Sample records for substrate specificity showed

  1. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1-42)

    NASA Astrophysics Data System (ADS)

    Matsumoto, Erino; Yamauchi, Takahiro; Fukuda, Tomohiro; Miura, Yoshiko

    2009-06-01

    Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid β. Amyloid β peptide showed conformation transition on the saccharide-immobilization substrate into a β-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.

  2. Specificity of a protein-protein interface: local dynamics direct substrate recognition of effector caspases.

    PubMed

    Fuchs, Julian E; von Grafenstein, Susanne; Huber, Roland G; Wallnoefer, Hannes G; Liedl, Klaus R

    2014-04-01

    Proteases are prototypes of multispecific protein-protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well-defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in programmed cell death and inflammation, turning caspases into interesting drug targets. Specific ligand binding to one particular caspase is difficult to achieve, as substrate specificities of caspase isoforms are highly similar. In an effort to rationalize substrate specificity of two closely related caspases, we investigate the substrate promiscuity of the effector Caspases 3 and 7 by data mining (cleavage entropy) and by molecular dynamics simulations. We find a strong correlation between binding site rigidity and substrate readout for individual caspase subpockets explaining more stringent substrate readout of Caspase 7 via its narrower conformational space. Caspase 3 subpockets S3 and S4 show elevated local flexibility explaining the more unspecific substrate readout of that isoform in comparison to Caspase 7. We show by in silico exchange mutations in the S3 pocket of the proteases that a proline residue in Caspase 7 contributes to the narrowed conformational space of the binding site. These findings explain the substrate specificities of caspases via a mechanism of conformational selection and highlight the crucial importance of binding site local dynamics in substrate recognition of proteases. Proteins 2014; 82:546-555. © 2013 Wiley Periodicals, Inc. Copyright © 2013 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  3. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity.

    PubMed

    Katsu, Kenjiro; Suzuki, Rintaro; Tsuchiya, Wataru; Inagaki, Noritoshi; Yamazaki, Toshimasa; Hisano, Tomomi; Yasui, Yasuo; Komori, Toshiyuki; Koshio, Motoyuki; Kubota, Seiji; Walker, Amanda R; Furukawa, Kiyoshi; Matsui, Katsuhiro

    2017-12-11

    Dihydroflavonol 4-reductase (DFR) is the key enzyme committed to anthocyanin and proanthocyanidin biosynthesis in the flavonoid biosynthetic pathway. DFR proteins can catalyse mainly the three substrates (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), and show different substrate preferences. Although relationships between the substrate preference and amino acids in the region responsible for substrate specificity have been investigated in several plant species, the molecular basis of the substrate preference of DFR is not yet fully understood. By using degenerate primers in a PCR, we isolated two cDNA clones that encoded DFR in buckwheat (Fagopyrum esculentum). Based on sequence similarity, one cDNA clone (FeDFR1a) was identical to the FeDFR in DNA databases (DDBJ/Gen Bank/EMBL). The other cDNA clone, FeDFR2, had a similar sequence to FeDFR1a, but a different exon-intron structure. Linkage analysis in an F 2 segregating population showed that the two loci were linked. Unlike common DFR proteins in other plant species, FeDFR2 contained a valine instead of the typical asparagine at the third position and an extra glycine between sites 6 and 7 in the region that determines substrate specificity, and showed less activity against dihydrokaempferol than did FeDFR1a with an asparagine at the third position. Our 3D model suggested that the third residue and its neighbouring residues contribute to substrate specificity. FeDFR1a was expressed in all organs that we investigated, whereas FeDFR2 was preferentially expressed in roots and seeds. We isolated two buckwheat cDNA clones of DFR genes. FeDFR2 has unique structural and functional features that differ from those of previously reported DFRs in other plants. The 3D model suggested that not only the amino acid at the third position but also its neighbouring residues that are involved in the formation of the substrate-binding pocket play important roles in determining substrate preferences. The unique characteristics of FeDFR2 would provide a useful tool for future studies on the substrate specificity and organ-specific expression of DFRs.

  4. Enzyme specificity under dynamic control

    NASA Astrophysics Data System (ADS)

    Ota, Nobuyuki; Agard, David A.

    2002-03-01

    The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.

  5. Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease.

    PubMed

    Kim, Doyoun; San, Boi Hoa; Moh, Sang Hyun; Park, Hyejin; Kim, Dong Young; Lee, Sangho; Kim, Kyeong Kyu

    2010-01-01

    Regulated cytosolic proteolysis is one of the key cellular processes ensuring proper functioning of a cell. M42 family proteases show a broad spectrum of substrate specificities, but the structural basis for such diversity of the substrate specificities is lagging behind biochemical data. Here we report the crystal structure of PepA from Streptococcus pneumoniae, a glutamyl aminopeptidase belonging to M42 family (SpPepA). We found that Arg-257 in the substrate binding pocket is strategically positioned so that Arg-257 can make electrostatic interactions with the acidic residue of a substrate at its N-terminus. Structural comparison of the substrate binding pocket of the M42 family proteases, along with the structure-based multiple sequence alignment, argues that the appropriate electrostatic interactions contribute to the selective substrate specificity of SpPepA. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Substrate Sorting by a Supercharged Nanoreactor

    PubMed Central

    2017-01-01

    Compartmentalization of proteases enables spatially and temporally controlled protein degradation in cells. Here we show that an engineered lumazine synthase protein cage, which possesses a negatively supercharged lumen, can exploit electrostatic effects to sort substrates for an encapsulated protease. This proteasome-like nanoreactor preferentially cleaves positively charged polypeptides over both anionic and zwitterionic substrates, inverting the inherent substrate specificity of the guest enzyme approximately 480 fold. Our results suggest that supercharged nanochambers could provide a simple and potentially general means of conferring substrate specificity to diverse encapsulated catalysts. PMID:29278496

  7. Long-range electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation.

    PubMed

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S

    2013-04-05

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.

  8. In silico design, synthesis, and assays of specific substrates for proteinase 3: influence of fluorogenic and charged groups.

    PubMed

    Narawane, Shailesh; Budnjo, Adnan; Grauffel, Cédric; Haug, Bengt Erik; Reuter, Nathalie

    2014-02-13

    Neutrophil serine proteases are specific regulators of the immune response, and proteinase 3 is a major target antigen in antineutrophil cytoplasmic antibody-associated vasculitis. FRET peptides containing 2-aminobenzoic acid (Abz) and N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) as fluorophore and quencher groups, respectively, have been widely used to probe proteases specificity. Using in silico design followed by enzymatic assays, we show that Abz and EDDnp significantly contribute to substrate hydrolysis by PR3. We also propose a new substrate specific for PR3.

  9. Cleavage Entropy as Quantitative Measure of Protease Specificity

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.

    2013-01-01

    A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583

  10. Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation*

    PubMed Central

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.

    2013-01-01

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245

  11. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity

    PubMed Central

    Lee, Rachel S.; House, Colin M.; Cristiano, Briony E.; Hannan, Ross D.; Pearson, Richard B.; Hannan, Katherine M.

    2011-01-01

    The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ. PMID:21869924

  12. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2011-02-01

    A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  14. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Jung, Ae Ryang; Kim, Richard Y; Kim, Hyung Woo; Shrestha, Kshitiz Raj; Jeon, Seung Hwan; Cha, Kyoung Je; Park, Yong Hyun; Kim, Dong Sung; Lee, Ji Youl

    2015-07-01

    Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.

  15. Cloning and characterization of a new broadspecific β-glucosidase from Lactococcus sp. FSJ4.

    PubMed

    Fang, Shujun; Chang, Jie; Lee, Yong Seok; Guo, Weiliang; Choi, Yong Lark; Zhou, Yongcan

    2014-01-01

    A β-glucosidase gene bglX was cloned from Lactococcus sp. FSJ4 by the method of shotgun. The bglX open reading frame consisted of 1,437 bp, encoding 478 amino acids. SDS-PAGE showed a recombinant bglX monomer of 54 kDa. Substrate specificity study revealed that the enzyme exhibited multifunctional catalysis activity against pNPG, pNPX and pNPGal. This enzyme shows higher activity against aryl glycosides of xylose than those of glucose or galactose. The enzyme exhibited the maximal activity at 40 °C, and the optimal pH was 6.0 with pNPG and 6.5 with pNPX as the substrates. Molecular modeling and substrate docking showed that there should be one active center responsible for the mutifuntional activity in this enzyme, since the active site pocket was substantially wide to allow the entry of pNPG, pNPX and pNPGal, which elucidated the structure-function relationship in substrate specificities. Substrate docking results indicated that Glu180 and Glu377 were the essential catalytic residues of the enzyme. The CDOCKER_ENERGY values obtained by substrate docking indicated that the enzyme has higher activity against pNPX than those of pNPG and pNPGal. These observations are in conformity with the results obtained from experimental investigation. Therefore, such substrate specificity makes this β-glucosidase of great interest for further study on physiological and catalytic reaction processes.

  16. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed Central

    Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  17. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  18. Insight into the substrate specificity change caused by the Y227H mutation of α-glucosidase III from the European honeybee (Apis mellifera) through molecular dynamics simulations.

    PubMed

    Na Ayutthaya, Pratchaya Pramoj; Chanchao, Chanpen; Chunsrivirot, Surasak

    2018-01-01

    Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases) and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT) preferred sucrose to maltose as a substrate, while the Y227H mutant (MT) preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This knowledge could be beneficial in the design of this enzyme for increased production of desired products.

  19. Evolutionary dynamics of enzymes.

    PubMed

    Demetrius, L

    1995-08-01

    This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute substrate specificity. We infer from this depiction of the three classes of enzymes, a general relation between the two functional properties, reaction rate and substrate specificity, namely, enzymes with diffusion-controlled rates have absolute substrate specificity. By appealing to energetic considerations, we furthermore show that enzymes with diffusion-controlled rates (types 2 and 3a) form a small subset of the class of all enzymes. This codification of present-day enzymes derived from an evolutionary model, essentially relates the structural properties of enzymes, as described by their thermodynamic parameters, to their functional properties, as represented by the reaction rate and substrate specificity.

  20. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  1. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  2. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  3. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis.

    PubMed

    Xie, Youming; Varshavsky, Alexander

    2002-12-01

    The ubiquitin system recognizes degradation signals of protein substrates through E3-E2 ubiquitin ligases, which produce a substrate-linked multi-ubiquitin chain. Ubiquitinated substrates are degraded by the 26S proteasome, which consists of the 20S protease and two 19S particles. We previously showed that UBR1 and UFD4, two E3 ligases of the yeast Saccharomyces cerevisiae, interact with specific proteasomal subunits. Here we advance this analysis for UFD4 and show that it interacts with RPT4 and RPT6, two subunits of the 19S particle. The 201-residue amino-terminal region of UFD4 is essential for its binding to RPT4 and RPT6. UFD4(DeltaN), which lacks this N-terminal region, adds ubiquitin to test substrates with apparently wild-type activity, but is impaired in conferring short half-lives on these substrates. We propose that interaction of a targeted substrate with the 26S proteasome involves contacts of specific proteasomal subunits with the substrate-bound ubiquitin ligase, with the substrate-linked multi-ubiquitin chain and with the substrate itself. This multiple-site binding may function to slow down dissociation of the substrate from the proteasome and to facilitate the unfolding of substrate through ATP-dependent movements of the chaperone subunits of the 19S particle.

  4. Interactions between Casein Kinase Iε (CKIε) and Two Substrates from Disparate Signaling Pathways Reveal Mechanisms for Substrate-Kinase Specificity

    PubMed Central

    Dahlberg, Caroline Lund; Nguyen, Elizabeth Z.; Goodlett, David; Kimelman, David

    2009-01-01

    Background Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIε and two substrates from different signaling pathways. Methodology/Principal Findings CKIε, but not CKIα, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIα's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIε does not determine Dishevelled's and Period's preference for CKIε nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIε with its substrates. We demonstrate that autophosphorylation of CKIε's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding. Conclusions/Significance The biochemical interactions between CKIε and Disheveled, Period, and its own C-terminus lead to models that explain CKIε's specificity and regulation. PMID:19274088

  5. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates.

    PubMed

    Adediran, S A; Kumar, Ish; Nagarajan, Rajesh; Sauvage, Eric; Pratt, R F

    2011-01-25

    The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.

  6. Different substrates and starter inocula govern microbial community structures in biogas reactors.

    PubMed

    Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert

    2016-01-01

    The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.

  7. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity.

    PubMed

    Sayer, Christopher; Isupov, Michail N; Westlake, Aaron; Littlechild, Jennifer A

    2013-04-01

    The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  8. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters

    PubMed Central

    Diallinas, George

    2014-01-01

    Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open toward the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action. PMID:25309439

  9. Structural Basis of Substrate Specificity and Regiochemistry in the MycF/TylF Family of Sugar O -Methyltransferases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Steffen M.; Akey, David L.; Tripathi, Ashootosh

    Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates,more » show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homolog, active site residues were identified that correlate with the 3'- or 4'- specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. Lastly, this classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.« less

  10. Structural Basis of Substrate Specificity and Regiochemistry in the MycF/TylF Family of Sugar O -Methyltransferases.

    DOE PAGES

    Bernard, Steffen M.; Akey, David L.; Tripathi, Ashootosh; ...

    2015-02-18

    Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates,more » show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homolog, active site residues were identified that correlate with the 3'- or 4'- specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. Lastly, this classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.« less

  11. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    PubMed

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  12. Cleavage-site specificity of prolyl endopeptidase FAP investigated with a full-length protein substrate.

    PubMed

    Huang, Chih-Hsiang; Suen, Ching-Shu; Lin, Ching-Ting; Chien, Chia-Hui; Lee, Hsin-Ying; Chung, Kuei-Min; Tsai, Ting-Yueh; Jiaang, Weir-Tong; Hwang, Ming-Jing; Chen, Xin

    2011-06-01

    Fibroblast activation protein (FAP) is a prolyl-cleaving endopeptidase proposed as an anti-cancer drug target. It is necessary to define its cleavage-site specificity to facilitate the identification of its in vivo substrates and to understand its biological functions. We found that the previously identified substrate of FAP, α(2)-anti-plasmin, is not a robust substrate in vitro. Instead, an intracellular protein, SPRY2, is cleavable by FAP and more suitable for investigation of its substrate specificity in the context of the full-length globular protein. FAP prefers uncharged residues, including small or bulky hydrophobic amino acids, but not charged amino acids, especially acidic residue at P1', P3 and P4 sites. Molecular modelling analysis shows that the substrate-binding site of FAP is surrounded by multiple tyrosine residues and some negatively charged residues, which may exert least preference for substrates with acidic residues. This provides an explanation why FAP cannot cleave interleukins, which have a glutamate at either P4 or P2', despite their P3-P2-P1 sites being identical to SPRY2 or α-AP. Our study provided new information on FAP cleavage-site specificity, which differs from the data obtained by profiling with a peptide library or with the denatured protein, gelatin, as the substrate. Furthermore, our study suggests that negatively charged residues should be avoided when designing FAP inhibitors.

  13. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries

    PubMed Central

    Harris, Jennifer L.; Backes, Bradley J.; Leonetti, Francesco; Mahrus, Sami; Ellman, Jonathan A.; Craik, Charles S.

    2000-01-01

    A method is presented for the preparation and use of fluorogenic peptide substrates that allows for the configuration of general substrate libraries to rapidly identify the primary and extended specificity of proteases. The substrates contain the fluorogenic leaving group 7-amino-4-carbamoylmethylcoumarin (ACC). Substrates incorporating the ACC leaving group show kinetic profiles comparable to those with the traditionally used 7-amino-4-methylcoumarin (AMC) leaving group. The bifunctional nature of ACC allows for the efficient production of single substrates and substrate libraries by using 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase synthesis techniques. The approximately 3-fold-increased quantum yield of ACC over AMC permits reduction in enzyme and substrate concentrations. As a consequence, a greater number of substrates can be tolerated in a single assay, thus enabling an increase in the diversity space of the library. Soluble positional protease substrate libraries of 137,180 and 6,859 members, possessing amino acid diversity at the P4-P3-P2-P1 and P4-P3-P2 positions, respectively, were constructed. Employing this screening method, we profiled the substrate specificities of a diverse array of proteases, including the serine proteases thrombin, plasmin, factor Xa, urokinase-type plasminogen activator, tissue plasminogen activator, granzyme B, trypsin, chymotrypsin, human neutrophil elastase, and the cysteine proteases papain and cruzain. The resulting profiles create a pharmacophoric portrayal of the proteases to aid in the design of selective substrates and potent inhibitors. PMID:10869434

  14. Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2008-05-01

    Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance-Nodulation-Cell Division family pump with limited substrate specificity.

  15. Structure and Activity Analyses of Escherichia coli K-12 NagD Provide Insight into the Evolution of Biochemical Function in the Haloakanoic Acid Dehlogenase Superfamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay,L.; Dunaway-Mariano, D.; Allen, K.

    2006-01-01

    The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics. To understand the structure/function relationships in all of the subfamilies, a type IIA subfamily member, NagD from Escherichia colimore » K-12, was selected (type I, IIB, and III members have been more extensively studied). The structure of the NagD protein was solved to 1.80 Angstroms with R{sub work} = 19.8% and R{sub free} = 21.8%. Substrate screening and kinetic analysis showed NagD to have high specificity for nucleotide monophosphates with kcat/Km = 3.12 x 10{sup 4} and 1.28 x 10{sup 4} {micro}M{sup -1} s{sup -1} for UMP and GMP, respectively. This specificity is consistent with the presence of analogues of NagD that exist as fusion proteins with a nucleotide pyrophosphatase from the Nudix family. Docking of the nucleoside substrate in the active site brings it in contact with conserved residues from the cap domain that can act as a substrate specificity loop (NagD residues 144-149) in the type IIA subfamily. NagD and other subfamily IIA and IIB members show the common trait that substrate specificity and catalytic efficiencies (k{sub cat}/K{sub m}) are low (1 x 10{sup 4} M{sup -1} s{sup -1}) and the boundaries defining physiological substrates are somewhat overlapping. The ability to catabolize other related secondary metabolites indicates that there is regulation at the genetic level.« less

  16. Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates.

    PubMed

    Curran, Amy; Chang, Ing-Feng; Chang, Chia-Lun; Garg, Shilpi; Miguel, Rodriguez Milla; Barron, Yoshimi D; Li, Ying; Romanowsky, Shawn; Cushman, John C; Gribskov, Michael; Harmon, Alice C; Harper, Jeffrey F

    2011-01-01

    The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca(2+)-dependent protein kinases (CPKs). While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16, and 34). Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with K(M) ∼70 μM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites). Of these, 74 (27%) were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  17. Calcium-Dependent Protein Kinases from Arabidopsis Show Substrate Specificity Differences in an Analysis of 103 Substrates

    PubMed Central

    Curran, Amy; Chang, Ing-Feng; Chang, Chia-Lun; Garg, Shilpi; Miguel, Rodriguez Milla; Barron, Yoshimi D.; Li, Ying; Romanowsky, Shawn; Cushman, John C.; Gribskov, Michael; Harmon, Alice C.; Harper, Jeffrey F.

    2011-01-01

    The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs). While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16, and 34). Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ∼70 μM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites). Of these, 74 (27%) were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies. PMID:22645532

  18. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    PubMed Central

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-01-01

    The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-­aminotransferases. PMID:23519665

  19. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity.

  20. Laminin α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro.

    PubMed

    Hyysalo, Anu; Ristola, Mervi; Mäkinen, Meeri E-L; Häyrynen, Sergei; Nykter, Matti; Narkilahti, Susanna

    2017-10-01

    Laminins are one of the major protein groups in the extracellular matrix (ECM) and specific laminin isoforms are crucial for neuronal functions in the central nervous system in vivo. In the present study, we compared recombinant human laminin isoforms (LN211, LN332, LN411, LN511, and LN521) and laminin isoform fragment (LN511-E8) in in vitro cultures of human pluripotent stem cell (hPSC)-derived neurons. We showed that laminin substrates containing the α5-chain are important for neuronal attachment, viability and network formation, as detected by phase contrast imaging, viability staining, and immunocytochemistry. Gene expression analysis showed that the molecular mechanisms involved in the preference of hPSC-derived neurons for specific laminin isoforms could be related to ECM remodeling and cell adhesion. Importantly, the microelectrode array analysis revealed the widest distribution of electrophysiologically active neurons on laminin α5 substrates, indicating most efficient development of neuronal network functionality. This study shows that specific laminin α5 substrates provide a controlled in vitro culture environment for hPSC-derived neurons. These substrates can be utilized not only to enhance the production of functional hPSC-derived neurons for in vitro applications like disease modeling, toxicological studies, and drug discovery, but also for the production of clinical grade hPSC-derived cells for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Bacterial protease uses distinct thermodynamic signatures for substrate recognition.

    PubMed

    Bezerra, Gustavo Arruda; Ohara-Nemoto, Yuko; Cornaciu, Irina; Fedosyuk, Sofiya; Hoffmann, Guillaume; Round, Adam; Márquez, José A; Nemoto, Takayuki K; Djinović-Carugo, Kristina

    2017-06-06

    Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme ("entropy reservoirs"). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.

  2. Dissecting substrate specificities of the mitochondrial AFG3L2 protease.

    PubMed

    Ding, Bojian; Martin, Dwight W; Rampello, Anthony J; Glynn, Steven E

    2018-06-22

    Human AFG3L2 is a compartmental AAA+ protease that performs ATP-fueled degradation at the matrix face of the inner mitochondrial membrane. Identifying how AFG3L2 selects substrates from the diverse complement of matrix-localized proteins is essential for understanding mitochondrial protein biogenesis and quality control. Here, we create solubilized forms of AFG3L2 to examine the enzyme's substrate specificity mechanisms. We show that conserved residues within the pre-sequence of the mitochondrial ribosomal protein, MrpL32, target the subunit to the protease for processing into a mature form. Moreover, these residues can act as a degron, delivering diverse model proteins to AFG3L2 for degradation. By determining the sequence of degra-dation products from multiple substrates using mass spectrometry, we construct a peptidase specificity pro-file that displays constrained product lengths and is dominated by the identity of the residue at the P1' posi-tion, with a strong preference for hydrophobic and small polar residues. This specificity profile is validated by examining the cleavage of both fluorogenic reporter peptides and full polypeptide substrates bearing different P1' residues. Together, these results demonstrate that AFG3L2 contains multiple modes of specificity, dis-criminating between potential substrates by recognizing accessible degron sequences, and performing peptide bond cleavage at preferred patterns of residues within the compartmental chamber.

  3. Critical Amino Acids in the Active Site of Meprin Metalloproteinases for Substrate and Peptide Bond Specificity*

    PubMed Central

    Villa, James P.; Bertenshaw, Greg P.; Bond, Judith S.

    2008-01-01

    SUMMARY The protease domains of the evolutionarily-related α and ß subunits of meprin metalloproteases are approximately 55% identical at the amino acid level, however, their substrate and peptide bond specificities differ markedly. The meprin ß subunit favors acidic residues proximal to the scissile bond, while the α subunit prefers small or aromatic amino acids flanking the scissile bond. Thus gastrin, a peptide that contains a string of five Glu residues, is an excellent substrate for meprin ß while it is not hydrolyzed by meprin α. Work herein aimed to identify critical amino acids in the meprin active sites that determine the substrate specificity differences. Sequence alignments and homology models, based on the crystal structure of the crayfish astacin, showed electrostatic differences within the meprin active sites. Site-directed mutagenesis of active site residues demonstrated that replacement of a hydrophobic residue by a basic amino acid enabled the meprin α protease to cleave gastrin. The meprin αY199K mutant was most effective; the corresponding mutation of meprin ßK185Y resulted in decreased activity toward gastrin. Peptide cleavage site determinations and kinetic analyses using a variety of peptides extended evidence that meprin αTyr199/ßLys185 are substrate specificity determinants in meprin active sites. These studies shed light on the molecular basis for the substrate specificity differences of astacin metalloproteinases. PMID:12888571

  4. Computational Study on Substrate Specificity of a Novel Cysteine Protease 1 Precursor from Zea mays

    PubMed Central

    Liu, Huimin; Chen, Liangcheng; Li, Quan; Zheng, Mingzhu; Liu, Jingsheng

    2014-01-01

    Cysteine protease 1 precursor from Zea mays (zmCP1) is classified as a member of the C1A family of peptidases (papain-like cysteine protease) in MEROPS (the Peptidase Database). The 3D structure and substrate specificity of the zmCP1 is still unknown. This study is the first one to build the 3D structure of zmCP1 by computer-assisted homology modeling. In order to determine the substrate specificity of zmCP1, docking study is used for rapid and convenient analysis of large populations of ligand–enzyme complexes. Docking results show that zmCP1 has preference for P1 position and P2 position for Arg and a large hydrophobic residue (such as Phe). Gly147, Gly191, Cys189, and Asp190 are predicted to function as active residues at the S1 subsite, and the S2 subsite contains Leu283, Leu193, Ala259, Met194, and Ala286. SIFt results indicate that Gly144, Arg268, Trp308, and Ser311 play important roles in substrate binding. Then Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method was used to explain the substrate specificity for P1 position of zmCp1. This study provides insights into the molecular basis of zmCP1 activity and substrate specificity. PMID:24921705

  5. A multiwell format assay for heparanase.

    PubMed

    Behzad, Farhad; Brenchley, Paul E C

    2003-09-15

    This assay employs a biotinylated heparan sulfate glycosaminoglycan (HSGAG) substrate that is covalently linked to the surface of 96-well immunoassay plates. The ratio of biotin:HSGAG and the coating concentration of substrate bound to the wells have been optimized and allow removal of biotin HSGAG within 60 min of incubation at 37 degrees C in assay buffer with a standard dilution of bacterial heparitinase or platelet heparanase. Loss of biotin signal from the well surface is detected on incubation with peroxidase-streptavidin followed by color development using 3,3',5,5'-tetramethylbenzidine as the peroxidase substrate. The new assay allows specific detection of heparanase activity in multiple samples in a total time of 3 h including a 1-h substrate digestion step and is a significant improvement with regard to sensitivity, specificity, and ease of handling of multiple samples compared to other described assays. Heparanase specifically degrades the biotinylated HSGAG substrate, when used with an optimized assay buffer. A range of enzymes including collagenase, trypsin, plasmin, pepsin, chondroitinases, hyaluronidase, and neuraminidase show no effect on the substrate under optimized assay conditions. The covalent linkage of the substrate to the well prevents leaching of substrate and allows preparation and long-term storage of substrate-coated plates. The assay can be used to detect heparanase levels in clinical samples and cell culture supernatants and is ideal as a screening method for antagonists of enzyme activity.

  6. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron

    2013-04-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes showmore » activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.« less

  7. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP

    PubMed Central

    Jaru-Ampornpan, Peera; Shen, Kuang; Lam, Vinh Q.; Ali, Mona; Doniach, Sebastian; Jia, Tony Z.; Shan, Shu-ou

    2010-01-01

    Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and require chaperones to keep them soluble and translocation-competent. Here we show that a novel targeting factor in the chloroplast Signal Recognition Particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to AAA+-chaperones, cpSRP43 utilizes specific binding interactions with its substrate to mediate its disaggregase activity. This ‘disaggregase’ capability can allow targeting machineries to more effectively capture their protein substrates, and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example of an ATP-independent disaggregase, and demonstrates that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate. PMID:20424608

  8. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs

    PubMed Central

    Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.

    2016-01-01

    Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245

  9. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  10. Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease

    PubMed Central

    Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.

    2000-01-01

    Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609

  11. Substrate specificity of mitochondrial intermediate peptidase analysed by a support-bound peptide library

    PubMed Central

    Marcondes, M.F.M.; Alves, F.M.; Assis, D.M.; Hirata, I.Y.; Juliano, L.; Oliveira, V.; Juliano, M.A.

    2015-01-01

    The substrate specificity of recombinant human mitochondrial intermediate peptidase (hMIP) using a synthetic support-bound FRET peptide library is presented. The collected fluorescent beads, which contained the hydrolysed peptides generated by hMIP, were sequenced by Edman degradation. The results showed that this peptidase presents a remarkable preference for polar uncharged residues at P1 and P1′ substrate positions: Ser = Gln > Thr at P1 and Ser > Thr at P1′. Non-polar residues were frequent at the substrate P3, P2, P2′ and P3′ positions. Analysis of the predicted MIP processing sites in imported mitochondrial matrix proteins shows these cleavages indeed occur between polar uncharged residues. Previous analysis of these processing sites indicated the importance of positions far from the MIP cleavage site, namely the presence of a hydrophobic residue (Phe or Leu) at P8 and a polar uncharged residue (Ser or Thr) at P5. To evaluate this, additional kinetic analyses were carried out, using fluorogenic substrates synthesized based on the processing sites attributed to MIP. The results described here underscore the importance of the P1 and P1′ substrate positions for the hydrolytic activity of hMIP. The information presented in this work will help in the design of new substrate-based inhibitors for this peptidase. PMID:26082885

  12. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  13. Substrate specificity and thermostability of the dehairing alkaline protease from Bacillus pumilus.

    PubMed

    Wan, Min-Yuan; Wang, Hai-Yan; Zhang, Yi-Zheng; Feng, Hong

    2009-11-01

    An alkaline protease (DHAP) from Bacillus pumilus has shown great potential in hide dehairing. To get better insights on its catalytic properties for application, the substrate specificity and thermostability were investigated using five natural proteins and nine synthetic peptides. The results showed that DHAP could hydrolyze five proteins tested here in different specificity. Collagen, a component of animal skin, was more resistant to hydrolysis than casein, fibrin, and gelatin. Among the synthetic peptides, the enzyme showed activity mainly with tetrapeptide substrates with the catalytic efficiency in order of Phe>Leu>Ala at P1 site, although k(m) value for AAVA-pN is much lower than that for AAPL-pN and AAPF-pN. With tripeptide substrates, smaller side-chain group (Gly) at P1 site was not hydrolyzed by DHAP. The enzyme showed good thermostability below 60 degrees C, and lost activity so quickly above 70 degrees C. The thermostability was largely dependent on metal ion, especially Ca(2+), although other ions, like Mg(2+), Mn(2+), and Co(2+), could sustain stability at certain extent within limited time. Cu(2+), Fe(2+), as well as Al(3+), did not support the enzyme to retain activity at 60 degrees C even in 5 min. In addition, the selected metal ions could coordinate calcium in improvement or destruction of thermostability for DHAP.

  14. Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA.

    PubMed Central

    Campbell, T B; Cech, T R

    1995-01-01

    Positions 2-6 of the substrate-binding internal guide sequence (IGS) of the L-21 Sca I form of the Tetrahymena thermophila intron were mutagenized to produce a GN5 IGS library. Ribozymes within the GN5 library capable of efficient cleavage of an 818-nt human immunodeficiency virus type 1 vif-vpr RNA, at 37 degrees C, were identified by ribozyme-catalyzed guanosine addition to the 3' cleavage product. Three ribozymes (IGS = GGGGCU, GGCUCC, and GUGGCU) within the GN5 library that actively cleaved the long substrate were characterized kinetically and compared to the wild-type ribozyme (GGAGGG) and two control ribozymes (GGAGUC and GGAGAU). The two control ribozymes have specific sites within the long substrate, but were not identified during screening of the library. Under single-turnover conditions, ribozymes GGGGCU, GGCUCC, and GUGGCU cleaved the 818-nt substrate 4- to 200-fold faster than control ribozymes. Short cognate substrates, which should be structureless and therefore accessible to ribozyme binding, were cleaved at similar rates by all ribozymes except GGGGCU, which showed a fourfold rate enhancement. The rate of cleavage of long relative to short substrate under single-turnover conditions suggests that GGCUCC and GUGGCU were identified because of accessibility to their specific cleavage sites within the long substrate (substrate-specific effects), whereas GGGGCU was identified because of an enhanced rate of substrate binding despite a less accessible site in the long substrate. Even though screening was performed with 100-fold excess substrate (relative to total ribozyme), the rate of multiple-turnover catalysis did not contribute to identification of trans-cleaving ribozymes in the GN5 library. PMID:7489519

  15. Design of N-acyl homoserine lactonase with high substrate specificity by a rational approach.

    PubMed

    Kyeong, Hyun-Ho; Kim, Jin-Hyun; Kim, Hak-Sung

    2015-06-01

    N-Acyl homoserine lactone (AHL) is a major quorum-sensing signaling molecule in many bacterial species. Quorum-quenching (QQ) enzymes, which degrade such signaling molecules, have attracted much attention as an approach to controlling and preventing bacterial virulence and pathogenesis. However, naturally occurring QQ enzymes show a broad substrate spectrum, raising the concern of unintentionally attenuating beneficial effects by symbiotic bacteria. Here we report the rational design of acyl homoserine lactonase with high substrate specificity. Through docking analysis, we identified three key residues which play a key role in the substrate preference of the enzyme. The key residues were changed in a way that increases hydrophobic contact with a substrate having a short acyl chain (C4-AHL) while generating steric clashes with that containing a long acyl chain (C12-AHL). The resulting mutants exhibited a significantly shifted preference toward a substrate with a short acyl chain. Molecular dynamics simulations suggested that the mutations affect the behavior of a flexible loop, allowing tighter binding of a substrate with a short acyl chain.

  16. Transformation of halogen-, alkyl-, and alkoxy-substituted anilines by a lactase of Trametes versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, T.; Liu, S.Y.; Bollag, J.M.

    1985-05-01

    The lactase of the fungus Trametes versicolor was able to polymerize various halogen-, alkyl-, and alkoxy-substituted anilines, showing substrate specificity similar to that of horseradish peroxidase, whereas the lactase of Rhizoctonia praticola was active only with p-methoxyaniline. The substrate specificities of the enzymes were determined by using gas chromatography to measure the decrease in substrate concentration during incubation. With p-chloroaniline as the substrate, the peroxidase and the Trametes lactase showed maximum activity near pH 4.2. The transformation of this substrate gave rise to a number of oligomers, ranging from dimers to pentamers, as determined by mass spectrometry. The product profilesmore » obtained by high-pressure liquid chromatography were similar for the two enzymes. A chemical reaction was observed between p-chloroaniline and an enzymatically formed dimer, resulting in the formation of a trimer. All three enzymes oxidized p-methoxyaniline to 2-amino-5-p-anisidinobenzoquinone di-p-methoxyphenylimine, but only the T. versicolor lactase and the peroxidase caused the formation of a pentamer (2,5-di-p-anisidinobenzoquinone di-p-methoxyphenylimine). These results demonstrate that in addition to horseradish peroxidase, a T. versicolor lactase can also polymerize aniline derivatives.« less

  17. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites.

    PubMed Central

    Mobley, E M; Pan, T

    1999-01-01

    Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are approximately 0.7 min(-1)in 10 mM MgCl(2)at 37 degrees C, approximately 4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate. PMID:10518624

  18. Binding Isotope Effects for para-Aminobenzoic Acid with Dihydropteroate Synthase from Staphylococcus aureus and Plasmodium falciparum.

    PubMed

    Stratton, Christopher F; Namanja-Magliano, Hilda A; Cameron, Scott A; Schramm, Vern L

    2015-10-16

    Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.

  19. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    PubMed

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  20. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    PubMed

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  1. Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding

    PubMed Central

    Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121

  2. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.

    PubMed

    Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek

    2018-01-15

    The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.

  3. Mechanism of substrate specificity in 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidases

    PubMed Central

    Siu, Karen K.W.; Asmus, Kyle; Zhang, Allison N.; Horvatin, Cathy; Li, Sheng; Liu, Tong; Moffatt, Barbara; Woods, Virgil L.; Howell, P. Lynne

    2010-01-01

    5′-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5′-alkylthio binding site in Arabidopsis thaliana AtM-TAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein–SAH complex at 2.2 Å resolution. The lack of catalytic activity appears to be related to the enzyme’s inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium–hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN. PMID:20554051

  4. Engineering Nucleotide Specificity of Succinyl-CoA Synthetase in Blastocystis: The Emerging Role of Gatekeeper Residues.

    PubMed

    Vashisht, Kapil; Verma, Sonia; Gupta, Sunita; Lynn, Andrew M; Dixit, Rajnikant; Mishra, Neelima; Valecha, Neena; Hamblin, Karleigh A; Maytum, Robin; Pandey, Kailash C; van der Giezen, Mark

    2017-01-24

    Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.

  5. Purification and biochemical characterization of a novel ecto-apyrase, MP67, from Mimosa pudica.

    PubMed

    Okuhata, Riku; Takishima, Takeshi; Nishimura, Naoaki; Ueda, Shogo; Tsuchiya, Takahide; Kanzawa, Nobuyuki

    2011-09-01

    We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP.

  6. Purification and Biochemical Characterization of a Novel Ecto-Apyrase, MP67, from Mimosa pudica1[C][W][OA

    PubMed Central

    Okuhata, Riku; Takishima, Takeshi; Nishimura, Naoaki; Ueda, Shogo; Tsuchiya, Takahide; Kanzawa, Nobuyuki

    2011-01-01

    We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP. PMID:21788364

  7. A novel intermembrane space–targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding

    PubMed Central

    Sideris, Dionisia P.; Petrakis, Nikos; Katrakili, Nitsa; Mikropoulou, Despina; Gallo, Angelo; Ciofi-Baffoni, Simone; Banci, Lucia; Bertini, Ivano

    2009-01-01

    Mia40 imports Cys-containing proteins into the mitochondrial intermembrane space (IMS) by ensuring their Cys-dependent oxidative folding. In this study, we show that the specific Cys of the substrate involved in docking with Mia40 is substrate dependent, the process being guided by an IMS-targeting signal (ITS) present in Mia40 substrates. The ITS is a 9-aa internal peptide that (a) is upstream or downstream of the docking Cys, (b) is sufficient for crossing the outer membrane and for targeting nonmitochondrial proteins, (c) forms an amphipathic helix with crucial hydrophobic residues on the side of the docking Cys and dispensable charged residues on the other side, and (d) fits complementary to the substrate cleft of Mia40 via hydrophobic interactions of micromolar affinity. We rationalize the dual function of Mia40 as a receptor and an oxidase in a two step–specific mechanism: an ITS-guided sliding step orients the substrate noncovalently, followed by docking of the substrate Cys now juxtaposed to pair with the Mia40 active Cys. PMID:20026652

  8. QM/MM Investigation of Substrate and Product Specificities of Suv4-20h2: How Does This Enzyme Generate Dimethylated H4K20 from Monomethylated Substrate?

    PubMed

    Qian, Ping; Guo, Haobo; Wang, Liang; Guo, Hong

    2017-06-13

    Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on histone proteins in the regulation of chromatin structure and gene expression. In contrast to many other PKMTs for which unmodified lysine is the methylation target, the enzymes in the Suv4-20 family are able to generate dimethylated product (H4K20me2) based exclusively on the monomethylated H4K20 substrate (H4K20me1). The origin of such substrate/product specificity is still not clear. Here, molecular dynamics (MD) and free energy (potential of mean force) simulations are undertaken using quantum mechanical/molecular mechanical (QM/MM) potentials to understand the substrate/product specificities of Suv4-20h2, a member of the Suv4-20 family. The free energy barriers for mono-, di-, and trimethylation in Suv4-20h2 obtained from the simulations are found to be well correlated with the specificities observed experimentally with the allowed dimethylation based on the H4K20me1 substrate and prohibited monomethylation and trimethylation based on H4K20 and H4K20me2, respectively. It is demonstrated that the reason for the relatively efficient dimethylation is an effective transition state (TS) stabilization through strengthening the CH···O interactions as well as the presence of a cation-π interaction at the transition state. The simulations also show that the failures of Suv4-20h2 to catalyze monomethylation and trimethylation are due, respectively, to a less effective TS stabilization and inability of the reactant complex containing H4K20me2 to adopt a reactive (near attack) configuration for methyl transfer. The results suggest that care must be exercised in the prediction of the substrate specificity based only on the existence of near attack configurations in substrate complexes.

  9. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

    PubMed

    Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence

    2016-03-08

    Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation.

    PubMed

    Berrios, Julio; Flores, María-Olga; Díaz-Barrera, Alvaro; Altamirano, Claudia; Martínez, Irene; Cabrera, Zaida

    2017-03-01

    The production of recombinant proteins by Pichia pastoris under AOX1 promoter is usually performed using methanol together with either glycerol or sorbitol as co-substrate. Although both co-substrates have been widely used, comparative studies are scarce. In addition, these comparisons have been performed at different specific growth rate (µ) that it is well known that has an important effect on productivity. Thus, the effect of using these co-substrates on the production of Rhyzopus oryzae lipase (ROL) by P. pastoris was compared in continuous cultures growing at the same µ at either 22 or 30 °C. Results show that using glycerol as co-substrate led to higher volumetric productivities, and lower specific and volumetric methanol consumption rates. Scale-up simulation with 10-10,000 L bioreactor sizes indicated that glycerol produced the highest volumetric productivity of ROL with lower aeration requirements. Therefore, glycerol rises as a better option than sorbitol in ROL production.

  11. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases.

    PubMed Central

    Danielson, U H; Esterbauer, H; Mannervik, B

    1987-01-01

    The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism. PMID:3426557

  12. Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.

    PubMed

    Datta, Suprama; Annapure, Uday S; Timson, David J

    2017-04-30

    Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).

  13. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis.

    PubMed

    Tan, Cheng Seng; Hassan, Maizom; Mohamed Hussein, Zeti Azura; Ismail, Ismanizan; Ho, Kok Lian; Ng, Chyan Leong; Zainal, Zamri

    2018-02-01

    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp 280 , Leu 294 and Ala 303 ). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Quantitative framework for ordered degradation of APC/C substrates.

    PubMed

    Lu, Dan; Girard, Juliet R; Li, Weihan; Mizrak, Arda; Morgan, David O

    2015-11-16

    During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

  15. Cofactor-dependent specificity of a DEAD-box protein.

    PubMed

    Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin

    2013-07-16

    DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.

  16. Structural analysis of enzymes used for bioindustry and bioremediation.

    PubMed

    Tanokura, Masaru; Miyakawa, Takuya; Guan, Lijun; Hou, Feng

    2015-01-01

    Microbial enzymes have been widely applied in the large-scale, bioindustrial manufacture of food products and pharmaceuticals due to their high substrate specificity and stereoselectivity, and their effectiveness under mild conditions with low environmental burden. At the same time, bioremedial techniques using microbial enzymes have been developed to solve the problem of industrial waste, particularly with respect to persistent chemicals and toxic substances. And finally, structural studies of these enzymes have revealed the mechanistic basis of enzymatic reactions, including the stereoselectivity and binding specificity of substrates and cofactors. The obtained structural insights are useful not only to deepen our understanding of enzymes with potential bioindustrial and/or bioremedial application, but also for the functional improvement of enzymes through rational protein engineering. This review shows the structural bases for various types of enzymatic reactions, including the substrate specificity accompanying cofactor-controlled and kinetic mechanisms.

  17. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Xu, Qin; Chen, Feng

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoatemore » in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.« less

  18. [Substrate specifity in Amoeba proteus].

    PubMed

    Sopina, V A

    2006-01-01

    Three different phosphatases ("slow", "middle" and "fast") were found in Amoeba proteus (strain B) after PAGE and a subsequent gel staining in 1-naphthyl phosphate containing incubation mixture (pH 9.0). Substrate specificity of these phosphatases was determined in supernatants of homogenates using inhibitors of phosphatase activity. All phosphatases showed a broad substrate specificity. Of 10 tested compounds, p-nitrophenyl phosphate was a preferable substrate for all 3 phosphatases. All phosphatases were able to hydrolyse bis-p-nitrophenyl phosphate and, hence, displayed phosphodiesterase activity. All phosphatases hydrolysed O-phospho-L-tyrosine to a greater or lesser degree. Only little differences in substrate specificity of phosphatases were noticed: 1) "fast" and "middle" phosphatases hydrolysed naphthyl phosphates and O-phospho-L-tyrosine less efficiently than did "slow" phosphatase; 2) "fast" and "middle" phosphatases hydrolysed 2- naphthyl phosphate to a lesser degree than 1-naphthyl phosphate 3) "fast" and "middle" phosphatases hydrolysed O-phospho-L-serine and O-phospho-L-threonine with lower intensity as compared with "slow" phosphatase; 4) as distinct from "middle" and "slow" phosphatases, the "fast" phosphatase hydrolysed glucose-6-phosphate very poorly. The revealed broad substrate specificity of "slow" phosphatase together with data of inhibitory analysis and results of experiments with reactivation of this phosphatase by Zn2+-ions after its inactivation by EDTA strongly suggest that only the "slow" phosphatase is a true alkaline phosphatase (EC 3.1.3.1). The alkaline phosphatase of A. proteus is secreted into culture medium where its activity is low. The enzyme displays both phosphomono- and phosphodiesterase activities, in addition to supposed protein phosphatase activity. It still remains unknown, to which particular phosphatase class the amoeban "middle" and "fast" phosphatases (pH 9.0) may be assigned.

  19. Allosteric Control of Substrate Specificity of the Escherichia coli ADP-glucose Pyrophosphorylase

    NASA Astrophysics Data System (ADS)

    Ebrecht, Ana C.; Solamen, Ligin; Hill, Benjamin L.; Iglesias, Alberto A.; Olsen, Kenneth W.; Ballicora, Miguel A.

    2017-06-01

    The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism towards the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme towards the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near 600-fold higher that other nucleotides, whereas in the absence of activator was only 3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.

  20. Hydrolytic properties and substrate specificity of the foot-and-mouth disease leader protease.

    PubMed

    Santos, Jorge A N; Gouvea, Iuri E; Júdice, Wagner A S; Izidoro, Mario A; Alves, Fabiana M; Melo, Robson L; Juliano, Maria A; Skern, Tim; Juliano, Luiz

    2009-08-25

    Foot-and-mouth disease virus, a global animal pathogen, possesses a single-stranded RNA genome that, on release into the infected cell, is immediately translated into a single polyprotein. This polyprotein product is cleaved during synthesis by proteinases contained within it into the mature viral proteins. The first cleavage is performed by the leader protease (Lb(pro)) between its own C-terminus and the N-terminus of VP4. Lb(pro) also specifically cleaves the two homologues of cellular eukaryotic initiation factor (eIF) 4G, preventing translation of capped mRNA. Viral protein synthesis is initiated internally and is thus unaffected. We used a panel of specifically designed FRET peptides to examine the effects of pH and ionic strength on Lb(pro) activity and investigate the size of the substrate binding site and substrate specificity. Compared to the class prototypes, papain and the cathepsins, Lb(pro) possesses several unusual characteristics, including a high sensitivity to salt and a very specific substrate binding site extending up to P(7). Indeed, almost all substitutions investigated were detrimental to Lb(pro) activity. Analysis of structural data showed that Lb(pro) binds residues P(1)-P(3) in an extended conformation, whereas residues P(4)-P(7) are bound in a short 3(10) helix. The specificity of Lb(pro) as revealed by the substituted peptides could be explained for all positions except P(5). Strikingly, Lb(pro) residues L178 and L143 contribute to the architecture of more than one substrate binding pocket. The diverse functions of these two Lb(pro) residues explain why Lb(pro) is one of the smallest, but simultaneously most specific, papain-like enzymes.

  1. Tremulatory and abdomen vibration signals enable communication through air in the stink bug Euschistus heros.

    PubMed

    Kavčič, Andreja; Cokl, Andrej; Laumann, Raúl A; Blassioli-Moraes, Maria Carolina; Borges, Miguel

    2013-01-01

    Communication by substrate-borne mechanical signals is widespread among animals but remains one of their least understood communication channels. Past studies of vibrational communication in insects have been oriented predominantly to communication during mating, showing that species- and sex-specific vibrational signals enable recognition and localization of potential mates on continuous solid substrates. No special attention has been paid to vibrational signals with less obvious specificity as well as to the possibility of vibrational communication across substrates that are not in physical contact. We aimed to reinvestigate emission of the aforementioned vibrational signals transmitted through a plant in the stink bug Euschistus heros (Pentatomidae: Pentatominae) and to check whether individuals are able to communicate across adjecent, physically separated substrates. We used laser vibrometry for registration of substrate-borne vibrational signals on a bean plant. Using two bean plants separated for 3 to 7 cm between two most adjacent leaves, we investigated the possibility of transmission of these signals through air. Our study showed that males and females of E. heros communicate using tremulatory, percussion and buzzing signals in addition to the previously described signals produced by vibrations of the abdomen. Contrary to the latter, the first three signal types did not differ between sexes or between pentatomid species. Experiments with two physically separated plants showed significant searching behaviour and localization of vibrational signals of an E. heros male or a female, in response to abdominal vibration produced signals of a pair duetting on the neighbouring plant, in comparison to control where no animals were on the neighbouring plant. We also confirmed that transmission through air causes amplitude and frequency decay of vibrational signals, which suggests high-amplitude, low-frequency tremulatory signals of these stink bugs their most plausible way of communication across discontinuous substrates.

  2. Tremulatory and Abdomen Vibration Signals Enable Communication through Air in the Stink Bug Euschistus heros

    PubMed Central

    Kavčič, Andreja; Čokl, Andrej; Laumann, Raúl A.; Blassioli-Moraes, Maria Carolina; Borges, Miguel

    2013-01-01

    Communication by substrate-borne mechanical signals is widespread among animals but remains one of their least understood communication channels. Past studies of vibrational communication in insects have been oriented predominantly to communication during mating, showing that species- and sex-specific vibrational signals enable recognition and localization of potential mates on continuous solid substrates. No special attention has been paid to vibrational signals with less obvious specificity as well as to the possibility of vibrational communication across substrates that are not in physical contact. We aimed to reinvestigate emission of the aforementioned vibrational signals transmitted through a plant in the stink bug Euschistus heros (Pentatomidae: Pentatominae) and to check whether individuals are able to communicate across adjecent, physically separated substrates. We used laser vibrometry for registration of substrate-borne vibrational signals on a bean plant. Using two bean plants separated for 3 to 7 cm between two most adjacent leaves, we investigated the possibility of transmission of these signals through air. Our study showed that males and females of E. heros communicate using tremulatory, percussion and buzzing signals in addition to the previously described signals produced by vibrations of the abdomen. Contrary to the latter, the first three signal types did not differ between sexes or between pentatomid species. Experiments with two physically separated plants showed significant searching behaviour and localization of vibrational signals of an E. heros male or a female, in response to abdominal vibration produced signals of a pair duetting on the neighbouring plant, in comparison to control where no animals were on the neighbouring plant. We also confirmed that transmission through air causes amplitude and frequency decay of vibrational signals, which suggests high-amplitude, low-frequency tremulatory signals of these stink bugs their most plausible way of communication across discontinuous substrates. PMID:23460803

  3. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    PubMed

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  4. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species.

    PubMed

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa.

  5. Dihydroflavonol 4-Reductase Genes Encode Enzymes with Contrasting Substrate Specificity and Show Divergent Gene Expression Profiles in Fragaria Species

    PubMed Central

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (K cat/K m values) of DFR1 combined with the loss of F3’H activity late in fruit development of F.×ananassa. PMID:25393679

  6. Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis▿†

    PubMed Central

    Dudek, Hanna M.; de Gonzalo, Gonzalo; Torres Pazmiño, Daniel E.; Stępniak, Piotr; Wyrwicz, Lucjan S.; Rychlewski, Leszek; Fraaije, Marco W.

    2011-01-01

    Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope. PMID:21724896

  7. Evolution of substrate specificity in a retained enzyme driven by gene loss

    PubMed Central

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N; Verduzco-Castro, Ernesto A; Michalska, Karolina; Wu, Chenggang; Noda-García, Lianet; Babnigg, Gyorgy; Endres, Michael; Medina-Ruíz, Sofía; Santoyo-Flores, Julián; Carrillo-Tripp, Mauricio; Ton-That, Hung; Joachimiak, Andrzej; Henry, Christopher S; Barona-Gómez, Francisco

    2017-01-01

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes. DOI: http://dx.doi.org/10.7554/eLife.22679.001 PMID:28362260

  8. Evolution of Substrate Specificity in A Retained Enzyme Driven by Gene Loss

    DOE PAGES

    Juarez-Vazquez, Ana L.; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.; ...

    2017-03-31

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. Here, we apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We also observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to amore » monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. These results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  9. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  10. Evolution of substrate specificity in a retained enzyme driven by gene loss

    DOE PAGES

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.; ...

    2017-03-31

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence oftrpandhisgenes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficientmore » form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Finally, our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  11. Characterization of a novel debranching enzyme from Nostoc punctiforme possessing a high specificity for long branched chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ji-Hye; Lee, Heeseob; Kim, Young-Wan

    2009-01-09

    A novel debranching enzyme from Nostoc punctiforme PCC73102 (NPDE) exhibits hydrolysis activity toward both {alpha}-(1,6)- and {alpha}-(1,4)-glucosidic linkages. The action patterns of NPDE revealed that branched chains are released first, and the resulting maltooligosaccharides are then hydrolyzed. Analysis of the reaction with maltooligosaccharide substrates labeled with {sup 14}C-glucose at the reducing end shows that NPDE specifically liberates glucose from the reducing end. Kinetic analyses showed that the hydrolytic activity of NPDE is greatly affected by the length of the substrate. The catalytic efficiency of NPDE increased considerably upon using substrates that can occupy at least eight glycone subsites such asmore » maltononaose and maltooctaosyl-{alpha}-(1,6)-{beta}-cyclodextrin. These results imply that NPDE has a unique subsite structure consisting of -8 to +1 subsites. Given its unique subsite structure, side chains shorter than maltooctaose in amylopectin were resistant to hydrolysis by NPDE, and the population of longer side chains was reduced.« less

  12. Evolution of substrate specificity in a retained enzyme driven by gene loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence oftrpandhisgenes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficientmore » form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Finally, our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  13. Evolution of Substrate Specificity in A Retained Enzyme Driven by Gene Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez-Vazquez, Ana L.; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.

    The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. Here, we apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We also observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to amore » monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. These results show how gene loss can drive the evolution of substrate specificity from retained enzymes.« less

  14. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase

    PubMed Central

    Myers, Michael P.; Stolarov, Javor P.; Eng, Charis; Li, Jing; Wang, Steven I.; Wigler, Michael H.; Parsons, Ramon; Tonks, Nicholas K.

    1997-01-01

    Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor. PMID:9256433

  15. Alteration of hairpin ribozyme specificity utilizing PCR.

    PubMed

    DeGrandis, P; Hampel, A; Galasinski, S; Borneman, J; Siwkowski, A; Altschuler, M

    1994-12-01

    We have developed a method by which a researcher can quickly alter the specificity of a trans hairpin ribozyme. Utilizing this PCR method, two oligonucleotides, and any target vector, new ribozyme template sequences can be generated without the synthesis of longer oligonucleotides. We have produced templates with altered specificity for both standard and modified (larger) ribozymes. After transcription, these ribozymes show specific cleavage activity with the new substrate beta-glucuronidase (GUS), and no activity against the original substrate (HIV-1, 5' leader sequence). Utilizing this technique, it is also possible to produce an inactive ribozyme that can be used as an antisense control. Applications of this procedure would provide a rapid and economical system for the assessment of trans ribozyme activity.

  16. Kinetic studies and molecular modelling attribute a crucial role in the specificity and stereoselectivity of penicillin acylase to the pair ArgA145-ArgB263.

    PubMed

    Guncheva, Maya; Ivanov, Ivaylo; Galunsky, Boris; Stambolieva, Nicolina; Kaneti, Jose

    2004-06-01

    Kinetic experiments with a substrate series of phenylacetyl-arylamides reveal that at least one polar group in the amine moiety is required for the proper orientation of the substrate in the large nucleophile-binding subsite of penicillin acylase of Escherichia coli. Quantum mechanical molecular modelling of enzyme-substrate interactions in the enzyme active site shows that in the case of substrates lacking local symmetry, the productive binding implies two nonsymmetrical arrangements with respect to the two positively charged guanidinium residues of ArgA145 and ArgB263. This indicates a crucial role of the specified arginine pair in the substrate- and stereoselectivity of penicillin acylase.

  17. Inhibition of Arabidopsis growth by the allelopathic compound azetidine-2-carboxylate is due to the low amino acid specificity of cytosolic prolyl-tRNA synthetase.

    PubMed

    Lee, Jiyeon; Joshi, Naveen; Pasini, Rita; Dobson, Renwick C J; Allison, Jane; Leustek, Thomas

    2016-10-01

    The toxicity of azetidine-2-carboxylic acid (A2C), a structural analogue of L-proline, results from its incorporation into proteins due to misrecognition by prolyl-tRNA synthetase (ProRS). The growth of Arabidopsis thaliana seedling roots is more sensitive to inhibition by A2C than is cotyledon growth. Arabidopsis contains two ProRS isozymes. AtProRS-Org (At5g52520) is localized in chloroplasts/mitochondria, and AtProRS-Cyt (At3g62120) is cytosolic. AtProRS-Cyt mRNA is more highly expressed in roots than in cotyledons. Arabidopsis ProRS isoforms were expressed as His-tagged recombinant proteins in Escherichia coli. Both enzymes were functionally active in ATP-PPi exchange and aminoacylation assays, and showed similar K m for L-proline. A major difference was observed in the substrate specificity of the two enzymes. AtProRS-Cyt showed nearly identical substrate specificity for L-proline and A2C, but for AtProRS-Org the specificity constant was 77.6 times higher for L-proline than A2C, suggesting that A2C-sensitivity may result from lower amino acid specificity of AtProRS-Cyt. Molecular modelling and simulation results indicate that this specificity difference between the AtProRS isoforms may result from altered modes of substrate binding. Similar kinetic results were obtained with the ProRSs from Zea mays, suggesting that the difference in substrate specificity is a conserved feature of ProRS isoforms from plants that do not accumulate A2C and are sensitive to A2C toxicity. The discovery of the mode of action of A2C toxicity could lead to development of biorational weed management strategies. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Effect of tacticity on the structure and glass transition temperature of polystyrene adsorbed onto solid surfaces

    NASA Astrophysics Data System (ADS)

    Negash, Solomon; Tatek, Yergou B.; Tsige, Mesfin

    2018-04-01

    We have carried out atomistic (all-atom) molecular dynamics simulations to investigate the effect of tacticity on the structure and glass transition temperature (Tg) of polystyrene (PS) thin films adsorbed on two distinct types of solid substrates. The systems consist of thin films made of atactic, isotactic, and syndiotactic PS chains supported by graphite or hydroxylated α-quartz substrates, which are known to be atomically flat but chemically and structurally different. We have observed a marked dependence of the film structure on substrate type as well as on tacticity. For instance, rings' orientation near substrate surfaces depends on substrate type for atactic PS and isotactic PS films, while no such dependence is observed for syndiotactic PS films whose interfacial structure seems to result from their propensity to adopt the trans conformation rather than their specific interaction with the substrates. Moreover, our results indicate that glass transition temperatures of substrate supported polystyrene films are higher compared to those of the corresponding free-standing films. More specifically, PS films on graphite exhibit larger Tg values than those on α-quartz, and we have noticed that syndiotactic PS has the largest Tg irrespective of the substrate type. Furthermore, the local Tg in the region of the film in contact with the substrates shows a strong tacticity and substrate dependence, whereas no dependencies were found for the local Tg in the middle of the film. Substrate-film interaction energy and chains' dynamics near substrate-film interfaces were subsequently investigated in order to substantiate the obtained Tgs, and it was found that films with higher Tgs are strongly adsorbed on the substrates and/or exhibit smaller interfacial chains' dynamics essentially due to steric hindrance.

  19. Variable substrate preference among phospholipase D toxins from sicariid spiders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, andmore » all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. Lastly, the evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.« less

  20. Variable substrate preference among phospholipase D toxins from sicariid spiders

    DOE PAGES

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.; ...

    2015-03-09

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, andmore » all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. Lastly, the evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.« less

  1. Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders*

    PubMed Central

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.; Delahaye, Jared L.; Bandarian, Vahe; Binford, Greta J.; Cordes, Matthew H. J.

    2015-01-01

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey. PMID:25752604

  2. A novel non-thermostable deuterolysin from Aspergillus oryzae.

    PubMed

    Maeda, Hiroshi; Katase, Toru; Sakai, Daisuke; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Abe, Keietsu; Yamagata, Youhei

    2016-09-01

    Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.

  3. Regulation of Proteolysis by Human Deubiquitinating Enzymes

    PubMed Central

    Eletr, Ziad M.; Wilkinson, Keith D.

    2013-01-01

    The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USP) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. PMID:23845989

  4. Controlling the preferential orientation in sol-gel prepared CaCu3Ti4O12 thin films by LaAlO3 and NdGaO3 substrates

    NASA Astrophysics Data System (ADS)

    Pongpaiboonkul, Suriyong; Kasa, Yumairah; Phokharatkul, Ditsayut; Putasaeng, Bundit; Hodak, Jose H.; Wisitsoraat, Anurat; Hodak, Satreerat K.

    2016-11-01

    Researchers have paid considerable attention to CaCu3Ti4O12 (CCTO) due to the colossal dielectric constant over a wide range of frequency and temperature. Despite of the growing number of works dealing with CCTO, there have been few studies of the role played by the substrate in inducing structural and dielectric effects of this material. In this work, highly-oriented CCTO thin films have been deposited on LaAlO3(100), NdGaO3(100) and NdGaO3(110) substrates using a sol-gel method. These single crystal substrates were chosen in terms of small lattice mismatch between CCTO and the substrate. The X-ray diffraction patterns showed that the CCTO film layers grow with different orientations depending upon the substrate used. We show that the preferred orientation of CCTO thin films can be manipulated to a high degree by growing it on specific crystal planes of the substrates without the use of buffer layers. Colossal dielectric constants are observed in our films which appear to correlate with the film crystallinity and preferred orientation.

  5. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.

    PubMed

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S; Flick, Robert; Wolf, Yuri I; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M; Koonin, Eugene V; Yakunin, Alexander F

    2015-07-24

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites.

    PubMed

    Wang, Yanan; Song, Jiangning; Marquez-Lago, Tatiana T; Leier, André; Li, Chen; Lithgow, Trevor; Webb, Geoffrey I; Shen, Hong-Bin

    2017-07-18

    Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates; however, the complete repertoire of MMP substrates remains uncharacterized. Indeed, computational prediction of substrate-cleavage sites associated with MMPs is a challenging problem. This holds especially true when considering MMPs with few experimentally verified cleavage sites, such as for MMP-2, -3, -7, and -8. To fill this gap, we propose a new knowledge-transfer computational framework which effectively utilizes the hidden shared knowledge from some MMP types to enhance predictions of other, distinct target substrate-cleavage sites. Our computational framework uses support vector machines combined with transfer machine learning and feature selection. To demonstrate the value of the model, we extracted a variety of substrate sequence-derived features and compared the performance of our method using both 5-fold cross-validation and independent tests. The results show that our transfer-learning-based method provides a robust performance, which is at least comparable to traditional feature-selection methods for prediction of MMP-2, -3, -7, -8, -9 and -12 substrate-cleavage sites on independent tests. The results also demonstrate that our proposed computational framework provides a useful alternative for the characterization of sequence-level determinants of MMP-substrate specificity.

  7. Measurements of weak interactions between truncated substrates and a hammerhead ribozyme by competitive kinetic analyses: implications for the design of new and efficient ribozymes with high sequence specificity

    PubMed Central

    Kasai, Yasuhiro; Shizuku, Hideki; Takagi, Yasuomi; Warashina, Masaki; Taira, Kazunari

    2002-01-01

    Exploitation of ribozymes in a practical setting requires high catalytic activity and strong specificity. The hammerhead ribozyme R32 has considerable potential in this regard since it has very high catalytic activity. In this study, we have examined how R32 recognizes and cleaves a specific substrate, focusing on the mechanism behind the specificity. Comparing rates of cleavage of a substrate in a mixture that included the correct substrate and various substrates with point mutations, we found that R32 cleaved the correct substrate specifically and at a high rate. To clarify the source of this strong specificity, we quantified the weak interactions between R32 and various truncated substrates, using truncated substrates as competitive inhibitors since they were not readily cleaved during kinetic measurements of cleavage of the correct substrate, S11. We found that the strong specificity of the cleavage reaction was due to a closed form of R32 with a hairpin structure. The self-complementary structure within R32 enabled the ribozyme to discriminate between the correct substrate and a mismatched substrate. Since this hairpin motif did not increase the Km (it did not inhibit the binding interaction) or decrease the kcat (it did not decrease the cleavage rate), this kind of hairpin structure might be useful for the design of new ribozymes with strong specificity and high activity. PMID:12034825

  8. Self-powered enzyme micropumps

    NASA Astrophysics Data System (ADS)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  9. Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.

    PubMed

    Støve, Svein Isungset; Magin, Robert S; Foyn, Håvard; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas

    2016-07-06

    N-Terminal acetylation is a common and important protein modification catalyzed by N-terminal acetyltransferases (NATs). Six human NATs (NatA-NatF) contain one catalytic subunit each, Naa10 to Naa60, respectively. In contrast to the ribosome-associated NatA to NatE, NatF/Naa60 specifically associates with Golgi membranes and acetylates transmembrane proteins. To gain insight into the molecular basis for the function of Naa60, we developed an Naa60 bisubstrate CoA-peptide conjugate inhibitor, determined its X-ray structure when bound to CoA and inhibitor, and carried out biochemical experiments. We show that Naa60 adapts an overall fold similar to that of the catalytic subunits of ribosome-associated NATs, but with the addition of two novel elongated loops that play important roles in substrate-specific binding. One of these loops mediates a dimer to monomer transition upon substrate-specific binding. Naa60 employs a catalytic mechanism most similar to Naa50. Collectively, these data reveal the molecular basis for Naa60-specific acetyltransferase activity with implications for its Golgi-specific functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    PubMed

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of k cat , but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  11. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    PubMed

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  12. Substrate-driven chemotactic assembly in an enzyme cascade.

    PubMed

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M; Gilson, Michael K; Butler, Peter J; Hess, Henry; Benkovic, Stephen J; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  13. Substrate-driven chemotactic assembly in an enzyme cascade

    NASA Astrophysics Data System (ADS)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  14. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    PubMed

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  15. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates.

    PubMed

    Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A

    2015-09-07

    The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.

  16. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    PubMed Central

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  17. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  18. Distinct neural substrates for visual short-term memory of actions.

    PubMed

    Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui

    2018-06-26

    Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.

  19. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin.

    PubMed

    Renvoise, Julien; Burlot, Delphine; Marin, Gérard; Derail, Christophe

    2009-02-23

    This work deals with the rheological behavior and adherence properties of pressure sensitive adhesive formulations dedicated to medical applications. We have developed a specific viscoelastic substrate which mimics adhesion on human skin to measure the adherence properties of PSAs when they are stuck on the human skin. By comparing peeling results of PSAs, dedicated to medical applications, stuck on human skin and on this viscoelastic substrate we show that this substrate, based on a blend of natural proteins, presents a better representation of the interactions occurring at the skin/adhesive interface than conventional substrates used for peel test (i.e. glass and steel).

  20. Studies on carboxymethyl cellulase and xylanase activities of anaerobic fungal isolate CR4 from the bovine rumen.

    PubMed

    Matsui, Hiroki; Ban-Tokuda, Tomomi

    2008-12-01

    An anaerobic fungal isolate, CR4, was isolated from the bovine rumen. The DNA sequence of internal transcribed spacer region 1 showed that CR4 belonged to the genus Caecocmyces. The dry matter digestibility of timothy hay by anaerobic fungal isolate CR4 was determined. The effects of carbohydrate growth substrates on carboxymethyl cellulase (CMCase) and xylanase activities also were examined. The extent of dry matter digestibility of timothy hay was 31% at 6 days' incubation. The highest specific activity of CMCase in the culture supernatant (SN) fraction was observed in xylose culture. The activity of CMCase was not detected in the SN fraction of cellobiose and xylan or in the cell-bound fraction of all growth substrates. The highest specific activity of xylanase in the SN fraction was observed in glucose culture. These results suggest that fiber-degrading enzyme activities were affected by growth substrates and that CR4 is xylanolytic. Zymogram analysis showed that CR4 produces three CMCases of molecular mass (95, 89, and 64 kDa) and three xylanases of molecular mass (82, 73, and 66 kDa). This is the first demonstration showing the molecular mass of fiber-degrading enzymes of Caecomyces.

  1. Molecular Basis for the Relative Substrate Specificity of Human Immunodeficiency Virus Type 1 and Feline Immunodeficiency Virus Proteases

    PubMed Central

    Beck, Zachary Q.; Lin, Ying-Chuan; Elder, John H.

    2001-01-01

    We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3′ region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF↓VVNGLVK-NH2 (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2′ position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1′, FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2′ subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1′ subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF↓VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVFΨ(CH2NH)VVNGL-NH2. This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors. PMID:11533208

  2. The Structure and Specificity of the Type III Secretion System Effector NleC Suggest a DNA Mimicry Mechanism of Substrate Recognition

    PubMed Central

    2015-01-01

    Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221

  3. Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction.

    PubMed

    Wang, Hualei; Sun, Huihui; Wei, Dongzhi

    2013-02-18

    A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(-)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(-)-mandelic acid without the unwanted byproduct is needed. A novel nitrilase (BCJ2315) was discovered from Burkholderia cenocepacia J2315 through phylogeny-based enzymatic substrate specificity prediction (PESSP). This nitrilase is a mandelonitrile hydrolase that could efficiently hydrolyze mandelonitrile to (R)-(-)-mandelic acid, with a high enantiomeric excess of 98.4%. No byproduct was observed in this hydrolysis process. BCJ2315 showed the highest identity of 71% compared with other nitrilases in the amino acid sequence. BCJ2315 possessed the highest activity toward mandelonitrile and took mandelonitrile as the optimal substrate based on the analysis of substrate specificity. The kinetic parameters Vmax, Km, Kcat, and Kcat/Km toward mandelonitrile were 45.4 μmol/min/mg, 0.14 mM, 15.4 s(-1), and 1.1×10(5) M(-1)s(-1), respectively. The recombinant Escherichia coli M15/BCJ2315 had a strong substrate tolerance and could completely hydrolyze mandelonitrile (100 mM) with fewer amounts of wet cells (10 mg/ml) within 1 h. PESSP is an efficient method for discovering an ideal mandelonitrile hydrolase. BCJ2315 has high affinity and catalytic efficiency toward mandelonitrile. This nitrilase has great advantages in the production of optically pure (R)-(-)-mandelic acid because of its high activity and enantioselectivity, strong substrate tolerance, and having no unwanted byproduct. Thus, BCJ2315 has great potential in the practical production of optically pure (R)-(-)-mandelic acid in the industry.

  4. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation

    PubMed Central

    Chen, Chun-I; Keusch, Jeremy J; Klein, Dominique; Hess, Daniel; Hofsteenge, Jan; Gut, Heinz

    2012-01-01

    Protein O-fucosylation is a post-translational modification found on serine/threonine residues of thrombospondin type 1 repeats (TSR). The fucose transfer is catalysed by the enzyme protein O-fucosyltransferase 2 (POFUT2) and >40 human proteins contain the TSR consensus sequence for POFUT2-dependent fucosylation. To better understand O-fucosylation on TSR, we carried out a structural and functional analysis of human POFUT2 and its TSR substrate. Crystal structures of POFUT2 reveal a variation of the classical GT-B fold and identify sugar donor and TSR acceptor binding sites. Structural findings are correlated with steady-state kinetic measurements of wild-type and mutant POFUT2 and TSR and give insight into the catalytic mechanism and substrate specificity. By using an artificial mini-TSR substrate, we show that specificity is not primarily encoded in the TSR protein sequence but rather in the unusual 3D structure of a small part of the TSR. Our findings uncover that recognition of distinct conserved 3D fold motifs can be used as a mechanism to achieve substrate specificity by enzymes modifying completely folded proteins of very wide sequence diversity and biological function. PMID:22588082

  5. Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates

    PubMed Central

    Kang, Hong-Jun; Vassilopoulos, Athanassios

    2016-01-01

    Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context. PMID:26966987

  6. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misaghi, S.; Galardy, P.J.; Meester, W.J.

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structuremore » confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.« less

  7. The Cysteine Dioxygenase Homologue from Pseudomonas aeruginosa Is a 3-Mercaptopropionate Dioxygenase*

    PubMed Central

    Tchesnokov, Egor P.; Fellner, Matthias; Siakkou, Eleni; Kleffmann, Torsten; Martin, Lois W.; Aloi, Sekotilani; Lamont, Iain L.; Wilbanks, Sigurd M.; Jameson, Guy N. L.

    2015-01-01

    Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site. PMID:26272617

  8. The PriA Replication Restart Protein Blocks Replicase Access Prior to Helicase Assembly and Directs Template Specificity through Its ATPase Activity*

    PubMed Central

    Manhart, Carol M.; McHenry, Charles S.

    2013-01-01

    The PriA protein serves as an initiator for the restart of DNA replication on stalled replication forks and as a checkpoint protein that prevents the replicase from advancing in a strand displacement reaction on forks that do not contain a functional replicative helicase. We have developed a primosomal protein-dependent fluorescence resonance energy transfer (FRET) assay using a minimal fork substrate composed of synthetic oligonucleotides. We demonstrate that a self-loading reaction, which proceeds at high helicase concentrations, occurs by threading of a preassembled helicase over free 5′-ends, an event that can be blocked by attaching a steric block to the 5′-end or coating DNA with single-stranded DNA binding protein. The specificity of PriA for replication forks is regulated by its intrinsic ATPase. ATPase-defective PriA K230R shows a strong preference for substrates that contain no gap between the leading strand and the duplex portion of the fork, as demonstrated previously. Wild-type PriA prefers substrates with larger gaps, showing maximal activity on substrates on which PriA K230R is inactive. We demonstrate that PriA blocks replicase function on forks by blocking its binding. PMID:23264623

  9. Substrate-specifying determinants of the nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2

    PubMed Central

    2004-01-01

    The nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2/autotaxin are structurally related eukaryotic ecto-enzymes, but display a very different substrate specificity. NPP1 releases nucleoside 5′-monophosphates from various nucleotides, whereas NPP2 mainly functions as a lysophospholipase D. We have used a domain-swapping approach to map substrate-specifying determinants of NPP1 and NPP2. The catalytic domain of NPP1 fused to the N- and C-terminal domains of NPP2 was hyperactive as a nucleotide phosphodiesterase, but did not show any lysophospholipase D activity. In contrast, chimaeras of the catalytic domain of NPP2 and the N- and/or C-terminal domains of NPP1 were completely inactive. These data indicate that the catalytic domain as well as both extremities of NPP2 contain lysophospholipid-specifying sequences. Within the catalytic domain of NPP1 and NPP2, we have mapped residues close to the catalytic site that determine the activities towards nucleotides and lysophospholipids. We also show that the conserved Gly/Phe-Xaa-Gly-Xaa-Xaa-Gly (G/FXGXXG) motif near the catalytic site is required for metal binding, but is not involved in substrate-specification. Our data suggest that the distinct activities of NPP1 and NPP2 stem from multiple differences throughout the polypeptide chain. PMID:15096095

  10. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases*

    PubMed Central

    Tinti, Michele; Paoluzi, Serena; Santonico, Elena; Masch, Antonia; Schutkowski, Mike

    2017-01-01

    Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level. PMID:28159843

  11. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain

    PubMed Central

    Fukunaga, Ryuya; Colpan, Cansu; Han, Bo W; Zamore, Phillip D

    2014-01-01

    In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5′ terminal phosphate and a two-nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme. PMID:24488111

  12. Substrate Specificity of MarP, a Periplasmic Protease Required for Resistance to Acid and Oxidative Stress in Mycobacterium tuberculosis*

    PubMed Central

    Small, Jennifer L.; O'Donoghue, Anthony J.; Boritsch, Eva C.; Tsodikov, Oleg V.; Knudsen, Giselle M.; Vandal, Omar; Craik, Charles S.; Ehrt, Sabine

    2013-01-01

    The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1′. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond. PMID:23504313

  13. Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates.

    PubMed

    Petrera, Agnese; Amstutz, Beat; Gioia, Magda; Hähnlein, Janine; Baici, Antonio; Selchow, Petra; Ferraris, Davide M; Rizzi, Menico; Sbardella, Diego; Marini, Stefano; Coletta, Massimo; Sander, Peter

    2012-07-01

    Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.

  14. Structural Determinants of Substrate Recognition in the HAD Superfamily Member D-glycero-D-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.; Wang, L; Huang, H

    2010-01-01

    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB subfamily, was selected for structure-function analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 {angstrom} resolution), in a complex with Mg{supmore » 2+} and orthophosphate (1.8 {angstrom} resolution), and in a complex with Mg{sup 2+} and D-glycero-D-manno-heptose 1{beta},7-bisphosphate (2.2 {angstrom} resolution) were determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to Mg{sup 2+} and orthophosphate (1.7 {angstrom} resolution). The structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within the HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.« less

  15. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    PubMed

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  16. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.

    PubMed

    Kumar, Ish; Pratt, R F

    2005-08-02

    The Streptomyces R61 dd-peptidase, a functional model for penicillin-binding proteins, catalyzes the hydrolysis and aminolysis of d-alanyl-d-alanine-terminating peptides by specific amines. In vivo, this reaction completes bacterial cell wall biosynthesis. For in vitro studies of this enzyme to date, various nonspecific acyl-donor substrates have been employed. Recently, however, a peptidoglycan-mimetic peptide substrate, glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl-d-alanine, has been described that is much more specific for this enzyme. In this paper, we describe the synthesis and kinetic characterization of an analogous thiolester substrate, 3-(N-glycyl-l-cysteinyl)-propanoyl-d-alanyl-d-thiolactate, that the enzyme hydrolyzes and aminolyzes very efficiently (k(cat)/K(m) = 1.0 x 10(7) s(-)(1) M(-)(1)). Direct or indirect, by means of a thiol trap, spectrophotometric monitoring of the reactions of this substrate is readily achieved. Deacylation of the enzyme is rate-determining under substrate saturation conditions, and therefore the aminolysis reaction can be directly studied. The results show that d-amino acids and certain Gly-l-Xaa dipeptides and tripeptides may act as acyl acceptors at the active site of the enzyme. d-Phenylalanine and Gly-l-Phe were the most effective d-amino acid and dipeptide acceptors, respectively. On the basis of the dual specificity of the active site for acceptors (d-amino acids and Gly-l-Xaa peptides), "dual function" acceptors were designed and synthesized. Two of these, aminomalon-(N-ethyl)amide and aminomalon-(N-phenethyl)amide, were particularly effective. It did seem, however, that the observed rates of reaction of these very effective acceptors may be limited by some common, possibly physical, step. More extended, peptidoglycan-like, acceptors were found to be essentially unreactive. The reasons for this counterintuitive behavior are discussed.

  17. Crystal Structures of the Novel Cytosolic 5′-Nucleotidase IIIB Explain Its Preference for m7GMP

    PubMed Central

    Monecke, Thomas; Buschmann, Juliane; Neumann, Piotr; Wahle, Elmar; Ficner, Ralf

    2014-01-01

    5′-nucleotidases catalyze the hydrolytic dephosphorylation of nucleoside monophosphates. As catabolic enzymes they contribute significantly to the regulation of cellular nucleotide levels; misregulation of nucleotide metabolism and nucleotidase deficiencies are associated with a number of diseases. The seven human 5′-nucleotidases differ with respect to substrate specificity and cellular localization. Recently, the novel cytosolic 5′-nucleotidase III-like protein, or cN-IIIB, has been characterized in human and Drosophila. cN-IIIB exhibits a strong substrate preference for the modified nucleotide 7-methylguanosine monophosphate but the structural reason for this preference was unknown. Here, we present crystal structures of cN-IIIB from Drosophila melanogaster bound to the reaction products 7-methylguanosine or cytidine. The structural data reveal that the cytosine- and 7-methylguanine moieties of the products are stacked between two aromatic residues in a coplanar but off-centered position. 7-methylguanosine is specifically bound through π-π interactions and distinguished from unmodified guanosine by additional cation-π coulomb interactions between the aromatic side chains and the positively charged 7-methylguanine. Notably, the base is further stabilized by T-shaped edge-to-face stacking of an additional tryptophan packing perpendicularly against the purine ring and forming, together with the other aromates, an aromatic slot. The structural data in combination with site-directed mutagenesis experiments reveal the molecular basis for the broad substrate specificity of cN-IIIB but also explain the substrate preference for 7-methylguanosine monophosphate. Analyzing the substrate specificities of cN-IIIB and the main pyrimidine 5′-nucleotidase cN-IIIA by mutagenesis studies, we show that cN-IIIA dephosphorylates the purine m7GMP as well, hence redefining its substrate spectrum. Docking calculations with cN-IIIA and m7GMP as well as biochemical data reveal that Asn69 does not generally exclude the turnover of purine substrates thus correcting previous suggestions. PMID:24603684

  18. Cellulolytic Enzymes Production via Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate.

    PubMed

    Brijwani, Khushal; Vadlani, Praveen V

    2011-01-01

    We investigated the effect of pretreatment on the physicochemical characteristics-crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.

  19. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    PubMed

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  20. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshin,A.; Shiryaev, S.; Strongin, A.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis andmore » allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.« less

  1. Human and mouse eLOX3 have distinct substrate specificities: implications for their linkage with lipoxygenases in skin

    PubMed Central

    Yu, Zheyong; Schneider, Claus; Boeglin, William E.; Brash, Alan R.

    2008-01-01

    Genetic and biochemical evidence suggests a functional link between human 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3) in normal differentiation of the epidermis; LOX-derived fatty acid hydroperoxide is isomerized by the atypical eLOX3 into a specific epoxyalcohol that is a potential mediator in the pathway. Mouse epidermis expresses a different complement of LOX enzymes, and therefore this metabolic linkage could differ. To test this concept, we compared the substrate specificities of recombinant mouse and human eLOX3 toward sixteen hydroperoxy stereoisomers of arachidonic and linoleic acids. Both enzymes metabolized R-hydroperoxides 2–3 times faster than the corresponding S enantiomers. Whereas 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE) is the best substrate for human eLOX3 (2.4 sec−1; at 30 µM substrate), mouse eLOX3 shows the highest turnover with 8R-HPETE (2.9 sec−1) followed by 8S-HPETE (1.3 sec−1). Novel product structures were characterized from reactions of mouse eLOX3 with 5S-, 8R-, and 8S-HPETEs. 8S-HPETE is converted specifically to a single epoxyalcohol, identified as 10R-hydroxy-8S,9S-epoxyeicosa-5Z,11Z,14Z-trienoic acid. The substrate preference of mouse eLOX3 and the unique occurrence of an 8S-LOX enzyme in mouse skin point to a potential LOX pathway for the production of epoxyalcohol in murine epidermal differentiation. PMID:17045234

  2. Mechanical and wear properties of aluminum coating prepared by cold spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Siti Nurul Akmal, E-mail: em-leo277@yahoo.com; Manap, Abreeza, E-mail: Abreeza@uniten.edu.my; Afandi, Nurfanizan Mohd

    In this study, aluminum (Al) powders were deposited onto Al substrates using cold spray to form a coating. The main objective is to investigate and compare the microstructure, mechanical and wear properties of Al coating to that of the Al substrate. The microstructure of the coating and substrate were observed using Scanning Electron Microscope (SEM). Hardness was evaluated using the Vickers Hardness test and wear properties were investigated using a pin-on-disk wear test machine. The elemental composition of the coating and substrate was determined using Energy-dispersive X-ray spectroscopy (EDX). Results showed that the friction coefficient and specific wear rate decreasedmore » while wear rate increased linearly with increasing load. It was found that the coating exhibit slightly better mechanical and wear properties compared to the substrate.« less

  3. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion.

    PubMed

    Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando

    2016-04-01

    Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.

  4. Cholinephosphotransferase and Diacylglycerol Acyltransferase (Substrate Specificities at a Key Branch Point in Seed Lipid Metabolism).

    PubMed

    Vogel, G.; Browse, J.

    1996-03-01

    Many oilseed plants accumulate triacylglycerols that contain unusual fatty acyl structures rather than the common 16- and 18-carbon fatty acids found in membrane lipids of these plants. In vitro experiments demonstrate that triacylglycerols are synthesized via diacylglycerols in microsomal preparations and that this same sub-cellular fraction is the site for the synthesis of phosphatidylcholine, which in seeds is synthesized from diacylglycerol by CDP-choline: diacylglycerol cholinephosphotransferase. In microsomes from Cuphea lanceolata, a plant that accumulates fatty acids with 10 carbons and no double bonds (10:0) in its oil, the diacylglycerol acyltransferase exhibited 4-fold higher activity with 10:0/10:0 molecular species of diacylglycerol than with molecular species containing 18-carbon fatty acids. In castor bean (Ricinus communis), which accumulates oil containing ricinoleic acid, diricinoleoyldiacylglycerol was the favored substrate for triacylglycerol synthesis. In contrast to these modest specificities of the diacylglycerol acyltransferases, the cholinephosphotransferases from these plants and from safflower (Carthamus tinctorius) and rapeseed (Brassica napus) showed little or no specificity across a range of different diacylglycerol substrates. Consideration of these results and other data suggests that the targeting of unusual fatty acids to triacylglycerol synthesis and their exclusion from membrane lipids are not achieved on the basis of the diacylglycerol substrate specificities of the enzymes involved and may instead require the spatial separation of two different diacylglycerol pools.

  5. Cholinephosphotransferase and Diacylglycerol Acyltransferase (Substrate Specificities at a Key Branch Point in Seed Lipid Metabolism).

    PubMed Central

    Vogel, G.; Browse, J.

    1996-01-01

    Many oilseed plants accumulate triacylglycerols that contain unusual fatty acyl structures rather than the common 16- and 18-carbon fatty acids found in membrane lipids of these plants. In vitro experiments demonstrate that triacylglycerols are synthesized via diacylglycerols in microsomal preparations and that this same sub-cellular fraction is the site for the synthesis of phosphatidylcholine, which in seeds is synthesized from diacylglycerol by CDP-choline: diacylglycerol cholinephosphotransferase. In microsomes from Cuphea lanceolata, a plant that accumulates fatty acids with 10 carbons and no double bonds (10:0) in its oil, the diacylglycerol acyltransferase exhibited 4-fold higher activity with 10:0/10:0 molecular species of diacylglycerol than with molecular species containing 18-carbon fatty acids. In castor bean (Ricinus communis), which accumulates oil containing ricinoleic acid, diricinoleoyldiacylglycerol was the favored substrate for triacylglycerol synthesis. In contrast to these modest specificities of the diacylglycerol acyltransferases, the cholinephosphotransferases from these plants and from safflower (Carthamus tinctorius) and rapeseed (Brassica napus) showed little or no specificity across a range of different diacylglycerol substrates. Consideration of these results and other data suggests that the targeting of unusual fatty acids to triacylglycerol synthesis and their exclusion from membrane lipids are not achieved on the basis of the diacylglycerol substrate specificities of the enzymes involved and may instead require the spatial separation of two different diacylglycerol pools. PMID:12226231

  6. A single amino acid limits the substrate specificity of Thermus thermophilus uridine-cytidine kinase to cytidine.

    PubMed

    Tomoike, Fumiaki; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2011-05-31

    The salvage pathways of nucleotide biosynthesis are more diverse and are less well understood as compared with de novo pathways. Uridine-cytidine kinase (UCK) is the rate-limiting enzyme in the pyrimidine-nucleotide salvage pathway. In this study, we have characterized a UCK homologue of Thermus thermophilus HB8 (ttCK) biochemically and structurally. Unlike other UCKs, ttCK had substrate specificity toward only cytidine and showed no inhibition by UTP, suggesting uridine does not bind to ttCK as substrate. Structural analysis revealed that the histidine residue located near the functional group at position 4 of cytidine or uridine in most UCKs is substituted with tyrosine, Tyr93, in ttCK. Replacement of Tyr93 by histidine or glutamine endowed ttCK with phosphorylation activity toward uridine. These results suggested that a single amino acid residue, Tyr93, gives cytidine-limited specificity to ttCK. However, replacement of Tyr93 by Phe or Leu did not change the substrate specificity of ttCK. Therefore, we conclude that a residue at this position is essential for the recognition of uridine by UCK. In addition, thymidine phosphorylase from T. thermophilus HB8 was equally active with thymidine and uridine, which indicates that this protein is the sole enzyme metabolizing uridine in T. Thermophilus HB8. On the basis of these results, we discuss the pyrimidine-salvage pathway in T. thermophilus HB8.

  7. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation

    PubMed Central

    2015-01-01

    The adenylation (A) domain acts as the first “gate-keeper” to ensure the activation and thioesterification of the correct monomer to nonribosomal peptide synthetases (NRPSs). Our understanding of the specificity-conferring code and our ability to engineer A domains are critical for increasing the chemical diversity of nonribosomal peptides (NRPs). We recently discovered a novel NRPS-like protein (ATEG_03630) that can activate 5-methyl orsellinic acid (5-MOA) and reduce it to 2,4-dihydroxy-5,6-dimethyl benzaldehyde. A NRPS-like protein is much smaller than multidomain NRPSs, but it still represents the thioesterification half-reaction, which is otherwise missed from a stand-alone A domain. Therefore, a NRPS-like protein may serve as a better model system for A domain engineering. Here, we characterize the substrate specificity of ATEG_03630 and conclude that the hydrogen-bond donor at the 4-position is crucial for substrate recognition. Next, we show that the substrate specificity of ATEG_03630 can be engineered toward our target substrate anthranilate via bioinformatics analysis and mutagenesis. The resultant mutant H358A increased its activity toward anthranilate by 10.9-fold, which led to a 26-fold improvement in specificity. Finally, we demonstrate one-pot chemoenzymatic synthesis of 4-hydroxybenzaldoxime from 4-hydroxybenzoic acid with high yield. PMID:24804152

  8. Rapid Analysis of Protein Farnesyltransferase Substrate Specificity Using Peptide Libraries and Isoprenoid Diphosphate Analogues

    PubMed Central

    2015-01-01

    Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequent visualization with streptavidin-AP. Screening of the CVa2X and CCa2X libraries with Rattus norvegicus PFTase revealed reaction by many known recognition sequences as well as numerous unknown ones. Some of the latter occur in the genomes of bacteria and viruses and may be important for pathogenesis, suggesting new targets for therapeutic intervention. Screening of the CVa2X library with alkyne-functionalized isoprenoid substrates showed that those prepared from C10 or C15 precursors gave similar results, whereas the analogue synthesized from a C5 unit gave a different pattern of reactivity. Lastly, the substrate specificities of PFTases from three organisms (R. norvegicus, Saccharomyces cerevisiae, and Candida albicans) were compared using CVa2X libraries. R. norvegicus PFTase was found to share more peptide substrates with S. cerevisiae PFTase than with C. albicans PFTase. In general, this method is a highly efficient strategy for rapidly probing the specificity of this important enzyme. PMID:24841702

  9. Tetraterpene Synthase Substrate and Product Specificity in the Green Microalga Botryococcus braunii Race L.

    PubMed

    Thapa, Hem R; Tang, Su; Sacchettini, James C; Devarenne, Timothy P

    2017-09-15

    Recently, the biosynthetic pathway for lycopadiene, a C 40 tetraterpenoid hydrocarbon, was deciphered from the L race of Botryococcus braunii, an alga that produces hydrocarbon oils capable of being converted into combustible fuels. The lycopadiene pathway is initiated by the squalene synthase (SS)-like enzyme lycopaoctaene synthase (LOS), which catalyzes the head-to-head condensation of two C 20 geranylgeranyl diphosphate (GGPP) molecules to produce C 40 lycopaoctaene. LOS shows unusual substrate promiscuity for SS or SS-like enzymes by utilizing C 15 farnesyl diphosphate (FPP) and C 20 phytyl diphosphate in addition to GGPP as substrates. These three substrates can be combined by LOS individually or in combinations to produce six different hydrocarbons of C 30 , C 35 , and C 40 chain lengths. To understand LOS substrate and product specificity, rational mutagenesis experiments were conducted based on sequence alignment with several SS proteins as well as a structural comparison with the human SS (HSS) crystal structure. Characterization of the LOS mutants in vitro identified Ser276 and Ala288 in the LOS active site as key amino acids responsible for controlling substrate binding, and thus the promiscuity of this enzyme. Mutating these residues to those found in HSS largely converted LOS from lycopaoctaene production to C 30 squalene production. Furthermore, these studies were confirmed in vivo by expressing LOS in E. coli cells metabolically engineered to produce high FPP and GGPP levels. These studies also offer insights into tetraterpene hydrocarbon metabolism in B. braunii and provide a foundation for engineering LOS for robust production of specific hydrocarbons of a desired chain length.

  10. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  11. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  12. Frataxin Directly Stimulates Mitochondrial Cysteine Desulfurase by Exposing Substrate-binding Sites, and a Mutant Fe-S Cluster Scaffold Protein with Frataxin-bypassing Ability Acts Similarly*♦

    PubMed Central

    Pandey, Alok; Gordon, Donna M.; Pain, Jayashree; Stemmler, Timothy L.; Dancis, Andrew; Pain, Debkumar

    2013-01-01

    For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the “buried” substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation. PMID:24217246

  13. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex*

    PubMed Central

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2017-01-01

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171

  14. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly.

    PubMed

    Pandey, Alok; Gordon, Donna M; Pain, Jayashree; Stemmler, Timothy L; Dancis, Andrew; Pain, Debkumar

    2013-12-27

    For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the "buried" substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.

  15. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less

  16. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less

  17. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.

    ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consistingmore » of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less

  18. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit

    PubMed Central

    Cundell, Michael J.; Holder, James

    2016-01-01

    PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis. PMID:27551054

  19. Functional associations between support use and forelimb shape in strepsirrhines and their relevance to inferring locomotor behavior in early primates.

    PubMed

    Fabre, Anne-Claire; Marigó, Judit; Granatosky, Michael C; Schmitt, Daniel

    2017-07-01

    The evolution of primates is intimately linked to their initial invasion of an arboreal environment. However, moving and foraging in this milieu creates significant mechanical challenges related to the presence of substrates differing in their size and orientation. It is widely assumed that primates are behaviorally and anatomically adapted to movement on specific substrates, but few explicit tests of this relationship in an evolutionary context have been conducted. Without direct tests of form-function relationships in living primates it is impossible to reliably infer behavior in fossil taxa. In this study, we test a hypothesis of co-variation between forelimb morphology and the type of substrates used by strepsirrhines. If associations between anatomy and substrate use exist, these can then be applied to better understand limb anatomy of extinct primates. The co-variation between each forelimb long bone and the type of substrate used was studied in a phylogenetic context. Our results show that despite the presence of significant phylogenetic signal for each long bone of the forelimb, clear support use associations are present. A strong co-variation was found between the type of substrate used and the shape of the radius, with and without taking phylogeny into account, whereas co-variation was significant for the ulna only when taking phylogeny into account. Species that use a thin branch milieu show radii that are gracile and straight and have a distal articular shape that allows for a wide range of movements. In contrast, extant species that commonly use large supports show a relatively robust and curved radius with an increased surface area available for forearm and hand muscles in pronated posture. These results, especially for the radius, support the idea that strepsirrhine primates exhibit specific skeletal adaptations associated with the supports that they habitually move on. With these robust associations in hand it will be possible to explore the same variables in extinct early primates and primate relatives and thus improve the reliability of inferences concerning substrate use in early primates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Structural Basis of Substrate Recognition by Hematopoietic Tyrosine Phosphatase (HePTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critton, D.; Tortajada, A; Stetson, G

    2008-01-01

    Hematopoietic tyrosine phosphatase (HePTP) is one of three members of the kinase interaction motif (KIM) phosphatase family which also includes STEP and PCPTP1. The KIM-PTPs are characterized by a 15 residue sequence, the KIM, which confers specific high-affinity binding to their only known substrates, the MAP kinases Erk and p38, an interaction which is critical for their ability to regulate processes such as T cell differentiation (HePTP) and neuronal signaling (STEP). The KIM-PTPs are also characterized by a unique set of residues in their PTP substrate binding loops, where 4 of the 13 residues are differentially conserved among the KIM-PTPsmore » as compared to more than 30 other class I PTPs. One of these residues, T106 in HePTP, is either an aspartate or asparagine in nearly every other PTP. Using multiple techniques, we investigate the role of these KIM-PTP specific residues in order to elucidate the molecular basis of substrate recognition by HePTP. First, we used NMR spectroscopy to show that Erk2-derived peptides interact specifically with HePTP at the active site. Next, to reveal the molecular details of this interaction, we solved the high-resolution three-dimensional structures of two distinct HePTP-Erk2 peptide complexes. Strikingly, we were only able to obtain crystals of these transient complexes using a KIM-PTP specific substrate-trapping mutant, in which the KIM-PTP specific residue T106 was mutated to an aspartic acid (T106D). The introduced aspartate side chain facilitates the coordination of the bound peptides, thereby stabilizing the active dephosphorylation complex. These structures establish the essential role of HePTP T106 in restricting HePTP specificity to only those substrates which are able to interact with KIM-PTPs via the KIM (e.g., Erk2, p38). Finally, we describe how this interaction of the KIM is sufficient for overcoming the otherwise weak interaction at the active site of KIM-PTPs.« less

  1. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Shunqiang; Wan, Yuan; Liu, Yaling

    2014-10-01

    While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f

  2. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    PubMed

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues.

    PubMed

    Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin

    2015-10-01

    This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Delta ribozyme has the ability to cleave in transan mRNA.

    PubMed Central

    Roy, G; Ananvoranich, S; Perreault, J P

    1999-01-01

    We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy. PMID:9927724

  5. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry.

    PubMed

    Finnigan, William; Thomas, Adam; Cromar, Holly; Gough, Ben; Snajdrova, Radka; Adams, Joseph P; Littlechild, Jennifer A; Harmer, Nicholas J

    2017-03-20

    Carboxylic acid reductase enzymes (CARs) meet the demand in synthetic chemistry for a green and regiospecific route to aldehydes from their respective carboxylic acids. However, relatively few of these enzymes have been characterized. A sequence alignment with members of the ANL (Acyl-CoA synthetase/ NRPS adenylation domain/Luciferase) superfamily of enzymes shed light on CAR functional dynamics. Four unstudied enzymes were selected by using a phylogenetic analysis of known and hypothetical CARs, and for the first time, a thorough biochemical characterization was performed. Kinetic analysis of these enzymes with various substrates shows that they have a broad but similar substrate specificity. Electron-rich acids are favored, which suggests that the first step in the proposed reaction mechanism, attack by the carboxylate on the α-phosphate of adenosine triphosphate (ATP), is the step that determines the substrate specificity and reaction kinetics. The effects of pH and temperature provide a clear operational window for the use of these CARs, whereas an investigation of product inhibition by NADP + , adenosine monophosphate, and pyrophosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first. This study consolidates CARs as important and exciting enzymes in the toolbox for sustainable chemistry and provides specifications for their use as a biocatalyst.

  6. Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity

    PubMed Central

    Barbeyron, Tristan; Brillet-Guéguen, Loraine; Carré, Wilfrid; Carrière, Cathelène; Caron, Christophe; Czjzek, Mirjam; Hoebeke, Mark; Michel, Gurvan

    2016-01-01

    Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB. PMID:27749924

  7. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-05

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.

  8. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.

    The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  9. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity

    DOE PAGES

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.; ...

    2017-02-01

    The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  10. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A novel serine protease from strawberry (Fragaria ananassa): Purification and biochemical characterization.

    PubMed

    Alici, Esma Hande; Arabaci, Gulnur

    2018-03-27

    In this study, a protease enzyme was purified from strawberry by using Sepharose-4B-l-tyrosine-p-amino benzoic acid affinity chromatography. The molecular weight of pure protease was determined 65.8 kDa by SDS-PAGE. The single band observed on the gel showed that the enzyme had a single polypeptide chain and was successfully purified. Purification of the protease by the chromatographic method resulted in a 395.6-fold increase in specific activity (3600 U/mg). Optimum pH and temperature for the enzyme were 6 and 40 °C, respectively. The protease was stable at a wide temperature range of 40 to 70 °C and a pH range of 3.0 to 9.0. Co 2+ ions stimulated protease activity very strongly. Cu 2+ , Hg 2+ , Cd 2+ and Mn 2+ ions significantly inhibited protease activity. While 2-propanol completely inhibited the enzyme, the enzyme maintained its activity better in the presence of ethanol and methanol. The strawberry protease showed the highest specificity towards hemoglobin among all the natural substrates tested. The specificity of the enzyme towards synthetic substrates was also investigated and it was concluded that it has broad substrate specificity. The obtained results indicated that this purified protease was highly-likely a serine protease and its activity was significantly affected by the presence of metal ions. Copyright © 2018. Published by Elsevier B.V.

  12. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    PubMed

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  13. Understanding the Specificity and Random Collision of Enzyme-Substrate Interaction

    ERIC Educational Resources Information Center

    Kin, Ng Hong; Ling, Tan Aik

    2016-01-01

    The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…

  14. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    PubMed Central

    Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc

    2012-01-01

    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155

  16. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases1

    PubMed Central

    Walker, Alexander M.

    2017-01-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species. PMID:27956488

  17. The functional divergence of short-chain dehydrogenases involved in tropinone reduction.

    PubMed

    Brock, Andrea; Brandt, Wolfgang; Dräger, Birgit

    2008-05-01

    Tropane alkaloids typically occur in the Solanaceae and are also found in Cochlearia officinalis, a member of the Brassicaceae. Tropinone reductases are key enzymes of tropane alkaloid metabolism. Two different tropinone reductases form one stereoisomeric product each, either tropine for esterified alkaloids or pseudotropine that is converted to calystegines. A cDNA sequence with similarity to known tropinone reductases (TR) was cloned from C. officinalis. The protein was expressed in Escherichia coli, and found to catalyze the reduction of tropinone. The enzyme is a member of the short-chain dehydrogenase enzyme family and shows broad substrate specificity. Several synthetic ketones were accepted as substrates, with higher affinity and faster enzymatic turnover than observed for tropinone. C. officinalis TR produced both the isomeric alcohols tropine and pseudotropine from tropinone using NADPH + H(+) as co-substrate. Tropinone reductases of the Solanaceae, in contrast, are strictly stereospecific and form one tropane alcohol only. The Arabidopsis thaliana homologue of C. officinalis TR showed high sequence similarity, but did not reduce tropinone. A tyrosine residue was identified in the active site of C. officinalis TR that appeared responsible for binding and orientation of tropinone. Mutagenesis of the tyrosine residue yielded an active reductase, but with complete loss of TR activity. Thus C. officinalis TR presents an example of an enzyme with relaxed substrate specificity, like short-chain dehydrogenases, that provides favorable preconditions for the evolution of novel functions in biosynthetic sequences.

  18. Amine oxidase from lentil seedlings: energetic domains and effect of temperature on activity.

    PubMed

    Moosavi-Nejad, S Z; Rezaei-Tavirani, M; Padiglia, A; Floris, G; Moosavi-Movahedi, A A

    2001-07-01

    Copper/TPQ amine oxidases from mammalian and plant sources have shown many differences in substrate specificity and molecular properties. In this work the activity of lentil seedling amine oxidase was followed at various temperatures in 100 mM potassium phosphate buffer, pH 7, using benzylamine as substrate. The discontinuous Arrhenius plot of lentil amine oxidase showed two distinct phases with a jump between them. Thermal denaturation of the enzyme, using differential scanning calorimetry under the same experimental conditions, showed a transition at the same temperature ranges in the absence of substrate, indicating the occurrence of conformational changes, with an enthalpy change of about 175.9 kJ/mole. The temperature-induced changes of the activity of lentil amine oxidase are compared with those of bovine serum amine oxidase (taken from the literature).

  19. Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1

    PubMed Central

    Gui, Chunshan; Hagenbuch, Bruno

    2009-01-01

    The liver-specific organic anion transporting polypeptides OATP1B1 and OATP1B3 are highly homologous and share numerous substrates. However, at low concentrations OATP1B1 shows substrate selectivity for estrone-3-sulfate. In this study, we investigated the molecular mechanism for this substrate selectivity of OATP1B1 by constructing OATP1B1/1B3 chimeric transporters and by site-directed mutagenesis. Functional studies of chimeras showed that transmembrane domain 10 is critical for the function of OATP1B1. We further identified four amino acid residues, namely L545, F546, L550, and S554 in TM10, whose simultaneous mutation caused almost complete loss of OATP1B1-mediated estrone-3-sulfate transport. Comparison of the kinetics of estrone-3-sulfate transport confirmed a biphasic pattern for OATP1B1, but showed a monophasic pattern for the quadruple mutant L545S/F546L/L550T/S554T. This mutant also showed reduced transport for other OATP1B1 substrates such as bromosulfophthalein and [d-penicillamine2,5]enkephalin. Helical wheel analysis and molecular modeling suggest that L545 is facing the substrate translocation pathway, whereas F546, L550, and S554 are located inside the protein. These results indicate that L545 might contribute to OATP1B1 function by interacting with substrates, whereas F546, L550, and S554 seem important for protein structure. In conclusion, our results show that TM10 is critical for the function of OATP1B1. PMID:19760661

  20. Specificities of the enzymes of N-alkyltropane biosynthesis in Brugmansia and Datura.

    PubMed

    Boswell, H D; Dräger, B; McLauchlan, W R; Portsteffen, A; Robins, D J; Robins, R J; Walton, N J

    1999-11-01

    The enzymes N-methylputrescine oxidase (MPO), the tropine-forming tropinone reductase (TRI), the pseudotropine-forming tropinone reductase (TRII), the tropine:acyl-CoA transferase (TAT) and the pseudotropine:acyl-CoA transferase (PAT) extracted from transformed root cultures of Datura stramonium and a Brugmansia candida x aurea hybrid were tested for their ability to accept a range of alternative substrates. MPO activity was tested with N-alkylputrescines and N-alkylcadaverines as substrates. TRI and TRII reduction was tested against a series of N-alkylnortropinones, N-alkylnorpelletierines and structurally related ketones as substrates. TAT and PAT esterification tests used a series of N-substituted tropines, pseudotropines, pelletierinols and pseudopelletierinols as substrates to assess the formation of their respective acetyl and tigloyl esters. The results generally show that these enzymes will accept alien substrates to varying degrees. Such studies may shed some light on the overall topology of the active sites of the enzymes concerned.

  1. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease.

    PubMed

    Alvizo, Oscar; Mittal, Seema; Mayo, Stephen L; Schiffer, Celia A

    2012-07-01

    HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease. Copyright © 2012 The Protein Society.

  2. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry

    PubMed Central

    2017-01-01

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations. PMID:28094977

  3. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    PubMed

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  4. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.

    PubMed

    Ang, Ee L; Obbard, Jeffrey P; Zhao, Huimin

    2007-02-01

    Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.

  5. Molecular Basis of Substrate Recognition and Degradation by Human Presequence Protease

    PubMed Central

    King, John V.; Liang, Wenguang G.; Scherpelz, Kathryn P.; Schilling, Alexander B.; Meredith, Stephen C.; Tang, Wei-Jen

    2014-01-01

    Summary Human Presequence Protease (hPreP) is an M16 metalloprotease localized in mitochondria. There, hPreP facilitates proteostasis by utilizing a ∼13,300Å3 catalytic chamber to degrade a diverse array of potentially toxic peptides, including mitochondrial presequences and amyloid-β (Aβ), the latter of which contributes to Alzheimer's disease pathogenesis. Here we report crystal structures for hPreP alone and in complex with Aβ, which show that hPreP uses size-exclusion and charge complementation for substrate recognition. These structures also reveal hPreP-specific features that permit a diverse array of peptides, with distinct distributions of charged and hydrophobic residues, to be specifically captured, cleaved, and their amyloidogenic features destroyed. SAXS analysis demonstrates that hPreP in solution exists in dynamic equilibrium between closed and open states, with the former being preferred. Furthermore, Aβ binding induces the closed state and hPreP dimerization. Together, these data reveal the molecular basis for flexible yet specific substrate recognition and degradation by hPreP. PMID:24931469

  6. Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1

    PubMed Central

    Ramirez, Monica L. Gonzalez; Poreba, Marcin; Snipas, Scott J.; Groborz, Katarzyna; Drag, Marcin; Salvesen, Guy S.

    2018-01-01

    Inflammatory cell death, or pyroptosis, is triggered by pathogenic infections or events. It is executed by caspase-1 (in the canonical pyroptosis pathway) or caspase-11 (noncanonical pathway), each via production of a cell-lytic domain from the pyroptosis effector protein gasdermin D through specific and limited proteolysis. Pyroptosis is accompanied by the release of inflammatory mediators, including the proteolytically processed forms of interleukin-1β (IL-1β) and IL-18. Given the similar inflammatory outcomes of the canonical and noncanonical pyroptosis pathways, we hypothesized that caspase-1 and -11 should have very similar activities and substrate specificities. To test this hypothesis, we purified recombinant murine caspases and analyzed their primary specificities by massive hybrid combinatorial substrate library (HyCoSuL) screens. We correlated the substrate preferences of each caspase with their activities on the recombinant natural substrates IL-1β, IL-18, and gasdermin D. Although we identified highly selective and robust peptidyl substrates for caspase-1, we were unable to do so for caspase-11, because caspase-1 cleaved even the best caspase-11 substrates equally well. Caspase-1 rapidly processed pro-IL-1β and -18, but caspase-11 processed these two pro-ILs extremely poorly. However, both caspase-1 and -11 efficiently produced the cell-lytic domain from the gasdermin D precursor. We hypothesize that caspase-11 may have evolved a specific exosite to selectively engage pyroptosis without directly activating pro-IL-1β or -18. In summary, comparing the activities of caspase-1 and -11 in HyCoSuL screens and with three endogenous protein substrates, we conclude that caspase-11 has highly restricted substrate specificity, preferring gasdermin D over all other substrates examined. PMID:29414788

  7. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R.; Sikorra, S.; Stegmann, C.M.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognitionmore » and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.« less

  8. Characterization of Chloroplastic Fructose 1,6-Bisphosphate Aldolases as Lysine-methylated Proteins in Plants*

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Pautre, Virginie; Gilgen, Annabelle; Ma, Sheng; Ferro, Myriam; Tardif, Marianne; Alban, Claude; Ravanel, Stéphane

    2012-01-01

    In pea (Pisum sativum), the protein-lysine methyltransferase (PsLSMT) catalyzes the trimethylation of Lys-14 in the large subunit (LS) of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the CO2 fixation step during photosynthesis. Homologs of PsLSMT, herein referred to as LSMT-like enzymes, are found in all plant genomes, but methylation of LS Rubisco is not universal in the plant kingdom, suggesting a species-specific protein substrate specificity of the methyltransferase. In this study, we report the biochemical characterization of the LSMT-like enzyme from Arabidopsis thaliana (AtLSMT-L), with a focus on its substrate specificity. We show that, in Arabidopsis, LS Rubisco is not naturally methylated and that the physiological substrates of AtLSMT-L are chloroplastic fructose 1,6-bisphosphate aldolase isoforms. These enzymes, which are involved in the assimilation of CO2 through the Calvin cycle and in chloroplastic glycolysis, are trimethylated at a conserved lysyl residue located close to the C terminus. Both AtLSMT-L and PsLSMT are able to methylate aldolases with similar kinetic parameters and product specificity. Thus, the divergent substrate specificity of LSMT-like enzymes from pea and Arabidopsis concerns only Rubisco. AtLSMT-L is able to interact with unmethylated Rubisco, but the complex is catalytically unproductive. Trimethylation does not modify the kinetic properties and tetrameric organization of aldolases in vitro. The identification of aldolases as methyl proteins in Arabidopsis and other species like pea suggests a role of protein lysine methylation in carbon metabolism in chloroplasts. PMID:22547063

  9. Catalytic properties of thimet oligopeptidase H600A mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, Mauricio F.M.; Marcondes, Marcelo F.; Rioli, Vanessa

    2010-04-02

    Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His{sup 600}. In the present work, the role of His{sup 600} of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S{sub 1} and S{submore » 1}' specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His{sup 600} residue makes important interactions with the substrate, supporting the prediction that His{sup 600} moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K{sub m} and k{sub cat}, showing the importance of His{sup 600} for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His{sup 600} in TOP catalysis, transferring a proton to the newly generated NH{sub 2}-terminus or helping Tyr{sup 605} and/or Tyr{sup 612} in the intermediate oxyanion stabilization.« less

  10. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea

    PubMed Central

    2011-01-01

    Background Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m marine areas. Results A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. Conclusions Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters. PMID:22067554

  11. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  12. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    PubMed

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Understanding the interactions of different substrates with wild-type and mutant acylaminoacyl peptidase using molecular dynamics simulations.

    PubMed

    Zhu, Jingxuan; Wang, Yan; Li, Xin; Han, Weiwei; Zhao, Li

    2017-12-20

    Acylaminoacylpeptidase (AAP) belongs to peptidase protein family, which can degrade amyloid β-peptide forms in the brains of patients, and hence leads to Alzheimer's disease. And so, AAP is considered to be a novel target in the design of drugs against Alzheimer's disease. In this investigation, six molecular dynamics simulations were used to find that the interaction between the wild-type and R526V AAP with two different substrates (p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide). Our results were as follows: firstly, Ac-Leu-p-nitroanilide bound to R526V AAP to form a more disordered loop (residues 552-562) in the α/β-hydrolase fold like of AAP, which caused an open and inactive AAP domain form, secondly, binding p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide to AAP can decrease the flexibility of residues 225-250, 260-270, and 425-450, in which the ordered secondary structures may contain the suitable geometrical structure and so it is useful to serine attack. Our theoretical results showed that the binding of the two substrates can induce specific conformational changes responsible for the diverse AAP catalytic specificity. These theoretical substrate-induced structural diversities can help explain the abilities of AAPs to recognize and hydrolyze extremely different substrates.

  14. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    PubMed

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  15. Hsl7 is a substrate-specific type II protein arginine methyltransferase in yeast

    PubMed Central

    Sayegh, Joyce; Clarke, Steven G.

    2008-01-01

    The Saccharomyces cerevisiae protein Hsl7 is a regulator of the Swe1 protein kinase in cell cycle checkpoint control. Hsl7 has been previously described as a type III protein arginine methyltransferase, catalyzing the formation of ω-monomethylarginine residues on non-physiological substrates. However, we show here that Hsl7 can also display type II activity, generating symmetric dimethylarginine residues on calf thymus histone H2A. Symmetric dimethylation is only observed when enzyme and the methyl-accepting substrate were incubated for extended times. We confirmed the Hsl7-dependent formation of symmetric dimethylarginine by amino acid analysis and thin layer chromatography with wild type and mutant recombinant enzymes expressed from both bacteria and yeast. This result is significant because no type II activity has been previously demonstrated in S. cerevisiae. We also show that Hsl7 has little or no activity on GST-GAR, a commonly used substrate for protein arginine methyltransferases, and only minimal activity on myelin basic protein. This enzyme thus may only recognize only a small subset of potential substrate proteins in yeast, in contrast to the situation with Rmt1, the major type I methyltransferase. PMID:18515076

  16. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    PubMed

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  17. Substrate scope of a dehydrogenase from Sphingomonas species A1 and its potential application in the synthesis of rare sugars and sugar derivatives.

    PubMed

    Beer, Barbara; Pick, André; Döring, Manuel; Lommes, Petra; Sieber, Volker

    2018-07-01

    Rare sugars and sugar derivatives that can be obtained from abundant sugars are of great interest to biochemical and pharmaceutical research. Here, we describe the substrate scope of a short-chain dehydrogenase/reductase from Sphingomonas species A1 (SpsADH) in the oxidation of aldonates and polyols. The resulting products are rare uronic acids and rare sugars respectively. We provide insight into the substrate recognition of SpsADH using kinetic analyses, which show that the configuration of the hydroxyl groups adjacent to the oxidized carbon is crucial for substrate recognition. Furthermore, the specificity is demonstrated by the oxidation of d-sorbitol leading to l-gulose as sole product instead of a mixture of d-glucose and l-gulose. Finally, we applied the enzyme to the synthesis of l-gulose from d-sorbitol in an in vitro system using a NADH oxidase for cofactor recycling. This study shows the usefulness of exploring the substrate scope of enzymes to find new enzymatic reaction pathways from renewable resources to value-added compounds. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Altered Substrate Specificity of Drug-Resistant Human Immunodeficiency Virus Type 1 Protease

    PubMed Central

    Dauber, Deborah S.; Ziermann, Rainer; Parkin, Neil; Maly, Dustin J.; Mahrus, Sami; Harris, Jennifer L.; Ellman, Jon A.; Petropoulos, Christos; Craik, Charles S.

    2002-01-01

    Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV. PMID:11773410

  19. Purification and properties of the glutathione S-transferases from the anoxia-tolerant turtle, Trachemys scripta elegans.

    PubMed

    Willmore, William G; Storey, Kenneth B

    2005-07-01

    Glutathione S-transferases (GSTs) play critical roles in detoxification, response to oxidative stress, regeneration of S-thiolated proteins, and catalysis of reactions in nondetoxification metabolic pathways. Liver GSTs were purified from the anoxia-tolerant turtle, Trachemys scripta elegans. Purification separated a homodimeric (subunit relative molecular mass =34 kDa) and a heterodimeric (subunit relative molecular mass = 32.6 and 36.8 kDa) form of GST. The enzymes were purified 23-69-fold and 156-174-fold for homodimeric and heterodimeric GSTs, respectively. Kinetic data gathered using a variety of substrates and inhibitors suggested that both homodimeric and heterodimeric GSTs were of the alpha class although they showed significant differences in substrate affinities and responses to inhibitors. For example, homodimeric GST showed activity with known alpha class substrates, cumene hydroperoxide and p-nitrobenzylchloride, whereas heterodimeric GST showed no activity with cumene hydroperoxide. The specific activity of liver GSTs with chlorodinitrobenzene (CDNB) as the substrate was reduced by 2.6- and 8.7-fold for homodimeric and heterodimeric GSTs isolated from liver of anoxic turtles as compared with aerobic controls, suggesting an anoxia-responsive stable modification of the protein that may alter its function during natural anaerobiosis.

  20. Microbial Life Driving Low-Temperature Basalt Alteration in the Subsurface: Decoupling Abiotic Processes from Biologically-Mediated Rock Alteration

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lecoeuvre, A.; Stephant, S.; Dupraz, S.; Ranchou-Peyruse, M.; Ranchou-Peyruse, A.; Gérard, E.; Ménez, B.

    2017-12-01

    Microorganisms are involved with specific rock alteration processes in the deep subsurface. It is a challenge to link any contribution microbial life may have on rock alteration with specific functions or phyla because many alteration features and secondary minerals produced by metabolic processes can also produce abiotically. Here, two flow-through experiments were designed to mimic the circulation of a CO2-rich fluid through crystalline basalt. In order to identify microbially-mediated alteration and be able to link it with specific metabolisms represented in the subsurface, a relatively fresh crystalline basalt substrate was subsampled, sterilized and used as the substrate for both experiments. In one experiment, the substrate was left sterile, and in the other it was inoculated with an enrichment culture derived from the same aquifer as the rock substrate. Initial results show that the inoculum contained Proteobacteria and Firmicutes, which have diverse metabolic potentials. Fluid and rock analyses before, during, and after the experiments show that mineralogy, fluid chemistry, and dissolution processes differ between the sterile and inoculated systems. In the inoculated experiment iron-rich orthopyroxenes were preferentially dissolved while in the sterile system clinopyroxenes and plagioclases both exhibited a higher degree of dissolution. Additionally, the patterns of CO2 consumption and production over the duration of both experiments is different. This suggest that in a low-temperature basalt system with microorganisms CO2 is either consumed to produce biomass, or that carbonates are produced and then subsequently preserved. This suite of results combined with molecular ecology analyses can be used to conclude that in low-temperature basalts microorganisms play an intrinsic role in rock alteration.

  1. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain.

    PubMed

    Martin, Pamela M; Gopal, Elangovan; Ananth, Sudha; Zhuang, Lina; Itagaki, Shiro; Prasad, Balakrishna M; Smith, Sylvia B; Prasad, Puttur D; Ganapathy, Vadivel

    2006-07-01

    SMCT1 is a sodium-coupled (Na(+)-coupled) transporter for l-lactate and short-chain fatty acids. Here, we show that the ketone bodies, beta-d-hydroxybutyrate and acetoacetate, and the branched-chain ketoacid, alpha-ketoisocaproate, are also substrates for the transporter. The transport of these compounds via human SMCT1 is Na(+)-coupled and electrogenic. The Michaelis constant is 1.4 +/- 0.1 mm for beta-d-hydroxybutyrate, 0.21 +/- 0.04 mm for acetoacetate and 0.21 +/- 0.03 mm for alpha-ketoisocaproate. The Na(+) : substrate stoichiometry is 2 : 1. As l-lactate and ketone bodies constitute primary energy substrates for neurons, we investigated the expression pattern of this transporter in the brain. In situ hybridization studies demonstrate widespread expression of SMCT1 mRNA in mouse brain. Immunofluorescence analysis shows that SMCT1 protein is expressed exclusively in neurons. SMCT1 protein co-localizes with MCT2, a neuron-specific Na(+)-independent monocarboxylate transporter. In contrast, there was no overlap of signals for SMCT1 and MCT1, the latter being expressed only in non-neuronal cells. We also demonstrate the neuron-specific expression of SMCT1 in mixed cultures of rat cortical neurons and astrocytes. This represents the first report of an Na(+)-coupled transport system for a major group of energy substrates in neurons. These findings suggest that SMCT1 may play a critical role in the entry of l-lactate and ketone bodies into neurons by a process driven by an electrochemical Na(+) gradient and hence, contribute to the maintenance of the energy status and function of neurons.

  2. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of stereospecificity at C2 in some polyols. PMID:9461546

  3. Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme.

    PubMed

    Syal, Poonam; Verma, Ved Vrat; Gupta, Rani

    2017-11-01

    Biodiesel, an environment friendly alternative for fuels, contains methyl esters of long-chain fatty acids. Our group has reported a methanol-stable YLIP9 from Yarrowia lipolytica MSR80 that shows poor catalysis of long-chain fatty acids. To shift its substrate specificity, residues within lid and binding pocket were identified for sequential mutations using YLIP2 as the template. Of the two point mutations (Glu116Leu and Ser119Val) introduced in the lid, the former mutation (YLIP9L1) increased the catalytic rate by ∼2-fold without any change in substrate specificity. In this mutant, six binding pocket residues (Bp2-Bp7) were further mutated to obtain six double mutants. YLIP9L1Bp3 showed significant shift in substrate specificity towards long-chain pNPesters with 11-fold increase in catalytic efficiency than YLIP9. Double mutations also led to increased thermostability and lowered activation energy of YLIP9L1Bp3 thereby shifting its optimum temperature from 60°C to 50°C. In silico molecular dynamics simulations revealed improved lid flexibility and increased catalytic triad volume in YLIP9L1Bp3. The enzyme YLIP9L1Bp3 was methanol-stable having selectivity for long-chain fatty acids with improved catalytic efficiency. Its application as a biodiesel enzyme was validated by transesterification of palm oil in presence of methanol, where it showed 8-fold increase in conversion of oil to methyl esters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. E3Net: a system for exploring E3-mediated regulatory networks of cellular functions.

    PubMed

    Han, Youngwoong; Lee, Hodong; Park, Jong C; Yi, Gwan-Su

    2012-04-01

    Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net.

  5. Glycan microarray screening assay for glycosyltransferase specificities.

    PubMed

    Peng, Wenjie; Nycholat, Corwin M; Razi, Nahid

    2013-01-01

    Glycan microarrays represent a high-throughput approach to determining the specificity of glycan-binding proteins against a large set of glycans in a single format. This chapter describes the use of a glycan microarray platform for evaluating the activity and substrate specificity of glycosyltransferases (GTs). The methodology allows simultaneous screening of hundreds of immobilized glycan acceptor substrates by in situ incubation of a GT and its appropriate donor substrate on the microarray surface. Using biotin-conjugated donor substrate enables direct detection of the incorporated sugar residues on acceptor substrates on the array. In addition, the feasibility of the method has been validated using label-free donor substrate combined with lectin-based detection of product to assess enzyme activity. Here, we describe the application of both procedures to assess the specificity of a recombinant human α2-6 sialyltransferase. This technique is readily adaptable to studying other glycosyltransferases.

  6. Crystallography Coupled with Kinetic Analysis Provide Mechanistic Underpinnings of a Nicotine-Degrading Enzyme.

    PubMed

    Tararina, Margarita A; Xue, Song; Smith, Lauren C; Muellers, Samantha N; Miranda, Pedro O; Janda, Kim D; Allen, Karen N

    2018-05-29

    Nicotine oxidoreductase (NicA2) is a bacterial flavoenzyme, which catalyzes the first step of nicotine catabolism by oxidizing S-nicotine into N-methyl-myosmine. Its use has been proposed as a biotherapeutic for nicotine addiction due to its nanomolar substrate binding affinity. The first crystal structure of NicA2 has been reported, establishing NicA2 as a member of the monoamine oxidase (MAO) family. However, substrate specificity and structural determinants of substrate binding/catalysis have not been explored. Herein, analysis of pH-rate profile, single-turnover kinetics and binding data establish that pH does not significantly affect catalytic rate and product release is not rate limiting. The X-ray crystal structure of NicA2 with S-nicotine refined to 2.65 Å resolution reveals a hydrophobic binding site with a solvent exclusive cavity. Hydrophobic interactions predominantly orient the substrate, promoting the binding of a deprotonated species and supporting a hydride-transfer mechanism. Notably, NicA2 showed no activity against neurotransmitters oxidized by the two isoforms of human MAO. To further probe the substrate range of NicA2, enzyme activity was evaluated using a series of substrate analogs, indicating that S-nicotine is the optimal substrate and substitutions within the pyridyl ring abolish NicA2 activity. Moreover, mutagenesis and kinetic analysis of active-site residues reveal that removal of a hydrogen bond between the pyridyl ring of S-nicotine and the hydroxyl group of T381 has a 10-fold effect on KM, supporting the role of this bond in positioning the catalytically competent form of the substrate. Together, crystallography combined with kinetic analysis provide a deeper understanding of this enzyme's remarkable specificity.

  7. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  8. Evidence for the presence of several lipases in cow's milk

    PubMed Central

    Downey, W. K.; Andrews, P.

    1969-01-01

    Skim milks containing sodium chloride (0·75m) were centrifuged at 80000g for 2hr. and portions of the supernatants were submitted to gel filtration on columns of Sephadex G-200. Enzymes in the effluent fractions were assayed titrimetrically for their hydrolytic activities towards tributyrin, triolein and milk-fat emulsions, and triacetin solution. Summation of the measurements gave ratios of activities towards the various substrates similar to those of the original skim milks. Although only partial separation was obtained, five enzymes appeared to be present. They showed some differences in substrate specificity, but all appeared to be lipases in that they hydrolysed the emulsified substrates more rapidly than the dissolved triacetin. PMID:5821722

  9. Substrate specific effects of calcium on metabolism of rat heart mitochondria.

    PubMed

    Panov, A V; Scaduto, R C

    1996-04-01

    Oxidative metabolism in the heart is tightly coupled to mechanical work. Because this coupling process is believed to involve Ca2+, the roles of mitochondrial Ca2+ in the regulation of oxidative phosphorylation was studied in isolated rat heart mitochondria. The electrical component of the mitochondrial membrane potential (delta psi) and the redox state of the pyridine nucleotides were determined during the oxidation of various substrates under different metabolic states. In the absence of added adenine nucleotides, the NADP+ redox couple was almost completely reduced, regardless of the specific substrate and the presence of Ca2+, whereas NAD+ couple redox state was highly dependent on the substrate type and the presence of Ca2+. Titration of respiration with ADP, in the presence of excess hexokinase and glucose, showed that both respiration and NAD(P)+ reduction were very sensitive to ADP. The maximal enzyme reaction rate of ADP-stimulated respiration Michaelis constants (Km) for ADP were dependent on the particular substrate employed. delta psi was much less sensitive to ADP. With either alpha-ketoglutarate or glutamate as substrate, Ca2+ significantly increased reduction of NAD(P)+.Ca2+ did not influence NAD(P)+ reduction with either acetylcarnitine or pyruvate as substrate. In the presence of ADP, delta psi was increased by Ca2+ at all metabolic states with glutamate plus malate, 0.5 mM alpha-ketoglutarate plus malate, or pyruvate plus malate as substrates. The data presented support the hypothesis that cardiac respiration is controlled by the availability of both Ca2+ and ADP to mitochondria. The data indicate that an increase in substrate supply to mitochondria can increase mitochondrial respiration at given level of ADP. This effect can be produced by Ca2+ with substrates such as glutamate, which utilize alpha-ketoglutarate dehydrogenase activity for oxidation. Increases in respiration by Ca2+ may mitigate an increase in ADP during periods of increased cardiac work.

  10. The unique functional role of the C-HS hydrogen bond in the substrate specificity and enzyme catalysis of type 1 methionine aminopeptidase.

    PubMed

    Reddi, Ravikumar; Singarapu, Kiran Kumar; Pal, Debnath; Addlagatta, Anthony

    2016-07-19

    It is intriguing how nature attains recognition specificity between molecular interfaces where there is no apparent scope for classical hydrogen bonding or polar interactions. Methionine aminopeptidase (MetAP) is one such enzyme where this fascinating conundrum is at play. In this study, we demonstrate that a unique C-HS hydrogen bond exists between the enzyme methionine aminopeptidase (MetAP) and its N-terminal-methionine polypeptide substrate, which allows specific interaction between apparent apolar interfaces, imposing a strict substrate recognition specificity and efficient catalysis, a feature replicated in Type I MetAPs across all kingdoms of life. We evidence this evolutionarily conserved C-HS hydrogen bond through enzyme assays on wild-type and mutant MetAP proteins from Mycobacterium tuberculosis that show a drastic difference in catalytic efficiency. The X-ray crystallographic structure of the methionine bound protein revealed a conserved water bridge and short contacts involving the Met side-chain, a feature also observed in MetAPs from other organisms. Thermal shift assays showed a remarkable 3.3 °C increase in melting temperature for methionine bound protein compared to its norleucine homolog, where C-HS interaction is absent. The presence of C-HS hydrogen bonding was also corroborated by nuclear magnetic resonance spectroscopy through a change in chemical shift. Computational chemistry studies revealed the unique role of the electrostatic environment in facilitating the C-HS interaction. The significance of this atypical hydrogen bond is underscored by the fact that the function of MetAP is essential for any living cell.

  11. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  12. Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity*

    PubMed Central

    Akopian, Tatos; Kandror, Olga; Tsu, Christopher; Lai, Jack H.; Wu, Wengen; Liu, Yuxin; Zhao, Peng; Park, Annie; Wolf, Lisa; Dick, Lawrence R.; Rubin, Eric J.; Bachovchin, William; Goldberg, Alfred L.

    2015-01-01

    The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents. PMID:25759383

  13. Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases.

    PubMed

    Zhao, Bing; Tan, Pauline H; Li, Shawn S C; Pei, Dehua

    2013-04-09

    Cytoplasmic tyrosine kinases (CTK) generally contain a Src-homology 2 (SH2) domain, whose role in the CTK family is not fully understood. Here we report the determination of the specificity of 25 CTK SH2 domains by screening one-bead-one-compound (OBOC) peptide libraries. Based on the peptide sequences selected by the SH2 domains, we built Support Vector Machine (SVM) models for the prediction of binding ligands for the SH2 domains. These models yielded support for the progressive phosphorylation model for CTKs in which the overlapping specificity of the CTK SH2 and kinase domains has been proposed to facilitate targeting of the CTK substrates with at least two potential phosphotyrosine (pTyr) sites. We curated 93 CTK substrates with at least two pTyr sites catalyzed by the same CTK, and showed that 71% of these substrates had at least two pTyr sites predicted to bind a common CTK SH2 domain. More importantly, we found 34 instances where there was at least one pTyr site predicted to be recognized by the SH2 domain of the same CTK, suggesting that the SH2 and kinase domains of the CTKs may cooperate to achieve progressive phosphorylation of a protein substrate. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Surface Analysis Evaluation of Handwipe Cleaning for the Space Shuttle RSRM

    NASA Technical Reports Server (NTRS)

    Lesley, Michael W.; Anderson, Erin L.; McCool, Alex (Technical Monitor)

    2001-01-01

    In this paper we discuss the role of surface-sensitive spectroscopy (electron spectroscopy for chemical analysis, or ESCA) in the selection of solvents to replace 1,1,1-trichloroethane in handwipe cleaning of bonding surfaces on NASA's Space Shuttle Reusable Solid Rocket Motor (RSRM). Removal of common process soils from a wide variety of metallic and polymeric substrates was characterized. The cleaning efficiency was usually more dependent on the type of substrate being cleaned and the specific process soil than on the solvent used. A few substrates that are microscopically rough or porous proved to be difficult to clean with any cleaner, and some soils were very tenacious and difficult to remove from any substrate below detection limits. Overall, the work showed that a wide variety of solvents will perform at least as well as 1,1,1-trichloroethane.

  15. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  16. Excavated substrate modulates growth instability during nest building in ants

    PubMed Central

    Toffin, Etienne; Kindekens, Jonathan; Deneubourg, Jean-Louis

    2010-01-01

    In social insects, the nests of the same species can show a large difference in size and shape. Despite these large variations, the nests share the same substructures, some appearing during nest growth. In ants, the interplay between nest size and digging activity leads to two successive morphological transitions from circular to branched shapes (budding along the perimeter of the circular cavity and tunnelling of the galleries). Like several other self-organized collective behaviours, this phenomenon, as well as the entire nest-digging process, is thought to be modulated by environmental properties. The present study investigates the effect of excavated substrate on the nest morphogenesis and the morphological transitions by using two materials with different cohesions. Here, we show that the two morphological transitions occur more frequently with a cohesive substrate than with a granular one: 96 per cent of cohesive experiments showed both transitions, whereas only 50 per cent did in granular experiments. We found that transitions and excavation cessation follow area–response thresholds: the shape transitions take place and the digging activity stops when the dug area reaches the corresponding threshold values. The shape transition thresholds are lower with the cohesive substrate and that of stopping digging is independent of nest shape and material. According to simulations, the experimental frequencies of transitions found their origin in the competition between transitions and activity cessation and in the difference between the transition threshold values of each substrate. Our results demonstrate how the substrate properties modulate the collective response and lead to various patterns. Considering the non-specific mechanisms at work, such effects of substrate coarseness have their counterparts in various collective behaviours, generating alternative patterns to colonize and exploit the environment. PMID:20410036

  17. Substrate and inhibitor studies of thermolysin-like neutral metalloendopeptidase from kidney membrane fractions. Comparison with bacterial thermolysin.

    PubMed

    Pozsgay, M; Michaud, C; Liebman, M; Orlowski, M

    1986-03-25

    The inhibitory constants of a series of synthetic N-carboxymethyl peptide inhibitors and the kinetic parameters (Km, kcat, and kcat/Km) of a series of model synthetic substrates were determined for the membrane-bound kidney metalloendopeptidase isolated from rabbit kidney and compared with those of bacterial thermolysin. The two enzymes show striking similarities with respect to structural requirements for substrate binding to the hydrophobic pocket at the S1' subsite of the active site. Both enzymes showed the highest reaction rates with substrates having leucine residues in this position while phenylalanine residues gave the lowest Km. The two enzymes were also inhibited by the same N-carboxymethyl peptide inhibitors. Although the mammalian enzyme was more susceptible to inhibition than its bacterial counterpart, structural variations in the inhibitor molecules affected the inhibitory constants for both enzymes in a similar manner. The two enzymes differed significantly, however, with respect to the effect of structural changes in the P1 and P2' positions of the substrate on the kinetic parameters of the reaction. The mammalian enzyme showed the highest reaction rates and specificity constants with substrates having the sequence -Phe-Gly-Phe- or -Phe-Ala-Phe- in positions P2, P1, and P1', respectively, while the sequence -Ala-Phe-Phe- was the most favored by the bacterial enzyme. The sequence -Gly-Gly-Phe- as found in enkephalins was not favored by either of the enzymes. Of the substrates having an aminobenzoate group in the P2' position, the mammalian enzyme favored those with the carboxyl group in the meta position while the bacterial enzyme favored those with the carboxyl group in the para position.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Synthesis and property of spinel porous ZnMn2O4 microspheres

    NASA Astrophysics Data System (ADS)

    Guo, N.; Wei, X. Q.; Deng, X. L.; Xu, X. J.

    2015-11-01

    Mesoporous ternary zinc manganese oxides on the Ti sheet substrate are prepared by easy and fast hydrothermal method for the first time. The obtained ZnMn2O4 materials with homogenously distributed pores have been characterized by XRD, SEM and Raman spectra, which show the good crystal phase and particles for improving supercapacitive performance. XRD and SEM images show that the as-prepared samples have good crystallinity, and ZnMn2O4 microsphere has an average diameter of 10 μm. In addition, ZnMn2O4 are also characterized in 2 M KOH solution using three-electrode system. In the work, we study that different substrates (Ti, carbon and nickel foam) have an important effect on the electrochemical performance of the samples. The research of cyclic voltammogram (CV) indicates that the obtained specific capacitance (155 F g-1) values on nickel foam substrate for the ZnMn2O4 microspheres are higher than the values reported for some inexpensive oxides. However, the specific capacitance of all ZnMn2O4 samples has almost no change at two different scan rates which shows good long-term cycling stability. The electrochemical impedance spectroscopy with a small resistance reveals that the as-synthesized samples have good frequency response characteristics. These results indicate that the unique ZnMn2O4 electrode would be a promising electrode for high-performance supercapacitor applications.

  19. Profiling the changes in signaling pathways in ascorbic acid/β-glycerophosphate-induced osteoblastic differentiation.

    PubMed

    Chaves Neto, Antonio Hernandes; Queiroz, Karla Cristiana; Milani, Renato; Paredes-Gamero, Edgar Julian; Justo, Giselle Zenker; Peppelenbosch, Maikel P; Ferreira, Carmen Veríssima

    2011-01-01

    Despite numerous reports on the ability of ascorbic acid and β-glycerophosphate (AA/β-GP) to induce osteoblast differentiation, little is known about the molecular mechanisms involved in this phenomenon. In this work, we used a peptide array containing specific consensus sequences (potential substrates) for protein kinases and traditional biochemical techniques to examine the signaling pathways modulated during AA/β-GP-induced osteoblast differentiation. The kinomic profile obtained after 7 days of treatment with AA/β-GP identified 18 kinase substrates with significantly enhanced or reduced phosphorylation. Peptide substrates for Akt, PI3K, PKC, BCR, ABL, PRKG1, PAK1, PAK2, ERK1, ERBB2, and SYK showed a considerable reduction in phosphorylation, whereas enhanced phosphorylation was observed in substrates for CHKB, CHKA, PKA, FAK, ATM, PKA, and VEGFR-1. These findings confirm the potential usefulness of peptide microarrays for identifying kinases known to be involved in bone development in vivo and in vitro and show that this technique can be used to investigate kinases whose function in osteoblastic differentiation is poorly understood.

  20. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community

    PubMed Central

    Albuquerque, Maria G E; Carvalho, Gilda; Kragelund, Caroline; Silva, Ana F; Barreto Crespo, Maria T; Reis, Maria A M; Nielsen, Per H

    2013-01-01

    The microbial community of a fermented molasses-fed sequencing batch reactor (SBR) operated under feast and famine conditions for production of polyhydroxyalkanoates (PHAs) was identified and quantified through a 16 S rRNA gene clone library and fluorescence in situ hybridization (FISH). The microbial enrichment was found to be composed of PHA-storing populations (84% of the microbial community), comprising members of the genera Azoarcus, Thauera and Paracoccus. The dominant PHA-storing populations ensured the high functional stability of the system (characterized by high PHA-storage efficiency, up to 60% PHA content). The fermented molasses contained primarily acetate, propionate, butyrate and valerate. The substrate preferences were determined by microautoradiography-FISH and differences in the substrate-uptake capabilities for the various probe-defined populations were found. The results showed that in the presence of multiple substrates, microbial populations specialized in different substrates were selected, thereby co-existing in the SBR by adapting to different niches. Azoarcus and Thauera, primarily consumed acetate and butyrate, respectively. Paracoccus consumed a broader range of substrates and had a higher cell-specific substrate uptake. The relative species composition and their substrate specialization were reflected in the substrate removal rates of different volatile fatty acids in the SBR reactor. PMID:22810062

  2. Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1.

    PubMed

    Ramirez, Monica L Gonzalez; Poreba, Marcin; Snipas, Scott J; Groborz, Katarzyna; Drag, Marcin; Salvesen, Guy S

    2018-05-04

    Inflammatory cell death, or pyroptosis, is triggered by pathogenic infections or events. It is executed by caspase-1 (in the canonical pyroptosis pathway) or caspase-11 (noncanonical pathway), each via production of a cell-lytic domain from the pyroptosis effector protein gasdermin D through specific and limited proteolysis. Pyroptosis is accompanied by the release of inflammatory mediators, including the proteolytically processed forms of interleukin-1β (IL-1β) and IL-18. Given the similar inflammatory outcomes of the canonical and noncanonical pyroptosis pathways, we hypothesized that caspase-1 and -11 should have very similar activities and substrate specificities. To test this hypothesis, we purified recombinant murine caspases and analyzed their primary specificities by massive hybrid combinatorial substrate library (HyCoSuL) screens. We correlated the substrate preferences of each caspase with their activities on the recombinant natural substrates IL-1β, IL-18, and gasdermin D. Although we identified highly selective and robust peptidyl substrates for caspase-1, we were unable to do so for caspase-11, because caspase-1 cleaved even the best caspase-11 substrates equally well. Caspase-1 rapidly processed pro-IL-1β and -18, but caspase-11 processed these two pro-ILs extremely poorly. However, both caspase-1 and -11 efficiently produced the cell-lytic domain from the gasdermin D precursor. We hypothesize that caspase-11 may have evolved a specific exosite to selectively engage pyroptosis without directly activating pro-IL-1β or -18. In summary, comparing the activities of caspase-1 and -11 in HyCoSuL screens and with three endogenous protein substrates, we conclude that caspase-11 has highly restricted substrate specificity, preferring gasdermin D over all other substrates examined. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities.

    PubMed

    Hadjikyriacou, Andrea; Clarke, Steven G

    2017-05-23

    Caenorhabditis elegans protein arginine methyltransferases PRMT-7 and PRMT-9 are two evolutionarily conserved enzymes, with distinct orthologs in plants, invertebrates, and vertebrates. Biochemical characterization of these two enzymes reveals that they share much in common with their mammalian orthologs. C. elegans PRMT-7 produces only monomethylarginine (MMA) and preferentially methylates R-X-R motifs in a broad collection of substrates, including human histone peptides and RG-rich peptides. In addition, the activity of the PRMT-7 enzyme is dependent on temperature, the presence of metal ions, and the reducing agent dithiothreitol. C. elegans PRMT-7 has a substrate specificity and a substrate preference different from those of mammalian PRMT7, and the available X-ray crystal structures of the PRMT7 orthologs show differences in active site architecture. C. elegans PRMT-9, on the other hand, produces symmetric dimethylarginine and MMA on SFTB-2, the conserved C. elegans ortholog of human RNA splicing factor SF3B2, indicating a possible role in the regulation of nematode splicing. In contrast to PRMT-7, C. elegans PRMT-9 appears to be biochemically indistinguishable from its human ortholog.

  4. Purification and characterisation of a novel iso-propanol dehydrogenase from Phytomonas sp.

    PubMed

    Uttaro, A D; Opperdoes, F R

    1997-04-01

    An alcohol dehydrogenase with two identical subunits and a subunit molecular mass of 40,000 was purified from Phytomonas sp. isolated from the lactiferous tubes of Euphorbia characias. Digitonin titration and subcellular fractionation suggest that the enzyme is present in the mitochondrion. It utilises as substrates, primary and secondary alcohols, is specific for NAD+ as coenzyme and is inhibited by HgCl(2). The pH optimum for the oxidation of ethanol is 9.5, and for the reverse reaction 8.5. The apparent Km values for iso-propanol and ethanol are 40 and 34 microM, respectively and for the reverse reaction, with acetone as substrate, 14 microM. The respective specific activities with iso-propanol and ethanol as substrate, as measured in crude extracts are 300 and 16 mU (milligram of protein)-1. In isoelectric focusing the enzyme showed three major bands with slightly differing isoelectric points that ranged from 6.4 to 6.8. The name, iso-propanol dehydrogenase is proposed for this enzyme.

  5. Discovery and characterization of a marine bacterial SAM-dependent chlorinase

    PubMed Central

    Eustáquio, Alessandra S; Pojer, Florence; Noel, Joseph P; Moore, Bradley S

    2009-01-01

    Halogen atom incorporation into a scaffold of bioactive compounds often amplifies biological activity, as is the case for the anticancer agent salinosporamide A (1), a chlorinated natural product from the marine bacterium Salinispora tropica. Significant effort in understanding enzymatic chlorination shows that oxidative routes predominate to form reactive electrophilic or radical chlorine species. Here we report the genetic, biochemical and structural characterization of the chlorinase SalL, which halogenates S-adenosyl-l-methionine (2) with chloride to generate 5′-chloro-5′-deoxyadenosine (3) and l-methionine (4) in a rarely observed nucleophilic substitution strategy analogous to that of Streptomyces cattleya fluorinase. Further metabolic tailoring produces a halogenated polyketide synthase substrate specific for salinosporamide A biosynthesis. SalL also accepts bromide and iodide as substrates, but not fluoride. High-resolution crystal structures of SalL and active site mutants complexed with substrates and products support the SN2 nucleophilic substitution mechanism and further illuminate halide specificity in this newly discovered halogenase family. PMID:18059261

  6. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01.

    PubMed

    Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K

    2013-01-01

    To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.

  7. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    PubMed

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  8. Biomechanics of substrate boring by fig wasps.

    PubMed

    Kundanati, Lakshminath; Gundiah, Namrata

    2014-06-01

    Female insects of diverse orders bore into substrates to deposit their eggs. Such insects must overcome several biomechanical challenges to successfully oviposit, which include the selection of suitable substrates through which the ovipositor can penetrate without itself fracturing. In many cases, the insect may also need to steer and manipulate the ovipositor within the substrate to deliver eggs at desired locations before rapidly retracting her ovipositor to avoid predation. In the case of female parasitoid ichneumonid wasps, this process is repeated multiple times during her lifetime, thus testing the ability of the ovipositioning apparatus to endure fracture and fatigue. What specific adaptations does the ovipositioning apparatus of a female ichneumonoid wasp possess to withstand these challenges? We addressed this question using a model system composed of parasitoid and pollinator fig wasps. First, we show that parasitoid ovipositor tips have teeth-like structures, preferentially enriched with zinc, unlike the smooth morphology of pollinator ovipositors. We describe sensillae present on the parasitoid ovipositor tip that are likely to aid in the detection of chemical species and mechanical deformations and sample microenvironments within the substrate. Second, using atomic force microscopy, we show that parasitoid tip regions have a higher modulus compared with regions proximal to the abdomen in parasitoid and pollinator ovipositors. Finally, we use videography to film wasps during substrate boring and analyse buckling of the ovipositor to estimate the forces required for substrate boring. Together, these results allow us to describe the biomechanical principles underlying substrate boring in parasitoid ichneumonid wasps. Such studies may be useful for the biomimetic design of surgical tools and in the use of novel mechanisms to bore through hard substrates. © 2014. Published by The Company of Biologists Ltd.

  9. Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families

    PubMed Central

    Poreba, Marcin; Szalek, Aleksandra; Rut, Wioletta; Kasperkiewicz, Paulina; Rutkowska-Wlodarczyk, Izabela; Snipas, Scott J.; Itoh, Yoshifumi; Turk, Dusan; Turk, Boris; Overall, Christopher M.; Kaczmarek, Leszek; Salvesen, Guy S.; Drag, Marcin

    2017-01-01

    Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid. PMID:28230157

  10. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    PubMed

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi

    2015-02-01

    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.

  11. A new fusion protein platform for quantitatively measuring activity of multiple proteases

    PubMed Central

    2014-01-01

    Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity. PMID:24649897

  12. Crystal structure of substrate free form of glycerol dehydratase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan

    2010-03-08

    Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate withmore » the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.« less

  13. A multiphase mixture model for substrate concentration distribution characteristics and photo-hydrogen production performance of the entrapped-cell photobioreactor.

    PubMed

    Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng

    2015-04-01

    A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Changes in the substrate of rivers in historic mining districts

    USGS Publications Warehouse

    Milhous, R.T.

    2004-01-01

    The restoration of rivers in watersheds with historic mining districts has become a topic of interest during the last decade. Rivers restoration in these areas is difficult because the mines and mills can be scattered over a wide area and often small. Many have also been abandoned. This paper presents two substrate related factors that are important in the evaluation of river restoration alternatives in watersheds with significance impacts from mines and mills most of which are old and abandoned. The two factors are 1) changes in the size distribution and specific weights of the substrate, and 2) the changes in quality of the interstecial waters caused by metals associated with the tailings in the substrate. The most important impacts of tailings from mills may be on the physical characteristics of the substrate (porosity) and on the quality of the pore waters. The measurements presented in this paper do show significant variation in the porosity in gravel bed rivers and in the quality of the pore waters. Copyright ASCE 2004.

  15. Identification of myristoylated alanine-rich C kinase substrate (MARCKS) in astrocytes.

    PubMed

    Vitkovic, Ljubisa; Aloyo, Vincent J; Maeda, Shigeru; Benzil, Deborha L; Bressler, Joseph P; Hilt, Dana C

    2005-01-01

    We have characterized membrane-associated substrates of Ca2+-dependent kinases in primary rat astrocytes by in vitro phosphorylation, 2-dimensional gel electrophoresis and autoradiography. The most prominent among these were three acidic, protein kinase C (PKC) substrates. These are important because they likely transduce cytokine and other neuro-immune modulatory signals mediated by PKC. We now show that one of these phosphoproteins is myristoylated alanine-rich PKC kinase substrate (MARCKS) or phosphomyristin C. The identity was corroborated by one- and 2- dimensional immunoblotting with an MARCKS-specific polyclonal antibody. Exposing primary astrocytes to phorbol 12-myristate 13-acetate stimulated phosphorylation of this protein. The level of MARCKS appeared inversely proportional to the proliferative potential of astrocytes because it was lower in spontaneously transformed as compared to passaged or confluent cells. These data are consistent with previous reports and indicate that one of three major acidic membrane-associated PKC substrates in astrocytes is MARCKS. Thus, MARCKS is likely near-proximal transducer of PKC-mediated signals in astrocytes.

  16. Development of Substrate-Selective Probes for Affinity Pulldown of Histone Demethylases

    PubMed Central

    2015-01-01

    JmjC-domain containing histone demethylases (JHDMs) play critical roles in many key cellular processes and have been implicated in multiple disease conditions. Each enzyme within this family is known to have a strict substrate scope, specifically the position of the lysine within the histone and its degree of methylation. While much progress has been made in determining the substrates of each enzyme, new methods with which to systematically profile each histone mark are greatly needed. Novel chemical tools have the potential to fill this role and, furthermore, can be used as probes to answer fundamental questions about these enzymes and serve as potential therapeutic leads. In this work, we first investigated three small-molecule probes differing in the degree of “methylation state” and their differential bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence polarization-based competition assay. We then applied this specificity toward the “methylation state” and combined it with specificity toward lysine position in the design and synthesis of a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized with a benzophenone cross-linking moiety and a biotin for affinity purification. Results showed binding of the peptidic probe to JHDM1A and specific enrichment of this protein in the presence of its native histone substrates. Affinity purification pulldown experiments from nuclear lysate coupled with mass spectrometry revealed the capability of the probe to pull out and enrich JHDMs along with other epigenetic proteins and transcriptional regulators. PMID:25335116

  17. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  18. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  19. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE PAGES

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; ...

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  1. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  2. Furaldehyde substrate specificity and kinetics of Saccharomyces cerevisiae alcohol dehydrogenase 1 variants.

    PubMed

    Laadan, Boaz; Wallace-Salinas, Valeria; Carlsson, Åsa Janfalk; Almeida, João Rm; Rådström, Peter; Gorwa-Grauslund, Marie F

    2014-08-09

    A previously discovered mutant of Saccharomyces cerevisiae alcohol dehydrogenase 1 (Adh1p) was shown to enable a unique NADH-dependent reduction of 5-hydroxymethylfurfural (HMF), a well-known inhibitor of yeast fermentation. In the present study, site-directed mutagenesis of both native and mutated ADH1 genes was performed in order to identify the key amino acids involved in this substrate shift, resulting in Adh1p-variants with different substrate specificities. In vitro activities of the Adh1p-variants using two furaldehydes, HMF and furfural, revealed that HMF reduction ability could be acquired after a single amino acid substitution (Y295C). The highest activity, however, was reached with the double mutation S110P Y295C. Kinetic characterization with both aldehydes and the in vivo primary substrate acetaldehyde also enabled to correlate the alterations in substrate affinity with the different amino acid substitutions. We demonstrated the key role of Y295C mutation in HMF reduction by Adh1p. We generated and kinetically characterized a group of protein variants using two furaldehyde compounds of industrial relevance. Also, we showed that there is a threshold after which higher in vitro HMF reduction activities do not correlate any more with faster in vivo rates of HMF conversion, indicating other cell limitations in the conversion of HMF.

  3. Substrate- and isoform-specific proteome stability in normal and stressed cardiac mitochondria.

    PubMed

    Lau, Edward; Wang, Ding; Zhang, Jun; Yu, Hongxiu; Lam, Maggie P Y; Liang, Xiangbo; Zong, Nobel; Kim, Tae-Young; Ping, Peipei

    2012-04-27

    Mitochondrial protein homeostasis is an essential component of the functions and oxidative stress responses of the heart. To determine the specificity and efficiency of proteome turnover of the cardiac mitochondria by endogenous and exogenous proteolytic mechanisms. Proteolytic degradation of the murine cardiac mitochondria was assessed by 2-dimensional differential gel electrophoresis and liquid chromatography-tandem mass spectrometry. Mitochondrial proteases demonstrated a substrate preference for basic protein variants, which indicates a possible recognition mechanism based on protein modifications. Endogenous mitochondrial proteases and the cytosolic 20S proteasome exhibited different substrate specificities. The cardiac mitochondrial proteome contains low amounts of proteases and is remarkably stable in isolation. Oxidative damage lowers the proteolytic capacity of cardiac mitochondria and reduces substrate availability for mitochondrial proteases. The 20S proteasome preferentially degrades specific substrates in the mitochondria and may contribute to cardiac mitochondrial proteostasis.

  4. Species specificity in cell-substrate interactions in medusae.

    PubMed

    Schmid, V; Bally, A

    1988-10-01

    A new system is described for the study of ECM-tissue interactions, using the ECM (called mesogloea) of various cnidarians and isolated striated muscle and endodermal tissue of jellyfish. The mesogloea consists mainly of water and collagen. It is present in all cnidarians and can be isolated without enzyme treatment. It can be used as a substrate to which cells and tissues adhere and on which they spread and migrate. Tissues of striated muscle and endoderm adhere and spread not only on mesogloea from regions they normally cover, but also from other regions of the animal. However, adhesion and spreading are highly species-specific. Species-specific adhesion is found throughout the whole mass of mesogloea even at regions where cells do not occur naturally. The cell adhesion factor can be extracted from the mesogloea so that the mesogloea no longer shows any cell adhesion properties. The extract consists mainly of a cysteine-containing collagen.

  5. Characterization of 9H-(1,3-dichlor-9, 9-dimethylacridin-2-ona-7-yl)-phosphate (DDAO) as substrate of PP-2A in a fluorimetric microplate assay for diarrhetic shellfish toxins (DSP).

    PubMed

    Leira, F; Vieites, J M; Vieytes, M R; Botana, L M

    2000-12-01

    Specific inhibition of protein-phosphatases by diarrhetic shellfish toxins (DSP) of the okadaic acid group, has led to the development of a fluorescent enzyme inhibition assay for these toxins using protein-phosphatase 2A (PP-2A) and fluorogenic substrates of the enzyme. Two different substrates of PP-2A have been previously used in this microplate assay: 4-methylumbelliferyl phosphate and fluorescein diphosphate (FDP). In this report, we present the results obtained using a new fluorogenic substrate of PP-2A, the compound dimethylacridinone phosphate (DDAO). A linear relationship between PP-2A concentration and DDAO-induced fluorescence was observed. Okadaic acid (0.0157-9.43 nM)-dependent inhibition of phosphatase activity showed similar results using FDP and DDAO. Recovery percentages obtained with FDP and DDAO in spiked mussel samples (both raw and canned) were very similar and reproducible. Comparative analysis of DSP-contaminated mussel samples by HPLC and FDP/DDAO-PP-2A showed a good correlation among all methods, thus demonstrating that DDAO can be used as a fluorogenic substrate to quantify okadaic acid and related toxins in bivalve molluscs with optimum reliability.

  6. Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa.

    PubMed

    Gao, Chongliang; Lan, Dongming; Liu, Lu; Zhang, Houjin; Yang, Bo; Wang, Yonghua

    2014-07-01

    The lipase from Malassezia globosa (SMG1) has specific activity on mono- and diacylglycerol but not on triacylglycerol. The structural analysis of SMG1 structure shows that two bulky aromatic residues, W116 and W229, lie at the entrance of the active site. To study the functions of these two residues in the substrate recognition and the catalytic reaction, they were mutated to a series of amino acids. Subsequently, biochemical properties of these mutants were investigated. Although the activities decrease, W229L and W116A show a significant shift in substrate preference. W229L has an increased preference for short-chain substrates whereas W116A has preference for long-chain substrates. Besides, the half-lives of W116A and W116H at 45 °C are 346.6 min and 115.5 min respectively, which improve significantly compared to that of native enzyme. Moreover, the optimum substrate of W116A, W116F and W229F mutants shifted from p-nitrophenyl caprylate to p-nitrophenyl myristate. These findings not only shed light onto the lipase structure/function relationship but also lay the framework for the potential industrial applications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties

    NASA Astrophysics Data System (ADS)

    Haneef, Muhammad; Ceseracciu, Luca; Canale, Claudio; Bayer, Ilker S.; Heredia-Guerrero, José A.; Athanassiou, Athanassia

    2017-01-01

    In this work is presented a new category of self-growing, fibrous, natural composite materials with controlled physical properties that can be produced in large quantities and over wide areas, based on mycelium, the main body of fungi. Mycelia from two types of edible, medicinal fungi, Ganoderma lucidum and Pleurotus ostreatus, have been carefully cultivated, being fed by two bio-substrates: cellulose and cellulose/potato-dextrose, the second being easier to digest by mycelium due to presence of simple sugars in its composition. After specific growing times the mycelia have been processed in order to cease their growth. Depending on their feeding substrate, the final fibrous structures showed different relative concentrations in polysaccharides, lipids, proteins and chitin. Such differences are reflected as alterations in morphology and mechanical properties. The materials grown on cellulose contained more chitin and showed higher Young’s modulus and lower elongation than those grown on dextrose-containing substrates, indicating that the mycelium materials get stiffer when their feeding substrate is harder to digest. All the developed fibrous materials were hydrophobic with water contact angles higher than 120°. The possibility of tailoring mycelium materials’ properties by properly choosing their nutrient substrates paves the way for their use in various scale applications.

  8. Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency*

    PubMed Central

    Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd

    2014-01-01

    Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767

  9. Influence of Soil Properties on Soldierless Termite Distribution.

    PubMed

    Bourguignon, Thomas; Drouet, Thomas; Šobotník, Jan; Hanus, Robert; Roisin, Yves

    2015-01-01

    In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.

  10. Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues

    PubMed Central

    Couvineau, Pierre; de Almeida, Hugo; Maigret, Bernard; Llorens-Cortes, Catherine

    2017-01-01

    Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis. PMID:28877217

  11. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.

    PubMed

    Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun

    2016-09-23

    Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The catalytic mechanism of DD-peptidases: unexpected importance of tyrosine 280 in the transpeptidation reaction catalysed by the Streptomyces R61 DD-peptidase.

    PubMed

    Wilkin, J M; Lamotte-Brasseur, J; Frère, J M

    1998-07-01

    The study of the interactions between the Tyr280Phe mutant of the Streptomyces R61 DD-peptidase, various substrates and beta-lactam antibiotics shows that Tyr280 is involved not only in the formation of the acylenzyme with the peptide substrate and beta-lactam antibiotics, but also and specifically in the catalysis of the transpeptidation reaction. Surprisingly, this residue does not belong to the conserved structural and functional elements which characterise the penicillin-recognising enzymes.

  13. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  14. Characterization of substrate binding of the WW domains in human WWP2 protein.

    PubMed

    Jiang, Jiahong; Wang, Nan; Jiang, Yafei; Tan, Hongwei; Zheng, Jimin; Chen, Guangju; Jia, Zongchao

    2015-07-08

    WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy.

    PubMed

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-04-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.

  16. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate.

    PubMed

    Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2013-08-01

    Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.

  17. Light Trapping with Silicon Light Funnel Arrays

    PubMed Central

    Nissan, Yuval; Gabay, Tamir; Shalev, Gil

    2018-01-01

    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685

  18. Structural and Kinetic Insights Reveal That the Amino Acid Pair Gln-228/Asn-254 Modulates the Transfructosylating Specificity of Schwanniomyces occidentalis β-Fructofuranosidase, an Enzyme That Produces Prebiotics*

    PubMed Central

    Álvaro-Benito, Miguel; Sainz-Polo, M. Angela; González-Pérez, David; González, Beatriz; Plou, Francisco J.; Fernández-Lobato, María; Sanz-Aparicio, Julia

    2012-01-01

    Schwanniomyces occidentalis β-fructofuranosidase (Ffase) is a GH32 dimeric enzyme that releases fructose from the nonreducing end of various oligosaccharides and essential storage fructans such as inulin. It also catalyzes the transfer of a fructosyl unit to an acceptor producing 6-kestose and 1-kestose, prebiotics that stimulate the growth of bacteria beneficial for human health. We report here the crystal structure of inactivated Ffase complexed with fructosylnystose and inulin, which shows the intricate net of interactions keeping the substrate tightly bound at the active site. Up to five subsites were observed, the sugar unit located at subsite +3 being recognized by interaction with the β-sandwich domain of the adjacent subunit within the dimer. This explains the high activity observed against long substrates, giving the first experimental evidence of the direct role of a GH32 β-sandwich domain in substrate binding. Crucial residues were mutated and their hydrolase/transferase (H/T) activities were fully characterized, showing the involvement of the Gln-228/Asn-254 pair in modulating the H/T ratio and the type β(2–1)/β(2–6) linkage formation. We generated Ffase mutants with new transferase activity; among them, Q228V gives almost specifically 6-kestose, whereas N254T produces a broader spectrum product including also neokestose. A model for the mechanism of the Ffase transfructosylation reaction is proposed. The results contribute to an understanding of the molecular basis regulating specificity among GH-J clan members, which represent an interesting target for rational design of enzymes, showing redesigned activities to produce tailor-made fructooligosaccharides. PMID:22511773

  19. Evaluating Factor XIII Specificity for Glutamine-Containing Substrates Using a MALDI-TOF Mass Spectrometry Assay

    PubMed Central

    Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.

    2014-01-01

    Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466

  20. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.

    PubMed

    Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil

    2017-03-01

    Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.

  1. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila.

    PubMed

    García-Alonso, L; Romani, S; Jiménez, F

    2000-12-01

    Cell adhesion molecules (CAMs) implement the process of axon guidance by promoting specific selection and attachment to substrates. We show that, in Drosophila, loss-of-function conditions of either the Neuroglian CAM, the FGF receptor coded by the gene heartless, or the EGF receptor coded by DER display a similar phenotype of abnormal substrate selection and axon guidance by peripheral sensory neurons. Moreover, neuroglian loss-of-function phenotype can be suppressed by the expression of gain-of-function conditions of heartless or DER. The results are consistent with a scenario where the activity of these receptor tyrosine kinases is controlled by Neuroglian at choice points where sensory axons select between alternative substrates for extension.

  2. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding.

    PubMed

    Żwirowski, Szymon; Kłosowska, Agnieszka; Obuchowski, Igor; Nillegoda, Nadinath B; Piróg, Artur; Ziętkiewicz, Szymon; Bukau, Bernd; Mogk, Axel; Liberek, Krzysztof

    2017-03-15

    Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp-substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp-substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions. © 2017 The Authors.

  3. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.

    PubMed

    Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-12-19

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structure of Transmembrane Domain of Lysosome-associated Membrane Protein Type 2a (LAMP-2A) Reveals Key Features for Substrate Specificity in Chaperone-mediated Autophagy*

    PubMed Central

    Rout, Ashok K.; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-01-01

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. PMID:25342746

  5. Substrate-specific regulation of ubiquitination by the anaphase-promoting complex

    PubMed Central

    Song, Ling

    2011-01-01

    By orchestrating the sequential degradation of a large number of cell cycle regulators, the ubiquitin ligase anaphase-promoting complex (APC/C) is essential for proliferation in all eukaryotes. The correct timing of APC/C-dependent substrate degradation, a critical feature of progression through mitosis, was long known to be controlled by mechanisms targeting the core APC/C-machinery. Recent experiments, however have revealed an important contribution of substrate-specific regulation of the APC/C to achieve accurate cell division. In this perspective, we describe different mechanisms of substrate-specific APC/C-regulation and discuss their importance for cell division. PMID:21191176

  6. Exploring the specific features of interfacial enzymology based on lipase studies.

    PubMed

    Aloulou, Ahmed; Rodriguez, Jorge A; Fernandez, Sylvie; van Oosterhout, Dirk; Puccinelli, Delphine; Carrière, Frédéric

    2006-09-01

    Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.

  7. The “gating” residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition

    PubMed Central

    Milczek, Erika M.; Binda, Claudia; Rovida, Stefano; Mattevi, Andrea; Edmondson, Dale E.

    2011-01-01

    Summary The major structural difference between human monoamine oxidases A (MAO A) and B (MAO B) is that MAO A has a monopartite substrate cavity of ~550 Å3 volume and MAO B contains a dipartite cavity structure with volumes of ~290 Å3 (entrance cavity) and ~400 Å3 (substrate cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO B. To probe the function of these gating residues, Ile199Ala and Ile199Ala Tyr326Ala mutant forms of MAO B were investigated. Structural data on the Ile199Ala MAO B mutant show no alterations in active site geometries compared to WT enzyme while the Ile199Ala-Tyr326Ala MAO B mutant exhibits alterations in residues 100–103 which are part of the loop gating the entrance to the active site. Both mutant enzymes exhibit catalytic properties with increased amine KM but unaltered kcat values. The altered KM values on mutation are attributed to the influence of the cavity structure in the binding and subsequent deprotonation of the amine substrate. Both mutant enzymes exhibit weaker binding affinities relative to WT enzyme for small reversible inhibitors. Ile199Ala MAO B exhibits an increase in binding affinity for reversible MAO B specific inhibitors which bridge both cavities. The Ile199Ala-Tyr326Ala double mutant exhibits inhibitor binding properties more similar to those of MAO A than to MAO B. These results demonstrate the bipartite cavity structure in MAO B plays an important role in substrate and inhibitor recognition to distinguish its specificities from those of MAO A and provides insights into specific reversible inhibitor design for these membrane-bound enzymes. PMID:21978362

  8. Thyronamines are isozyme-specific substrates of deiodinases.

    PubMed

    Piehl, S; Heberer, T; Balizs, G; Scanlan, T S; Smits, R; Koksch, B; Köhrle, J

    2008-06-01

    3-Iodothyronamine (3-T 1 AM) and thyronamine (T AM) are novel endogenous signaling molecules that exhibit great structural similarity to thyroid hormones but apparently antagonize classical thyroid hormone (T(3)) actions. Their proposed biosynthesis from thyroid hormones would require decarboxylation and more or less extensive deiodination. Deiodinases (Dio1, Dio2, and Dio3) catalyze the removal of iodine from their substrates. Because a role of deiodinases in thyronamine biosynthesis requires their ability to accept thyronamines as substrates, we investigated whether thyronamines are converted by deiodinases. Thyronamines were incubated with isozyme-specific deiodinase preparations. Deiodination products were analyzed using a newly established method applying liquid chromatography and tandem mass spectrometry (LC-MS/MS). Phenolic ring deiodinations of 3,3',5'-triiodothyronamine (rT3AM), 3',5'-diiodothyronamine (3',5'-T2AM), and 3,3'-diiodothyronamine (3,3'-T2AM) as well as tyrosyl ring deiodinations of 3,5,3'-triiodothyronamine (T3AM) and 3,5-diiodothyronamine (3,5-T2AM) were observed with Dio1. These reactions were completely inhibited by the Dio1-specific inhibitor 6n-propyl-2-thiouracil (PTU). Dio2 containing preparations also deiodinated rT(3)AM and 3',5'-T2AM at the phenolic rings but in a PTU-insensitive fashion. All thyronamines with tyrosyl ring iodine atoms were 5(3)-deiodinated by Dio3-containing preparations. In functional competition assays, the newly identified thyronamine substrates inhibited an established iodothyronine deiodination reaction. By contrast, thyronamines that had been excluded as deiodinase substrates in LC-MS/MS experiments failed to show any effect in the competition assays, thus verifying the former results. These data support a role for deiodinases in thyronamine biosynthesis and contribute to confining the biosynthetic pathways for 3-T 1 AM and T 0 AM.

  9. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier ProteinTethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus

    DOE PAGES

    Chang, Chin -Yuan; Lohman, Jeremy; Cao, Hongnan; ...

    2016-08-25

    C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-beta-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-beta-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 A resolution, respectively. SgcE6 shares a similar β-barrel fold withmore » the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few, other known FADH 2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. In conclusion, the crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH 2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.« less

  10. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species.

    PubMed

    Lehmann, M M; Wegener, F; Werner, R A; Werner, C

    2016-09-01

    Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 . © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Suitability of cholinesterase of polychaete Diopatra neapolitana as biomarker of exposure to pesticides: In vitro characterization.

    PubMed

    Mennillo, Elvira; Casu, Valentina; Tardelli, Federica; De Marchi, Lucia; Freitas, Rosa; Pretti, Carlo

    2017-01-01

    Cholinesterases of Diopatra neapolitana were characterized for their activity in whole body and different body segments (apical, intermediate, posterior), substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (K m and V max ) and in vitro response to model inhibitors (eserine hemisulfate, isoOMPA, BW284C51) and carbamates (carbofuran, methomyl, aldicarb and carbaryl). Results showed that the rate of hydrolysis for acetyl- and propionylthiocholine was higher in the posterior segment than the apical/intermediate segments and whole body. Cholinesterases of D. neapolitana showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was poorly hydrolyzed indicating, together with the absence of inhibition by the specific inhibitor and the absence of reactive bands in native electrophoresis, a lack of an active butyrylcholinesterase, differently than that observed in other Annelida species. The degree of inhibition by selected carbamates of cholinesterase activity with propionylthiocholine as substrate was higher than that observed with ATChI-ChE activity; aldicarb showed the highest inhibitory effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed.

    Treesearch

    Mark A. Bradford; Matthew D. Wallenstein; Steven D. Allison; Kathleen K. Treseder; Serita D. Frey; Brian W. Watts; Christian A. Davies; Thomas R. Maddox; Jerry M. Melillo; Jacqueline E. Mohan; James F. Reynolds

    2009-01-01

    Hartley et al. question whether reduction in Rmass, under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis may not...

  13. Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network.

    PubMed

    Damle, Nikhil Prakash; Mohanty, Debasisa

    2014-06-15

    In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a short sequence stretch around phosphosite as determinants of kinase specificity and do not consider the biological context of kinase-substrate recognition. Based on the analysis of domain-specific kinase-substrate relationships, we have constructed a domain-level phosphorylation network that implicitly incorporates various contextual factors. It reveals preferential phosphorylation of specific domains by certain kinases. These novel correlations have been implemented in PhosNetConstruct, an automated program for predicting target kinases for a substrate protein. PhosNetConstruct distinguishes cognate kinase-substrate pairs from a large number of non-cognate combinations. Benchmarking on independent datasets using various statistical measures demonstrates the superior performance of PhosNetConstruct over ssKSR-based predictors. PhosNetConstruct is freely available at http://www.nii.ac.in/phosnetconstruct.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease*

    PubMed Central

    Galiullina, Raisa A.; Kasperkiewicz, Paulina; Chichkova, Nina V.; Szalek, Aleksandra; Serebryakova, Marina V.; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B.

    2015-01-01

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. PMID:26283788

  15. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.

    PubMed

    Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier

    2013-10-01

    Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Allosteric regulation of rhomboid intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-09-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.

  17. Allosteric regulation of rhomboid intramembrane proteolysis

    PubMed Central

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-01-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246

  18. Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase.

    PubMed

    Oteng-Pabi, Samuel K; Clouthier, Christopher M; Keillor, Jeffrey W

    2018-01-01

    Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chin -Yuan; Lohman, Jeremy; Cao, Hongnan

    C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-beta-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-beta-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 A resolution, respectively. SgcE6 shares a similar β-barrel fold withmore » the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few, other known FADH 2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. In conclusion, the crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH 2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.« less

  20. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    PubMed Central

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143

  1. Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular Hydrocarbons and Triacylglycerides in a Drosophila Species Pair

    PubMed Central

    Yew, Joanne Y.; Dreisewerd, Klaus; de Oliveira, Cássia Cardoso; Etges, William J.

    2011-01-01

    We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species. PMID:21369358

  2. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH.

    PubMed

    Chahinian, Henri; Snabe, Torben; Attias, Coralie; Fojan, Peter; Petersen, Steffen B; Carrière, Frédéric

    2006-01-24

    Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.

  3. Structure of the carboxypeptidase B complex with N-sulfamoyl-L-phenylalanine - a transition state analog of non-specific substrate.

    PubMed

    Akparov, Valery; Timofeev, Vladimir; Khaliullin, Ilyas; Švedas, Vytas; Kuranova, Inna

    2018-03-01

    Carboxypeptidase B (EC 3.4.17.2) (CPB) is commonly used in the industrial insulin production and as a template for drug design. However, its ability to discriminate substrates with hydrophobic, hydrophilic, and charged side chains is not well understood. We report structure of CPB complex with a transition state analog N-sulfamoyl-L-phenylalanine solved at 1.74Å. The study provided an insight into structural basis of CPB substrate specificity. Ligand binding is affected by structure-depended conformational changes of Asp255 in S1'-subsite, interactions with Asn144 and Arg145 in C-terminal binding subsite, and Glu270 in the catalytic center. Side chain of the non-specific substrate analog SPhe in comparison with that of specific substrate analog SArg (reported earlier) not only loses favorable electrostatic interactions and two hydrogen bonds with Asp255 and three fixed water molecules, but is forced to be in the unfavorable hydrophilic environment. Thus, Ser207, Gly253, Tyr248, and Asp255 residues play major role in the substrate recognition by S1'-subsite.

  4. Novel α-L-arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer.

    PubMed

    Yang, Ying; Zhang, Lujia; Guo, Mingrong; Sun, Jiaqi; Matsukawa, Shingo; Xie, Jingli; Wei, Dongzhi

    2015-04-15

    In the process of gene mining for novel α-L-arabinofuranosidases (AFs), the gene Celf_3321 from Cellulomonas fimi ATCC 484 encodes an AF, termed as AbfCelf, with potent activity, 19.4 U/mg under the optimum condition, pH 6.0 and 40 °C. AbfCelf can hydrolyze α-1,5-linked oligosaccharides, sugar beet arabinan, linear 1,5-α-arabinan, and wheat flour arabinoxylan, which is partly different from some previously well-characterized GH 51 AFs. The traditional substrate-specificity analysis for AFs is labor-consuming and money costing, because the substrates include over 30 kinds of various 4-nitrophenol (PNP)-glycosides, oligosaccharides, and polysaccharides. Hence, a preliminary structure and mechanism based method was applied for substrate-specificity analysis. The binding energy (ΔG, kcal/mol) obtained by docking suggested the reaction possibility and coincided with the experimental results. AbfA crystal 1QW9 was used to test the rationality of docking method in simulating the interaction between enzyme and substrate, as well the credibility of the substrate-specificity analysis method in silico.

  5. Deacylation transition states of a bacterial DD-peptidase.

    PubMed

    Adediran, S A; Kumar, I; Pratt, R F

    2006-10-31

    Beta-lactam antibiotics restrict bacterial growth by inhibiting DD-peptidases. These enzymes catalyze the final transpeptidation step in bacterial cell wall biosynthesis. Although much structural information is now available for these enzymes, the mechanism of the actual transpeptidation reaction has not been studied in detail. The reaction is known to involve a double-displacement mechanism with an acyl-enzyme intermediate, which can be attacked by water, specific amino acids, peptides, and other acyl acceptors. We describe in this paper an investigation of acyl acceptor specificity and assess the need for general base catalysis in the deacylation transition state of the Streptomyces R61 DD-peptidase. We show, by the criterion of solvent deuterium kinetic isotope effect measurements and proton inventories, that the transition states of specific and nonspecific substrates are very similar, at least with respect to proton motion. The transition states for attack (tetrahedral intermediate formation) by d-amino acids and Gly-l-Xaa dipeptides do not include a general base catalyst, while such catalysis is essential for reaction with water and d-alpha-hydroxy acids. D-Alpha-hydroxy acids act as acyl acceptors for glycyl substrates but not for more specific d-alanyl substrates; hydroxy acids actually behave, more generally, as mixed inhibitors of the DD-peptidase. The structural and mechanistic bases of these observations are discussed; they should inform transition state analogue design.

  6. Role of Proteases in Extra-Oral Digestion of a Predatory Bug, Andrallus spinidens

    PubMed Central

    Zibaee, Arash; Hoda, Hassan; Mahmoud, Fazeli-Dinan

    2012-01-01

    Roles of salivary proteases in the extra-oral digestion of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) were studied by using 2% azocasein as a general substrate and specific protease substrates, as well as synthetic and endogenous inhibitors. It was found that salivary glands of A. spinidens have two anterior, two lateral, and two posterior lobes. Azocasein was used to measure the activity of general proteases in the salivary glands using different buffer solutions. The enzyme had the highest activity at pH 8. General protease activity was highest at 40 °C and was stable for 6–16 hours. The use of specific substrates showed that trypsin-like, chymotrypsin-like, aminopeptidase, and carboxypeptidase are the active proteases present in salivary glands, by the maximum activity of trypsin-like protease in addition to their optimal pH between 8–9. Ca2+ and Mg2+ increased proteolytic activity about 216%, while other ions decreased it. Specific inhibitors including SBTI, PMSF, TLCK, and TPCK significantly decreased enzyme activity, as well as the specific inhibitors of methalloproteases including phenanthroline, EGTA, and TTHA. Extracted endogenous trypsin inhibitors extracted from potential prey, Chilo suppressalis, Naranga aenescens, Pieris brassicae, Hyphantria cunea, and Ephestia kuhniella, had different effects on trypsin-like protease activity of A. spinidens salivary glands. With the exception of C. suppressalis, the endogenous inhibitors significantly decreased enzyme activity in A. spinidens. PMID:22954419

  7. Aminopeptidase activity from germinated jojoba cotyledons.

    PubMed

    Johnson, R; Storey, R

    1985-11-01

    One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline.The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg(2+) or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-beta-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence.

  8. Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers.

    PubMed

    Purushotham, Pallinti; Sarma, P V S R N; Podile, Appa Rao

    2012-05-01

    Serratia proteamaculans 568 genome revealed the presence of four family 18 chitinases (Sp ChiA, Sp ChiB, Sp ChiC, and Sp ChiD). Heterologous expression and characterization of Sp ChiA, Sp ChiB, and Sp ChiC showed that these enzymes were optimally active at pH 6.0-7.0, and 40°C. The three Sp chitinases displayed highest activity/binding to β-chitin and showed broad range of substrate specificities, and released dimer as major end product from oligomeric and polymeric substrates. Longer incubation was required for hydrolysis of trimer for the three Sp chitinases. The three Sp chitinases released up to tetramers from colloidal chitin substrate. Sp ChiA and Sp ChiB were processive chitinases, while Sp ChiC was a non-processive chitinase. Based on the known structures of ChiA and ChiB from S. marcescens, 3D models of Sp ChiA and Sp ChiB were generated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Modeling universal dynamics of cell spreading on elastic substrates.

    PubMed

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  10. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  11. Enhancement of phonon backscattering due to confinement of ballistic phonon pathways in silicon as studied with a microfabricated phonon spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otelaja, O. O.; Robinson, R. D., E-mail: rdr82@cornell.edu

    2015-10-26

    In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) aroundmore » the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.« less

  12. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    PubMed

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  13. Hypersusceptibility to substrate analogs conferred by mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Smith, Robert A; Anderson, Donovan J; Preston, Bradley D

    2006-07-01

    Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed "random scanning mutagenesis" of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.

  14. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities.

    PubMed

    Deuerling, Elke; Patzelt, Holger; Vorderwülbecke, Sonja; Rauch, Thomas; Kramer, Günter; Schaffitzel, Elke; Mogk, Axel; Schulze-Specking, Agnes; Langen, Hanno; Bukau, Bernd

    2003-03-01

    Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.

  15. In vitro biofilm model for studying tongue flora and malodour.

    PubMed

    Spencer, P; Greenman, J; McKenzie, C; Gafan, G; Spratt, D; Flanagan, A

    2007-10-01

    To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. Tongue-scrape inocula were used to establish in vitro perfusion biofilms which were examined in terms of ecological composition using culture-dependent and independent (PCR-DGGE) approaches. VSC-specific activity of cells was measured by a cell suspension assay, using a portable industrial sulfide monitor which was also used to monitor VSC production from biofilms in situ. Quasi steady states were achieved by 48 h and continued to 96 h. The mean (+/-SEM) growth rate for 72-h biofilms (n=4) was micro=0.014 h(-1) (+/-0.005 h(-1)). Comparison of biofilms, perfusate and original inoculum showed their ecological composition to be similar (Pearson coefficient>0.64). Perfusate and biofilm cells derived from the same condition (co-sampled) were equivalent with regard to VSC-specific activities which were up-regulated in the presence of S-substrates. The model maintained a stable tongue microcosm suitable for studying VSC production; biofilm growth in the presence of S-substrates up-regulated VSC activity. The method is apt for studying ecological and physiological aspects of oral biofilms and could be useful for screening inhibitory agents.

  16. A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee1[W][OA

    PubMed Central

    Lallemand, Laura A.; Zubieta, Chloe; Lee, Soon Goo; Wang, Yechun; Acajjaoui, Samira; Timmins, Joanna; McSweeney, Sean; Jez, Joseph M.; McCarthy, James G.; McCarthy, Andrew A.

    2012-01-01

    Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds. PMID:22822210

  17. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    PubMed

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Trans unsaturated fatty acids inhibit lecithin: cholesterol acyltransferase and alter its positional specificity.

    PubMed

    Subbaiah, P V; Subramanian, V S; Liu, M

    1998-07-01

    Although dietary trans unsaturated fatty acids (TUFA) are known to decrease plasma HDL, the underlying mechanisms for this effect are unclear. We tested the hypothesis that the decreased HDL is due to an inhibition of lecithin:cholesterol acyltransferase (LCAT), the enzyme essential for the formation of HDL, by determining the activity of purified LCAT in the presence of synthetic phosphatidylcholine (PC) substrates containing TUFA. Both human and rat LCATs exhibited significantly lower activity (-37% to -50%) with PCs containing 18:1t or 18:2t, when compared with the PCs containing corresponding cis isomers. TUFA-containing PCs also inhibited the enzyme activity competitively, when added to egg PC substrate. The inhibition of LCAT activity was not due to changes in the fluidity of the substrate particle. However, the inhibition depended on the position occupied by TUFA in the PC, as well as on the paired fatty acid. Thus, for human LCAT, 18:1t was more inhibitory when present at sn-2 position of PC, than at sn-1, when paired with 16:0. In contrast, when paired with 20:4, 18:1t was more inhibitory at sn-1 position of PC. Both human and rat LCATs, which are normally specific for the sn-2 acyl group of PC, exhibited an alteration in their positional specificity when 16:0-18:1t PC or 16:1t-20:4 PC was used as substrate, deriving 26-86% of the total acyl groups for cholesterol esterification from the sn-1 position. These results show that the trans fatty acids decrease high density lipoprotein through their inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, and also alter LCAT's positional specificity, inducing the formation of more saturated cholesteryl esters, which are more atherogenic.

  19. Substrate Specificities and Conformational Flexibility of 3-Ketosteroid 9α-Hydroxylases*

    PubMed Central

    Penfield, Jonathan S.; Worrall, Liam J.; Strynadka, Natalie C.; Eltis, Lindsay D.

    2014-01-01

    KshA is the oxygenase component of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase involved in the bacterial degradation of steroids. Consistent with its role in bile acid catabolism, KshA1 from Rhodococcus rhodochrous DSM43269 had the highest apparent specificity (kcat/Km) for steroids with an isopropyl side chain at C17, such as 3-oxo-23,24-bisnorcholesta-1,4-diene-22-oate (1,4-BNC). By contrast, the KshA5 homolog had the highest apparent specificity for substrates with no C17 side chain (kcat/Km >105 s−1 m−1 for 4-estrendione, 5α-androstandione, and testosterone). Unexpectedly, substrates such as 4-androstene-3,17-dione (ADD) and 4-BNC displayed strong substrate inhibition (KiS ∼100 μm). By comparison, the cholesterol-degrading KshAMtb from Mycobacterium tuberculosis had the highest specificity for CoA-thioesterified substrates. These specificities are consistent with differences in the catabolism of cholesterol and bile acids, respectively, in actinobacteria. X-ray crystallographic structures of the KshAMtb·ADD, KshA1·1,4-BNC-CoA, KshA5·ADD, and KshA5·1,4-BNC-CoA complexes revealed that the enzymes have very similar steroid-binding pockets with the substrate's C17 oriented toward the active site opening. Comparisons suggest Tyr-245 and Phe-297 are determinants of KshA1 specificity. All enzymes have a flexible 16-residue “mouth loop,” which in some structures completely occluded the substrate-binding pocket from the bulk solvent. Remarkably, the catalytic iron and α-helices harboring its ligands were displaced up to 4.4 Å in the KshA5·substrate complexes as compared with substrate-free KshA, suggesting that Rieske oxygenases may have a dynamic nature similar to cytochrome P450. PMID:25049233

  20. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family.

    PubMed

    Nguyen, Vi N; Park, Annsea; Xu, Anting; Srouji, John R; Brenner, Steven E; Kirsch, Jack F

    2016-12-01

    The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74-compound library of known Nudix enzyme substrates. We found substrates for four enzymes with k cat /K m values >10,000 M -1  s -1 : Q92EH0_LISIN of Listeria innocua serovar 6a against ADP-ribose, Q5LBB1_BACFN of Bacillus fragilis against 5-Me-CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8-oxo-dATP and 3'-dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty-two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported k cat /K m values exhibited against these canonical substrates are well under 10 5 M -1  s -1 . By contrast, several Nudix enzymes show much larger k cat /K m values (in the range of 10 5 to >10 7 M -1  s -1 ) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810-1822. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-09

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.

  2. Bauhinia proteinase inhibitor-based synthetic fluorogenic substrates for enzymes isolated from insect midgut and caterpillar bristles.

    PubMed

    Andrade, Sonia A; Santomauro-Vaz, Eugênio M; Lopes, Adriana R; Chudzinski-Tavassi, Ana M; Juliano, Maria A; Terra, Walter R; Sampaio, Misako U; Sampaio, Claudio A M; Oliva, Maria Luiza V

    2003-03-01

    Bauhinia ungulata factor Xa inhibitor (BuXI) inactivates factor Xa and LOPAP, a prothrombin activator proteinase isolated from the venom of Lonomia obliqua caterpillar bristles. The reactive site of the enzyme-inhibitor interaction was explored to design specific substrates for both enzymes. Methionine is crucial for LOPAP and factor Xa substrate interaction, since the change of both Met residues in the substrates abolished the hydrolysis. Synthetic substrates containing the sequence around the reactive site of BbKI, a plasma kallikrein inhibitor, were shown to be specific for trypsin hydrolysis. Therefore, these substrates may be an alternative in studies aiming at a characterization of trypsin-like enzyme activities, especially non-mammalian enzymes.

  3. Growth of the extremophilic Deinococcus geothermalis DSM 11302 using co-substrate fed-batch culture.

    PubMed

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2014-02-01

    Deinococcus geothermalis metabolism has been scarcely studied to date, although new developments on its utilization for bioremediation have been carried out. So, large-scale production of this strain and a better understanding of its physiology are required. A fed-batch experiment was conducted to achieve a high cell density non-limiting culture of D. geothermalis DSM 11302. A co-substrate nutritional strategy using glucose and yeast extract was carried out in a 20-L bioreactor in order to maintain a non-limited growth at a maximal growth rate of 1 h(-1) at 45 °C. Substrate supplies were adjusted by monitoring online culture parameters and physiological data (dissolved oxygen, gas analyses, respiratory quotient, biomass concentration). The results showed that yeast extract could serve as both carbon and nitrogen sources, although glucose and ammonia were consumed too. Yeast extract carbon-specific uptake rate reached a value 4.5 times higher than glucose carbon-specific uptake rate. Cell concentration of 9.6 g L(-1) dry cell weight corresponding to 99 g of biomass was obtained using glucose and yeast extract as carbon and nitrogen sources.

  4. Heuristic method of fabricating counter electrodes in dye-sensitized solar cells based on a PEDOT:PSS layer as a catalytic material

    NASA Astrophysics Data System (ADS)

    Edalati, Sh; Houshangi far, A.; Torabi, N.; Baneshi, Z.; Behjat, A.

    2017-02-01

    Poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a fluoride-doped tin oxide glass substrate using a heuristic method to fabricate platinum-free counter electrodes for dye-sensitized solar cells (DSSCs). In this heuristic method a thin layer of PEDOT:PPS is obtained by spin coating the PEDOT:PSS on a Cu substrate and then removing the substrate with FeCl3. The characteristics of the deposited PEDOT:PSS were studied by energy dispersive x-ray analysis and scanning electron microscopy, which revealed the micro-electronic specifications of the cathode. The aforementioned DSSCs exhibited a solar conversion efficiency of 3.90%, which is far higher than that of DSSCs with pure PEDOT:PSS (1.89%). This enhancement is attributed not only to the micro-electronic specifications but also to the HNO3 treatment through our heuristic method. The results of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel polarization plots show the modified cathode has a dual function, including excellent conductivity and electrocatalytic activity for iodine reduction.

  5. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.

    PubMed

    Ouedraogo, Daniel; Ball, Jacob; Iyer, Archana; Reis, Renata A G; Vodovoz, Maria; Gadda, Giovanni

    2017-10-15

    d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines.

    PubMed

    Inouye, Satoshi; Sahara-Miura, Yuiko; Sato, Jun-ichi; Iimori, Rie; Yoshida, Suguru; Hosoya, Takamitsu

    2013-03-01

    The cold-induced expression system in Escherichia coli is useful and we have applied this system to prepare the coelenterazine-utilizing luciferases including Renilla luciferase (RLase), a red-shifted variant of Renilla luciferase (RLase-547), the catalytic domain of Oplophorus luciferase (19kOLase) and Gaussia luciferase (GLase). The luminescence properties of the purified luciferases were characterized by using 10 kinds of C2-modified coelenterazine analogues as a substrate. The order of the maximal luminescence intensity for native coelenterazine was GLase (100%)>RLase (8.0%)>RLase-547 (0.73%)>19kOLase (0.09%) under our assay conditions. The substrate specificities of coelenterazine-utilizing luciferases for the C2-modified analogues showed significant differences, but the emission peaks catalyzed by coelenterazine-utilizing luciferases were not affected by the C2-substituted coelenterazine. These results suggest that the catalytic environment for the oxygenation process of coelenterazine and the excited species of coelenteramide might be different among coelenterazine-utilizing luciferases. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Characterization of an aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea with broad substrate specificity against aromatic alcohols.

    PubMed

    Tamaru, Yoshiaki; Umezawa, Kiwamu; Yoshida, Makoto

    2018-07-01

    The aim of the study was to obtain information about the enzymatic properties of aryl-alcohol oxidase from the plant saprophytic basidiomycete Coprinopsis cinerea (rCcAAO), which is classified into the auxiliary activities family 3 subfamily 2 (AA3_2). The gene encoding AAO from the plant saprophytic basidiomycete Coprinopsis cinerea (CcAAO) was cloned, and the recombinant CcAAO (rCcAAO) was heterologously expressed in the methylotrophic yeast Pichia pastoris. The purified rCcAAO showed significant activity not only against trans,trans-2,4-hexadien-1-ol but also against a broad range of aromatic alcohols including aromatic compounds that were reported to be poor substrates for known AAOs. Moreover, site-directed mutagenesis analysis demonstrated that mutants with substitutions from leucine to phenylalanine and tryptophan at position 416 exhibited decreases of activity for aromatic alcohols but still maintained the activity for trans,trans-2,4-hexadien-1-ol. Leucine 416 in CcAAO contributes to the broad substrate specificity against various aromatic alcohols, which is useful for the production of hydrogen peroxide using this enzyme.

  8. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    PubMed

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  9. Dropwise Condensation on Soft Hydrophobic Coatings.

    PubMed

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-10-31

    Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.

  10. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico)

    NASA Astrophysics Data System (ADS)

    Couradeau, Estelle; Roush, Daniel; Guida, Brandon Scott; Garcia-Pichel, Ferran

    2017-01-01

    Endolithic microbial communities are prominent features of intertidal marine habitats, where they colonize a variety of substrates, contributing to their erosion. Almost 2 centuries worth of naturalistic studies focused on a few true-boring (euendolithic) phototrophs, but substrate preference has received little attention. The Isla de Mona (Puerto Rico) intertidal zone offers a unique setting to investigate substrate specificity of endolithic communities since various phosphate rock, limestone and dolostone outcrops occur there. High-throughput 16S rDNA genetic sampling, enhanced by targeted cultivation, revealed that, while euendolithic cyanobacteria were dominant operational taxonomic units (OTUs), the communities were invariably of high diversity, well beyond that reported in traditional studies and implying an unexpected metabolic complexity potentially contributed by secondary colonizers. While the overall community composition did not show differences traceable to the nature of the mineral substrate, we detected specialization among particular euendolithic cyanobacterial clades towards the type of substrate they excavate but only at the OTU phylogenetic level, implying that close relatives have specialized recurrently into particular substrates. The cationic mineral component was determinant in this preference, suggesting the existence in nature of alternatives to the boring mechanism described in culture that is based exclusively on transcellular calcium transport.

  11. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  12. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coveney, M.F.; Wetzel, R.G.

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganicmore » phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.« less

  13. Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester.

    PubMed

    Chen, Ke-Cai; Zheng, Ming-Min; Pan, Jiang; Li, Chun-Xiu; Xu, Jian-He

    2017-10-01

    The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipA L315S and LipA S271F , were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipA L315S , LipA S271F , and their combination LipA L315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipA S271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipA S271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m . Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.

  14. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease.

    PubMed

    Galiullina, Raisa A; Kasperkiewicz, Paulina; Chichkova, Nina V; Szalek, Aleksandra; Serebryakova, Marina V; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B

    2015-10-09

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structural and Kinetic Basis for Substrate Selectivity in Populus tremuloides Sinapyl Alcohol Dehydrogenase

    PubMed Central

    Bomati, Erin K.; Noel, Joseph P.

    2005-01-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. PMID:15829607

  16. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    PubMed

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  17. Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function.

    PubMed

    Schué, Mathieu; Maurin, Damien; Dhouib, Rabeb; Bakala N'Goma, Jean-Claude; Delorme, Vincent; Lambeau, Gérard; Carrière, Frédéric; Canaan, Stéphane

    2010-06-01

    Cutinases are extracellular enzymes that are able to degrade cutin, a polyester protecting plant leaves and many kinds of lipids. Although cutinases are mainly found in phytopathogenic fungi or bacteria, 7 genes related to the cutinase family have been predicted in the genome of Mycobacterium tuberculosis. These genes may encode proteins that are involved in the complex lipid metabolism of the bacterium. Here, we report on the biochemical characterization of two secreted proteins of M. tuberculosis, Rv1984c and Rv3452, belonging to the cutinase family. Although their amino acid sequence shows 50% identity with that of the well-characterized cutinase from Fusarium solani pisi, and a high level of homology has been found to exist between these two enzymes, they show distinct substrate specificities. Rv1984c preferentially hydrolyzes medium-chain carboxylic esters and monoacylglycerols, whereas Rv3452 behaves like a phospholipase A(2), and it is able to induce macrophage lysis. The tetrahydrolipstatin inhibitor, a specific lipase inhibitor, abolishes the activity of both enzymes. Site-directed mutagenesis was performed to identify the catalytic triad of Rv1984c. Structural models for Rv1984c and Rv3452 were built, based on the crystal structure of F. solani cutinase, with a view to investigating the contribution of specific residues to the substrate specificity. Our findings open new prospects for investigating the physiological roles of cutinase-like proteins in the lipid metabolism and virulence of M. tuberculosis.

  18. The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals.

    PubMed

    Karachaliou, Mayia; Amillis, Sotiris; Evangelinos, Minoas; Kokotos, Alexandros C; Yalelis, Vassilis; Diallinas, George

    2013-04-01

    We investigated the role of all arrestin-like proteins of Aspergillus nidulans in respect to growth, morphology, sensitivity to drugs and specifically for the endocytosis and turnover of the uric acid-xanthine transporter UapA. A single arrestin-like protein, ArtA, is essential for HulA(Rsp) (5) -dependent ubiquitination and endocytosis of UapA in response to ammonium or substrates. Mutational analysis showed that residues 545-563 of the UapA C-terminal region are required for efficient UapA endocytosis, whereas the N-terminal region (residues 2-123) and both PPxY motives are essential for ArtA function. We further show that ArtA undergoes HulA-dependent ubiquitination at residue Lys-343 and that this modification is critical for UapA ubiquitination and endocytosis. Lastly, we show that ArtA is essential for vacuolar turnover of transporters specific for purines (AzgA) or l-proline (PrnB), but not for an aspartate/glutamate transporter (AgtA). Our results are discussed within the frame of recently proposed mechanisms on how arrestin-like proteins are activated and recruited for ubiquitination of transporters in response to broad range signals, but also put the basis for understanding how arrestin-like proteins, such as ArtA, regulate the turnover of a specific transporter in the presence of its substrates. © 2013 Blackwell Publishing Ltd.

  19. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  20. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  1. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Krishnan, Venkata

    2017-03-01

    Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS) has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  2. Biofunctionalization of a “Clickable” Organic Layer Photochemically Grafted on Titanium Substrates

    PubMed Central

    Li, Yan; Zhao, Meirong; Wang, Jun; Liu, Kai; Cai, Chengzhi

    2011-01-01

    We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO2/Ti substrates provided a “clickable” thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells. PMID:21417429

  3. Inhibition of Glucuronokinase by Substrate Analogs 1

    PubMed Central

    Gillard, Douglas F.; Dickinson, David B.

    1978-01-01

    Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective. PMID:16660589

  4. Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: Substrate specificity, kinetic comparison, and enantioselectivity.

    PubMed

    Syal, Poonam; Gupta, Rani

    2017-11-01

    Five lipase genes, ylip4, ylip5, ylip7, ylip13, and ylip15, from Yarrowia lipolytica MSR80 were cloned and expressed in the pEZZ18-HB101 system. The lipases shared maximum sequence identity with Candida galli lipase, whereas they shared structural similarity with YLIP2 of Y. lipolytica CLIB122. The enzymes, purified using IgG sepharose, had specific activities in the range of 7-25 U mg -1 . Biochemical characteristics of all the lipases varied with respect to thermostability, substrate specificity, and enantioselectivity. All the enzymes were most active at neutral or slightly alkaline pH and were stable in the pH range 3.0-8.0, except YLIP4, which showed 50% stability at pH 10.0. Temperature optima of all the lipases varied from 30 to 50 ºC. YLIP15 and YLIP13 were most thermostable with a t 1/2 of 138 and 112 Min, respectively, at 60 °C. The lipases exhibited varied substrate specificity on p-nitrophenyl esters ranging from short-chain specificity (YLIP15), mid-chain specificity (YLIP4, YLIP5, YLIP7), and long-chain specificity (YLIP13). Catalytic efficiency on p-nitrophenylcaprate was highest for YLIP13 (67 × 10 3 mM -1 min -1 ) and lowest for YLIP15 (6.7 × 10 3 mM -1 min -1 ). YLIP13 was S-enantioselective, and YLIP15 was R-enantioselective with enantiomeric excess of 53 and 36%, respectively. Of all five lipases, YLIP13 and YLIP15 could be considered as industrially important enzymes as they were thermostable and enantioselective. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  6. Modification of surface properties of cellulosic substrates by quaternized silicone emulsions.

    PubMed

    Purohit, Parag S; Somasundaran, P

    2014-07-15

    The present work describes the effect of quaternization of silicones as well as the relevant treatment parameter pH on the frictional, morphological and relaxation properties of fabric substrates. Due to their unique surface properties, silicone polymers are extensively used to modify surface properties of various materials, although the effects of functionalization of silicones and relevant process conditions on modification of substrates are not well understood. Specifically we show a considerable reduction in fabric friction, roughness and waviness upon treatment with quaternized silicones. The treatment at acidic pH results in better deposition of silicone polymers onto the fabric as confirmed through streaming potential measurements which show charge reversal of the fabric. Interestingly, Raman spectroscopy studies show the band of C-O ring stretching mode at ∼1095 cm(-1) shift towards higher wavenumber indicating lowering of stress in fibers upon appropriate silicone treatment. Thus along with the morphological and frictional properties being altered, silicone treatment can lead to a reduction in fabric strain. It is concluded that the electrostatic interactions play an initial role in modification of the fiber substrate followed by multilayer deposition of polymer. This multi-technique approach to study fiber properties upon treatment by combining macro to molecular level methods has helped in understanding of new functional coating materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.

  8. Enzymatic triggered release of an HIV-1 entry inhibitor from prostate specific antigen degradable microparticles.

    PubMed

    Clark, Meredith R; Aliyar, Hyder A; Lee, Chang-won; Jay, Julie I; Gupta, Kavita M; Watson, Karen M; Stewart, Russell J; Buckheit, Robert W; Kiser, Patrick F

    2011-07-15

    This paper describes the design, construction and characterization of the first anti-HIV drug delivery system that is triggered to release its contents in the presence of human semen. Microgel particles were synthesized with a crosslinker containing a peptide substrate for the seminal serine protease prostate specific antigen (PSA) and were loaded with the HIV-1 entry inhibitor sodium poly(styrene-4-sulfonate) (pSS). The particles were composed of N-2-hydroxyproplymethacrylamide and bis-methacrylamide functionalized peptides based on the PSA substrates GISSFYSSK and GISSQYSSK. Exposure to human seminal plasma (HSP) degraded the microgel network and triggered the release of the entrapped antiviral polymer. Particles with the crosslinker composed of the substrate GISSFYSSK showed 17 times faster degradation in seminal plasma than that of the crosslinker composed of GISSQYSSK. The microgel particles containing 1 mol% GISSFYSSK peptide crosslinker showed complete degradation in 30 h in the presence of HSP at 37°C and pSS released from the microgels within 30 min reached a concentration of 10 μg/mL, equivalent to the published IC(90) for pSS. The released pSS inactivated HIV-1 in the presence of HSP. The solid phase synthesis of the crosslinkers, preparation of the particles by inverse microemulsion polymerization, HSP-triggered release of pSS and inactivation of HIV-1 studies are described. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation

    NASA Astrophysics Data System (ADS)

    Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai

    2016-11-01

    Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.

  10. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates.

    PubMed

    Bassett, Braden; Waibel, Brent; White, Alex; Hansen, Heather; Stephens, Dominique; Koelper, Andrew; Larsen, Erik M; Kim, Charles; Glanzer, Adam; Lavis, Luke D; Hoops, Geoffrey C; Johnson, R Jeremy

    2018-04-16

    Among the proteins required for lipid metabolism in Mycobacterium tuberculosis are a significant number of uncharacterized serine hydrolases, especially lipases and esterases. Using a streamlined synthetic method, a library of immolative fluorogenic ester substrates was expanded to better represent the natural lipidomic diversity of Mycobacterium. This expanded fluorogenic library was then used to rapidly characterize the global structure activity relationship (SAR) of mycobacterial serine hydrolases in M. smegmatis under different growth conditions. Confirmation of fluorogenic substrate activation by mycobacterial serine hydrolases was performed using nonspecific serine hydrolase inhibitors and reinforced the biological significance of the SAR. The hydrolases responsible for the global SAR were then assigned using gel-resolved activity measurements, and these assignments were used to rapidly identify the relative substrate specificity of previously uncharacterized mycobacterial hydrolases. These measurements provide a global SAR of mycobacterial hydrolase activity, a picture of cycling hydrolase activity, and a detailed substrate specificity profile for previously uncharacterized hydrolases.

  11. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation.

    PubMed

    Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai

    2016-11-30

    Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD + -dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some "loose-binding" substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.

  12. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display.

    PubMed

    Zhang, Keya; Nelson, Kathryn M; Bhuripanyo, Karan; Grimes, Kimberly D; Zhao, Bo; Aldrich, Courtney C; Yin, Jun

    2013-01-24

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in k(cat)/K(m) with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in k(cat)/K(m) values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the "nonribosomal code" of A-domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in practical food safety inspection applications.

  14. Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2013-01-01

    Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available. PMID:24244149

  15. Recognition of Salmonella typhimurium by immobilized phage P22 monolayers

    NASA Astrophysics Data System (ADS)

    Handa, Hitesh; Gurczynski, Stephen; Jackson, Matthew P.; Auner, Gregory; Walker, Jeremy; Mao, Guangzhao

    2008-04-01

    Phages are promising alternatives to antibodies as the biorecognition element in a variety of biosensing applications. In this study, a monolayer of bacteriophage P22 whose tailspike proteins specifically recognize Salmonella serotypes was covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay and atomic force microscopy. Escherichia coli and a Gram-positive bacterium Listeria monocytogenes were also studied as control bacteria. The P22 particles show strong binding affinity to S. typhimurium. In addition, the dried P22 monolayer maintained 50% binding capacity to S. typhimurium after a one-week storage time. This is a promising method to prepare phage monolayer coatings on surface plasmon resonance and acoustic biosensor substrates in order to utilize the nascent phage display technology.

  16. [Derivatives of lupinin and epilupinin as ligands of various cholinesterases].

    PubMed

    Basova, N E; Kormilitsyn, B N; Rozengart, E V; Saakov, V S; Suvorov, A A

    2012-01-01

    Literature data have been summarized on interaction of cholinesterases of some mammals and arthropods with a group of isomer derivatives of alkaloid lupini and its epimer epilupinin. As substrates of cholinesterases of several mammals there are studied 8 acetates containing in their molecules the chinolysidin bicycle with different structure of N-alkyl radical, which showed certain elements of specificity of action. For 2 isomer esters that are derivatives of the protonated base of the lupinin and epilupinin structures, differences in their substrate characteristics were revealed. The polyenzyme analysis if anticholinesterase efficiency was performed for 30 organophosphorus inhibitors that are dialkoxyphosphorus derivatives of lupinin and epilupinin; as a result, quite a few peculiarities of their action depending on their structure were revealed. Several tested compounds turned out to act as specific inhibitors of cholinesterases of some mammals and arthropods.

  17. Substrates of metacognition on perception and metacognition on higher-order cognition relate to different subsystems of the mentalizing network.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Kanske, Philipp; Singer, Tania

    2016-10-01

    Humans have the ability to reflect upon their perception, thoughts, and actions, known as metacognition (MC). The brain basis of MC is incompletely understood, and it is debated whether MC on different processes is subserved by common or divergent networks. We combined behavioral phenotyping with multi-modal neuroimaging to investigate whether structural substrates of individual differences in MC on higher-order cognition (MC-C) are dissociable from those underlying MC on perceptual accuracy (MC-P). Motivated by conceptual work suggesting a link between MC and cognitive perspective taking, we furthermore tested for overlaps between MC substrates and mentalizing networks. In a large sample of healthy adults, individual differences in MC-C and MC-P did not correlate. MRI-based cortical thickness mapping revealed a structural basis of this independence, by showing that individual differences in MC-P related to right prefrontal cortical thickness, while MC-C scores correlated with measures in lateral prefrontal, temporo-parietal, and posterior midline regions. Surface-based superficial white matter diffusivity analysis revealed substrates resembling those seen for cortical thickness, confirming the divergence of both MC faculties using an independent imaging marker. Despite their specificity, substrates of MC-C and MC-P fell clearly within networks known to participate in mentalizing, confirmed by task-based fMRI in the same subjects, previous meta-analytical findings, and ad-hoc Neurosynth-based meta-analyses. Our integrative multi-method approach indicates domain-specific substrates of MC; despite their divergence, these nevertheless likely rely on component processes mediated by circuits also involved in mentalizing. Hum Brain Mapp 37:3388-3399, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2

    PubMed Central

    Keresztessy, Zsolt; Csősz, Éva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N.; Lakey, Jeremy H.; Balajthy, Zoltán; Fésüs, László

    2006-01-01

    Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q6, Q8, and Q22 are modified by TG2. Kinetic parameters of SnQ1 transamidation (KMapp = 250 μM, kcat = 18.3 sec−1, and kcat/KMapp = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research. PMID:17075129

  19. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2.

    PubMed

    Keresztessy, Zsolt; Csosz, Eva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N; Lakey, Jeremy H; Balajthy, Zoltán; Fésüs, László

    2006-11-01

    Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q(6), Q(8), and Q(22) are modified by TG2. Kinetic parameters of SnQ1 transamidation (K(M)(app) = 250 microM, k(cat) = 18.3 sec(-1), and k(cat)/K(M)(app) = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.

  20. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6).

    PubMed

    Grosser, Gary; Bennien, Josefine; Sánchez-Guijo, Alberto; Bakhaus, Katharina; Döring, Barbara; Hartmann, Michaela; Wudy, Stefan A; Geyer, Joachim

    2018-05-01

    The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lightweight Electrode For Nickel/Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1994-01-01

    Improved substrate for nickel electrode increases specific energy of nickel/hydrogen cell. Consists of 50 percent by weight nickel fiber, 35 percent nickel powder, and 15 percent cobalt powder. Porosity and thickness of nickel electrodes affect specific energy, initial performance, and cycle life of cell. Substrate easily manufactured with much larger porosities than those of heavy-sintered state-of-art nickel substrate.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  3. Comparative genomic and phylogenetic analysis of short-chain dehydrogenases/reductases with dual retinol/sterol substrate specificity.

    PubMed

    Belyaeva, Olga V; Kedishvili, Natalia Y

    2006-12-01

    Human short-chain dehydrogenases/reductases with dual retinol/sterol substrate specificity (RODH-like enzymes) are thought to contribute to the oxidation of retinol for retinoic acid biosynthesis and to the metabolism of androgenic and neuroactive 3alpha-hydroxysteroids. Here, we investigated the phylogeny and orthology of these proteins to understand better their origins and physiological roles. Phylogenetic and genomic analysis showed that two proteins (11-cis-RDH and RDHL) are highly conserved, and their orthologs can be identified in the lower taxa, such as amphibians and fish. Two other proteins (RODH-4 and 3alpha-HSD) are significantly less conserved. Orthologs for 3alpha-HSD are present in all mammals analyzed, whereas orthologs for RODH-4 can be identified in some mammalian species but not in others due to species-specific gene duplications. Understanding the evolution and divergence of RODH-like enzymes in various vertebrate species should facilitate further investigation of their in vivo functions using animal models.

  4. Efficient synthesis of supercoiled M13 DNA molecule containing a site specifically placed psoralen adduct and its use as a substrate for DNA replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodadek, T.; Gamper, H.

    The authors report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, they report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. Theymore » demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.« less

  5. Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection

    PubMed Central

    Hodson, Charlotte; Purkiss, Andrew; Miles, Jennifer Anne; Walden, Helen

    2014-01-01

    Summary The combination of an E2 ubiquitin-conjugating enzyme with an E3 ubiquitin-ligase is essential for ubiquitin modification of a substrate. Moreover, the pairing dictates both the substrate choice and the modification type. The molecular details of generic E3-E2 interactions are well established. Nevertheless, the determinants of selective, specific E3-E2 recognition are not understood. There are ∼40 E2s and ∼600 E3s giving rise to a possible ∼24,000 E3-E2 pairs. Using the Fanconi Anemia pathway exclusive E3-E2 pair, FANCL-Ube2T, we report the atomic structure of the FANCL RING-Ube2T complex, revealing a specific and extensive network of additional electrostatic and hydrophobic interactions. Furthermore, we show that these specific interactions are required for selection of Ube2T over other E2s by FANCL. PMID:24389026

  6. WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions.

    PubMed

    Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki

    2011-02-04

    PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.

  7. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Shi, C.; Zhitomirsky, I.

    2010-03-01

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).

  8. Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors.

    PubMed

    Shi, C; Zhitomirsky, I

    2010-01-08

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).

  9. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    PubMed Central

    2010-01-01

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g−1 was observed for the sample with a specific mass of 89 μg cm−2 at a scan rate of 2 mV s−1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES). PMID:20672082

  10. Deficits in facial affect recognition among antisocial populations: a meta-analysis.

    PubMed

    Marsh, Abigail A; Blair, R J R

    2008-01-01

    Individuals with disorders marked by antisocial behavior frequently show deficits in recognizing displays of facial affect. Antisociality may be associated with specific deficits in identifying fearful expressions, which would implicate dysfunction in neural structures that subserve fearful expression processing. A meta-analysis of 20 studies was conducted to assess: (a) if antisocial populations show any consistent deficits in recognizing six emotional expressions; (b) beyond any generalized impairment, whether specific fear recognition deficits are apparent; and (c) if deficits in fear recognition are a function of task difficulty. Results show a robust link between antisocial behavior and specific deficits in recognizing fearful expressions. This impairment cannot be attributed solely to task difficulty. These results suggest dysfunction among antisocial individuals in specified neural substrates, namely the amygdala, involved in processing fearful facial affect.

  11. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway.

    PubMed Central

    Abril, M A; Michan, C; Timmis, K N; Ramos, J L

    1989-01-01

    The TOL plasmid upper pathway operon encodes enzymes involved in the catabolism of aromatic hydrocarbons such as toluene and xylenes. The regulator of the gene pathway, the XylR protein, exhibits a very broad effector specificity, being able to recognize as effectors not only pathway substrates but also a wide variety of mono- and disubstituted methyl-, ethyl-, and chlorotoluenes, benzyl alcohols, and p-chlorobenzaldehyde. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two upper pathway enzymes, exhibit very broad substrate specificities and transform unsubstituted substrates and m- and p-methyl-, m- and p-ethyl-, and m- and p-chloro-substituted benzyl alcohols and benzaldehydes, respectively, at a high rate. In contrast, toluene oxidase only oxidizes toluene, m- and p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene [corrected], also at a high rate. A biological test showed that toluene oxidase attacks m- and p-chlorotoluene, albeit at a low rate. No evidence for the transformation of p-ethyltoluene by toluene oxidase has been found. Hence, toluene oxidase acts as the bottleneck step for the catabolism of p-ethyl- and m- and p-chlorotoluene through the TOL upper pathway. A mutant toluene oxidase able to transform p-ethyltoluene was isolated, and a mutant strain capable of fully degrading p-ethyltoluene was constructed with a modified TOL plasmid meta-cleavage pathway able to mineralize p-ethylbenzoate. By transfer of a TOL plasmid into Pseudomonas sp. strain B13, a clone able to slowly degrade m-chlorotoluene was also obtained. PMID:2687253

  12. Carbon catabolite repression and cell dispersal affect degradation of the xenobiotic compound 3,4-dichloroaniline in Comamonas testosteroni WDL7 biofilms.

    PubMed

    Horemans, Benjamin; Breugelmans, Philip; Hofkens, Johan; Springael, Dirk

    2017-03-01

    Organic pollutant degrading biofilms in natural ecosystems and water treatment systems are often exposed to other carbon sources in addition to the pollutant. The availability of auxiliary carbon sources can lead to surplus biomass growth, changes in biofilm structure and carbon catabolite repression (CCR) which together will affect pollutant degradation rate and efficiency of the system. To understand the interplay between these processes, continuous biofilms of the 3,4-dichloroaniline (3,4-DCA) degrading Comamonas testosteroni WDL7-RFP were grown in single- and dual-substrate conditions with 3,4-DCA and/or citrate and reciprocal effects on 3,4-DCA/citrate degradation, biofilm biomass and biofilm structure were examined. The main mechanism affecting 3,4-DCA degradation in biofilms in dual-substrate conditions was citrate-mediated CCR as reflected by a decrease in specific 3,4-DCA degrading activity. Growth on citrate partially compensated for the lowered specific 3,4-DCA degradation activity under dual substrate conditions but not to the extent expected from growth observed under single-substrate conditions with citrate. This was explained by higher residual 3,4-DCA concentrations in the presence of citrate that increased cell dispersal in the biofilms. Our results show hampered pollutant removal in biofilms due to a complex interplay of auxiliary organic C source utilization for growth affecting the specific pollutant degradation rate and changes in cell physiology due to increased exposure to the pollutant as a result of lowered pollutant degradation rates. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Identification of amino acids important for substrate specificity in sucrose transporters using gene shuffling.

    PubMed

    Reinders, Anke; Sun, Ye; Karvonen, Kayla L; Ward, John M

    2012-08-31

    Plant sucrose transporters (SUTs) are H(+)-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general.

  14. Identification of Amino Acids Important for Substrate Specificity in Sucrose Transporters Using Gene Shuffling*

    PubMed Central

    Reinders, Anke; Sun, Ye; Karvonen, Kayla L.; Ward, John M.

    2012-01-01

    Plant sucrose transporters (SUTs) are H+-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general. PMID:22807445

  15. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate

    PubMed Central

    Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S.

    2013-01-01

    Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed. PMID:23700311

  16. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy

    PubMed Central

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-01-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates. PMID:22167472

  17. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    PubMed

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown. © 2011 American Chemical Society

  18. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.

    PubMed

    Hwa, Kuo Yuan; Subramani, Boopathi; Shen, San-Tai; Lee, Yu-May

    2015-09-01

    β-Glycosidase from Thermococcus kodakarensis KOD1 is a hyperthermophilic enzyme with β-glucosidase, β-mannosidase, β-fucosidase and β-galactosidase activities. Sequence alignment with other β-glycosidases from hyperthermophilic archaea showed two unique active site residues, Gln77 and Asp206. These residues were represented by Arg and Asp in all other hyperthermophilic β-glycosidases. The two active site residues were mutated to Q77R, D206N and D206Q, to study the role of these unique active site residues in catalytic activity and to alter the substrate specificity to enhance its β-glucosidase activity. The secondary structure analysis of all the mutants showed no change in their structure and exhibited in similar conformation like wild-type as they all existed in dimer form in an SDS-PAGE under non-reducing conditions. Q77R and D206Q affected the catalytic activity of the enzyme whereas the D206N altered the catalytic turn-over rate for glucosidase and mannosidase activities with fucosidase activity remain unchanged. Gln77 is reported to interact with catalytic nucleophile and Asp206 with axial C2-hydroxyl group of substrates. Q77R might have made some changes in three dimensional structure due to its electrostatic effect and lost its catalytic activity. The extended side chains of D206Q is predicted to affect the substrate binding during catalysis. The high-catalytic turn-over rate by D206N for β-glucosidase activity makes it a useful enzyme in cellulose degradation at high temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Subcellular localization of pituitary enzymes

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  20. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  1. Specificity studies on Kallikrein-related peptidase 7 (KLK7) and effects of osmolytes and glycosaminoglycans on its peptidase activity.

    PubMed

    Oliveira, Juliana R; Bertolin, Thiago C; Andrade, Douglas; Oliveira, Lilian C G; Kondo, Marcia Y; Santos, Jorge A N; Blaber, Michael; Juliano, Luiz; Severino, Beatrice; Caliendo, Giuseppe; Santagada, Vincenzo; Juliano, Maria A

    2015-01-01

    KLK7 substrate specificity was evaluated by families of fluorescence resonance energy transfer (FRET) peptides derived from Abz-KLFSSK-Q-EDDnp (Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-[2,4-dinitrophenyl] ethylenediamine), by one bead-one peptide FRET peptide library in PEGA resin, and by the FRET peptide libraries Abz-GXX-Z-XX-Q-EDDnp (Z and X are fixed and random natural amino acids, respectively). KLK7 hydrolyzed preferentially F, Y or M, and its S1' and S2' subsites showed selectivity for hydrophilic amino acids, particularly R and K. This set of specificities was confirmed by the efficient kininogenase activity of KLK7 on Abz-MISLM(↓)KRPPGFSPF(↓)RSSRI-NH2 ((↓)indicates cleavage), hydrolysis of somatostatin and substance P and inhibition by kallistatin. The peptide Abz-NLY(↓)RVE-Q-EDDnp is the best synthetic substrate so far described for KLK7 [kcat/Km=455 (mMs)(-1)] that was designed from the KLK7 substrate specificity analysis. It is noteworthy that the NLYRVE sequence is present in human semaphorin 6B. KLK7 is activated by GAGs, inhibited by neutral salts, and activated by high concentration of kosmotropic salt. Pyroglutamic acid inhibited KLK7 (Ki=33mM) and is present in skin moisturizing factor (124mM). The KLK7 specificity described here and elsewhere reflects its participation in patho-physiological events in skin, the gastrointestinal tract and central nervous system, where KLK7 is significantly expressed. Copyright © 2014. Published by Elsevier B.V.

  2. The METTL20 Homologue from Agrobacterium tumefaciens Is a Dual Specificity Protein-lysine Methyltransferase That Targets Ribosomal Protein L7/L12 and the β Subunit of Electron Transfer Flavoprotein (ETFβ)*

    PubMed Central

    Małecki, Jędrzej; Dahl, Helge-André; Moen, Anders; Davydova, Erna; Falnes, Pål Ø.

    2016-01-01

    Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens. Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo. ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans. PMID:26929405

  3. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease

    PubMed Central

    Robinson, Clifford R.; Sligar, Stephen G.

    1998-01-01

    Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein–DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein–DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility. PMID:9482860

  4. Substrate specificity of xenobiotic metabolizing esterases in the liver of two catfish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, R.G.; Huang, T.L.; Obih, P.O.

    1994-12-31

    The preliminary studies were conducted on the characterization of substrate specificity in the liver microsomes and cytosol of two catfish species, Ictalurus punctatus and Ictalurus natalie. A series of five esters of p-nitrophenol were used as calorimetric substrates to assay the carboxylesterases. The substrate specificity of liver microsomal and cytosolic carboxylesterases were remarkably different from each other. The valerate ester of p-nitrophenol was most rapidly hydrolyzed by the microsomal carboxylesterases, whereas the prioponate ester was the best substrate for cytosolic carboxylesterases. The Ictalurus natalie catfish species were obtained from the Devil Swamp site of the Mississippi River Basin which ismore » known to be heavily contaminated with toxic and hazardous industrial wastes. These results will be discussed in relation to the responses of xenobiotic metabolizing esterases to environmental pollutants and their possible use as biomarkers.« less

  5. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system

    PubMed Central

    Ohno, Yusuke; Kashio, Atsushi; Ogata, Ren; Ishitomi, Akihiro; Yamazaki, Yuki; Kihara, Akio

    2012-01-01

    Palmitoylation plays important roles in the regulation of protein localization, stability, and activity. The protein acyltransferases (PATs) have a common DHHC Cys-rich domain. Twenty-three DHHC proteins have been identified in humans. However, it is unclear whether all of these DHHC proteins function as PATs. In addition, their substrate specificities remain largely unknown. Here we develop a useful method to examine substrate specificities of PATs using a yeast expression system with six distinct model substrates. We identify 17 human DHHC proteins as PATs. Moreover, we classify 11 human and 5 yeast DHHC proteins into three classes (I, II, and III), based on the cellular localization of their respective substrates (class I, soluble proteins; class II, integral membrane proteins; class III, lipidated proteins). Our results may provide an important clue for understanding the function of individual DHHC proteins. PMID:23034182

  6. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    NASA Astrophysics Data System (ADS)

    Edwards, G. C.; Howard, D. A.

    2012-10-01

    This paper presents the first gaseous elemental mercury (GEM) air-surface exchange measurements obtained over naturally enriched and background (< 0.1 μg g-1 Hg) terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m-2 h-1 to 113 ± 6 ng m-2 h-1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m-2 h-1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. Comparison of the Australian data to North American data confirmed the need for Australian specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns, and soils.

  7. Poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA): a bioactive copolymer for specific targeting to folate receptor-positive cancer cells.

    PubMed

    Chen, Yin; Cao, Wenbin; Zhou, Junli; Pidhatika, Bidhari; Xiong, Bin; Huang, Lu; Tian, Qian; Shu, Yiwei; Wen, Weijia; Hsing, I-Ming; Wu, Hongkai

    2015-02-04

    In this study, we present the preparation, characterization and application of a novel bioactive copolymer poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA), which has a specific interaction with folate receptor (FR)-positive cancer cells. Glass surface immobilized with PLL-g-PMOXA-c-FA was demonstrated to be adhesive to FR-positive cancer cells (HeLa, JEG-3) while nonadhesive to FR-negative ones (MCF-7, HepG2) in 3 h. The specific interaction between conjugated FA on the substrate and FRs on the cells could hardly be inhibited unless a high concentration (5 mM) of free FA was used due to the multivalent nature of it. The FA functionality ratio of the copolymer on the substrate had a significant influence on the adhesion of HeLa cells, and our experiments revealed that the affinity of the substrate to the cells declined dramatically with the decrease of functionality ratio. This was believed to be caused by the polydispersity of PMOXA tethers, as supported by GPC and ToF-SIMS data. As a proof of concept in the application of our material, we demonstrated successful recovery of HeLa cells from mixture with MCF-7 (1:100) on the copolymer-coated glass, and our results showed that both high sensitivity (95.6 ± 13.3%) and specificity (24.3 ± 8.6%) were achieved.

  8. Gain-of-function mutations identify amino acids within transmembrane domains of the yeast vacuolar transporter Zrc1 that determine metal specificity

    PubMed Central

    Lin, Huilan; Burton, Damali; Li, Liangtao; Warner, David E.; Phillips, John D.; Ward, Diane McVEY; Kaplan, Jerry

    2015-01-01

    Cation diffusion facilitator transporters are found in all three Kingdoms of life and are involved in transporting transition metals out of the cytosol. The metals they transport include Zn2+, Co2+, Fe2+, Cd2+, Ni2+ and Mn2+; however, no single transporter transports all metals. Previously we showed that a single amino acid mutation in the yeast vacuolar zinc transporter Zrc1 changed its substrate specificity from Zn2+ to Fe2+ and Mn2+ [Lin, Kumanovics, Nelson, Warner, Ward and Kaplan (2008) J. Biol. Chem. 283, 33865–33873]. Mutant Zrc1 that gained iron transport activity could protect cells with a deletion in the vacuolar iron transporter (CCC1) from high iron toxicity. Utilizing suppression of high iron toxicity and PCR mutagenesis of ZRC1, we identified other amino acid substitutions within ZRC1 that changed its metal specificity. All Zrc1 mutants that transported Fe2+ could also transport Mn2+. Some Zrc1 mutants lost the ability to transport Zn2+, but others retained the ability to transport Zn2+. All of the amino acid substitutions that resulted in a gain in Fe2+ transport activity were found in transmembrane domains. In addition to alteration of residues adjacent to the putative metal-binding site in two transmembrane domains, alteration of residues distant from the binding site affected substrate specificity. These results suggest that substrate selection involves co-operativity between transmembrane domains. PMID:19538181

  9. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar tomore » tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.« less

  10. Molecular Cloning and Characterization of O-Methyltransferase from Mango Fruit (Mangifera indica cv. Alphonso).

    PubMed

    Chidley, Hemangi G; Oak, Pranjali S; Deshpande, Ashish B; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2016-05-01

    Flavour of ripe Alphonso mango is invariably dominated by the de novo appearance of lactones and furanones during ripening. Of these, furanones comprising furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) and mesifuran (2,5-dimethyl-4-methoxy-3(2H)-furanone) are of particular importance due to their sweet, fruity caramel-like flavour characters and low odour detection thresholds. We isolated a 1056 bp complete open reading frame of a cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase from Alphonso mango. The recombinantly expressed enzyme, MiOMTS showed substrate specificity towards furaneol and protocatechuic aldehyde synthesizing mesifuran and vanillin, respectively, in an in vitro assay reaction. A semi-quantitative PCR analysis showed fruit-specific expression of MiOMTS transcripts. Quantitative real-time PCR displayed ripening-related expression pattern of MiOMTS in both pulp and skin of Alphonso mango. Also, early and significantly enhanced accumulation of its transcripts was detected in pulp and skin of ethylene-treated fruits. Ripening-related and fruit-specific expression profile of MiOMTS and substrate specificity towards furaneol is a suggestive of its involvement in the synthesis of mesifuran in Alphonso mango. Moreover, a significant trigger in the expression of MiOMTS transcripts in ethylene-treated fruits point towards the transcriptional regulation of mesifuran biosynthesis by ethylene.

  11. Shapiro spikes and negative mobility for skyrmion motion on quasi-one-dimensional periodic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2017-01-12

    Using a simple numerical model of skyrmions in a two-dimensional system interacting with a quasi-one-dimensional periodic substrate under combined dc and ac drives where the dc drive is applied perpendicular to the substrate periodicity, we show that a rich variety of novel phase-locking dynamics can occur due to the influence of the Magnus term on the skyrmion dynamics. Instead of Shapiro steps, the velocity response in the direction of the dc drive exhibits a series of spikes, including extended dc drive intervals over which the skyrmions move in the direction opposite to the dc drive, producing negative mobility. Also, theremore » are specific dc drive values at which the skyrmions move exactly perpendicular to the dc drive direction, giving a condition of absolute transverse mobility.« less

  12. Visual cues for woodpeckers: light reflectance of decayed wood varies by decay fungus

    USGS Publications Warehouse

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2018-01-01

    The appearance of wood substrates is likely relevant to bird species with life histories that require regular interactions with wood for food and shelter. Woodpeckers detect decayed wood for cavity placement or foraging, and some species may be capable of detecting trees decayed by specific fungi; however, a mechanism allowing for such specificity remains unidentified. We hypothesized that decay fungi associated with woodpecker cavity sites alter the substrate reflectance in a species-specific manner that is visually discriminable by woodpeckers. We grew 10 species of wood decay fungi from pure cultures on sterile wood substrates of 3 tree species. We then measured the relative reflectance spectra of decayed and control wood wafers and compared them using the receptor noise-limited (RNL) color discrimination model. The RNL model has been used in studies of feather coloration, egg shells, flowers, and fruit to model how the colors of objects appear to birds. Our analyses indicated 6 of 10 decayed substrate/control comparisons were above the threshold of discrimination (i.e., indicating differences discriminable by avian viewers), and 12 of 13 decayed substrate comparisons were also above threshold for a hypothetical woodpecker. We conclude that woodpeckers should be capable of visually detecting decayed wood on trees where bark is absent, and they should also be able to detect visually species-specific differences in wood substrates decayed by fungi used in this study. Our results provide evidence for a visual mechanism by which woodpeckers could identify and select substrates decayed by specific fungi, which has implications for understanding ecologically important woodpecker–fungus interactions.

  13. Fabrication of a novel transparent SERS substrate comprised of Ag-nanoparticle arrays and its application in rapid detection of ractopamine on meat

    USDA-ARS?s Scientific Manuscript database

    Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical tool that boasts the feature of high detection sensitivity and molecular fingerprint specificity attracting increased attention and showing promise in applications including detecting residues of veterinary drugs. In practice, spec...

  14. Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.

    PubMed

    Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo

    2004-10-01

    The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.

  15. Substrate specificity effects of lipoxygenase products and inhibitors on soybean lipoxygenase-1.

    PubMed

    Wecksler, Aaron T; Garcia, Natalie K; Holman, Theodore R

    2009-09-15

    Recently, it has been shown that lipoxygenase (LO) products affect the substrate specificity of human 15-LO. In the current paper, we demonstrate that soybean LO-1 (sLO-1) is not affected by its own products, however, inhibitors which bind the allosteric site, oleyl sulfate (OS) and palmitoleyl sulfate (PS), not only lower catalytic activity, but also change the substrate specificity, by increasing the arachidonic acid (AA)/linoleic acid (LA) ratio to 4.8 and 4.0, respectively. The fact that LO inhibitors can lower activity and also change the LO product ratio is a new concept in lipoxygenase inhibition, where the goal is to not only reduce the catalytic activity but also alter substrate selectivity towards a physiologically beneficial product.

  16. Bul Proteins, a Nonredundant, Antagonistic Family of Ubiquitin Ligase Regulatory Proteins

    PubMed Central

    Novoselova, Tatiana V.; Zahira, Kiran; Rose, Ruth-Sarah

    2012-01-01

    Like other Nedd4 ligases, Saccharomyces cerevisiae E3 Rsp5p utilizes adaptor proteins to interact with some substrates. Previous studies have indentified Bul1p and Bul2p as adaptor proteins that facilitate the ligase-substrate interaction. Here, we show the identification of a third member of the Bul family, Bul3p, the product of two adjacent open reading frames separated by a stop codon that undergoes readthrough translation. Combinatorial analysis of BUL gene deletions reveals that they regulate some, but not all, of the cellular pathways known to involve Rsp5p. Surprisingly, we find that Bul proteins can act antagonistically to regulate the same ubiquitin-dependent process, and the nature of this antagonistic activity varies between different substrates. We further show, using in vitro ubiquitination assays, that the Bul proteins have different specificities for WW domains and that the two forms of Bul3p interact differently with Rsp5p, potentially leading to alternate functional outcomes. These data introduce a new level of complexity into the regulatory interactions that take place between Rsp5p and its adaptors and substrates and suggest a more critical role for the Bul family of proteins in controlling adaptor-mediated ubiquitination. PMID:22307975

  17. Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe

    NASA Astrophysics Data System (ADS)

    Mance, Diana; Wiese, Ruben; Kewitz, Thorben; Kersten, Holger

    2018-05-01

    Atmospheric pressure plasma jets (APPJs) are a promising tool in medicine with extensive possibilities of utilization. For a safe and therapeutically effective application of APPJs, it is necessary to know in detail the physical processes in plasma as well as possible hazards. In this paper, we focus on plasma thermal energy transferred to the substrate, i.e. to a passive thermal probe acting as substrate dummy. Specifically, we examined the dependence of transferred energy on the distance from the plasma source outlet, on the gas flow rate, and on the length of the visible plasma plume. The plasma plume is the plasma carried by the gas flow from the outlet of the source into the ambient air. The results show the distance between the plasma-generating device and the substrate to be the most important determinant of the transferred thermal energy, among the three examined variables. Most importantly for the end-user, the results also show this relation to be non-linear. To describe this relation, we chose a model based on a Boltzmann type of sigmoid function. Based on the results of our modelling and visual inspection of the plasma, we provide sort of a user guide for the adjustment of a suitable energy flux on the (bio) substrate.

  18. Effect of oxidation of the non-catalytic β-propeller domain on the substrate specificity of prolyl oligopeptidase from Pleurotus eryngii.

    PubMed

    Tokai, Shota; Bito, Tomohiro; Shimizu, Katsuhiko; Arima, Jiro

    2017-05-27

    Enzymes belonging to the S9 family of prolyl oligopeptidases are of interest because of their pharmacological importance and have a non-catalytic β-propeller domain. In this study, we found that the oxidation of Met203, which lies on surface of the β-propeller domain, leads to change in the substrate specificity of eryngase, an enzyme from Pleurotus eryngii and a member of the S9 family of prolyl oligopeptidases. The activity of eryngase for L-Phe-p-nitroanilide was maintained following hydrogen peroxide treatment but was dramatically reduced for other p-nitroanilide substrates. MALDI-TOF MS analysis using tryptic peptides of eryngase indicated that the change in substrate specificity was triggered by oxidizing Met203 to methionine sulfoxide. In addition, mutations of Met203 to smaller residues provided specificities similar to those observed following oxidation of the wild-type enzyme. Substitution of Met203 with Phe significantly decreased activity, indicating that Met203 may be involved in substrate gating. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  20. Differential Substrate Specificity and Kinetic Behavior of Escherichia coli YfdW and Oxalobacter formigenes Formyl Coenzyme A Transferase▿ †

    PubMed Central

    Toyota, Cory G.; Berthold, Catrine L.; Gruez, Arnaud; Jónsson, Stefán; Lindqvist, Ylva; Cambillau, Christian; Richards, Nigel G. J.

    2008-01-01

    The yfdXWUVE operon appears to encode proteins that enhance the ability of Escherichia coli MG1655 to survive under acidic conditions. Although the molecular mechanisms underlying this phenotypic behavior remain to be elucidated, findings from structural genomic studies have shown that the structure of YfdW, the protein encoded by the yfdW gene, is homologous to that of the enzyme that mediates oxalate catabolism in the obligate anaerobe Oxalobacter formigenes, O. formigenes formyl coenzyme A transferase (FRC). We now report the first detailed examination of the steady-state kinetic behavior and substrate specificity of recombinant, wild-type YfdW. Our studies confirm that YfdW is a formyl coenzyme A (formyl-CoA) transferase, and YfdW appears to be more stringent than the corresponding enzyme (FRC) in Oxalobacter in employing formyl-CoA and oxalate as substrates. We also report the effects of replacing Trp-48 in the FRC active site with the glutamine residue that occupies an equivalent position in the E. coli protein. The results of these experiments show that Trp-48 precludes oxalate binding to a site that mediates substrate inhibition for YfdW. In addition, the replacement of Trp-48 by Gln-48 yields an FRC variant for which oxalate-dependent substrate inhibition is modified to resemble that seen for YfdW. Our findings illustrate the utility of structural homology in assigning enzyme function and raise the question of whether oxalate catabolism takes place in E. coli upon the up-regulation of the yfdXWUVE operon under acidic conditions. PMID:18245280

  1. Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling

    PubMed Central

    Kasperkiewicz, Paulina; Poreba, Marcin; Snipas, Scott J.; Parker, Heather; Winterbourn, Christine C.; Salvesen, Guy S.; Drag, Marcin

    2014-01-01

    The exploration of protease substrate specificity is generally restricted to naturally occurring amino acids, limiting the degree of conformational space that can be surveyed. We substantially enhanced this by incorporating 102 unnatural amino acids to explore the S1–S4 pockets of human neutrophil elastase. This approach provides hybrid natural and unnatural amino acid sequences, and thus we termed it the Hybrid Combinatorial Substrate Library. Library results were validated by the synthesis of individual tetrapeptide substrates, with the optimal substrate demonstrating more than three orders of magnitude higher catalytic efficiency than commonly used substrates of elastase. This optimal substrate was converted to an activity-based probe that demonstrated high selectivity and revealed the specific presence of active elastase during the process of neutrophil extracellular trap formation. We propose that this approach can be successfully used for any type of endopeptidase to deliver high activity and selectivity in substrates and probes. PMID:24550277

  2. Placing a Disrupted Degradation Motif at the C Terminus of Proteasome Substrates Attenuates Degradation without Impairing Ubiquitylation*

    PubMed Central

    Alfassy, Omri S.; Cohen, Itamar; Reiss, Yuval; Tirosh, Boaz; Ravid, Tommer

    2013-01-01

    Protein elimination by the ubiquitin-proteasome system requires the presence of a cis-acting degradation signal. Efforts to discern degradation signals of misfolded proteasome substrates thus far revealed a general mechanism whereby the exposure of cryptic hydrophobic motifs provides a degradation determinant. We have previously characterized such a determinant, employing the yeast kinetochore protein Ndc10 as a model substrate. Ndc10 is essentially a stable protein that is rapidly degraded upon exposure of a hydrophobic motif located at the C-terminal region. The degradation motif comprises two distinct and essential elements: DegA, encompassing two amphipathic helices, and DegB, a hydrophobic sequence within the loosely structured C-terminal tail of Ndc10. Here we show that the hydrophobic nature of DegB is irrelevant for the ubiquitylation of substrates containing the Ndc10 degradation motif, but is essential for proteasomal degradation. Mutant DegB, in which the hydrophobic sequence was disrupted, acted as a dominant degradation inhibitory element when expressed at the C-terminal regions of ubiquitin-dependent and -independent substrates of the 26S proteasome. This mutant stabilized substrates in both yeast and mammalian cells, indicative of a modular recognition moiety. The dominant function of the mutant DegB provides a powerful experimental tool for evaluating the physiological implications of stabilization of specific proteasome substrates in intact cells and for studying the associated pathological effects. PMID:23519465

  3. Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity

    PubMed Central

    Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.

    2004-01-01

    Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785

  4. Plant ALDH10 Family

    PubMed Central

    Kopečný, David; Končitíková, Radka; Tylichová, Martina; Vigouroux, Armelle; Moskalíková, Hana; Soural, Miroslav; Šebela, Marek; Moréra, Solange

    2013-01-01

    Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development. PMID:23408433

  5. Microbially assisted phytoremediation approaches for two multi-element contaminated sites.

    PubMed

    Langella, Francesca; Grawunder, Anja; Stark, Romy; Weist, Aileen; Merten, Dirk; Haferburg, Götz; Büchel, Georg; Kothe, Erika

    2014-01-01

    Phytoremediation is an environmental friendly, cost-effective technology for a soft restoration of abandoned mine sites. The grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra, and the annual herb Helianthus annuus were combined with microbial consortia in pot experiments on multi-metal polluted substrates collected at a former uranium mine near Ronneburg, Germany, and a historic copper mine in Kopparberg, Sweden, to test for phytoextraction versus phytostabilization abilities. Metal uptake into plant biomass was evaluated to identify optimal plant-microbe combinations for each substrate. Metal bioavailability was found to be plant species and element specific, and influenced by the applied bacterial consortia of 10 strains, each isolated from the same soil to which it was applied. H. annuus showed high extraction capacity for several metals on the German soil independent of inoculation. Our study could also show a significant enhancement of extraction for F. rubra and A. capillaris when combined with the bacterial consortium, although usually grasses are considered metal excluder species. On the Swedish mixed substrate, due to its toxicity, with 30 % bark compost, A. capillaris inoculated with the respective consortium was able to extract multi-metal contaminants.

  6. Aminopeptidase Activity from Germinated Jojoba Cotyledons 1

    PubMed Central

    Johnson, Russell; Storey, Richard

    1985-01-01

    One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline. The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg2+ or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-β-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence. PMID:16664465

  7. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition of side chains that interact with the substrate atoms and substituents that project away from the Zn²⁺ bimetallo core.

  8. Thyronamines Are Isozyme-Specific Substrates of Deiodinases

    PubMed Central

    Piehl, S.; Heberer, T.; Balizs, G.; Scanlan, T. S.; Smits, R.; Koksch, B.; Köhrle, J.

    2008-01-01

    3-Iodothyronamine (3-T1AM) and thyronamine (T0AM) are novel endogenous signaling molecules that exhibit great structural similarity to thyroid hormones but apparently antagonize classical thyroid hormone (T3) actions. Their proposed biosynthesis from thyroid hormones would require decarboxylation and more or less extensive deiodination. Deiodinases (Dio1, Dio2, and Dio3) catalyze the removal of iodine from their substrates. Because a role of deiodinases in thyronamine biosynthesis requires their ability to accept thyronamines as substrates, we investigated whether thyronamines are converted by deiodinases. Thyronamines were incubated with isozyme-specific deiodinase preparations. Deiodination products were analyzed using a newly established method applying liquid chromatography and tandem mass spectrometry (LC-MS/MS). Phenolic ring deiodinations of 3,3′,5′-triiodothyronamine (rT3AM), 3′,5′-diiodothyronamine (3′,5′-T2AM), and 3,3′-diiodothyronamine (3,3′-T2AM) as well as tyrosyl ring deiodinations of 3,5,3′-triiodothyronamine (T3AM) and 3,5-diiodothyronamine (3,5-T2AM) were observed with Dio1. These reactions were completely inhibited by the Dio1-specific inhibitor 6n-propyl-2-thiouracil (PTU). Dio2 containing preparations also deiodinated rT3AM and 3′,5′-T2AM at the phenolic rings but in a PTU-insensitive fashion. All thyronamines with tyrosyl ring iodine atoms were 5(3)-deiodinated by Dio3-containing preparations. In functional competition assays, the newly identified thyronamine substrates inhibited an established iodothyronine deiodination reaction. By contrast, thyronamines that had been excluded as deiodinase substrates in LC-MS/MS experiments failed to show any effect in the competition assays, thus verifying the former results. These data support a role for deiodinases in thyronamine biosynthesis and contribute to confining the biosynthetic pathways for 3-T1AM and T0AM. PMID:18339710

  9. A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT.

    PubMed

    Wood, Sarah E; Sinsinbar, Gaurav; Gudlur, Sushanth; Nallani, Madhavan; Huang, Che-Fan; Liedberg, Bo; Mrksich, Milan

    2017-12-22

    Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer-membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1') and nearest-neighbor positions (P2, P2') and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400-fold improvement in OmpT catalytic efficiency, with a k cat /K m value of 6.1×10 6  L mol -1  s -1 . Wild-type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.

    PubMed

    Jing, Fuyuan; Zhao, Le; Yandeau-Nelson, Marna D; Nikolau, Basil J

    2018-02-28

    The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate's acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.

  11. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    PubMed

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  12. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  13. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    NASA Technical Reports Server (NTRS)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima,Santiago; Kumar,Sunil; Gawandi,Vijay

    Homo sapiens kynureninase is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the hydrolytic cleavage of 3-hydroxykynurenine to yield 3-hydroxyanthranilate and L-alanine as part of the tryptophan catabolic pathway leading to the de novo biosynthesis of NAD{sup +}. This pathway results in quinolinate, an excitotoxin that is an NMDA receptor agonist. High levels of quinolinate have been correlated with the etiology of neurodegenerative disorders such as AIDS-related dementia and Alzheimer's disease. We have synthesized a novel kynureninase inhibitor, 3-hydroxyhippurate, cocrystallized it with human kynureninase, and solved the atomic structure. On the basis of an analysis of the complex, we designed a seriesmore » of His-102, Ser-332, and Asn-333 mutants. The H102W/N333T and H102W/S332G/N333T mutants showed complete reversal of substrate specificity between 3-hydroxykynurenine and L-kynurenine, thus defining the primary residues contributing to substrate specificity in kynureninases.« less

  15. A Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells.

    PubMed

    Gao, Xia; Li, Qiang; Wang, Fengchao; Liu, Xuehui; Liu, Dingbin

    2018-06-22

    We report a dual-responsive self-assembled monolayer (SAM) on a well-defined rough gold substrate for dynamic capture and release of live cells. By incorporating 5'-triphosphate (ATP) aptamer into a SAM, we can accurately isolate specific cell types and subsequently release captured cells at either population or desired-group (or even single-cell) levels. On one hand, the whole SAMs can be disassembled through addition of ATP solution, leading to the entire release of the captured cells from the supported substrate. On the other hand, desired cells can be selectively released by using near-infrared light (NIR) irradiation, with relatively high spatial and temporal precision. The proposed dual-responsive cell capture-and-release system is biologically friendly and is reusable with another round of modification, showing great usefulness in cancer diagnosis and molecular analysis.

  16. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

    NASA Astrophysics Data System (ADS)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

    2011-07-01

    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  17. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    PubMed

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.

  18. Stereochemical and positional specificity of the lipase/acyltransferase produced by Aeromonas hydrophila.

    PubMed

    Robertson, D L; Hilton, S; Buckley, J T

    1992-06-02

    Aeromonas species secrete a glycerophospholipid-cholesterol acyltransferase (GCAT) which shares many properties with mammalian plasma lecithin-cholesterol acetyltransferase (LCAT). We have studied the stereochemical and positional specificity of GCAT against a variety of lipid substrates using NMR spectroscopy as well as other assay methods. The results show that both the primary and secondary acyl ester bonds of L-phosphatidylcholine can be hydrolyzed but only the sn-2 fatty acid can be transferred to cholesterol. The enzyme has an absolute requirement for the L configuration at the sn-2 position of phosphatidylcholine. The secondary ester bond of D-phosphatidylcholine cannot be hydrolyzed, and this lipid is not a substrate for acyl transfer. In contrast to the phospholipases, but similar to LCAT, the enzyme does not interact stereochemically with the phosphorus of phosphatidylcholine. In fact, the phosphorus is not required for enzyme activity, as GCAT will also hydrolyze monolayers of diglyceride, although at much lower rates.

  19. Langmuir-Blodgett deposition selects carboxylate headgroup coordination

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-10-01

    Infrared reflection-absorption spectroscopy results on stearic acid Langmuir monolayers containing Mn, Co, and Cd ions show that on the water surface, the ions induce unidentate and bidentate (both chelate and bridged) coordination in the carboxylate headgroup with some trace of undissociated acid. Moreover, with Cd and Mn ions in subphase, the preferred coordination is found to be unidentate, whereas for Co, bidentate chelate is most preferred. After transfer onto amorphous substrate, not all coordinations are found to exist in the same ratio for the deposited metal stearate monolayers. More specifically, after transfer, Mn is found to coordinate with the carboxylate group as bidentate chelate, Cd as unidentate and bidentate bridged (with unidentate as the preferred coordination), and Co as preferably bidentate bridged (although all coordinations are present). Results suggest a specific interaction in each case, as the metal-carboxylate pair at the water surface is transferred to the substrate surface during Langmuir-Blodgett deposition.

  20. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors.

    PubMed

    de Veer, Simon J; Swedberg, Joakim E; Brattsand, Maria; Clements, Judith A; Harris, Jonathan M

    2016-12-01

    Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2' led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.

  1. Scent evolution in Chinese roses

    PubMed Central

    Scalliet, Gabriel; Piola, Florence; Douady, Christophe J.; Réty, Stéphane; Raymond, Olivier; Baudino, Sylvie; Bordji, Karim; Bendahmane, Mohammed; Dumas, Christian; Cock, J. Mark; Hugueney, Philippe

    2008-01-01

    The phenolic methyl ether 3,5-dimethoxytoluene (DMT) is a major scent compound of many modern rose varieties, and its fragrance participates in the characteristic “tea scent” that gave their name to Tea and Hybrid Tea roses. Among wild roses, phenolic methyl ether (PME) biosynthesis is restricted to Chinese rose species, but the progenitors of modern roses included both European and Chinese species (e.g., Rosa chinensis cv Old Blush), so this trait was transmitted to their hybrid progeny. The last steps of the biosynthetic pathways leading to DMT involve two methylation reactions catalyzed by the highly similar orcinol O-methyltransferases (OOMT) 1 and 2. OOMT1 and OOMT2 enzymes exhibit different substrate specificities that are consistent with their operating sequentially in DMT biosynthesis. Here, we show that these different substrate specificities are mostly due to a single amino acid polymorphism in the phenolic substrate binding site of OOMTs. An analysis of the OOMT gene family in 18 species representing the diversity of the genus Rosa indicated that only Chinese roses possess both the OOMT2 and the OOMT1 genes. In addition, we provide evidence that the Chinese-rose-specific OOMT1 genes most probably evolved from an OOMT2-like gene that has homologues in the genomes of all extant roses. We propose that the emergence of the OOMT1 gene may have been a critical step in the evolution of scent production in Chinese roses. PMID:18413608

  2. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate

    DOE PAGES

    Poudel, Suresh; Giannone, Richard J.; Basen, Mirko; ...

    2018-03-23

    Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less

  3. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Suresh; Giannone, Richard J.; Basen, Mirko

    Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less

  4. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate.

    PubMed

    Poudel, Suresh; Giannone, Richard J; Basen, Mirko; Nookaew, Intawat; Poole, Farris L; Kelly, Robert M; Adams, Michael W W; Hettich, Robert L

    2018-01-01

    Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii 's utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.

  5. Identification of amino acid residues responsible for differences in substrate specificity and inhibitor sensitivity between two human liver dihydrodiol dehydrogenase isoenzymes by site-directed mutagenesis.

    PubMed Central

    Matsuura, K; Deyashiki, Y; Sato, K; Ishida, N; Miwa, G; Hara, A

    1997-01-01

    Human liver dihydrodiol dehydrogenase isoenzymes (DD1 and DD2), in which only seven amino acid residues are substituted, differ remarkably in specificity for steroidal substrates and inhibitor sensitivity: DD1 shows 20alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas DD2 oxidizes 3alpha-hydroxysteroids and is highly inhibited by bile acids. In the present study we performed site-directed mutagenesis of the seven residues (Thr-38, Arg-47, Leu-54, Cys-87, Val-151, Arg-170 and Gln-172) of DD1 to the corresponding residues (Val, His, Val, Ser, Met, His and Leu respectively) of DD2. Of the seven mutations, only the replacement of Leu-54 with Val produced an enzyme that had almost the same properties as DD2. No significant changes were observed in the other mutant enzymes. An additional site-directed mutagenesis of Tyr-55 of DD1 to Phe yielded an inactive protein, suggesting the catalytically important role of this residue. Thus a residue at a position before the catalytic Tyr residue might play a key role in determining the orientation of the substrates and inhibitors. PMID:9173902

  6. Induced-fit Mechanism for Prolyl Endopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Chen, Changqing; Davies, David R.

    2010-11-15

    Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less

  7. Development of a chemiluminescence competitive PCR for the detection and quantification of parvovirus B19 DNA using a microplate luminometer.

    PubMed

    Fini, F; Gallinella, G; Girotti, S; Zerbini, M; Musiani, M

    1999-09-01

    Quantitative PCR of viral nucleic acids can be useful clinically in diagnosis, risk assessment, and monitoring of antiviral therapy. We wished to develop a chemiluminescence competitive PCR (cPCR) for parvovirus B19. Parvovirus DNA target sequences and competitor sequences were coamplified and directly labeled. Amplified products were then separately hybridized by specific biotin-labeled probes, captured onto streptavidin-coated ELISA microplates, and detected immunoenzymatically using chemiluminescent substrates of peroxidase. Chemiluminescent signals were quantitatively analyzed by a microplate luminometer and were correlated to the amounts of amplified products. Luminol-based systems displayed constant emission but had a higher detection limit (100-1000 genome copies) than the acridan-based system (20 genome copies). The detection limit of chemiluminescent substrates was lower (20 genome copies) than colorimetric substrates (50 genome copies). In chemiluminescence cPCR, the titration curves showed linear correlation above 100 target genome copies. Chemiluminescence cPCR was positive in six serum samples from patients with parvovirus infections and negative in six control sera. The chemiluminescence cPCR appears to be a sensitive and specific method for the quantitative detection of viral DNAs.

  8. Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus.

    PubMed

    Marchi, Emmanuela; Furi, Leonardo; Arioli, Stefania; Morrissey, Ian; Di Lorenzo, Valeria; Mora, Diego; Giovannetti, Luciana; Oggioni, Marco Rinaldo; Viti, Carlo

    2015-01-01

    Staphylococcus aureus strains harboring QacA, QacB, QacC, QacG transporters and norA promoter up-regulating mutations were characterized by phenotype microarray (PM), standard methods for susceptibility testing, and ethidium bromide efflux assays, in order to increase knowledge on phenotypes associated to efflux pumps and their substrates. PM data and standard susceptibility testing lead to the identification of new potential efflux targets, such as guanidine hydrochloride or 8-hydroxyquinoline for QacA and QacC pumps, respectively. The identification of compounds to which the presence of efflux pumps induced increased susceptibility opens new perspectives for potential adjunct anti-resistance treatment (i.e. strains bearing QacB transporters showed increased susceptibility to thioridazine, amitriptyline and orphenadrine). Although the tested isolates were characterized by high degree of heterogeneity, a hallmark of clinical isolates, direct ethidium bromide efflux assays were effective in highlighting differences in efflux efficiency among strains. These data add to characterization of substrate specificity in the different classes of staphylococcal multidrug efflux systems conferring specific substrate profiles and efflux features to each of them. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    PubMed

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-02

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties

    PubMed Central

    Willkomm, Sarah; Zander, Adrian; Grohmann, Dina; Restle, Tobias

    2016-01-01

    Argonaute (Ago) proteins from all three domains of life are key players in processes that specifically regulate cellular nucleic acid levels. Some of these Ago proteins, among them human Argonaute2 (hAgo2) and Ago from the archaeal organism Methanocaldococcus jannaschii (MjAgo), are able to cleave nucleic acid target strands that are recognised via an Ago-associated complementary guide strand. Here we present an in-depth kinetic side-by-side analysis of hAgo2 and MjAgo guide and target substrate binding as well as target strand cleavage, which enabled us to disclose similarities and differences in the mechanistic pathways as a function of the chemical nature of the substrate. Testing all possible guide-target combinations (i.e. RNA/RNA, RNA/DNA, DNA/RNA and DNA/DNA) with both Ago variants we demonstrate that the molecular mechanism of substrate association is highly conserved among archaeal-eukaryotic Argonautes. Furthermore, we show that hAgo2 binds RNA and DNA guide strands in the same fashion. On the other hand, despite striking homology between the two Ago variants, MjAgo cannot orientate guide RNA substrates in a way that allows interaction with the target DNA in a cleavage-compatible orientation. PMID:27741323

  11. Analysis of the electrodeposition and surface chemistry of CdTe, CdSe, and CdS thin films through substrate-overlayer surface-enhanced Raman spectroscopy.

    PubMed

    Gu, Junsi; Fahrenkrug, Eli; Maldonado, Stephen

    2014-09-02

    The substrate-overlayer approach has been used to acquire surface enhanced Raman spectra (SERS) during and after electrochemical atomic layer deposition (ECALD) of CdSe, CdTe, and CdS thin films. The collected data suggest that SERS measurements performed with off-resonance (i.e. far from the surface plasmonic wavelength of the underlying SERS substrate) laser excitation do not introduce perturbations to the ECALD processes. Spectra acquired in this way afford rapid insight on the quality of the semiconductor film during the course of an ECALD process. For example, SERS data are used to highlight ECALD conditions that yield crystalline CdSe and CdS films. In contrast, SERS measurements with short wavelength laser excitation show evidence of photoelectrochemical effects that were not germane to the intended ECALD process. Using the semiconductor films prepared by ECALD, the substrate-overlayer SERS approach also affords analysis of semiconductor surface adsorbates. Specifically, Raman spectra of benzenethiol adsorbed onto CdSe, CdTe, and CdS films are detailed. Spectral shifts in the vibronic features of adsorbate bonding suggest subtle differences in substrate-adsorbate interactions, highlighting the sensitivity of this methodology.

  12. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, E.T.; Deng, W.; Krumm, B.E.

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificitymore » between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.« less

  13. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways

    PubMed Central

    Sacco, Francesca; Boldt, Karsten; Calderone, Alberto; Panni, Simona; Paoluzi, Serena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2014-01-01

    Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI3K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26, respectively. PMID:24847354

  14. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae).

    PubMed

    Goss, Reimund

    2003-09-01

    The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.

  15. Detection of Fusarium oxysporum f.sp. basilici in substrates and roots by PCR.

    PubMed

    Pugliese, M; Ferrocino, I; Gullino, M L; Garibaldi, A

    2013-01-01

    Fusarium oxysporum is a soil-borne fungus that causes vascular wilts in a wide variety of plant species. Basil is recognized as an ecological niche for Fusarium oxysporum f.sp. basilici (FOB) and this fungus is now present in most countries where basil is cultivated. The rapid identification of the species affecting basil plants is necessary to define a successful method for crop protection. The aim of this study was to develop a PCR method for the rapid detection of Fusarium oxysporum f. sp. basilici in substrates. The specificity of the primers used was tested using the DNA extracted directly from substrate samples. Fusarium oxysporum f.sp. basilici was artificially inoculated with decreasing amounts in a commercial substrate (sphagnum peat moss) and in a mixture with 40% of municipal compost, after steam disinfestation. Basil seeds (cv. Fine verde) were sown in pots that were laid on a bench in the greenhouse. At time 0 and after 7, 14 and 21 days from the inoculation, substrate and root samples were collected and prepared for microbial analysis and for the DNA extraction. DNA extraction was carried out using NucleoSpin Soil Kit (Macherey-Nagel, Germany). PCR amplification for the specific detection was carried out using primer sets Bik 1 (5'-ATT CAA GAG CTA AAG GTC C-3') and Bik 4 (5'-TTT GAC CAA GAT AGA TGC C-3') for the first PCR, while primers Bik 1 + Bik 2 (5'-AAA GGT AGT ATA TCG GAG G-3') for the nested PCR to increase detection sensitivity. Disease incidence was also assessed 21 days after seeding. The results showed the presence of amplified fragments of the expected size when the concentration of F. oxysporum f.sp. basilici was at least 3.5 Log CFU g(-1) by using DNA extract directly from substrate, before roots were infected by the pathogen. The detection of Fusarium oxysporum f. sp. basilici by PCR method developed in this study is certainly simple and fast and can be useful for its reliable detection in substrate samples, but not to guarantee that the substrate is totally free of pathogens.

  16. Biochemistry Students' Ideas about How an Enzyme Interacts with a Substrate

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an…

  17. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity.

    PubMed

    Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram

    2009-12-11

    Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.

  18. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis.

    PubMed

    Jiang, Zheng-Yu; Xu, Li-Li; Lu, Meng-Chen; Pan, Yang; Huang, Hao-Ze; Zhang, Xiao-Jin; Sun, Hao-Peng; You, Qi-Dong

    2014-12-01

    E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors. These currently known natural binding partners of the E3 ligase can benefit the discovery of other unknown substrates and also the E3 ligase inhibitors. Herein, we present a novel strategy that using multiple substrates to elucidate the molecular recognition mechanism of E3 ubiquitin ligase. Molecular dynamics simulation, molecular mechanics-generalized born surface area (MM-GBSA) binding energy calculation and energy decomposition scheme were incorporated to evaluate the quantitative contributions of sub-pocket and per-residue to binding. In this case, Kelch-like ECH-associated protein-1 (Keap1), a substrate adaptor component of the Cullin-RING ubiquitin ligases complex, is applied for the investigation of how it recognize its substrates, especially Nrf2, a master regulator of the antioxidant response. By analyzing multiple substrates binding determinants, we found that both the polar sub-pockets (P1 and P2) and the nonpolar sub-pockets (P4 and P5) of Keap1 can make remarkable contributions to intermolecular interactions. This finding stresses the requirement for substrates to interact with the polar and nonpolar sub-pockets simultaneously. The results discussed in this paper not only show the binding determinants of the Keap1 substrates but also provide valuable implications for both Keap1 substrate discovery and PPI inhibitor design.

  19. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng-Yu; Xu, Li-Li; Lu, Meng-Chen; Pan, Yang; Huang, Hao-Ze; Zhang, Xiao-Jin; Sun, Hao-Peng; You, Qi-Dong

    2014-12-01

    E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors. These currently known natural binding partners of the E3 ligase can benefit the discovery of other unknown substrates and also the E3 ligase inhibitors. Herein, we present a novel strategy that using multiple substrates to elucidate the molecular recognition mechanism of E3 ubiquitin ligase. Molecular dynamics simulation, molecular mechanics-generalized born surface area (MM-GBSA) binding energy calculation and energy decomposition scheme were incorporated to evaluate the quantitative contributions of sub-pocket and per-residue to binding. In this case, Kelch-like ECH-associated protein-1 (Keap1), a substrate adaptor component of the Cullin-RING ubiquitin ligases complex, is applied for the investigation of how it recognize its substrates, especially Nrf2, a master regulator of the antioxidant response. By analyzing multiple substrates binding determinants, we found that both the polar sub-pockets (P1 and P2) and the nonpolar sub-pockets (P4 and P5) of Keap1 can make remarkable contributions to intermolecular interactions. This finding stresses the requirement for substrates to interact with the polar and nonpolar sub-pockets simultaneously. The results discussed in this paper not only show the binding determinants of the Keap1 substrates but also provide valuable implications for both Keap1 substrate discovery and PPI inhibitor design.

  20. The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase.

    PubMed

    Gadda, Giovanni; Powell, Nichole L N; Menon, Prashanthi

    2004-10-15

    Choline oxidase catalyzes the oxidation of choline to glycine betaine via two sequential flavin-linked transfers of hydride equivalents to molecular oxygen and formation of a betaine aldehyde intermediate. In the present study, choline and glycine betaine analogs were used as substrates and inhibitors for the enzyme to investigate the structural determinants that are relevant for substrate recognition and specificity. Competitive inhibition patterns with respect to choline were determined for a number of substituted amines at pH 6.5 and 25 degrees C. The Kis values for the carboxylate-containing ligands glycine betaine, N,N-dimethylglycine, and N-methylglycine increased monotonically with decreasing number of methyl groups, consistent with the trimethylammonium portion of the ligand being important for binding. In contrast, the acetate portion of glycine betaine did not contribute to binding, as suggested by lack of changes in the Kis values upon substituting glycine betaine with inhibitors containing methyl, ethyl, allyl, and 2-amino-ethyl side chains. In agreement with the inhibition data, the specificity of the enzyme for the organic substrate (kcat/Km value) decreased when N,N-dimethylethanolamine, N-methylethanolamine, and the isosteric substrate 3,3-dimethyl-1-butanol were used as substrate instead of choline; a contribution of approximately 7 kcal mol(-1) toward substrate discrimination was estimated for the interaction of the trimethylammonium portion of the substrate with the active site of choline oxidase.

  1. Ultra-low roughness magneto-rheological finishing for EUV mask substrates

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; Jenkins, Richard; McFee, Chuck; Kadaksham, Arun J.; Balachandran, Dave K.; Teki, Ranganath

    2013-09-01

    EUV mask substrates, made of titania-doped fused silica, ideally require sub-Angstrom surface roughness, sub-30 nm flatness, and no bumps/pits larger than 1 nm in height/depth. To achieve the above specifications, substrates must undergo iterative global and local polishing processes. Magnetorheological finishing (MRF) is a local polishing technique which can accurately and deterministically correct substrate figure, but typically results in a higher surface roughness than the current requirements for EUV substrates. We describe a new super-fine MRF® polishing fluid whichis able to meet both flatness and roughness specifications for EUV mask blanks. This eases the burden on the subsequent global polishing process by decreasing the polishing time, and hence the defectivity and extent of figure distortion.

  2. Oligosaccharide Substrate Preferences of Human Extracellular Sulfatase Sulf2 Using Liquid Chromatography-Mass Spectrometry Based Glycomics Approaches

    PubMed Central

    Huang, Yu; Mao, Yang; Buczek-Thomas, Jo Ann; Nugent, Matthew A.; Zaia, Joseph

    2014-01-01

    Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS) chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs) focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization) compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE) of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2. PMID:25127119

  3. Neuroglian and FasciclinII can promote neurite outgrowth via the FGF receptor Heartless.

    PubMed

    Forni, John J; Romani, Susana; Doherty, Patrick; Tear, Guy

    2004-06-01

    To further investigate the role of the Drosophila cell adhesion molecules (CAMs), we have developed an in vitro assay that allows us to test the contribution individual CAMs make to promote outgrowth of specific Drosophila neurons. The extension of primary cultured neurons on a substrate of purified recombinant CAM is measured. We show that both FasciclinII and Neuroglian are able to promote outgrowth of FasciclinII or Neuroglian expressing neurons, respectively. Furthermore, this growth promotion activity is provided when the CAMs are presented both in a substrate bound or soluble form. We also show that the signal provided by the CAMs acts via the Heartless fibroblast growth factor receptor (FGFR) as outgrowth is reduced to basal levels in the presence of an FGFR inhibitor or if Heartless function is missing from the neurons. Copyright 2004 Elsevier Inc.

  4. A Neural Substrate for Atypical Low-Level Visual Processing in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Vandenbroucke, Myriam W. G.; Scholte, H. Steven; van Engeland, Herman; Lamme, Victor A. F.; Kemner, Chantal

    2008-01-01

    An important characteristic of autism spectrum disorder (ASD) is increased visual detail perception. Yet, there is no standing neurobiological explanation for this aspect of the disorder. We show evidence from EEG data, from 31 control subjects (three females) and 13 subjects (two females) aged 16-28 years, for a specific impairment in object…

  5. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-08

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.

  6. Insights into the Specificity of Lysine Acetyltransferases

    DOE PAGES

    Tucker, Alex C.; Taylor, Keenan C.; Rank, Katherine C.; ...

    2014-11-07

    Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. In this paper, we report the structure of a GNATmore » in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Finally, our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs.« less

  7. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  8. Low energy electron catalyst: the electronic origin of catalytic strategies.

    PubMed

    Davis, Daly; Sajeev, Y

    2016-10-12

    Using a low energy electron (LEE) as a catalyst, the electronic origin of the catalytic strategies corresponding to substrate selectivity, reaction specificity and reaction rate enhancement is investigated for a reversible unimolecular elementary reaction. An electronic energy complementarity between the catalyst and the substrate molecule is the origin of substrate selectivity and reaction specificity. The electronic energy complementarity is induced by tuning the electronic energy of the catalyst. The energy complementarity maximizes the binding forces between the catalyst and the molecule. Consequently, a new electronically metastable high-energy reactant state and a corresponding new low barrier reaction path are resonantly created for a specific reaction of the substrate through the formation of a catalyst-substrate transient adduct. The LEE catalysis also reveals a fundamental structure-energy correspondence in the formation of the catalyst-substrate transient adduct. Since the energy complementarities corresponding to the substrate molecules of the forward and the backward steps of the reversible reactions are not the same due to their structural differences, the LEE catalyst exhibits a unique one-way catalytic strategy, i.e., the LEE catalyst favors the reversible reaction more effectively in one direction. A characteristic stronger binding of the catalyst to the transition state of the reaction than in the initial reactant state and the final product state is the molecular origin of barrier lowering.

  9. Tilt Grain Boundary Topology Induced by Substrate Topography.

    PubMed

    Yu, Henry; Gupta, Nitant; Hu, Zhili; Wang, Kai; Srijanto, Bernadeta R; Xiao, Kai; Geohegan, David B; Yakobson, Boris I

    2017-09-26

    Synthesis of two-dimensional (2D) crystals is a topic of great current interest, since their chemical makeup, electronic, mechanical, catalytic, and optical properties are so diverse. A universal challenge, however, is the generally random formation of defects caused by various growth factors on flat surfaces. Here we show through theoretical analysis and experimental demonstration that nonplanar, curved-topography substrates permit the intentional and controllable creation of topological defects within 2D materials. We augment a common phase-field method by adding a geometric phase to track the crystal misorientation on a curved surface and to detect the formation of grain boundaries, especially when a growing monocrystal "catches its own tail" on a nontrivial topographical feature. It is specifically illustrated by simulated growth of a trigonal symmetry crystal on a conical-planar substrate, to match the experimental synthesis of WS 2 on silicon template, with satisfactory and in some cases remarkable agreement of theory predictions and experimental evidence.

  10. Structural and biochemical studies of a fluoroacetyl-CoA-specific thioesterase reveal a molecular basis for fluorine selectivity.

    PubMed

    Weeks, Amy M; Coyle, Scott M; Jinek, Martin; Doudna, Jennifer A; Chang, Michelle C Y

    2010-11-02

    We have initiated a broad-based program aimed at understanding the molecular basis of fluorine specificity in enzymatic systems, and in this context, we report crystallographic and biochemical studies on a fluoroacetyl-coenzyme A (CoA) specific thioesterase (FlK) from Streptomyces cattleya. Our data establish that FlK is competent to protect its host from fluoroacetate toxicity in vivo and demonstrate a 10(6)-fold discrimination between fluoroacetyl-CoA (k(cat)/K(M) = 5 × 10⁷ M⁻¹ s⁻¹) and acetyl-CoA (k(cat)/K(M) = 30 M⁻¹ s⁻¹) based on a single fluorine substitution that originates from differences in both substrate reactivity and binding. We show that Thr 42, Glu 50, and His 76 are key catalytic residues and identify several factors that influence substrate selectivity. We propose that FlK minimizes interaction with the thioester carbonyl, leading to selection against acetyl-CoA binding that can be recovered in part by new C═O interactions in the T42S and T42C mutants. We hypothesize that the loss of these interactions is compensated by the entropic driving force for fluorinated substrate binding in a hydrophobic binding pocket created by a lid structure, containing Val 23, Leu 26, Phe 33, and Phe 36, that is not found in other structurally characterized members of this superfamily. We further suggest that water plays a critical role in fluorine specificity based on biochemical and structural studies focused on the unique Phe 36 "gate" residue, which functions to exclude water from the active site. Taken together, the findings from these studies offer molecular insights into organofluorine recognition and design of fluorine-specific enzymes.

  11. The Vps27/Hrs/STAM (VHS) Domain of the Signal-transducing Adaptor Molecule (STAM) Directs Associated Molecule with the SH3 Domain of STAM (AMSH) Specificity to Longer Ubiquitin Chains and Dictates the Position of Cleavage*

    PubMed Central

    Baiady, Nardeen; Padala, Prasanth; Mashahreh, Bayan; Cohen-Kfir, Einav; Todd, Emily A.; Du Pont, Kelly E.; Berndsen, Christopher E.; Wiener, Reuven

    2016-01-01

    The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys63-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys63-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys63-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage. PMID:26601948

  12. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    PubMed

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  13. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.

    PubMed

    Jing, Fuyuan; Cantu, David C; Tvaruzkova, Jarmila; Chipman, Jay P; Nikolau, Basil J; Yandeau-Nelson, Marna D; Reilly, Peter J

    2011-08-10

    Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.

  14. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  15. A universal small molecule, inorganic phosphate, restricts the substrate specificity of Dicer-2 in small RNA biogenesis

    PubMed Central

    Fukunaga, Ryuya; Zamore, Phillip D

    2014-01-01

    The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225

  16. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  17. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  18. Distribution of oligochaetes in a stream in the Atlantic Forest in southeastern Brazil.

    PubMed

    Rosa, B F J V; Martins, R T; Alves, R G

    2015-01-01

    The oligochaetes are considered good indicators of ecological conditions and specific types of habitats. Among the factors that influence the distribution of these invertebrates are the water flow and the nature of the substrate. The aim of this study is to describe the composition and distribution of oligochaete species in a first-order stream in Atlantic Forest and try to identify if some species are associated with characteristics of particular types of habitats. In the dry season and in the rainy season, sand and litter samples in two riffle areas and two pool areas were collected in different parts along the stream using a hand net. The greatest observed richness and abundance occurred in sand in the pool, however the greatest estimated richness was obtained for litter in the pool. The Kruskal-Wallis analysis showed effect of the different types of habitat on the abundance and richness of oligochaetes. The Nonmetric Multidimensional Scaling (NMDS) and Multiresponse Permutation Procedure analysis (MRPP) indicated that the variation in the fauna composition had relation with different types of substrates. The indicator species analysis showed that Limnodrilus. hoffmeisteri was an indicator species in both the riffle sand and pool sand and Pristina americana was only an indicator in the pool sand. The high organic matter content in both sandy habitats probably favored the greater abundance of oligochaetes. The results showed that the substrate constitutes an important factor for the local distribution of these invertebrates in streams. The variation of the community structure among mesohabitats and the presence of indicator species of specific types of habitats in the stream demonstrate the importance of environmental heterogeneity for the oligochaetes fauna in forested streams.

  19. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase.

    PubMed

    You, Xin; Qin, Zhen; Li, Yan-Xiao; Yan, Qiao-Juan; Li, Bin; Jiang, Zheng-Qiang

    2018-06-01

    Mannan is one of the major constituent groups of hemicellulose, which is a renewable resource from higher plants. β-Mannanases are enzymes capable of degrading lignocellulosic biomass. Here, an endo-β-mannanase from Rhizopus microsporus (RmMan134A) was cloned and expressed. The recombinant RmMan134A showed maximal activity at pH 5.0 and 50 °C, and exhibited high specific activity towards locust bean gum (2337 U/mg). To gain insight into the substrate-binding mechanism of RmMan134A, four complex structures (RmMan134A-M3, RmMan134A-M4, RmMan134A-M5 and RmMan134A-M6) were further solved. These structures showed that there were at least seven subsites (-3 to +4) in the catalytic groove of RmMan134A. Mannose in the -1 subsite hydrogen bonded with His113 and Tyr131, revealing a unique conformation. Lys48 and Val159 formed steric hindrance, which impedes to bond with galactose branches. In addition, the various binding modes of RmMan134A-M5 indicated that subsites -2 to +2 are indispensable during the hydrolytic process. The structure of RmMan134A-M4 showed that mannotetrose only binds at subsites +1 to +4, and RmMan134A could therefore not hydrolyze mannan oligosaccharides with degree of polymerization ≤4. Through rational design, the specific activity and optimal conditions of RmMan134A were significantly improved. The purpose of this paper is to investigate the structure and function of fungal GH family 134 β-1,4-mannanases, and substrate-binding mechanism of GH family 134 members. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation.

    PubMed

    Yakovlev, Igor A; Hietala, Ari M; Courty, Pierre-Emmanuel; Lundell, Taina; Solheim, Halvor; Fossdal, Carl Gunnar

    2013-07-01

    The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xuan; Liang, Pingdong; Raba, Daniel Alexander

    ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP andmore » potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.« less

  2. Biochemistry students' ideas about how an enzyme interacts with a substrate.

    PubMed

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an enzyme and be able to reason from simplistic lock and key or induced fit models to the more complex energetics model of transition state theory. Learning to understand these many facets of enzyme-substrate interactions and reasoning from multiple models present challenges where students incorrectly make connections between concepts or make no connection at all. This study investigated biochemistry students' understanding of enzyme-substrate interactions through the use of clinical interviews and a national administration (N = 707) of the Enzyme-Substrate Interactions Concept Inventory. Findings include misconceptions regarding the nature of enzyme-substrate interactions, naïve ideas about the active site, a lack of energetically driven interactions, and an incomplete understanding of the specificity pocket. © 2015 by the International Union of Biochemistry and Molecular Biology.

  3. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

    PubMed

    Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min

    2016-03-01

    In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.

  4. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function

    PubMed Central

    Montanier, Cedric; van Bueren, Alicia Lammerts; Dumon, Claire; Flint, James E.; Correia, Marcia A.; Prates, Jose A.; Firbank, Susan J.; Lewis, Richard J.; Grondin, Gilles G.; Ghinet, Mariana G.; Gloster, Tracey M.; Herve, Cecile; Knox, J. Paul; Talbot, Brian G.; Turkenburg, Johan P.; Kerovuo, Janne; Brzezinski, Ryszard; Fontes, Carlos M. G. A.; Davies, Gideon J.; Boraston, Alisdair B.; Gilbert, Harry J.

    2009-01-01

    Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands. PMID:19218457

  5. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans

    PubMed Central

    Zhang, Xinxing; Jones, Rachel A.; Bruner, Steven D.; Butcher, Rebecca A.

    2016-01-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084

  6. Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development.

    PubMed

    Merlaen, Britt; De Keyser, Ellen; Van Labeke, Marie-Christine

    2018-01-01

    The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry ( Fragaria x ananassa ). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa , few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.

  7. The Structure of Lombricine Kinase

    PubMed Central

    Bush, D. Jeffrey; Kirillova, Olga; Clark, Shawn A.; Davulcu, Omar; Fabiola, Felcy; Xie, Qing; Somasundaram, Thayumanasamy; Ellington, W. Ross; Chapman, Michael S.

    2011-01-01

    Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309–317, which is disordered in substrate-free structures of homologs and is known from the NMR of arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His178. Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates. PMID:21212263

  8. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome

    PubMed Central

    McGinty, Robert K.; Henrici, Ryan C.; Tan, Song

    2014-01-01

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358

  9. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    PubMed

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Improvement of antigen detection efficiency with the use of two-dimensional photonic crystal as a substrate

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Dmitriy; Terekhin, Vladimir; Vokhmincev, Kirill; Sukhanova, Alyona; Nabiev, Igor

    2017-01-01

    Multiplex detection of different antigens in human serum in order to reveal diseases at the early stage is of interest nowadays. There are a lot of biosensors, which use the fluorescent labels for specific detection of analytes. For instance, common method for detection of antigens in human serum samples is enzyme-linked immunosorbent assay (ELISA). One of the most effective ways to improve the sensitivity of this detection method is the use of a substrate that could enhance the fluorescent signal and make it easier to collect. Two-dimensional (2D) photonic crystals are very suitable structures for these purposes because of the ability to enhance the luminescent signal, control the light propagation and perform the analysis directly on its surface. In our study we have calculated optimal parameters for 2D-dimensional photonic crystal consisting of the array of silicon nano-rods, fabricated such photonic crystal on a silicon substrate using reactive ion etching and showed the possibility of its efficient application as a substrate for ELISA detection of human cancer antigens.

  11. Biochemical Characterization of the Suberization-Associated Anionic Peroxidase of Potato1

    PubMed Central

    Bernards, Mark A.; Fleming, Warren D.; Llewellyn, David B.; Priefer, Ronny; Yang, Xiaolong; Sabatino, Anita; Plourde, Guy L.

    1999-01-01

    The anionic peroxidase associated with the suberization response in potato (Solanum tuberosum L.) tubers during wound healing has been purified and partially characterized at the biochemical level. It is a 45-kD, class III (plant secretory) peroxidase that is localized to suberizing tissues and shows a preference for feruloyl (o-methoxyphenol)-substituted substrates (order of substrate preference: feruloyl > caffeoyl > p-coumaryl ≈ syringyl) such as those that accumulate in tubers during wound healing. There was little influence on oxidation by side chain derivatization, although hydroxycinnamates were preferred over the corresponding hydroxycinnamyl alcohols. The substrate specificity pattern is consistent with the natural substrate incorporation into potato wound suberin. In contrast, the cationic peroxidase(s) induced in response to wound healing in potato tubers is present in both suberizing and nonsuberizing tissues and does not discriminate between hydroxycinnamates and hydroxycinnamyl alcohols. A synthetic polymer prepared using E-[8-13C]ferulic acid, H2O2, and the purified anionic enzyme contained a significant amount of cross-linking through C-8, albeit with retention of unsaturation. PMID:10482668

  12. Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells

    PubMed Central

    Wasnik, Samiksha; Kantipudi, Suma; Kirkland, Mark A.; Pande, Gopal

    2016-01-01

    The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion. PMID:26981135

  13. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    PubMed

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  14. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    PubMed

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  15. WAVE2 Forms a Complex with PKA and Is Involved in PKA Enhancement of Membrane Protrusions*

    PubMed Central

    Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki

    2011-01-01

    PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation. PMID:21119216

  16. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.

    PubMed

    Tyagi, Sadhna; Pleiss, Juergen

    2006-06-25

    A general high-throughput method for in silico biochemical profiling of enzyme families has been developed based on covalent docking of potential substrates into the binding sites of target enzymes. The method has been tested by systematically docking transition state--analogous intermediates of 12 substrates into the binding sites of 20 alpha/beta hydrolases from 15 homologous families. To evaluate the effect of side chain orientations to the docking results, 137 crystal structures were included in the analysis. A good substrate must fulfil two criteria: it must bind in a productive geometry with four hydrogen bonds between the substrate and the catalytic histidine and the oxyanion hole, and a high affinity of the enzyme-substrate complex as predicted by a high docking score. The modelling results in general reproduce experimental data on substrate specificity and stereoselectivity: the differences in substrate specificity of cholinesterases toward acetyl- and butyrylcholine, the changes of activity of lipases and esterases upon the size of the acid moieties, activity of lipases and esterases toward tertiary alcohols, and the stereopreference of lipases and esterases toward chiral secondary alcohols. Rigidity of the docking procedure was the major reason for false positive and false negative predictions, as the geometry of the complex and docking score may sensitively depend on the orientation of individual side chains. Therefore, appropriate structures have to be identified. In silico biochemical profiling provides a time efficient and cost saving protocol for virtual screening to identify the potential substrates of the members of large enzyme family from a library of molecules.

  17. Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael

    2017-04-01

    Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.

  18. Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits.

    PubMed

    Bazet Lyonnet, Bernardo; Diacovich, Lautaro; Gago, Gabriela; Spina, Lucie; Bardou, Fabienne; Lemassu, Anne; Quémard, Annaïk; Gramajo, Hugo

    2017-04-01

    Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two β subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C 24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen. © 2017 Federation of European Biochemical Societies.

  19. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

    PubMed

    Usami, Yuki; Uemura, Satsohi; Mochizuki, Takahiro; Morita, Asami; Shishido, Fumi; Inokuchi, Jin-ichi; Abe, Fumiyoshi

    2014-07-01

    Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.

    PubMed

    Loch, Christian M; Strickler, James E

    2012-11-01

    Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Enzyme-specific sensors via aggregation of charged p-phenylene ethynylenes.

    PubMed

    Hill, Eric H; Zhang, Yue; Evans, Deborah G; Whitten, David G

    2015-03-11

    Chemical and biological sensors are sought for their ability to detect enzymes as biomarkers for symptoms of various disorders, or the presence of chemical pollutants or poisons. p-Phenylene ethynylene oligomers with pendant charged groups have been recently shown to have ideal photophysical properties for sensing. In this study, one anionic and one cationic oligomer are combined with substrates that are susceptible to enzymatic degradation by phospholipases or acetylcholinesterases. The photophysical properties of the J-aggregated oligomers with the substrate are ideal for sensing, with fluorescence quantum yields of the sensors enhanced between 30 and 66 times compared to the oligomers without substrate. The phospholipase sensor was used to monitor the activity of phospholipase A1 and A2 and obtain kinetic information, though phospholipase C did not degrade the sensor. The acetylcholinesterase sensor was used to monitor enzyme activity and was also used to detect the inhibition of acetylcholinesterase by three different inhibitors. Phospholipase A2 is a biomarker for heart and circulatory disease, and acetylcholinesterase is a biomarker for Alzheimer's, and indicative of exposure to certain pesticides and nerve agents. This work shows that phenylene ethynylene oligomers can be tailored to enzyme-specific sensors by careful selection of substrates that induce formation of a molecular aggregate, and that the sensing of enzymes can be extended to enzyme kinetics and detection of inhibition. Furthermore, the aggregates were studied through all-atom molecular dynamics, providing a molecular-level view of the formation of the molecular aggregates and their structure.

  2. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates

    PubMed Central

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  3. Mechanistic Studies of the Yeast Polyamine Oxidase Fms1: Kinetic Mechanism, Substrate Specificity, and pH Dependence†

    PubMed Central

    Adachi, Mariya S.; Torres, Jason M.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s−1 and apparent Kd values of 24.3 and 484 μM for spermine and N1-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM−1 s−1 with spermine at 25 °C, and 204 mM−1 s−1 with N1-acetylspermine at 4 °C, pH 9.0. This step is followed by rate-limiting product dissociation. The kcat/Kamine-pH profiles are bell-shaped, with an average pKa value of 9.3 with spermine and pKa values of 8.3 and 9.6 with N1-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pKa values of 8.3 and 7.2 for spermine and N1-acetylspermine, respectively, for groups that must be unprotonated; these pKa values are assigned to the substrate N4. The kcat/KO2-pH profiles show pKa values of 7.5 for spermine and 6.8 for N1-acetylspermine. With both substrates, the kcat value decreases when a single residue is protonated. PMID:21067138

  4. Toward a mechanistic understanding of patterns in biomineralization and new insights for old dogmas in geological settings (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Hamm, L.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2013-12-01

    The ability of organisms to mineralize tissues into skeletons and other functional structures is a remarkable achievement of biology. Yet, the physical basis for how macromolecules regulate the placement and onset of mineral formation is not well established. Efforts to understand nucleation onto organic substrates have produced two, seemingly contradictory, lines of thought: The biomineralization community widely assumes the organic matrix promotes nucleation through stereochemical matching to guide the organization of solute ions, while materials synthesis groups use simple binding assays to correlate high binding strength with good promoters of nucleation. This study reconciles the two views and provides a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal-substrate binding free energies. Using surface assembled monolayers (SAM) as simple model systems, we first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, hydroxyl) and conformations (C11, C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate (ACC). Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite-substrate binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low energy barriers to nucleation correlate with strong crystal-substrate binding. This relationship is general to all functional group chemistries and conformations. These findings reconcile the long-standing concept of templated nucleation through stereochemical matching with the conventional wisdom that ';good binders are good nucleators'. Alternative perspectives become internally consistent when viewed through the lens of crystal-substrate binding and provide a physical basis for how organic chemistry can direct temporal and spatial patterns of carbonate nucleation.

  5. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism.

    PubMed

    Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S

    2017-09-19

    By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.

  6. "Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies".

    PubMed

    Verma, Ved Vrat; Gupta, Rani; Goel, Manisha

    2015-09-14

    γ-glutamyltranspeptidase (GGT) is a bi-substrate enzyme conserved in all three domains of life. It catalyzes the cleavage and transfer of γ-glutamyl moiety of glutathione to either water (hydrolysis) or substrates like peptides (transpeptidation). GGTs exhibit great variability in their enzyme kinetics although the mechanism of catalysis is conserved. Recently, GGT has been shown to be a virulence factor in microbes like Helicobacter pylori and Bacillus anthracis. In mammalian cells also, GGT inhibition prior to chemotherapy has been shown to sensitize tumors to the therapy. Therefore, lately both bacterial and eukaryotic GGTs have emerged as potential drug targets, but the efforts directed towards finding suitable inhibitors have not yielded any significant results yet. We propose that delineating the residues responsible for the functional diversity associated with these proteins could help in design of species/clade specific inhibitors. In the present study, we have carried out phylogenetic analysis on a set of 47 GGT-like proteins to address the functional diversity. These proteins segregate into various subfamilies, forming separate clades on the tree. Sequence conservation and motif prediction studies show that even though most of the highly conserved residues have been characterized biochemically in previous studies, a significant number of novel putative sites and motifs are discovered that vary in a clade specific manner. Many of the putative sites predicted during the functional divergence type I and type II analysis, lie close to the known catalytic residues and line the walls of the substrate binding cavity, reinforcing their role in modulating the substrate specificity, catalytic rates and stability of this protein. The study offers interesting insights into the evolution of GGT-like proteins in pathogenic vs. non-pathogenic bacteria, archaea and eukaryotes. Our analysis delineates residues that are highly specific to each GGT subfamily. We propose that these sites not only explain the differences in stability and catalytic variability of various GGTs but can also aid in design of specific inhibitors against particular GGTs. Thus, apart from the commonly used in-silico inhibitor screening approaches, evolutionary analysis identifying the functional divergence hotspots in GGT proteins could augment the structure based drug design approaches.

  7. Functional Role of Tyr12 in the Catalytic Activity of Novel Zeta-like Glutathione S-transferase from Acidovorax sp. KKS102.

    PubMed

    Shehu, Dayyabu; Alias, Zazali

    2018-05-19

    Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

  8. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones.

    PubMed

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-12-20

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Bo; Rodriguez, Ben; Yang, Yanu

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved bymore » the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.« less

  10. Specificity of lecithin:cholesterol acyltransferase and atherogenic risk: comparative studies on the plasma composition and in vitro synthesis of cholesteryl esters in 14 vertebrate species.

    PubMed

    Liu, M; Bagdade, J D; Subbaiah, P V

    1995-08-01

    To determine whether the specificity of lecithin: cholesterol acyltransferase (LCAT) influences the susceptibility to atherosclerosis, we compared the composition and in vitro synthesis of cholesteryl ester (CE) in the plasmas of 14 vertebrate species with varying predisposition to atherosclerosis. The susceptible species (Group I) had significantly higher ratios of 16:0 CE/20:4 CE in their plasma than the resistant species (Group II). The in vitro formation of labeled CE species in native plasma from labeled cholesterol correlated highly with the mass composition, showing that the LCAT reaction is the predominant source of plasma CE in all the animal species examined. Isolated LCATs from Group I species also synthesized CE with higher ratios of 16:0/20:4 than LCATs from Group II when egg phosphatidylcholine (PC) was used as the acyl donor. In addition, the Group I LCATs exhibited lower specificity towards sn-2-20:4 and sn-2-22:6 PCs, and higher specificity towards sn-2-18:2 PC species than Group II LCATs. With 16:0-20:4 PC as the substrate, all Group I LCATs synthesized more 16:0 CE than 20:4 CE, whereas all Group II LCATs, with the exception of dog enzyme, synthesized predominantly 20:4 CE, showing that the two types of LCAT have different positional specificities towards this PC. These results suggest that there are two classes of LCAT in nature that differ from each other in their substrate and positional specificities, possibly because of differences in their active-site architectures. We propose that the presence of one type of LCAT, which cannot efficiently transfer certain long chain polyunsaturated acyl groups and which consequently synthesizes more saturated CE, may increase the risk of atherosclerosis.

  11. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions

    USGS Publications Warehouse

    Munn, M.D.; Waite, I.R.; Larsen, D.P.; Herlihy, A.T.

    2009-01-01

    The objective of this study was to determine the relative influence of reach-specific habitat variables and geographic location on benthic invertebrate assemblages within six ecoregions across the Western USA. This study included 417 sites from six ecoregions. A total of 301 taxa were collected with the highest richness associated with ecoregions dominated by streams with coarse substrate (19-29 taxa per site). Lowest richness (seven to eight taxa per site) was associated with ecoregions dominated by fine-grain substrate. Principle component analysis (PCA) on reach-scale habitat separated the six ecoregions into those in high-gradient mountainous areas (Coast Range, Cascades, and Southern Rockies) and those in lower-gradient ecoregions (Central Great Plains and Central California Valley). Nonmetric multidimensional scaling (NMS) models performed best in ecoregions dominated by coarse-grain substrate and high taxa richness, along with coarse-grain substrates sites combined from multiple ecoregions regardless of location. In contrast, ecoregions or site combinations dominated by fine-grain substrate had poor model performance (high stress). Four NMS models showed that geographic location (i.e. latitude and longitude) was important for: (1) all ecoregions combined, (2) all sites dominated by coarse-grain sub strate combined, (3) Cascades Ecoregion, and (4) Columbia Ecoregion. Local factors (i.e. substrate or water temperature) seem to be overriding factors controlling invertebrate composition across the West, regardless of geographic location. ?? The Author(s) 2008.

  12. Soilless plant growth media influence the efficacy of phytohormones and phytohormone inhibitors.

    PubMed

    Best, Norman B; Hartwig, Thomas; Budka, Joshua S; Bishop, Brandon J; Brown, Elliot; Potluri, Devi P V; Cooper, Bruce R; Premachandra, Gnanasiri S; Johnston, Cliff T; Schulz, Burkhard

    2014-01-01

    Plant growth regulators, such as hormones and their respective biosynthesis inhibitors, are effective tools to elucidate the physiological function of phytohormones in plants. A problem of chemical treatments, however, is the potential for interaction of the active compound with the growth media substrate. We studied the interaction and efficacy of propiconazole, a potent and specific inhibitor of brassinosteroid biosynthesis, with common soilless greenhouse growth media for rice, sorghum, and maize. Many of the tested growth media interacted with propiconazole reducing its efficacy up to a hundred fold. To determine the molecular interaction of inhibitors with media substrates, Fourier Transform Infrared Spectroscopy and sorption isotherm analysis was applied. While mica clay substrates absorbed up to 1.3 mg of propiconazole per g substrate, calcined clays bound up to 12 mg of propiconazole per g substrate. The efficacy of the gibberellic acid biosynthesis inhibitor, uniconazole, and the most active brassinosteroid, brassinolide, was impacted similarly by the respective substrates. Conversely, gibberellic acid showed no distinct growth response in different media. Our results suggest that the reduction in efficacy of propiconazole, uniconazole, and brassinolide in bioassays when grown in calcined clay is caused by hydrophobic interactions between the plant growth regulators and the growth media. This was further confirmed by experiments using methanol-water solvent mixes with higher hydrophobicity values, which reduce the interaction of propiconazole and calcined clay.

  13. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  14. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    PubMed

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Understanding the Role of O-GlcNAc Modifications in Plant Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Neil, E.

    2011-06-16

    This project has contributed towards understanding the role of O-GlcNAc (O-linked N-acetylglucosamine) transferases (OGTs) in plants. Through analyses of single and double mutants, we have investigated the unique and overlapping functions of SECRET AGENT (SEC) and SPINDLY (SPY), the arabidopsis OGTs. This work showed that SEC functions as negative regulators of the long-day flowering pathway. SEC also has a positive role in regulation of rosette. An E. coli co-expression system that allows potential substrates to be co-expressed with and O-GlcNAc modified by SEC was developed. We showed that SEC is a bona fide OGT that modifies itself with single O-linkedmore » GlcNAc(s). Using this system, we tested a number of proteins that were hypothesized to be substrates of SEC and identified a number of substrates include GIGANTEA (GI), a component of the long day flowering pathway. The hypothesis that O-GlcNAc modification controls GI activity was tested by first mapping where E. coli-expressed SEC modifies GI and then assessing the activity of a non-modifiable mutant form of GI. The activity of the mutant form of GI was indistinguishable from that of wild type suggesting that either O-GlcNAc does not regulate GI activity or that additional modification sites exist on GI. In collaboration with Dr. Juan Antonio Garcia at Universidad Autónoma de Madrid the role of O-GlcNAc modification of the plum pox virus coat protein (PPV-CP) was investigated. SEC was shown to O-GlcNAc modify PPV-CP and the modification was shown to facilitate the infection process. E. coli-expressed SEC was shown to modify the same PPV-CP sites that are modified in plants. SEC has a large protein interaction domain called the TPR domain that has been hypothesized to have a role in determining the substrate specificity of the enzyme and/or to regulate its activity. A mutational analysis of the TPR domain did not find evidence for a role in substrate specificity but did obtain evidence that the domain regulates enzyme activity.« less

  16. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments

    PubMed Central

    Crits-Christoph, Alexander; Robinson, Courtney K.; Ma, Bing; Ravel, Jacques; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; Souza-Egipsy, Virginia; Casero, M. Cristina; DiRuggiero, Jocelyne

    2016-01-01

    Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi. The relative distribution of major phyla was significantly different between the two substrates and biodiversity estimates, from 16S rRNA gene sequences and from the metagenomic data, all pointed to a higher taxonomic diversity in the calcite community. While both endolithic communities showed adaptations to extreme aridity and to the rock habitat, their functional capabilities revealed significant differences. ABC transporters and pathways for osmoregulation were more diverse in the calcite chasmoendolithic community. In contrast, the ignimbrite cryptoendolithic community was enriched in pathways for secondary metabolites, such as non-ribosomal peptides (NRP) and polyketides (PK). Assemblies of the metagenome data produced population genomes for the major phyla found in both communities and revealed a greater diversity of Cyanobacteria population genomes for the calcite substrate. Draft genomes of the dominant Cyanobacteria in each community were constructed with more than 93% estimated completeness. The two annotated proteomes shared 64% amino acid identity and a significantly higher number of genes involved in iron update, and NRPS gene clusters, were found in the draft genomes from the ignimbrite. Both the community-wide and genome-specific differences may be related to higher water availability and the colonization of large fissures and cracks in the calcite in contrast to a harsh competition for colonization space and nutrient resources in the narrow pores of the ignimbrite. Together, these results indicated that the habitable architecture of both lithic substrates- chasmoendolithic versus cryptoendolithic – might be an essential element in determining the colonization and the diversity of the microbial communities in endolithic substrates at the dry limit for life. PMID:27014224

  17. Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains

    PubMed Central

    Tanco, Sebastian; Díaz, Lucía; Dasgupta, Sayani; Fernandez-Recio, Juan; Lorenzo, Julia; Aviles, Francesc X.; Fricker, Lloyd D.

    2017-01-01

    Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5–7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell. PMID:29131831

  18. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    PubMed

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  19. Escherichia coli arabinose isomerase and Staphylococcus aureus tagatose-6-phosphate isomerase: which is a better template for directed evolution of non-natural substrate isomerization?

    PubMed

    Kim, Hye Jung; Uhm, Tae Guk; Kim, Seong Bo; Kim, Pil

    2010-06-01

    Metallic and non-metallic isomerases can be used to produce commercially important monosaccharides. To determine which category of isomerase is more suitable as a template for directed evolution to improve enzymes for galactose isomerization, L-arabinose isomerase from Escherichia coli (ECAI; E.C. 5.3.1.4) and tagatose-6-phosphate isomerase from Staphylococcus aureus (SATI; E.C. 5.3.1.26) were chosen as models of a metallic and non-metallic isomerase, respectively. Random mutations were introduced into the genes encoding ECAI and SATI at the same rate, resulting in the generation of 515 mutants of each isomerase. The isomerization activity of each of the mutants toward a non-natural substrate (galactose) was then measured. With an average mutation rate of 0.2 mutations/kb, 47.5% of the mutated ECAIs showed an increase in activity compared with wild-type ECAI, and the remaining 52.5% showed a decrease in activity. Among the mutated SATIs, 58.6% showed an increase in activity, whereas 41.4% showed a decrease in activity. Mutant clones showing a significant change in relative activity were sequenced and specific increases in activity were measured. The maximum increase in activity achieved by mutation of ECAI was 130%, and that for SATI was 190%. Based on these results, the characteristics of the different isomerases are discussed in terms of their usefulness for directed evolution of non-natural substrate isomerization.

  20. Exploration of CIGAS Alloy System for Thin-Film Photovoltaics on Novel Lightweight and Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine

    2007-01-01

    Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.

  1. Non-specific activities of the major herbicide-resistance gene BAR.

    PubMed

    Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke

    2017-12-01

    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.

  2. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  3. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  4. Beta-ketoacyl-acyl carrier protein synthase IV: a key enzyme for regulation of medium-chain fatty acid synthesis in Cuphea lanceolata seeds.

    PubMed

    Schütt, Burkhardt Siegfried; Abbadi, Amine; Loddenkötter, Brigitte; Brummel, Monika; Spener, Friedrich

    2002-09-01

    With the aim of elucidating the mechanisms involved in the biosynthesis of medium-chain fatty acids in Cuphea lanceolata Ait., a crop accumulating up to 90% decanoic acid in seed triacylglycerols, cDNA clones of a beta-ketoacyl-acyl carrier protein (ACP) synthase IV (clKAS IV, EC 2.3.1.41) were isolated from C. lanceolata seed embryos. The amino acid sequence deduced from clKAS IV cDNA showed 80% identity to other plant KAS II-type enzymes, 55% identity towards plant KAS I and over 90% towards other Cuphea KAS IV-type sequences. Recombinant clKAS IV was functionally overexpressed in Escherichia coli, and substrate specificity of purified enzyme showed strong preference for elongation of short-chain and medium-chain acyl-ACPs (C4- to C10-ACP) with nearly equal activity. Further elongation steps were catalysed with distinctly less activity. Moreover, short- and medium-chain acyl-ACPs exerted a chain-length-specific and concentration-dependent substrate inhibition of clKAS IV. Based on these findings a regulatory mechanism for medium-chain fatty acid synthesis in C. lanceolata is presented.

  5. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  6. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less

  7. Egg Yolk Factor of Staphylococcus aureus II. Characterization of the Lipase Activity

    PubMed Central

    Shah, D. B.; Wilson, J. B.

    1965-01-01

    Shah, D. B. (University of Wisconsin, Madison), and J. B. Wilson. Egg yolk factor of Staphylococcus aureus. II. Characterization of the lipase activity. J. Bacteriol. 89:949–953. 1965.—The staphylococcal egg yolk factor was characterized as a lipase. The enzyme had an optimal pH of 7.8, but the optimal pH of stability was 7. Substrate specificity data showed that the relative rate of hydrolysis was lowest with triacetin as substrate, was maximal with tributyrin, and decreased as the chain length of the acyl moieties increased. The enzyme showed an absolute requirement for a fatty acid acceptor like calcium, when the acyl moiety of triglyceride was water-insoluble. Magnesium, strontium, and barium functioned equally well as fatty acid acceptors. The enzyme was able to hydrolyze coconut oil, peanut oil, olive oil, and egg yolk oil. PMID:14276120

  8. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    PubMed

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1

    PubMed Central

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-01-01

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50–60 °C and pH 5.5–6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates. PMID:27271847

  10. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1.

    PubMed

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-06-08

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.

  11. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Park, Sun-Ha; Lee, Chang Woo; Cho, Sung Mi; Lee, Hyoungseok; Park, Hyun; Lee, Jungeun; Lee, Jun Hyuck

    2018-01-01

    Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  12. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat.

    PubMed

    Huang, Xian; Liu, Yuhao; Chen, Kaile; Shin, Woo-Jung; Lu, Ching-Jui; Kong, Gil-Woo; Patnaik, Dwipayan; Lee, Sang-Heon; Cortes, Jonathan Fajardo; Rogers, John A

    2014-08-13

    This paper introduces materials and architectures for ultrathin, stretchable wireless sensors that mount on functional elastomeric substrates for epidermal analysis of biofluids. Measurement of the volume and chemical properties of sweat via dielectric detection and colorimetry demonstrates some capabilities. Here, inductively coupled sensors consisting of LC resonators with capacitive electrodes show systematic responses to sweat collected in microporous substrates. Interrogation occurs through external coils placed in physical proximity to the devices. The substrates allow spontaneous sweat collection through capillary forces, without the need for complex microfluidic handling systems. Furthermore, colorimetric measurement modes are possible in the same system by introducing indicator compounds into the depths of the substrates, for sensing specific components (OH(-) , H(+) , Cu(+) , and Fe(2+) ) in the sweat. The complete devices offer Young's moduli that are similar to skin, thus allowing highly effective and reliable skin integration without external fixtures. Experimental results demonstrate volumetric measurement of sweat with an accuracy of 0.06 μL/mm(2) with good stability and low drift. Colorimetric responses to pH and concentrations of various ions provide capabilities relevant to analysis of sweat. Similar materials and device designs can be used in monitoring other body fluids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed Central

    Lee, Hyoungseok; Park, Hyun; Lee, Jungeun

    2018-01-01

    Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions. PMID:29394293

  14. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A simple and rapid microplate assay for glycoprotein-processing glycosidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, M.S.; Zwolshen, J.H.; Harry, B.S.

    1989-08-15

    A simple and convenient microplate assay for glycosidases involved in the glycoprotein-processing reactions is described. The assay is based on specific binding of high-mannose-type oligosaccharide substrates to concanavalin A-Sepharose, while monosaccharides liberated by enzymatic hydrolysis do not bind to concanavalin A-Sepharose. By the use of radiolabeled substrates (( 3H)glucose for glucosidases and (3H)mannose for mannosidases), the radioactivity in the liberated monosaccharides can be determined as a measure of the enzymatic activity. This principle was employed earlier for developing assays for glycosidases previously reported. These authors have reported the separation of substrate from the product by concanavalin A-Sepharose column chromatography. Thismore » procedure is handicapped by the fact that it cannot be used for a large number of samples and is time consuming. We have simplified this procedure and adapted it to the use of a microplate (96-well plate). This would help in processing a large number of samples in a short time. In this report we show that the assay is comparable to the column assay previously reported. It is linear with time and enzyme concentration and shows expected kinetics with castanospermine, a known inhibitor of alpha-glucosidase I.« less

  16. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study.

    PubMed

    Javor, Kristina; Tisserant, Jean-Nicolas; Stemmer, Andreas

    2017-01-15

    It is known that electrochemical energy can be harvested from mammalian cells, more specifically from white blood cells (WBC). This study focuses on an improved biofuel cell operating on phorbol myristate acetate (PMA) activated THP-1 human monocytic cells. Electrochemical investigation showed strong evidence pointing towards hydrogen peroxide being the primary current source, confirming that the current originates from NADPH oxidase activity. Moreover, an adequate substrate for differentiation and activation of THP-1 cells was examined. ITO, gold, platinum and glass were tested and the amount of superoxide anion produced by NADPH oxidase was measured by spectrophotometry through WST-1 reduction at 450nm and used as an indicator of cellular activity and viability. These substrates were subsequently used in a conventional two-compartment biofuel cell where the power density output was recorded. The material showing the highest cell activity compared to the reference cell culture plate and the highest power output was ITO. Under our experimental conditions, a power density of 4.5μW/cm 2 was reached. To the best of our knowledge, this is a threefold higher power output than other leukocyte biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; Alger, Jeffry R.; Shulman, Robert G.

    The resolution and specificity of 1H NMR in studies of yeast cellular metabolism were increased by feeding a 13C-labeled substrate and observing 1H difference spectra in the presence and absence of 13C decoupling fields. [2- 13C]Acetate was utilized as a respiratory substrate in an aerobic suspension of Saccharomyces cerevisiae. The broad cellular background proton resonances are removed by the technique, leaving only signals from the protons of the substrate, or its metabolites, that are coupled to 13C. Spectra of the yeast suspension after acetate feeding show the disappearance of label from the acetate pool and the subsequent appearance of 13C in glutamate C 3 and C 4 and in aspartate C 3. These results are in accord with the known fluxes of metabolites. Selective single-frequency 13C decoupling was used to provide assignments for the difference signals. The limitations on single-frequency decoupling coming from finite decoupling fields are investigated. The technique shows a potential for application in a wide variety of systems where the resolution of the 13C spectrum may be combined with the sensitivity for proton detection to observe metabolites that have been previously unobservable.

  18. Biological and physical conditions of macroinvertebrates in reference lowland streams

    NASA Astrophysics Data System (ADS)

    de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet

    2016-04-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which mainly focus on large-scale reconstruction of channel planform, whereas this study shows that improvement of stream ecology should focus on the smaller habitat scale.

  19. Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis

    PubMed Central

    Dedieu, Luc; Serveau-Avesque, Carole; Canaan, Stéphane

    2013-01-01

    The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production. PMID:23843969

  20. Identification of residues involved in substrate specificity and cytotoxicity of two closely related cutinases from Mycobacterium tuberculosis.

    PubMed

    Dedieu, Luc; Serveau-Avesque, Carole; Canaan, Stéphane

    2013-01-01

    The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.

Top