to regulate different aspects of bacterial physiology, by phosphorylating cellular protein substrates. Physiological cues that trigger BY-kinases activity are largely unexplored. In Proteobacteria, BY-kinases contain a cytosol-exposed catalytic domain and a transmembrane activator domain in a single polypeptide chain. In Firmicutes, the BY-kinase catalytic domain and the transmembrane activator domain exist as separate polypeptides. We have previously speculated that this architecture might enable the Firmicutes BY-kinases to interact with alternative activators, and thus account for the observed ability of these kinases to phosphorylate several distinct classes of protein substrates. Here, we present experimental evidence that supports this hypothesis. We focus on the model Firmicute-type BY-kinase PtkA from Bacillus subtilis, known to phosphorylate several different protein substrates. We demonstrate that the transcriptional regulator SalA, hitherto known as a substrate of PtkA, can also act as a PtkA activator. In doing so, SalA competes with the canonical PtkA activator, TkmA. Our results suggest that the respective interactions of SalA and TkmA with PtkA favor phosphorylation of different protein substrates in vivo and in vitro. This observation may contribute to explaining how specificity is established in the seemingly promiscuous interactions of BY-kinases with their cellular substrates. PMID:27725816

  20. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions.

    PubMed

    Maravić, Gordana; Bujnicki, Janusz M; Feder, Marcin; Pongor, Sándor; Flögel, Mirna

    2003-08-15

    The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family. PMID:12907737

  1. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions.

    PubMed

    Maravić, Gordana; Bujnicki, Janusz M; Feder, Marcin; Pongor, Sándor; Flögel, Mirna

    2003-08-15

    The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family.

  2. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  3. Comparison of metabolic substrates in alligators and several birds of prey.

    PubMed

    Sweazea, Karen L; McMurtry, John P; Elsey, Ruth M; Redig, Patrick; Braun, Eldon J

    2014-08-01

    On average, avian blood glucose concentrations are 1.5-2 times those of mammals of similar mass and high concentrations of insulin are required to lower blood glucose. Whereas considerable data exist for granivorous species, few data are available for plasma metabolic substrate and glucoregulatory hormone concentrations for carnivorous birds and alligators. Birds and mammals with carnivorous diets have higher metabolic rates than animals consuming diets with less protein whereas alligators have low metabolic rates. Therefore, the present study was designed to compare substrate and glucoregulatory hormone concentrations in several birds of prey and a phylogenetically close relative of birds, the alligator. The hypothesis was that the combination of carnivorous diets and high metabolic rates favored the evolution of greater protein and fatty acid utilization leading to insulin resistance and high plasma glucose concentrations in carnivorous birds. In contrast, it was hypothesized that alligators would have low substrate utilization attributable to a low metabolic rate. Fasting plasma substrate and glucoregulatory hormone concentrations were compared for bald eagles (Haliaeetus leucocephalus), great horned owls (Bubo virginianus), red-tailed hawks (Buteo jamaicensis), and American alligators (Alligator mississippiensis). Avian species had high circulating β-hydroxybutyrate (10-21 mg/dl) compared to alligators (2.81 ± 0.16 mg/dl). In mammals high concentrations of this byproduct of fatty acid utilization are correlated with insulin resistance. Fasting glucose and insulin concentrations were positively correlated in eagles whereas no relationship was found between these variables for owls, hawks or alligators. Additionally, β-hydroxybutyrate concentrations were low in alligators. Similar to carnivorous mammals, ingestion of a high protein diet may have favored the utilization of fatty acids and protein for energy thereby promoting the development of insulin

  4. Comparison of metabolic substrates in alligators and several birds of prey.

    PubMed

    Sweazea, Karen L; McMurtry, John P; Elsey, Ruth M; Redig, Patrick; Braun, Eldon J

    2014-08-01

    On average, avian blood glucose concentrations are 1.5-2 times those of mammals of similar mass and high concentrations of insulin are required to lower blood glucose. Whereas considerable data exist for granivorous species, few data are available for plasma metabolic substrate and glucoregulatory hormone concentrations for carnivorous birds and alligators. Birds and mammals with carnivorous diets have higher metabolic rates than animals consuming diets with less protein whereas alligators have low metabolic rates. Therefore, the present study was designed to compare substrate and glucoregulatory hormone concentrations in several birds of prey and a phylogenetically close relative of birds, the alligator. The hypothesis was that the combination of carnivorous diets and high metabolic rates favored the evolution of greater protein and fatty acid utilization leading to insulin resistance and high plasma glucose concentrations in carnivorous birds. In contrast, it was hypothesized that alligators would have low substrate utilization attributable to a low metabolic rate. Fasting plasma substrate and glucoregulatory hormone concentrations were compared for bald eagles (Haliaeetus leucocephalus), great horned owls (Bubo virginianus), red-tailed hawks (Buteo jamaicensis), and American alligators (Alligator mississippiensis). Avian species had high circulating β-hydroxybutyrate (10-21 mg/dl) compared to alligators (2.81 ± 0.16 mg/dl). In mammals high concentrations of this byproduct of fatty acid utilization are correlated with insulin resistance. Fasting glucose and insulin concentrations were positively correlated in eagles whereas no relationship was found between these variables for owls, hawks or alligators. Additionally, β-hydroxybutyrate concentrations were low in alligators. Similar to carnivorous mammals, ingestion of a high protein diet may have favored the utilization of fatty acids and protein for energy thereby promoting the development of insulin

  5. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    PubMed

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  6. Conservatism in least favorable response analysis and testing

    SciTech Connect

    Paez, T L

    1980-01-01

    In order to assure that mechanical structures can meet design requirements it is desirable to test a structure using an input which is conservative but not a severe overtest. One method available for the specification of shock tests is the method of least favorable response. This method can be used analytically or in the laboratory and is guaranteed to provide tests which are conservative, at least in one sense. When the impulse response function, or equivalently the frequency response function, is available between a point of interest on a structure and the input point of the structure, and when we know the real function which envelops the modulus of the Fourier transform of all possible inputs which might excite the structure, then the method of least favorable response can be used to find an upper bound on the response which the point of interest on the structure can realize. We use this in the analysis of structural peak response. In the laboratory the least favorable response is generated experimentally, for example, by testing the structural unit on a shake table. If the structure survives the laboratory test, then we assume that it could survive any input in the class of inputs whose Fourier transform moduli are enveloped by the function used in the analysis. The objective of this study was to analyze the inherent conservatism of the method of least favorable response. A technique that can be used to do this is demonstrated. First, the method of least favorable response is reviewed and how it is used analytically and experimentally is demonstrated. Next the technique used to measure the conservatism in a least favorable response test is developed. Finally, the method is applied in some numerical examples where the degree of conservatism in the tests of some specific structures is measured. (LCL)

  7. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. The yeast Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-p...

  8. Insights into the phosphoryl transfer catalyzed by cAMP-dependent protein kinase: an X-ray crystallographic study of complexes with various metals and peptide substrate SP20.

    PubMed

    Gerlits, Oksana; Waltman, Mary Jo; Taylor, Susan; Langan, Paul; Kovalevsky, Andrey

    2013-05-28

    X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg(2+), Ca(2+), Sr(2+), and Ba(2+) metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reaction products ADP and the phosphorylated peptide were found trapped in the enzyme active site. Finally, we determined the structure of a pseudo-Michaelis complex containing Mg(2+), nonhydrolyzable AMP-PCP (β,γ-methyleneadenosine 5'-triphosphate) and SP20. The product structures together with the pseudo-Michaelis complex provide snapshots of different stages of the phosphorylation reaction. Comparison of these structures reveals conformational, coordination, and hydrogen bonding changes that might occur during the reaction and shed new light on its mechanism, roles of metals, and active site residues.

  9. YscP and YscU Switch the Substrate Specificity of the Yersinia Type III Secretion System by Regulating Export of the Inner Rod Protein YscI▿ †

    PubMed Central

    Wood, Sarah E.; Jin, Jin; Lloyd, Scott A.

    2008-01-01

    Pathogenic yersiniae utilize a type III secretion system to inject antihost factors, called Yops, directly into the cytosol of eukaryotic cells. The Yops are injected via a needle-like structure, comprising the YscF protein, on the bacterial surface. While the needle is being assembled, Yops cannot be secreted. YscP and YscU switch the substrate specificity of the secretion system to enable Yop export once the needle attains its proper length. Here, we demonstrate that the inner rod protein YscI plays a critical role in substrate specificity switching. We show that YscI is secreted by the type III secretion system and that YscI secretion by a yscP mutant is abnormally elevated. Furthermore, we show that mutations in the cytoplasmic domain of YscU reduce YscI secretion by the yscP null strain. We also demonstrate that mutants expressing one of three forms of YscI (those with mutations Q84A, L87A, and L96A) secrete substantial amounts of Yops yet exhibit severe defects in needle formation. In the absence of YscP, mutants with the same changes in YscI assemble needles but are unable to secrete Yops. Together, these results suggest that the formation of the inner rod, not the needle, is critical for substrate specificity switching and that YscP and YscU exert their effects on substrate export by controlling the secretion of YscI. PMID:18424518

  10. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution

    PubMed Central

    Bloom, Jesse D; Romero, Philip A; Lu, Zhongyi; Arnold, Frances H

    2007-01-01

    Background Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's original biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. Results Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one activity based on the measurement of several others. Conclusion Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection favor new functions in the future. Reviewers This article was reviewed by Martijn Huynen, Fyodor Kondrashov, and Dan Tawfik (nominated by Christoph Adami). PMID:17598905

  11. Top-down HPLC-ESI-MS characterization of rat gliadoralin A, a new member of the family of rat submandibular gland glutamine-rich proteins and potential substrate of transglutaminase.

    PubMed

    Cabras, Tiziana; Iavarone, Federica; Pirolli, Davide; De Rosa, Maria Cristina; Vitali, Alberto; Faa, Gavino; Cordaro, Massimo; Messana, Irene; Ekström, Jörgen; Castagnola, Massimo

    2013-09-01

    During HPLC-ESI-MS/MS analysis of rat submandibular saliva secreted under isoprenaline stimulation, a protein with an experimental [M+H](1+) = 10,544.24 m/z was detected (17.5 ± 0.7 min). The MS/MS fragmentation pattern, manually investigated, allowed establishing an internal sequence in agreement with a DNA-derived sequence of an unknown rat protein coded D3Z9M3 (Swiss-Prot). To match the experimental MS/MS fragmentation pattern and protein mass with theoretical data, the removal from the N terminus of the signal peptide and from the C terminus of three amino acid (a.a.) residues (Arg-Ala-Val) and the cyclization of the N-terminal glutamine in pyroglutamic had to be supposed, resulting in a mature protein of 90 a.a. HPLC-ESI-MS/MS of the trypsin digest ensured 100% sequence coverage. For the high glutamine content (34/90 = 37.8%) we propose to name this protein rat gliadoralin A 1-90. Low amounts of five different isoforms were sporadically detected, which did not significantly change their relative amounts after stimulation. Gliadoralin A is substrate for transglutaminase-2, having Lys 60 and different Gln residues as major determinants for enzyme recognition. In silico investigation of superior structures evidenced that a small part of the protein adopts an α-helical fold, whereas large segments are unfolded, suggesting an unordered conformation.

  12. 25 CFR 700.519 - Gifts, entertainment and favors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employee Responsibility and Conduct § 700.519 Gifts, entertainment and favors. (a) Acceptance of gratuities... individuals with whom Commission employees do business. This prohibition extends to the acceptance of meals... reservation, or similar social activity when circumstances would make it rude for the employee to refuse....

  13. 25 CFR 700.519 - Gifts, entertainment and favors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Employee Responsibility and Conduct § 700.519 Gifts, entertainment and favors. (a) Acceptance of gratuities... individuals with whom Commission employees do business. This prohibition extends to the acceptance of meals... reservation, or similar social activity when circumstances would make it rude for the employee to refuse....

  14. 25 CFR 700.519 - Gifts, entertainment and favors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Gifts, entertainment and favors. 700.519 Section 700.519 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES... reservation, or similar social activity when circumstances would make it rude for the employee to refuse....

  15. 25 CFR 700.519 - Gifts, entertainment and favors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Gifts, entertainment and favors. 700.519 Section 700.519 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES... reservation, or similar social activity when circumstances would make it rude for the employee to refuse....

  16. 25 CFR 700.519 - Gifts, entertainment and favors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Gifts, entertainment and favors. 700.519 Section 700.519 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES... reservation, or similar social activity when circumstances would make it rude for the employee to refuse....

  17. 18 CFR 706.202 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Gifts, entertainment, and favors. 706.202 Section 706.202 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE RESPONSIBILITIES AND CONDUCT Conduct and Responsibilities of Employees § 706.202...

  18. 18 CFR 706.202 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Gifts, entertainment, and favors. 706.202 Section 706.202 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE RESPONSIBILITIES AND CONDUCT Conduct and Responsibilities of Employees § 706.202...

  19. 18 CFR 706.303 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Gifts, entertainment, and favors. 706.303 Section 706.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE RESPONSIBILITIES AND CONDUCT Conduct and Responsibilities of Special Government Employees §...

  20. 18 CFR 706.303 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Gifts, entertainment, and favors. 706.303 Section 706.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE RESPONSIBILITIES AND CONDUCT Conduct and Responsibilities of Special Government Employees §...

  1. 11 CFR 7.20 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., particularly one with whom the employee has family, business, or financial ties. ... of Special Commission Employees § 7.20 Gifts, entertainment, and favors. Except as provided at 11 CFR..., shall not receive or solicit from a person having business with the Commission anything of value such...

  2. 36 CFR 905.735-202 - Gifts, entertainment, and favors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of value under circumstances which arise from an obvious family or personal relationship(s) (such as between the parents, children, or spouse of the employee and the employee), when the circumstances make it..., entertainment, and favors. Pursuant to paragraph (b) of 5 CFR 735.202, the following exceptions to...

  3. Increasing long term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  4. Filtering the Net in Libraries: The Case (Mostly) in Favor.

    ERIC Educational Resources Information Center

    Banks, Michael A.

    1998-01-01

    Examines issues and decision-making involved in restricting Internet access in libraries, for the most part favoring filtering devices. Questions to consider when selecting a filtering program are provided. Some of the better filtering programs are described, and Web addresses are included for each. Security risks associated with Java and…

  5. Preschoolers Reduce Inequality While Favoring Individuals with More

    ERIC Educational Resources Information Center

    Li, Vivian; Spitzer, Brian; Olson, Kristina R.

    2014-01-01

    Inequalities are everywhere, yet little is known about how children respond to people affected by inequalities. This article explores two responses--minimizing inequalities and favoring those who are advantaged by them. In Studies 1a (N = 37) and 1b (N = 38), 4- and 5-year-olds allocated a resource to a disadvantaged recipient, but judged…

  6. eEF1A phosphorylation in the nucleus of insulin-stimulated C2C12 myoblasts: Ser⁵³ is a novel substrate for protein kinase C βI.

    PubMed

    Piazzi, Manuela; Bavelloni, Alberto; Faenza, Irene; Blalock, William; Urbani, Andrea; D'Aguanno, Simona; Fiume, Roberta; Ramazzotti, Giulia; Maraldi, Nadir Mario; Cocco, Lucio

    2010-12-01

    Recent data indicate that some PKC isoforms are translocated to the nucleus, in response to certain stimuli, where they play an important role in nuclear signaling events. To identify novel interacting proteins of conventional PKC (cPKC) at the nuclear level during myogenesis and to find new PKC isozyme-specific phosphosubstrates, we performed a proteomics analysis of immunoprecipitated nuclear samples from mouse myoblast C2C12 cells following insulin administration. Using a phospho(Ser)-PKC substrate antibody, specific interacting proteins were identified by LC-MS/MS spectrometry. A total of 16 proteins with the exact and complete motif recognized by the phospho-cPKC substrate antibody were identified; among these, particular interest was given to eukaryotic elongation factor 1α (eEF1A). Nuclear eEF1A was focalized in the nucleoli, and its expression was observed to increase following insulin treatment. Of the cPKC isoforms, only PKCβI was demonstrated to be expressed in the nucleus of C2C12 myocytes and to co-immunoprecipitate with eEF1A. In-depth analysis using site-directed mutagenesis revealed that PKCβI could phosphorylate Ser⁵³ of the eEF1A2 isoform and that the association between eEF1A2 and PKCβI was dependent on the phosphorylation status of eEF1A2.

  7. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins

    PubMed Central

    Hakuno, Fumihiko; Fukushima, Toshiaki; Yoneyama, Yosuke; Kamei, Hiroyasu; Ozoe, Atsufumi; Yoshihara, Hidehito; Yamanaka, Daisuke; Shibano, Takashi; Sone-Yonezawa, Meri; Yu, Bu-Chin; Chida, Kazuhiro; Takahashi, Shin-Ichiro

    2015-01-01

    Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases. PMID:26074875

  8. Substrate properties affect collective cell motion

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian; Guo, Ming; Ehrlicher, Allen; Weitz, David

    2013-03-01

    When cells move collectively, cooperative motion, which is characterized by long range correlations in cell movement, is necessary for migration. This collective cell motion is influenced by cell-cell interactions as well as by cell-substrate coupling. Furthermore, on soft substrates it is possible for cells to mechanically couple over long distances through the substrate itself. By changing the properties of the substrate, it is possible to decouple some of these contributions and better understand the role they play in collective cell motion. We vary both the substrate stiffness and adhesion protein concentration and find changes in the collective cell motion of the cells despite only small differences in total cell density and average cell size in the confluent layers. We test these changes on polyacrylamide and PDMS substrates as well as on structured substrates made of PDMS posts that prevent mechanical coupling through the substrate while still allowing stiffness to be varied.

  9. The influence of detergents on the availability of pertussis toxin substrates.

    PubMed

    Morris, S A; Horn, E M; Hawley, T; Manning, D; Bilezikian, J P

    1991-10-01

    Pertussis toxin-dependent ADP-ribosylation of rat heart and human mononuclear leukocyte membranes was found to be markedly enhanced in the presence of detergents. The order of potency for this effect of detergents was Triton X-100 approximately Lubrol PX greater than digitonin much greater than cholate greater than 3-[(3-cholamidopropyl)dimethylammonia]propanesulfonic acid. Exposure of membranes to increasing concentrations of detergents increased the proportion of pertussis toxin substrate demonstrable in the supernatant fraction whereas the substrate remaining in the pellet fraction demonstrated a complicated relationship with the concentration of detergent. In complementary experiments, it was found that immunochemical detection of G proteins in the pellet fraction from suspensions previously incubated with a maximal concentration of detergent revealed a reduced presence of G proteins with a concomitant increase in the concentration of G proteins in the supernatant fraction; this situation was not observed at submaximal concentrations of detergent during the preincubation of myocardial membranes. The results suggest that the detergent-mediated enhancement of pertussis toxin's action to ADP-ribosylate susceptible G proteins is a complicated process that includes concentration-dependent creation of conditions favorable to the actions of the toxin as well as solubilization of the substrates for the toxin.

  10. Long-Range Surface Plasmons on Highly Anisotropic Dielectric Substrates

    NASA Astrophysics Data System (ADS)

    Gumen, L.; Nagaraj; Neogi, A.; Krokhin, A.

    We calculate the propagation length of surface plasmons in metal-dielectric structures with anisotropic substrates. We show that the Joule losses can be minimized by appropriate orientation of the optical axis of a birefringent substrate and that the favorable orientation of the axis depends on ω. A simple Kronig-Penney model for anisotropic plasmonic crystal is also proposed.

  11. Design integration of favorable geometry, structural support and containment

    SciTech Connect

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment.

  12. Multimodality therapy of favorable prognosis non-Hodgkin's lymphoma

    SciTech Connect

    Corder, M.P.; Leimert, J.T.; Tewfik, H.H.; Lovett, J.M.

    1983-07-01

    Twenty-seven previously untreated patients with favorable prognosis non-Hodgkin's lymphoma were treated with a combination of total body irradiation followed by cyclophosphamide - vincristine - prednisone (CVP). The dose of total body irradiation was planned to be 150 rad followed by 6 cycles of chemotherapy. The complete response rate was 59%; the complete plus partial response rate, 93%. The 50% disease-free survival was 8 months. The actuarial projected 5 year survival was 60% and the disease-free survival at 5 years was 27%. The program was well tolerated by the majority of patients. It is possible for some patients with favorable non-Hodgkin's lymphomas to achieve prolonged periods of disesase-free survival when treated with combinations of irradiation plus chemotherapy.

  13. Factorization Tests with Cabibbo-Favored Hadronic B Decays

    NASA Astrophysics Data System (ADS)

    Kass, Richard; Honscheid, K.; Pedlar, T.; von Toerne, E.; Wilksen, T.

    2002-04-01

    Based on a data sample of 9.7 million Υ(4s)arrow B barB decays recorded with CLEO II and II.V we present new measurements of cabibbo-favored, hadronic B meson decays. Precise measurements of these decays provide tests of the factorization hypothesis and allow us to examine the theoretical models which are used to constrain the unitarity triangle. Isospin relations in B arrow D(*) π decays permit the investigation of final state interactions.

  14. DNAJs: more than substrate delivery to HSPA

    PubMed Central

    Dekker, Suzanne L.; Kampinga, Harm H.; Bergink, Steven

    2015-01-01

    Proteins are essential components of cellular life, as building blocks, but also to guide and execute all cellular processes. Proteins require a three-dimensional folding, which is constantly being challenged by their environment. Challenges including elevated temperatures or redox changes can alter this fold and result in misfolding of proteins or even aggregation. Cells are equipped with several pathways that can deal with protein stress. Together, these pathways are referred to as the protein quality control network. The network comprises degradation and (re)folding pathways that are intertwined due to the sharing of components and by the overlap in affinity for substrates. Here, we will give examples of this sharing and intertwinement of protein degradation and protein folding and discuss how the fate of a substrate is determined. We will focus on the ubiquitylation of substrates and the role of Hsp70 co-chaperones of the DNAJ class in this process. PMID:26176011

  15. Favorable results with syringosubarachnoid shunts for treatment of syringomyelia.

    PubMed

    Tator, C H; Meguro, K; Rowed, D W

    1982-04-01

    From 1969 to 1979, 20 patients with syringomyelia were treated with a syringosubarachnoid shunt. The principal indications for this procedure were: significant progressive neurological deterioration and absent or minimal tonsillar ectopia. There were 15 patients with idiopathic syringomyelia, four with posttraumatic syringomyelia, and one with syringomyelia secondary to spinal arachnoiditis. The operations were performed with an operating microscope, and attention was directed to preserving thearachnoid membrane to ensure proper placement of the distal end of the shunt in an intact subarachnoid space. In all cases, a silicone rubber ventricular catheter was inserted into the syrinx through a posterior midline myelotomy. The average follow-up period was 5 years. A favorable result was obtained in 15 of the 20 patients (75%), including an excellent result with improvement of neurological deficit in 11 patients and a good result with cessation of progression in four patients. In the remaining five patients the result was poor with further progression of neurological deficit. A short duration of preoperative symptoms was usually a favorable prognostic feature. Four patients with a history of less than 6 months all had excellent results. Thirteen patients had a syringosubarachnoid shunt only, and all had good or excellent results. Seven patients had other surgical procedures, before, accompanying, or after shunt placement, and two had favorable results. Thus, the syringosubarachnoid shunt is an effective therapeutic modality for many patients with syringomyelia, particularly if there is little or no tonsillar herniation.

  16. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm.

    PubMed

    Zúñiga, A; Torres, J; Ubeda, J; Pulido, R

    1999-07-30

    ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.PTP-SL complex. Partial deletions of the KIM abrogated the association of PTP-SL with ERK1/2, indicating that KIM integrity is required for interaction. Amino acid substitution analysis revealed that Arg and Leu residues within the KIM are essential for the interaction and suggested a regulatory role for Ser(231). Finally, coexpression of PTP-SL and ERK2 in COS-7 cells resulted in the retention of ERK2 in the cytoplasm in a KIM-dependent manner. Our results demonstrate that the noncatalytic region of PTP-SL associates with mitogen-activated protein kinases with high affinity and specificity, providing a mechanism for substrate specificity, and suggest a role for PTP-SL in the regulation of mitogen-activated protein kinase translocation to the nucleus upon activation.

  17. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.

    PubMed

    Luo, Min; Christgen, Shelbi; Sanyal, Nikhilesh; Arentson, Benjamin W; Becker, Donald F; Tanner, John J

    2014-09-01

    Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH-P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target-decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium. PMID:25137435

  18. Evidence That the C-Terminal Domain of a Type B PutA Protein Contributes to Aldehyde Dehydrogenase Activity and Substrate Channeling

    PubMed Central

    2015-01-01

    Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is absent in type A PutAs. Small-angle X-ray scattering (SAXS), mutagenesis, and kinetics are used to determine the contributions of this domain to PutA structure and function. The 1127-residue Rhodobacter capsulatus PutA (RcPutA) is used as a representative CTDUF-containing type B PutA. The reaction progress curve for the coupled PRODH–P5CDH activity of RcPutA does not exhibit a time lag, implying a substrate channeling mechanism. RcPutA is monomeric in solution, which is unprecedented for PutAs. SAXS rigid body modeling with target–decoy validation is used to build a model of RcPutA. On the basis of homology to aldehyde dehydrogenases (ALDHs), the CTDUF is predicted to consist of a β-hairpin fused to a noncatalytic Rossmann fold domain. The predicted tertiary structural interactions of the CTDUF resemble the quaternary structural interactions in the type A PutA dimer interface. The model is tested by mutagenesis of the dimerization hairpin of a type A PutA and the CTDUF hairpin of RcPutA. Similar functional phenotypes are observed in the two sets of variants, supporting the hypothesis that the CTDUF mimics the type A PutA dimer interface. These results suggest annotation of the CTDUF as an ALDH superfamily domain that facilitates P5CDH activity and substrate channeling by stabilizing the aldehyde-binding site and sealing the substrate-channeling tunnel from the bulk medium. PMID:25137435

  19. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet; Ward, Terence G.; Mann, Brooks S.; Yankoski, Edward P.; Smith, Gregory S.

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  20. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  1. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  2. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus.

    PubMed

    Chang, Chin-Yuan; Lohman, Jeremy R; Cao, Hongnan; Tan, Kemin; Rudolf, Jeffrey D; Ma, Ming; Xu, Weijun; Bingman, Craig A; Yennamalli, Ragothaman M; Bigelow, Lance; Babnigg, Gyorgy; Yan, Xiaohui; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-09-13

    C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-β-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar β-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate. PMID:27560143

  3. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    SciTech Connect

    Pallo, Anna; Simon, Agnes; Bencsura, Akos; Heja, Laszlo; Kardos, Julianna

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  4. mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth

    PubMed Central

    Kalinski, Ashley L.; Sachdeva, Rahul; Gomes, Cynthia; Lee, Seung Joon; Shah, Zalak; Houle, John D.

    2015-01-01

    Although intra-axonal protein synthesis is well recognized in cultured neurons and during development in vivo, there have been few reports of mRNA localization and/or intra-axonal translation in mature CNS axons. Indeed, previous work indicated that mature CNS axons contain much lower quantities of translational machinery than PNS axons, leading to the conclusion that the capacity for intra-axonal protein synthesis is linked to the intrinsic capacity of a neuron for regeneration, with mature CNS neurons showing much less growth after injury than PNS neurons. However, when regeneration by CNS axons is facilitated, it is not known whether the intra-axonal content of translational machinery changes or whether mRNAs localize into these axons. Here, we have used a peripheral nerve segment grafted into the transected spinal cord of adult rats as a supportive environment for regeneration by ascending spinal axons. By quantitative fluorescent in situ hybridization combined with immunofluorescence to unambiguously distinguish intra-axonal mRNAs, we show that regenerating spinal cord axons contain β-actin, GAP-43, Neuritin, Reg3a, Hamp, and Importin β1 mRNAs. These axons also contain 5S rRNA, phosphorylated S6 ribosomal protein, eIF2α translation factor, and 4EBP1 translation factor inhibitory protein. Different levels of these mRNAs in CNS axons from regenerating PNS axons may relate to differences in the growth capacity of these neurons, although the presence of mRNA transport and likely local translation in both CNS and PNS neurons suggests an active role in the regenerative process. SIGNIFICANCE STATEMENT Although peripheral nerve axons retain the capacity to locally synthesize proteins into adulthood, previous studies have argued that mature brain and spinal cord axons cannot synthesize proteins. Protein synthesis in peripheral nerve axons is increased during regeneration, and intra-axonally synthesized proteins have been shown to contribute to nerve regeneration

  5. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins.

    PubMed

    Malakar, Pushkar; Venkatesh, K V

    2012-03-01

    Expression of proteins unneeded for growth diverts cellular resources from making necessary protein and leads to a reduction in the growth rate of an organism. This reduction in growth rate is termed as cost. Cost plays an important role in determining the selected expression of a protein in a particular environment. Characterization of cost is important in biotechnology industries where microorganisms are used to produce foreign proteins. We have used the lactose system in Escherichia coli to quantify the cost of growth on glycerol in the presence of isopropyl-β-D-thiogalactopyranoside (IPTG), an inducer of the lactose system. The effect of the concentration of the carbon source, glycerol, and the inducer of Lac enzymes, IPTG, is studied. The results show that the cost is dependent on the glycerol concentration with a decreasing trend with increasing concentration of glycerol. Also as expected, the cost increases and saturates at a higher concentration of IPTG. The studies also demonstrate that the cost is higher in early exponential phase relative to late exponential phase during the growth as has been reported in the literature. Hill equation fit yielded a typical Monod-type expression for growth on glycerol with and without IPTG. An apparent half-saturation constant was defined which was used to characterize the burden on growth due to protein expression. PMID:22038249

  6. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  7. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  8. Competitive amperometric immunosensor based on covalent linking of a protein conjugate to dendrimer-functionalised nanogold substrate for the determination of 2,4,6-trinitrotoluene.

    PubMed

    Giannetto, Marco; Maiolini, Elisabetta; Ferri, Elida Nora; Girotti, Stefano; Mori, Giovanni; Careri, Maria

    2013-01-01

    A new amperometric immunosensor for 2,4,6-trinitrotoluene based on the working principle of competitive enzyme-linked immunosorbent assay was developed and characterised. An electrodeposited nanogold substrate was functionalised by deposition of self-assembled monolayers of 2-aminoethanethiol as linkers for the subsequent immobilisation of polyamidoaminic dendrimers. Our approach makes use of those dendrimers to anchor a trinitrobenzene-ovalbumin conjugate on the electrode surface. The immunosensor was tested and validated for the determination of 2,4,6-trinitrotoluene showing high selectivity with respect to other nitroaromatic compounds, a limit of detection of 4.8 ng/mL and a limit of quantitation of 6 ng/mL. The immunosensor was tested for the quantification of the analyte in spiked soils and in a real sample of post-blast soil, evidencing a good recovery rate (113 %).

  9. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    SciTech Connect

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-03-27

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  10. An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR)

    ERIC Educational Resources Information Center

    Guegan, Jean-Paul; Daniellou, Richard

    2012-01-01

    NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…

  11. Reaction of soluble penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus with beta-lactams and acyclic substrates: kinetics in homogeneous solution.

    PubMed Central

    Graves-Woodward, K; Pratt, R F

    1998-01-01

    The kinetics of reaction of solubilized penicillin-binding protein 2a (sPBP2a) of methicillin-resistant Staphylococcus aureus with a variety of beta-lactams and acyclic species was studied in homogeneous aqueous solution at 37 degreesC in 25 mM Hepes buffer, pH7.0, containing 1 M NaCl. Under these conditions, but not at lower salt concentrations, protein precipitation did not occur either during or after the reaction. The reactions of beta-lactams in general could be monitored by competition with a chromophoric beta-lactam, nitrocefin, or directly in certain cases by protein fluorescence. Rate constants for reaction of a wide variety of beta-lactams are reported. The interactions are characterized by a slow second-order acylation reaction followed by a slower deacylation. For example, the rate constants for benzylpenicillin were 12 M-1.s-1 and 3x10(-5) s-1 respectively. The acylation is slow in comparison with those of normal non-resistant high-molecular-mass penicillin-binding proteins. sPBP2a also seemed to catalyse the slow hydrolysis of a variety of acyclic depsipeptides but not that of a d-Ala-d-Ala peptide. The reactions with certain depsipeptides also led to protein precipitation. These reactions were, however, not affected by prior blockage of the beta-lactam-binding site by benzylpenicillin and thus might take place elsewhere on the enzyme. Two classes of potential transition- state analogue inhibitors, phosphonate monoesters and boronates, seemed to have little effect on the rate of reaction of sPBP2a with nitrocefin and therefore seem to have little affinity for the beta-lactam-binding/D,D-peptidase site. PMID:9620879

  12. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection

    PubMed Central

    Coultrap, Steven J.; Freund, Ronald K.; O’Leary, Heather; Sanderson, Jennifer L.; Roche, Katherine W.; Dell’Acqua1, Mark L.; Bayer, K. Ulrich

    2014-01-01

    SUMMARY Traditionally, hippocampal long-term potentiation (LTP) of synaptic strength requires Ca2+/calmodulin(CaM)-dependent protein kinase II (CaMKII) and other kinases, while long-term depression (LTD) requires phosphatases. Here we found that LTD also requires CaMKII and its phospho-T286-induced “autonomous” (Ca2+-independent) activity. However, while LTP is known to induce phosphorylation of the AMPA-type glutamate receptor (AMPAR) subunit GluA1 at S831, LTD instead induced CaMKII-mediated phosphorylation at S567, a site known to reduce synaptic GluA1 localization. GluA1 S831 phosphorylation by “autonomous” CaMKII was further stimulated by Ca2+/CaM, as expected for traditional substrates. By contrast, GluA1 S567 represents a distinct substrate-class that is unaffected by such stimulation. This differential regulation caused GluA1 S831 to be favored by LTP-type stimuli (strong but brief), while GluA1 S567 was favored by LTD-type stimuli (weak but prolonged). Thus, requirement of autonomous CaMKII in opposing forms of plasticity involves distinct substrate classes that are differentially regulated to enable stimulus-dependent substrate-site preference. PMID:24485660

  13. HOW MUCH FAVORABLE SELECTION IS LEFT IN MEDICARE ADVANTAGE?

    PubMed Central

    PRICE, MARY; MCWILLIAMS, J. MICHAEL; HSU, JOHN; MCGUIRE, THOMAS G.

    2015-01-01

    The health economics literature contains two models of selection, one with endogenous plan characteristics to attract good risks and one with fixed plan characteristics; neither model contains a regulator. Medicare Advantage, a principal example of selection in the literature, is, however, subject to anti-selection regulations. Because selection causes economic inefficiency and because the historically favorable selection into Medicare Advantage plans increased government cost, the effectiveness of the anti-selection regulations is an important policy question, especially since the Medicare Advantage program has grown to comprise 30 percent of Medicare beneficiaries. Moreover, similar anti-selection regulations are being used in health insurance exchanges for those under 65. Contrary to earlier work, we show that the strengthened anti-selection regulations that Medicare introduced starting in 2004 markedly reduced government overpayment attributable to favorable selection in Medicare Advantage. At least some of the remaining selection is plausibly related to fixed plan characteristics of Traditional Medicare versus Medicare Advantage rather than changed selection strategies by Medicare Advantage plans. PMID:26389127

  14. Mapping protease substrates using a biotinylated phage substrate library.

    SciTech Connect

    Scholle, M. D.; Kriplani, U.; Pabon, A.; Sishtla, K.; Glucksman, M. J.; Kay, B. K.; Biosciences Division; Chicago Medical School

    2005-05-05

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  15. Edwardsiella tarda EsaE (Orf19 protein) is required for the secretion of type III substrates, and pathogenesis in fish.

    PubMed

    Zhou, Ying; Liu, Lu Yi; He, Tian Tian; Laghari, Zubair Ahmed; Nie, Pin; Gao, Qian; Xie, Hai Xia

    2016-07-15

    Type III secretion system (T3SS) is a large macromolecular assembly found on the surface of many pathogenic Gram-negative bacteria. Edwardsiella tarda is an important Gram-negative pathogen that employs T3SS to deliver effectors into host cells to facilitate its survival and replication. EseB, EseC, and EseD, when secreted, form a translocon complex EseBCD on host membranes through which effectors are translocated. The orf19 gene (esaE) of E. tarda is located upstream of esaK, and downstream of esaJ, esaI, esaH and esaG in the T3SS gene cluster. When its domains were searched using Delta-Blast, the EsaE protein was found to belong to the T3SS YscJ/PrgK family. In the present study, it is found that EsaE is not secreted into culture supernatant, and the deletion of esaE abolished the secretion of T3SS translocon proteins EseBCD and T3SS effector EseG. Increased steady-state protein level of EseC and EseD was detected in bacterial pellet of ΔesaE strain although a reduced level was observed for the eseC and eseD transcription. EsaE was found to localize on membrane but not in the cytoplasm of E. tarda by fractionation. In blue gourami fish infection model, 87.88% of blue gourami infected with ΔesaE strain survived whereas only 3.03% survived when infected with wild-type strain. Taken together, our study demonstrated that EsaE is probably an apparatus protein of T3SS, which contributes to the pathogenesis of E. tarda in fish. PMID:27283851

  16. Double-Stranded RNA as an Inhibitor of Protein Synthesis and as a Substrate for a Nuclease in Extracts of Krebs II Ascites Cells

    PubMed Central

    Robertson, Hugh D.; Mathews, Michael B.

    1973-01-01

    Concentrations of double-stranded RNA above about 0.1 μg/ml inhibit translation of encephalo-myocarditis viral RNA and mouse globin messenger RNA in extracts of Krebs II ascites cells. Protein synthesis initially proceeds at the control rate, then abruptly shuts off in a manner similar to that observed in reticulocyte lysates [Hunt, T. & Ehrenfeld, E. (1971) Nature New Biol. 230, 91-94]. Substantially higher concentrations of double-stranded RNA are required to give this effect in ascites extracts. Subcellular fractions of Krebs II ascites cells contain a nucleolytic activity capable of digesting several natural and synthetic double-stranded RNAs. This nuclease is most active under conditions of protein synthesis, and part of the activity remains associated with ribosomes upon sedimentation. It is probably because of digestion of double-stranded RNA by this nuclease that higher concentrations of double-stranded RNA are required for inhibition of protein synthesis in Krebs cell extracts than in reticulocyte lysates. PMID:4346034

  17. Structural basis for the substrate specificity of a novel β-N-acetylhexosaminidase StrH protein from Streptococcus pneumoniae R6.

    PubMed

    Jiang, Yong-Liang; Yu, Wei-Li; Zhang, Jun-Wei; Frolet, Cecile; Di Guilmi, Anne-Marie; Zhou, Cong-Zhao; Vernet, Thierry; Chen, Yuxing

    2011-12-16

    The β-N-acetylhexosaminidase (EC 3.2.1.52) from glycoside hydrolase family 20 (GH20) catalyzes the hydrolysis of the β-N-acetylglucosamine (NAG) group from the nonreducing end of various glycoconjugates. The putative surface-exposed N-acetylhexosaminidase StrH/Spr0057 from Streptococcus pneumoniae R6 was proved to contribute to the virulence by removal of β(1,2)-linked NAG on host defense molecules following the cleavage of sialic acid and galactose by neuraminidase and β-galactosidase, respectively. StrH is the only reported GH20 enzyme that contains a tandem repeat of two 53% sequence-identical catalytic domains (designated as GH20-1 and GH20-2, respectively). Here, we present the 2.1 Å crystal structure of the N-terminal domain of StrH (residues Glu-175 to Lys-642) complexed with NAG. It adopts an overall structure similar to other GH20 enzymes: a (β/α)(8) TIM barrel with the active site residing at the center of the β-barrel convex side. The kinetic investigation using 4-nitrophenyl N-acetyl-β-d-glucosaminide as the substrate demonstrated that GH20-1 had an enzymatic activity (k(cat)/K(m)) of one-fourth compared with GH20-2. The lower activity of GH20-1 could be attributed to the substitution of active site Cys-469 of GH20-1 to the counterpart Tyr-903 of GH20-2. A complex model of NAGβ(1,2)Man at the active site of GH20-1 combined with activity assays of the corresponding site-directed mutants characterized two key residues Trp-443 and Tyr-482 at subsite +1 of GH20-1 (Trp-876 and Tyr-914 of GH20-2) that might determine the β(1,2) substrate specificity. Taken together, these findings shed light on the mechanism of catalytic specificity toward the β(1,2)-linked β-N-acetylglucosides.

  18. The ecological conditions that favor tool use and innovation in wild bottlenose dolphins (Tursiops sp.).

    PubMed

    Patterson, Eric M; Mann, Janet

    2011-01-01

    Dolphins are well known for their exquisite echolocation abilities, which enable them to detect and discriminate prey species and even locate buried prey. While these skills are widely used during foraging, some dolphins use tools to locate and extract prey. In the only known case of tool use in free-ranging cetaceans, a subset of bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia habitually employs marine basket sponge tools to locate and ferret prey from the seafloor. While it is clear that sponges protect dolphins' rostra while searching for prey, it is still not known why dolphins probe the substrate at all instead of merely echolocating for buried prey as documented at other sites. By 'sponge foraging' ourselves, we show that these dolphins target prey that both lack swimbladders and burrow in a rubble-littered substrate. Delphinid echolocation and vision are critical for hunting but less effective on such prey. Consequently, if dolphins are to access this burrowing, swimbladderless prey, they must probe the seafloor and in turn benefit from using protective sponges. We suggest that these tools have allowed sponge foraging dolphins to exploit an empty niche inaccessible to their non-tool-using counterparts. Our study identifies the underlying ecological basis of dolphin tool use and strengthens our understanding of the conditions that favor tool use and innovation in the wild. PMID:21799801

  19. The Ecological Conditions That Favor Tool Use and Innovation in Wild Bottlenose Dolphins (Tursiops sp.)

    PubMed Central

    Patterson, Eric M.; Mann, Janet

    2011-01-01

    Dolphins are well known for their exquisite echolocation abilities, which enable them to detect and discriminate prey species and even locate buried prey. While these skills are widely used during foraging, some dolphins use tools to locate and extract prey. In the only known case of tool use in free-ranging cetaceans, a subset of bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia habitually employs marine basket sponge tools to locate and ferret prey from the seafloor. While it is clear that sponges protect dolphins' rostra while searching for prey, it is still not known why dolphins probe the substrate at all instead of merely echolocating for buried prey as documented at other sites. By ‘sponge foraging’ ourselves, we show that these dolphins target prey that both lack swimbladders and burrow in a rubble-littered substrate. Delphinid echolocation and vision are critical for hunting but less effective on such prey. Consequently, if dolphins are to access this burrowing, swimbladderless prey, they must probe the seafloor and in turn benefit from using protective sponges. We suggest that these tools have allowed sponge foraging dolphins to exploit an empty niche inaccessible to their non-tool-using counterparts. Our study identifies the underlying ecological basis of dolphin tool use and strengthens our understanding of the conditions that favor tool use and innovation in the wild. PMID:21799801

  20. Interaction of dietary calcium and protein in bone health in humans.

    PubMed

    Dawson-Hughes, Bess

    2003-03-01

    Protein has both positive and negative effects on calcium balance, and the net effect of dietary protein on bone mass and fracture risk may be dependent on the dietary calcium intake. In addition to providing substrate for bone matrix, dietary protein stimulates the production of insulin-like growth factor-1 (IGF-1), a factor that promotes osteoblast-mediated bone formation. Protein a