Substrate-dependent temperature sensitivity of soil organic matter decomposition
NASA Astrophysics Data System (ADS)
Myachina, Olga; Blagodatskaya, Evgenia
2015-04-01
Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert
Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.
NASA Astrophysics Data System (ADS)
Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji
2017-06-01
In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.
Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.
Chen, Jing; Neu, John; Miyata, Makoto; Oster, George
2009-12-02
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.
Motor-Substrate Interactions in Mycoplasma Motility Explains Non-Arrhenius Temperature Dependence
Chen, Jing; Neu, John; Miyata, Makoto; Oster, George
2009-01-01
Abstract Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10–40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction. PMID:19948122
NASA Astrophysics Data System (ADS)
Negash, Solomon; Tatek, Yergou B.; Tsige, Mesfin
2018-04-01
We have carried out atomistic (all-atom) molecular dynamics simulations to investigate the effect of tacticity on the structure and glass transition temperature (Tg) of polystyrene (PS) thin films adsorbed on two distinct types of solid substrates. The systems consist of thin films made of atactic, isotactic, and syndiotactic PS chains supported by graphite or hydroxylated α-quartz substrates, which are known to be atomically flat but chemically and structurally different. We have observed a marked dependence of the film structure on substrate type as well as on tacticity. For instance, rings' orientation near substrate surfaces depends on substrate type for atactic PS and isotactic PS films, while no such dependence is observed for syndiotactic PS films whose interfacial structure seems to result from their propensity to adopt the trans conformation rather than their specific interaction with the substrates. Moreover, our results indicate that glass transition temperatures of substrate supported polystyrene films are higher compared to those of the corresponding free-standing films. More specifically, PS films on graphite exhibit larger Tg values than those on α-quartz, and we have noticed that syndiotactic PS has the largest Tg irrespective of the substrate type. Furthermore, the local Tg in the region of the film in contact with the substrates shows a strong tacticity and substrate dependence, whereas no dependencies were found for the local Tg in the middle of the film. Substrate-film interaction energy and chains' dynamics near substrate-film interfaces were subsequently investigated in order to substantiate the obtained Tgs, and it was found that films with higher Tgs are strongly adsorbed on the substrates and/or exhibit smaller interfacial chains' dynamics essentially due to steric hindrance.
NASA Astrophysics Data System (ADS)
Linh, Dang Khanh; Khanh, Nguyen Quoc
2018-03-01
We calculate the zero-temperature conductivity of bilayer graphene (BLG) impacted by Coulomb impurity scattering using four different screening models: unscreened, Thomas-Fermi (TF), overscreened and random phase approximation (RPA). We also calculate the conductivity and thermal conductance of BLG using TF, zero- and finite-temperature RPA screening functions. We find large differences between the results of the models and show that TF and finite-temperature RPA give similar results for diffusion thermopower Sd. Using the finite-temperature RPA, we calculate temperature and density dependence of Sd in BLG on SiO2, HfO2 substrates and suspended BLG for different values of interlayer distance c and distance between the first layer and the substrate d.
NASA Astrophysics Data System (ADS)
Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko
2018-02-01
The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.
Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov
2016-04-01
Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation
Influence of GaAs substrate properties on the congruent evaporation temperature
NASA Astrophysics Data System (ADS)
Spirina, A. A.; Nastovjak, A. G.; Shwartz, N. L.
2018-03-01
High-temperature annealing of GaAs(111)A and GaAs(111)B substrates under Langmuir evaporation conditions was studied using Monte Carlo simulation. The maximal value of the congruent evaporation temperature was estimated. The congruent evaporation temperature was demonstrated to be dependent on the surface orientation and concentration of surface defects.
NASA Astrophysics Data System (ADS)
Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka
2017-08-01
We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.
Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.
2013-12-01
We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known, especially at high temperatures. It is important to have this property well constrained as substrate thermal conductivity is the greatest influence on the rate of lava-substrate heat transfer. At Kilauea and Mauna Loa Volcanoes, Hawaii, and other volcanoes that threaten communities, lava may erupt over a variety of substrate materials including cool lava flows, volcanic tephra, soils, sand, and concrete. The composition, moisture, organic content, porosity, and grain size of the substrate dictate the thermophysical properties, thus affecting the transfer of heat from the lava flow into the substrate and flow mobility. Particulate substrate materials act as insulators, subduing the rate of heat transfer from the flow core. Therefore, lava that flows over a particulate substrate will maintain higher core temperatures over a longer period, enhancing flow mobility and increasing the duration and aerial coverage of the resulting flow. Lava flow prediction models should include substrate specification with temperature dependent material property definitions for an accurate understanding of flow hazards.
Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate
2010-01-01
We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038
Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.
2018-05-01
Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali
2016-01-15
Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less
Memarian, Nafiseh; Rozati, Seyeed Mohammad; Concina, Isabella
2017-01-01
Nanocrystalline CdS thin films were grown on glass substrates by a thermal evaporation method in a vacuum of about 2 × 10−5 Torr at substrate temperatures ranging between 25 °C and 250 °C. The physical properties of the layers were analyzed by transmittance spectra, XRD, SEM, and four-point probe measurements, and exhibited strong dependence on substrate temperature. The XRD patterns of the films indicated the presence of single-phase hexagonal CdS with (002) orientation. The structural parameters of CdS thin films (namely crystallite size, number of grains per unit area, dislocation density and the strain of the deposited films) were also calculated. The resistivity of the as-deposited films were found to vary in the range 3.11–2.2 × 104 Ω·cm, depending on the substrate temperature. The low resistivity with reasonable transmittance suggest that this is a reliable way to fine-tune the functional properties of CdS films according to the specific application. PMID:28773133
Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo
2010-04-01
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
NASA Astrophysics Data System (ADS)
Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.
2015-12-01
The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
Li, X C; Wang, C C; Zhao, J M; Liu, L H
2018-02-10
The optical constants of five highly transparent substrates (polycrystalline BaF 2 , CaF 2 , MgF 2 , ZnSe, and ZnS) were experimentally determined based on a combined technique using both the double optical pathlength transmission method and the ellipsometry method within temperature range 20°C-350°C in the ultraviolet-infrared region (0.2-20 μm). The results show that the refractive index spectra of polycrystalline BaF 2 , CaF 2 , and MgF 2 are similar, but differ from that of polycrystalline ZnSe and ZnS. The thermo-optic coefficient of these highly transparent substrates increases with increasing temperature. The absorption indices show a significant temperature-dependent behavior, which increases with increasing temperature from 20°C to 350°C over the transparent region. For the sake of application, the fitted formulas of the refractive index of the five highly transparent substrates as a function of wavelength and temperature are presented.
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
Microstructural studies by TEM of diamond films grown by combustion flame
NASA Astrophysics Data System (ADS)
Ma, G.-H. M.; Hirose, Y.; Amanuma, S.; McClure, M.; Prater, J. T.; Glass, J. T.
Microstructures of diamond films grown in an oxygen-acetylene combustion flame were studied by TEM. The O2/C2H2 gas ratio was fixed and the substrate materials and temperature were varied. High quality diamond films were grown by this method at high growth rates of about 30 micron/hr. A rough surface and high density of secondary nucleation sites and microtwins were observed in the diamond grains grown on molybdenum (Mo) at a substrate temperature of 500 C. When the substrate temperature wass raised to between 500 and 870 C, the defect density was greatly reduced, revealing a low density of stacking faults and dislocations. Diamond films grown on Si substrates did not show the same substrate temperature dependence on defect density, at least not over the same temperature range. However, the same correlation between defect density, secondary nucleation, and surface morphology was observed.
Dalal, Shakeel S.; Ediger, M. D.
2015-02-09
Stable organic glasses prepared by physical vapor deposition transform into the supercooled liquid via propagating fronts of molecular mobility, a mechanism different from that exhibited by glasses prepared by cooling the liquid. In this paper, we show that spectroscopic ellipsometry can directly observe this front-based mechanism in real time and explore how the velocity of the front depends upon the substrate temperature during deposition. For the model glass former indomethacin, we detect surface-initiated mobility fronts in glasses formed at substrate temperatures between 0.68T g and 0.94T g. At each of two annealing temperatures, the substrate temperature during deposition can changemore » the transformation front velocity by a factor of 6, and these changes are imperfectly correlated with the density of the glass. We also observe substrate-initiated fronts at some substrate temperatures. By connecting with theoretical work, we are able to infer the relative mobilities of stable glasses prepared at different substrate temperatures. Finally, an understanding of the transformation behavior of vapor-deposited glasses may be relevant for extending the lifetime of organic semiconducting devices.« less
NASA Astrophysics Data System (ADS)
Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Vasil'ev, V. V.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.
2017-06-01
In a temperature range of 9-200 K, temperature dependences of the differential resistance of space-charge region in the strong inversion mode are experimentally studied for MIS structures based on CdxHg1-xTe (x = 0.22-0.40) grown by molecular-beam epitaxy. The effect of various parameters of structures: the working layer composition, the type of a substrate, the type of insulator coating, and the presence of a near-surface graded-gap layer on the value of the product of differential resistance by the area is studied. It is shown that the values of the product RSCRA for MIS structures based on n-CdHgTe grown on a Si(013) substrate are smaller than those for structures based on the material grown on a GaAs(013) substrate. The values of the product RSCRA for MIS structures based on p-CdHgTe grown on a Si(013) substrate are comparable with the value of the analogous parameter for MIS structures based on p-CdHgTe grown on a GaAs(013) substrate.
Expanding Upon the MEMS Framework: How Temperature Impacts Organo-Mineral Interactions
NASA Astrophysics Data System (ADS)
Smith, K.; Waring, B. G.
2017-12-01
Microbial substrate use efficiency (SUE; the fraction of substrate carbon (C) incorporated into biomass vs. respired) affects the development of soil organic matter (SOM). An emerging theoretical model (the Microbial Efficiency-Matrix Stabilization (MEMS) framework) posits that microbial SUE acts as a filter for plant litter inputs, whereby a larger proportion of microbial products are synthesized from labile (and not recalcitrant) plant substrates. Thus, SOM stability depends on both the efficiency of microbial anabolism as well as the degree to which microbial products stabilize within the mineral soil matrix. In this study, we performed a laboratory microcosm experiment using diverse soils collected in Utah to test how substrate complexity, soil mineralogy, and temperature interact to control SOM formation. Prior to microcosm setup, we first removed organic C from our field soils by washing with concentrated hypochlorite solution. Microcosms were then assembled by mixing C-free soil with one of three substrates (glucose, cellulose, and lignin), and placed in incubators set to different temperatures (18°, 28°, and 38°C). Respiration rates were then estimated by periodically sampling headspace CO2 concentrations in each microcosm. Prior to C removal, we found that field soils exhibited distinct properties ranging from clay-rich vertisols (55:27:18, sand:silt:clay; 1.1% C), to loamy-sand entisols (85:11:4; 0.3% C), and organic-rich mollisols (79:17:4; 1.7% C). In the incubation experiment, consistent with enzyme kinetics theory, respiration rates increased as a function of incubation temperature (p < 0.0001), and that the temperature response of respiration was dependent on substrate (p < 0.0001), with the lignin treatment exhibiting the greatest temperature sensitivity. While respiration was significantly lower in the mollisol treatment (p < 0.0001), other soil effects (including interactions with temperature and substrate) were less clear. Together these results build upon the MEMS framework by highlighting the importance of organo-mineral interactions and temperature as controls on soil C cycling.
NASA Astrophysics Data System (ADS)
Panda, B.; Roy, A.; Dhar, A.; Ray, S. K.
2007-03-01
Polycrystalline Ba1-xSrxTiO3 (BST) thin films with three different compositions have been deposited by radio-frequency magnetron sputtering technique on platinum coated silicon substrates. Samples with buffer and barrier layers for different film thicknesses and processing temperatures have been studied. Crystallite size of BST films has been found to increase with increasing substrate temperature. Thickness dependent dielectric constant has been studied and discussed in the light of an interfacial dead layer and the finite screening length of the electrode. Ferroelectric properties of the films have also been studied for various deposition conditions. The electrical resistivity of the films measured at different temperatures shows a positive temperature coefficient of resistance under a constant bias voltage.
Lu, P; Liu, R; Sharom, F J
2001-03-01
The P-glycoprotein multidrug transporter (Pgp) is an active efflux pump for chemotherapeutic drugs, natural products and hydrophobic peptides. Pgp is envisaged as a 'hydrophobic vacuum cleaner', and drugs are believed to gain access to the substrate binding sites from within the membrane, rather than from the aqueous phase. The intimate association of both Pgp and its substrates with the membrane suggests that its function may be regulated by the biophysical properties of the lipid bilayer. Using the high affinity fluorescent substrate tetramethylrosamine (TMR), we have monitored, in real time, transport in proteoliposomes containing reconstituted Pgp. The TMR concentration gradient generated by Pgp was collapsed by the addition of either the ATPase inhibitor, vanadate, or Pgp modulators. TMR transport by Pgp obeyed Michaelis--Menten kinetics with respect to both of its substrates. The Km for ATP was 0.48 mM, close to the K(m) for ATP hydrolysis, and the K(m) for TMR was 0.3 microM. TMR transport was inhibited in a concentration-dependent fashion by verapamil and cyclosporin A, and activated (probably by a positive allosteric effect) by the transport substrate colchicine. TMR transport by Pgp reconstituted into proteoliposomes composed of two synthetic phosphatidylcholines showed a highly unusual biphasic temperature dependence. The rate of TMR transport was relatively high in the rigid gel phase, reached a maximum at the melting temperature of the bilayer, and then decreased in the fluid liquid crystalline phase. This pattern of temperature dependence suggests that the rate of drug transport by Pgp may be dominated by partitioning of drug into the bilayer.
Temperature Dependent Performance of Coplanar Waveguide (CPW) on Substrates of Various Materials
NASA Technical Reports Server (NTRS)
Taub, Susan R.; Young, Paul
1994-01-01
The attenuation (a) and effective dielectric constant (E(sub eff)) of Coplanar Waveguide (CPW) transmission lines on high-resistivity silicon and diamond substrates as a function of both temperature and frequency are presented. The technique used to obtain the values for a and E(sub eff) involves the use of a unique cryogenic probe station designed and built by NASA. Attenuation of gold CPW lines on diamond substrates is compared with that of superconducting CPW lines.
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Bhasin, Kul B.; Miranda, Felix A.
1991-01-01
Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion.
Characterization of Alq3 thin films by a near-field microwave microprobe.
Hovsepyan, Artur; Lee, Huneung; Sargsyan, Tigran; Melikyan, Harutyun; Yoon, Youngwoon; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin
2008-09-01
We observed tris-8-hydroxyquinoline aluminum (Alq3) thin films dependence on substrate heating temperatures by using a near-field microwave microprobe (NFMM) and by optical absorption at wavelengths between 200 and 900 nm. The changes of absorption intensity at different substrate heating temperatures are correlated to the changes in the sheet resistance of Alq3 thin films.
Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase.
Carro, Juan; Martínez-Júlvez, Marta; Medina, Milagros; Martínez, Angel T; Ferreira, Patricia
2017-11-01
The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take place. Modification of the enzyme's active-site architecture by replacement of Tyr92, a residue establishing hydrophobic interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.
Suk, Kyung-Suk; Jung, Ha-Na; Woo, Hee-Gweon; Park, Don-Hee; Kim, Do-Heyoung
2010-05-01
Ge-Sb-Te (GST) thin films were deposited on TiN, SiO2, and Si substrates by cyclic-pulsed plasma-enhanced chemical vapor deposition (PECVD) using Ge{N(CH3)(C2H5)}, Sb(C3H7)3, Te(C3H7)3 as precursors in a vertical flow reactor. Plasma activated H2 was used as the reducing agent. The growth behavior was strongly dependent on the type of substrate. GST grew as a continuous film on TiN regardless of the substrate temperature. However, GST formed only small crystalline aggregates on Si and SiO2 substrates, not a continuous film, at substrate temperatures > or = 200 degrees C. The effects of the deposition temperature on the surface morphology, roughness, resistivity, crystallinity, and composition of the GST films were examined.
Temperature-Dependent Adhesion of Graphene Suspended on a Trench
2015-01-01
Graphene deposited over a trench has been studied in the context of nanomechanical resonators, where experiments indicate adhesion of the graphene sheet to the trench boundary and sidewalls leads to self-tensioning; however, this adhesion is not well understood. We use molecular dynamics to simulate graphene deposited on a trench and study how adhesion to the sidewalls depends on substrate interaction, temperature, and curvature of the edge of the trench. Over the range of parameters we study, the depth at the center of the sheet is approximately linear in substrate interaction strength and temperature but not trench width, and we explain this using a one-dimensional model for the sheet configuration. PMID:26652939
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulbachinskii, V. A., E-mail: kulb@mig.phys.msu.ru; Oveshnikov, L. N.; Lunin, R. A.
The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect aremore » studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.« less
NASA Astrophysics Data System (ADS)
Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.
2018-04-01
The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.
NASA Astrophysics Data System (ADS)
Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei
2017-10-01
Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.
Magneto-optical study of holmium iron garnet Ho3Fe5O12
NASA Astrophysics Data System (ADS)
Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.
2012-09-01
Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.
Temperature dependence of alkali-antimonide photocathodes: Evaluation at cryogenic temperatures
Mamun, M. A.; Hernandez-Flores, M. R.; Morales, E.; ...
2017-10-24
Cs xK ySb photocathodes were manufactured on a niobium substrate and evaluated over a range of temperatures from 300 to 77 K. Vacuum conditions were identified that minimize surface contamination due to gas adsorption when samples were cooled below room temperature. Here, measurements of photocathode spectral response provided a means to evaluate the photocathode bandgap dependence on temperature and to predict photocathode quantum efficiency at 4 K, a typical temperature at which superconducting radio frequency photoguns operate.
Rutile titanium dioxide films deposited with a vacuum arc at different temperatures
NASA Astrophysics Data System (ADS)
Arias, L. Franco; Kleiman, A.; Heredia, E.; Márquez, A.
2012-06-01
Rutile crystalline phase of TiO2 has been one of the most investigated materials for medical applications. Its implementation as a surface layer on biomedical implants has shown to improve hemocompatibility and biocompatibility. In this work, titanium dioxide coatings were deposited on glass and steel 316L substrates using cathodic arc deposition. The coatings were obtained at different substrate temperatures; varying from room temperature to 600°C. The crystalline structure of the films was identified by glancing angle X-ray diffraction. Depending on the substrate material and on its temperature during the deposition process, anatase, anatse+rutile and rutile structures were observed. It was determined that rutile films can be obtained below 600 °C with this deposition method.
Piezoelectric substrate effect on electron-acoustic phonon scattering in bilayer graphene
NASA Astrophysics Data System (ADS)
Ansari, Mohd Meenhaz; Ashraf, SSZ
2018-05-01
We have studied the effect of piezoelectric scattering as a function of electron temperature and distance between the sample and the substrate on electron-acoustic phonon scattering rate in Bilayer Graphene sitting on a piezoelectric substrate. We obtain approximate analytical result by neglecting the chiral nature of carriers and then proceed to obtain unapproximated numerical results for the scattering rate incorporating chirality of charge carriers. We find that on the incorporation of full numerical computation the magnitude as well as the power exponent both is affected with the power exponent changed from T3 to T3.31 in the low temperature range and to T6.98 dependence in the temperature range (>5K). We also find that the distance between the sample and substrate begins to strongly affect the scattering rate at temperatures above 10K. These calculation not only suggest the influencing effect of piezoelectric substrate on the transport properties of Dirac Fermions at very low temperatures but also open a channel to study low dimension structures by probing piezoelectric acoustical phonons.
Morphology Controlled Fabrication of InN Nanowires on Brass Substrates
Li, Huijie; Zhao, Guijuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan
2016-01-01
Growth of semiconductor nanowires on cheap metal substrates could pave the way to the large-scale manufacture of low-cost nanowire-based devices. In this work, we demonstrated that high density InN nanowires can be directly grown on brass substrates by metal-organic chemical vapor deposition. It was found that Zn from the brass substrates is the key factor in the formation of nanowires by restricting the lateral growth of InN. The nanowire morphology is highly dependent on the growth temperature. While at a lower growth temperature, the nanowires and the In droplets have large diameters. At the elevated growth temperature, the lateral sizes of the nanowires and the In droplets are much smaller. Moreover, the nanowire diameter can be controlled in situ by varying the temperature in the growth process. This method is very instructive to the diameter-controlled growth of nanowires of other materials. PMID:28335323
Conditions for extreme sensitivity of protein diffusion in membranes to cell environments
Tserkovnyak, Yaroslav; Nelson, David R.
2006-01-01
We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated by using a nonlinear stochastic Navier–Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate H, making it much more sensitive to cell environment, unlike the logarithmic dependence on H and very small thermal correction away from the critical point. PMID:17008402
Temperature Dependence of Attenuation of Coplanar Waveguide on 4H High Resistivity SIC Through 540C
NASA Technical Reports Server (NTRS)
Ponchak, G. E.; Schwartz, Z.; Alterovitz, S. A.; Downey, A. N.; Freeman, J. C.
2003-01-01
For the first time, the temperature and frequency dependence of the attenuation of a Coplanar Waveguide (CPW) on 4H, High Resistivity Sic substrate is reported. The low frequency attenuation increases by 2 dB/cm at 500 C and the high frequency attenuation increases by 3.3 dB/cm at 500 C compared to room temperature.
Temperature dependent infrared nano-imaging of La0.67Sr0.33MnO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Peng; Huffman, T. J.; Hae Kwak, In; Biswas, Amlan; Qazilbash, M. M.
2018-01-01
We investigate the temperature dependence of infrared properties at nanometer length scales in La0.67Sr0.33MnO3 (LSMO) thin film with a thickness of 47 unit cells grown on SrTiO3 substrate. The infrared nano-imaging experiments were performed using a near-field optical microscope in conjunction with a variable temperature heating stage. The near-field infrared data is consistent with the bulk of the LSMO film undergoing the thermally-driven non-percolative second-order transition from a metallic, ferromagnetic phase to an insulating, paramagnetic phase. We find persistent infrared contrast on the nanoscale that is independent of temperature and which we attribute to two novel phases with different conductivities coexisting in the vicinity of the film-substrate interface. These two coexisting phases at the film-substrate interface do not undergo the metal-insulator transition (MIT) and hence are different from the metallic, ferromagnetic and insulating, paramagnetic phases in the bulk of the film. At temperatures approaching the nominal MIT temperature, repeated scans of the same microscopic area at constant temperature reveal bimodal fluctuation of the near-field infrared amplitude. We interpret this phenomenon as slow, critical fluctuations of the conductivity in the bulk of the LSMO film.
Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si
NASA Astrophysics Data System (ADS)
Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John
2017-11-01
Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs
NASA Technical Reports Server (NTRS)
Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.
2005-01-01
In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.
Mobility-dependent low-frequency noise in graphene field-effect transistors.
Zhang, Yan; Mendez, Emilio E; Du, Xu
2011-10-25
We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300 and 30 K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooge's relation in which the Hooge parameter α(H) is not constant but decreases monotonically with the device's mobility, with a universal dependence that is sample and temperature independent. The value of α(H) is also affected by the dynamics of disorder, which is not reflected in the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials.
Boiling regimes of impacting drops on a heated substrate under reduced pressure
NASA Astrophysics Data System (ADS)
van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef
2018-05-01
We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.
Magnetic coupling between liquid 3He and a solid state substrate: a new approach
NASA Astrophysics Data System (ADS)
Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko
2000-07-01
We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.
Magnetoresistivity of thin YBa2Cu3O7-δ films on sapphire substrate
NASA Astrophysics Data System (ADS)
Probst, Petra; Il'in, Konstantin; Engel, Andreas; Semenov, Alexei; Hübers, Heinz-Wilhelm; Hänisch, Jens; Holzapfel, Bernhardt; Siegel, Michael
2012-09-01
Magnetoresistivity of YBa2Cu3O7-δ films with thicknesses between 7 and 100 nm deposited on CeO2 and PrBa2Cu3O7-δ buffer layers on sapphire substrate has been measured to analyze the temperature dependence of the second critical magnetic field Bc2. To define Bc2, the mean-field transition temperature Tc was evaluated by fitting the resistive transition in zero magnetic field with the fluctuation conductivity theory of Aslamazov and Larkin. At T → Tc the Bc2(T) dependence shows a crossover from downturn to upturn curvature with the increase in film thickness.
NASA Astrophysics Data System (ADS)
Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.
1998-03-01
We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.
1989-03-01
size only by Music 1979). molting (Hay 1905). Zoeal development depends on salinity and temperature, Growth and maturation proceed but development time...substrates. the effects depends on the toxicant, concentration, time exposed, salinity , tidal cycle, age and molt phase of Other Environmental Factors...Temperature .......................................................... 11 Salinity ............................................................. I11
Structural dynamics of lipid bilayers using ultrafast electron crystallography
NASA Astrophysics Data System (ADS)
Chen, Songye; Seidel, Marco; Zewail, Ahmed
2007-03-01
The structures and dynamics of bilayers of crystalline fatty acids and phospholipids were studied using ultrafast electron crystallography (UEC). The systems investigated are arachidic (eicosanoic) acid and dimyristoyl phosphatidic acid (DMPA), deposited on a substrate by the Langmuir-Blodgett technique. The atomic structures under different preparation conditions were determined. The structural dynamics following a temperature jump induced by femtosecond laser on the substrates were obtained and compared to the equilibrium temperature dependence.
Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen
2016-01-01
Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated. PMID:28787898
Optimization of process parameters for RF sputter deposition of tin-nitride thin-films
NASA Astrophysics Data System (ADS)
Jangid, Teena; Rao, G. Mohan
2018-05-01
Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.
Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K
NASA Astrophysics Data System (ADS)
Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong
2018-06-01
We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.
Temperature dependent localized surface plasmon resonance properties of supported gold nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laha, Ranjit; Ranjan, Pranay
2016-05-23
The well known localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) supported on a dielectric substrate depends on the particle shape, size and type of dielectric material. The particle size and shape mainly vary with the method of preparation and the parameters involved there in. In this report, we show preparation of AuNPs supported on quartz substrate by direct current sputtering followed by thermal annealing at an optimized temperature of 400 °C. The samples were characterized using optical absorption spectra, scanning electron microscopy (SEM) and the energy dispersive x-ray spectrum. The LSPR position could be tuned by varying annealingmore » temperature. The LSPR was found to be blue shifted up to 10 nm with annealing temperature varying from 400 °C to 800 °C. The change in LSPR was ascribed to the morphology of AuNPs over quartz.« less
Temperature dependent localized surface plasmon resonance properties of supported gold nanoparticles
NASA Astrophysics Data System (ADS)
Laha, Ranjit; Ranjan, Pranay
2016-05-01
The well known localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) supported on a dielectric substrate depends on the particle shape, size and type of dielectric material. The particle size and shape mainly vary with the method of preparation and the parameters involved there in. In this report, we show preparation of AuNPs supported on quartz substrate by direct current sputtering followed by thermal annealing at an optimized temperature of 400 °C. The samples were characterized using optical absorption spectra, scanning electron microscopy (SEM) and the energy dispersive x-ray spectrum. The LSPR position could be tuned by varying annealing temperature. The LSPR was found to be blue shifted up to 10 nm with annealing temperature varying from 400 °C to 800 °C. The change in LSPR was ascribed to the morphology of AuNPs over quartz.
Temperature-dependent respiration-growth relations in ancestral maize cultivars
Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen
2001-01-01
Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...
Schubert, Michael; Exner, Jörg; Moos, Ralf
2014-08-05
Al₂O₃ films were prepared by the aerosol deposition method at room temperature using different carrier gas compositions. The layers were deposited on alumina substrates and the film stress of the layer was calculated by measuring the deformation of the substrate. It was shown that the film stress can be halved by using oxygen instead of nitrogen or helium as the carrier gas. The substrates were annealed at different temperature steps to gain information about the temperature dependence of the reduction of the implemented stress. Total relaxation of the stress can already be achieved at 300 °C. The XRD pattern shows crystallite growth and reduction of microstrain while annealing.
Reflectance of evaporated rhenium and tungsten films in the vacuum ultraviolet from 300 to 2000 A.
NASA Technical Reports Server (NTRS)
Cox, J. T.; Hass, G.; Ramsey, J. B.; Hunter, W. R.
1972-01-01
Discussion of the dependence of the reflectance of Re and W on the substrate temperature during deposition, film thickness, and aging during exposure to air. Re and W of 99.99% purity were evaporated with a 6-kW fine-focused electron gun and deposited on glass and fused quartz plates of various temperatures ranging from 40 to 500 C. With Re, films of highest reflectance were obtained by evaporation onto unheated substrates, whereas with W, heating of the substrate greatly increased the reflectance of the deposited films. For both metals, the reflectance losses during extended exposure to air remained rather small, indicating that the oxide films formed on both film materials at room temperature were very thin.
NASA Astrophysics Data System (ADS)
Srivastava, Himanshu; Khooha, Ajay; Singh, Ajit; Ganguli, Tapas
2018-04-01
The study of the growth of nanowires on α-brass (Cu 65%, Zn 35%) substrate was done by annealing the substrates at different temperatures in air and varying flow of moist nitrogen. It was found that the surface composition of oxidized brass depended on the synthesis condition. Angle Dependent X-ray Fluorescence (ADXRF) measurements of the oxidized brass samples were done to study the variation of composition with the synthesis conditions and depth. The results showed that the cause of the compositional dependence on synthesis parameters is due to a process, inherent to the oxidation of brass.
NASA Astrophysics Data System (ADS)
Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin
2015-03-01
The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.
2016-03-01
Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-10-01
We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.
Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate
Qiu, Linlin; Gulotta, Miriam; Callender, Robert
2007-01-01
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169
Fundamental Research on Infrared Detection
2006-10-15
2. Antimony-based type-II superlattice (T2-SL) photodetectors – We explored the temperature dependent and noise current characteristics of interband...their CZT substrates. Task 2. Antimony-based type-II superlattice (T2-SL) photodetectors – We explored the temperature dependent and noise ...structures, leading to potentially high device performance in photovoltaic mode with low noise and normal incidence detection. The ICDs have a
Reversible strain effect on the magnetization of LaCoO3 films
NASA Astrophysics Data System (ADS)
Herklotz, A.; Rata, A. D.; Schultz, L.; Dörr, K.
2009-03-01
The magnetization (M) of a LaCoO3 film grown epitaxially on a piezoelectric substrate has been investigated in dependence on the biaxial in-plane strain. M decreases with the reversible release of tensile strain, with a maximum change of at least 6% per 0.1% of biaxial strain near the Curie temperature (TC) . The biaxial strain response of TC is estimated to be below 5 K/% in the tensile strain state. This is in agreement with results from statically strained films on various substrates. As possible origins of the strain-induced magnetization are considered (i) the strain-dependent Curie temperature, (ii) a strain-dependent magnetically inhomogeneous (phase-separated) state, and (iii) a strain-dependent magnetic moment (spin state) of Co ions. The TC shift is found insufficient to explain the measured strain-induced magnetization change but contributions from mechanism (ii) or (iii) must be involved.
Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films
Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...
2016-03-28
In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less
Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation
NASA Astrophysics Data System (ADS)
Kim, SeongYeon; Rana, Tanka R.; Kim, JunHo; Yun, JaeHo
2017-12-01
We report on physical vapor deposition of indium sulfide (In2S3) buffer layers and its application to Cu(In,Ga)Se2 (CIGSe) thin film solar cell. The Indium sulfide buffer layers were evaporated onto CIGSe at various substrate temperatures from room temperature (RT) to 350 °C. The effect of deposition temperature of buffer layers on the solar cell device performance were investigated by analyzing temperature dependent current-voltage ( J- V- T), external quantum efficiency (EQE) and Raman spectroscopy. The fabricated device showed the highest power conversion efficiency of 6.56% at substrate temperature of 250 °C, which is due to the decreased interface recombination. However, the roll-over in J- V curves was observed for solar cell device having buffer deposited at substrate temperature larger than 250 °C. From the measurement results, the interface defect and roll-over related degradation were found to have limitation on the performance of solar cell device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liangxin; Zhao, Jiangtao; Hong, Bin
2016-04-14
Vanadium dioxide (VO{sub 2}) epitaxial films were grown on perovskite single-crystal strontium titanate (SrTiO{sub 3}) substrates by reactive radio-frequency magnetron sputtering. The growth temperature-dependent metal–insulator transition (MIT) behavior of the VO{sub 2} epitaxial films was then investigated. We found that the order of magnitude of resistance change across the MIT increased from 10{sup 2} to 10{sup 4} with increasing growth temperature. In contrast, the temperature of the MIT does not strongly depend on the growth temperature and is fairly stable at about 345 K. On one hand, the increasing magnitude of the MIT is attributed to the better crystallinity and thusmore » larger grain size in the (010)-VO{sub 2}/(111)-SrTiO{sub 3} epitaxial films at elevated temperature. On the other hand, the strain states do not change in the VO{sub 2} films deposited at various temperatures, resulting in stable V-V chains and V-O bonds in the VO{sub 2} epitaxial films. The accompanied orbital occupancy near the Fermi level is also constant and thus the MIT temperatures of VO{sub 2} films deposited at various temperatures are nearly the same. This work demonstrates that high-quality VO{sub 2} can be grown on perovskite substrates, showing potential for integration into oxide heterostructures and superlattices.« less
Temperature-dependent self-assembly of NC–Ph{sub 5}–CN molecules on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivetta, Marina, E-mail: marina.pivetta@epfl.ch; Pacchioni, Giulia E.; Fernandes, Edgar
2015-03-14
We present the results of temperature-dependent self-assembly of dicarbonitrile-pentaphenyl molecules (NC–Ph{sub 5}–CN) on Cu(111). Our low-temperature scanning tunneling microscopy study reveals the formation of metal-organic and purely organic structures, depending on the substrate temperature during deposition (160–300 K), which determines the availability of Cu adatoms at the surface. We use tip functionalization with CO to obtain submolecular resolution and image the coordination atoms, enabling unequivocal identification of metal-coordinated nodes and purely organic ones. Moreover, we discuss the somewhat surprising structure obtained for deposition and measurement at 300 K.
Donoso-Bravo, A; Retamal, C; Carballa, M; Ruiz-Filippi, G; Chamy, R
2009-01-01
The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45 degrees C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.
Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films
NASA Astrophysics Data System (ADS)
Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.
2000-11-01
Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.
Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon
NASA Astrophysics Data System (ADS)
Ayouchi, R.; Martin, F.; Leinen, D.; Ramos-Barrado, J. R.
2003-01-01
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH 3COO) 2 2H 2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min -1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.
Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates
NASA Astrophysics Data System (ADS)
Junger, Irén Juhász; Homburg, Sarah Vanessa; Grethe, Thomas; Herrmann, Andreas; Fiedler, Johannes; Schwarz-Pfeiffer, Anne; Blachowicz, Tomasz; Ehrmann, Andrea
2017-01-01
In recent years, the development of smart textiles has attracted great attention. Such textiles can contain small electrical devices, which need a power supply. Dye-sensitized solar cells, which can be produced from nontoxic, cheap, low-purity materials, could fill this purpose. However, to reach reasonable cell properties, sintering the TiO2 layer on the substrate is necessary. Unfortunately, only a few textile materials can withstand a sintering process at high temperatures. Therefore, it is important to find an optimal temperature leading to a reasonable improvement of the cell characteristics without damaging the textile substrate. The influence of the sintering temperature on different properties is investigated. For this, the surface properties of the TiO2 coating, such as adhesion to the substrate, dye adsorption characteristic, and film stability, are investigated on different substrates, i.e., a glass plate, a stainless steel nonwoven fabric, and a carbon woven fabric. Two commercially available TiO2 sources are used: a TiO2 dispersion obtained from Man Solar and a water-based solution of TiO2 particles purchased from Kronos. The influence of the sintering temperature on short-circuit current and open-circuit voltage of solar cells on the aforementioned substrates is also examined.
Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.
Uto, K; Aoyagi, T; DeForest, C A; Ebara, M
2018-05-01
Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.
Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou
2014-05-01
We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.
Chibowski, Emil; Hołysz, Lucyna; Szcześ, Aleksandra
2003-11-01
Deposition of in situ precipitated calcium carbonate from Na(2)CO(3) and CaCl2 solutions on different substrates, i.e. stainless steel, copper, aluminium, and glass, was investigated at different temperatures, 20 degrees C, 40 degrees C, 60 degrees C and 80 degrees C, both in the absence and presence of S-S 0.1T magnetic field (MF). It was found that in quiescent conditions during 2h the amounts deposited firmly on the surfaces decreased with increasing temperature. If MF was present the deposition was reduced at all temperatures, and depended on the nature of the substrate. The largest MF effect was found on glass at 60 degrees C, which amounted 50% reduction of the deposit. However, at 80 degrees C no deposition was found in the presence of MF on aluminium surface. At this temperature the reproducibility of the experiments was poor, and an additional effect due to the metal surface corrosion (especially that of aluminium and copper) may be thought in alkaline environment of the experiments (pH ca. 10). Based on optical microscope photographs, it was concluded that the amounts of crystallographic forms of CaCO3 depended on the nature of substrate on which the precipitation and then the adhesion took place. To some extent the ratios of CaCO3 forms precipitated were different in the bulk phase than on the substrate surfaces at the same temperature, and this conclusion was based on the X-ray diffractograms. Some possible mechanisms causing MF effects are discussed.
A simple method for in situ monitoring of water temperature in substrates used by spawning salmonids
Zimmerman, Christian E.; Finn, James E.
2012-01-01
Interstitial water temperature within spawning habitats of salmonids may differ from surface-water temperature depending on intragravel flow paths, geomorphic setting, or presence of groundwater. Because survival and developmental timing of salmon are partly controlled by temperature, monitoring temperature within gravels used by spawning salmonids is required to adequately describe the environment experienced by incubating eggs and embryos. Here we describe a simple method of deploying electronic data loggers within gravel substrates with minimal alteration of the natural gravel structure and composition. Using data collected in spawning sites used by summer and fall chum salmon Oncorhynchus keta from two streams within the Yukon River watershed, we compare contrasting thermal regimes to demonstrate the utility of this method.
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
Differential Temperature Dependence of Tobacco Etch Virus and Rhinovirus 3C Proteases
Raran-Kurussi, Sreejith; Tözsér, József; Cherry, Scott; Tropea, Joseph E.; Waugh, David S.
2014-01-01
Because of their stringent sequence specificity, the 3C-like proteases from tobacco etch virus (TEV3) and human rhinovirus are often used for the removal of affinity tags. The latter enzyme is rumored to have greater catalytic activity at 4°C, the temperature at which fusion protein substrates are usually digested. Here, we report that experiments with fusion protein and peptide substrates confirm this conjecture. Whereas the catalytic efficiency of rhinovirus 3C protease is approximately the same at its optimum temperature (30°C) and at 4°C, TEV protease is 10-fold less active at the latter temperature, due primarily to a reduction in kcat. PMID:23395976
Microstrip patch antenna for simultaneous strain and temperature sensing
NASA Astrophysics Data System (ADS)
Mbanya Tchafa, F.; Huang, H.
2018-06-01
A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Reddy, G. B., E-mail: rkrksharma6@gmail.com
In this report, we synthesize vertically aligned molybdenum trioxide (α−MoO{sub 3}) nanoflakes (NFs) with high aspect ratio (height/thickness >15) on the cobalt coated glass substrates by the plasma assisted sublimation process, employing Mo metal strip as a sublimation source. The effect of substrate temperature, nature of substrate as well as the geometry of the sublimation source (Mo-strip) have been investigated on the morphological, structural and optical properties of the grown NFs, keeping plasma parameters as fixed. The surface morphology, crystalline structure and optical properties of MoO{sub 3} NFs have been studied systematically by using scanning electron microscope (SEM), transmission electronmore » microscope (TEM) with selected area electron diffraction (SAED), X-ray diffractometer, and IR- spectroscopy. The experimental observations endorse that the characteristics of MoO{sub 3} NFs are strongly depend on substrate temperature, substrate nature as well as geometry of Mo-strip. All the observed results are well in consonance with each other.« less
1980-08-15
wafers. The amount of overgrowth is dependent on the orientation of the silicon substrate and the thick- ness of the SiO 2 layer. V. ANALOG DEVICE...Moulton XI Intl. Quantum Electronics Metal-Doped Lasers A. Mooradian Conference, Boston, Z3-26 June 1980 5Z45 Temperature- Dependent Spectral D.J...High Tempera- C. 0. Bozler 24-27 June 1980 ture Anneal 5327 Growth-Temperature Dependence Z. L. Liau of LPE GaInAsP/lnP Lattice J. J. Hsieh Mismatch
Min, Kyoungseon; Gong, Gyeongtaek; Woo, Han Min; Kim, Yunje; Um, Youngsoon
2015-01-01
In the biorefinery using lignocellulosic biomass as feedstock, pretreatment to breakdown or loosen lignin is important step and various approaches have been conducted. For biological pretreatment, we screened Bacillus subtilis KCTC2023 as a potential lignin-degrading bacterium based on veratryl alcohol (VA) oxidation test and the putative heme-containing dye-decolorizing peroxidase was found in the genome of B. subtilis KCTC2023. The peroxidase from B. subtilis KCTC2023 (BsDyP) was capable of oxidizing various substrates and atypically exhibits substrate-dependent optimum temperature: 30°C for dyes (Reactive Blue19 and Reactive Black5) and 50°C for high redox potential substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid [ABTS], VA, and veratryl glycerol-β-guaiacyl ether [VGE]) over +1.0 V vs. normal hydrogen electrode. At 50°C, optimum temperature for high redox potential substrates, BsDyP not only showed the highest VA oxidation activity (0.13 Umg−1) among the previously reported bacterial peroxidases but also successfully achieved VGE decomposition by cleaving Cα-Cβ bond in the absence of any oxidative mediator with a specific activity of 0.086 Umg−1 and a conversion rate of 53.5%. Based on our results, BsDyP was identified as the first bacterial peroxidase capable of oxidizing high redox potential lignin-related model compounds, especially VGE, revealing a previously unknown versatility of lignin degrading biocatalyst in nature. PMID:25650125
Method for producing high energy electroluminescent devices
Meyerson, Bernard S.; Scott, Bruce A.; Wolford, Jr., Donald J.
1992-09-29
A method is described for fabricating electroluminescent devices exhibiting visible electroluminescence at room temperature, where the devices include at least one doped layer of amorphous hydrogenated silicon (a-Si:H). The a-Si:H layer is deposited on a substrate by homogeneous chemical vapor deposition (H-CVD) in which the substrate is held at a temperature lower than about 200.degree. C. and the a-Si:H layer is doped in-situ during deposition, the amount of hydrogen incorporated in the deposited layer being 12-50 atomic percent. The bandgap of the a-Si:H layer is between 1.6 and 2.6 eV, and in preferrable embodiments is between 2.0 and 2.6 eV. The conductivity of the a-Si:H layer is chosen in accordance with device requirements, and can be 10.sup.16 -10.sup.19 carriers/cm.sup.2. The bandgap of the a-Si:H layer depends at least in part on the temperature of the substrate on which the layer is deposited, and can be "tuned" by changing the substrate temperature.
Organic photochemical storage of solar energy. Progress report, February 1, 1979-January 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G. II
1980-02-01
Study of valence isomerization of organic compounds has focused on two mechanisms of photosensitization involving either electron donor-acceptor interaction or energy transfer. The quenching of fluorescent sensitizers by isomerizable substrates results in the formation of excited complexes. These sensitizer-substrate pairs are highly polarized, leading to changes in bond order for the substrates. For several substrates such as quadricyclene, hexamethyldewarbenzene, and a nonbornadiene derivative, this perturbation results in efficient valence isomerization. Isomerization observed on irradiation of charge transfer complexes of isomerizable substrates is consistent with a similar exciplex - template mechanism. The energy transfer mechanism of photosensitization has been studied bymore » measuring the temperature dependence of quantum yield for isomerization of dimethyl norbornadiene-2,3-dicarboxylate sensitized by benzanthrone. From temperature and quencher concentration profiles quenching constants have been obtained which are consistent with an endoergic triplet energy transfer mechanism. The thermal upconversion of the low energy triplet of benzanthrone results in a threefold increase in isomerization quantum yield over a 90/sup 0/ temperature range.« less
On the Temperature Dependence of Enzyme-Catalyzed Rates.
Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A
2016-03-29
One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.
Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides
NASA Astrophysics Data System (ADS)
Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan
2014-03-01
The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.
Varejão, Nathalia; De-Andrade, Rafael A; Almeida, Rodrigo V; Anobom, Cristiane D; Foguel, Debora; Reverter, David
2018-02-06
Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of the substrate material on the optical properties of tungsten diselenide monolayers
NASA Astrophysics Data System (ADS)
Lippert, Sina; Schneider, Lorenz Maximilian; Renaud, Dylan; Kang, Kyung Nam; Ajayi, Obafunso; Kuhnert, Jan; Halbich, Marc-Uwe; Abdulmunem, Oday M.; Lin, Xing; Hassoon, Khaleel; Edalati-Boostan, Saeideh; Duck Kim, Young; Heimbrodt, Wolfram; Yang, Eui-Hyeok; Hone, James C.; Rahimi-Iman, Arash
2017-06-01
Monolayers of transition-metal dichalcogenides such as WSe2 have become increasingly attractive due to their potential in electrical and optical applications. Because the properties of these 2D systems are known to be affected by their surroundings, we report how the choice of the substrate material affects the optical properties of monolayer WSe2. To accomplish this study, pump-density-dependent micro-photoluminescence measurements are performed with time-integrating and time-resolving acquisition techniques. Spectral information and power-dependent mode intensities are compared at 290 K and 10 K for exfoliated WSe2 on SiO2/Si, sapphire (Al2O3), hBN/Si3N4/Si, and MgF2, indicating substrate-dependent appearance and strength of exciton, trion, and biexciton modes. Additionally, one CVD-grown WSe2 monolayer on sapphire is included in this study for direct comparison with its exfoliated counterpart. Time-resolved micro-photoluminescence shows how radiative decay times strongly differ for different substrate materials. Our data indicates exciton-exciton annihilation as a shortening mechanism at room temperature, and subtle trends in the decay rates in correlation to the dielectric environment at cryogenic temperatures. On the measureable time scales, trends are also related to the extent of the respective 2D-excitonic modes’ appearance. This result highlights the importance of further detailed characterization of exciton features in 2D materials, particularly with respect to the choice of substrate.
Total Dose Effects on Bipolar Integrated Circuits at Low Temperature
NASA Technical Reports Server (NTRS)
Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.
2012-01-01
Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.
Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor
NASA Astrophysics Data System (ADS)
Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan
2018-05-01
Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.
NASA Technical Reports Server (NTRS)
Park, C.; Poppa, H.; Soria, F.
1984-01-01
Islands and continuous layers of palladium were grown in an ultrahigh vacuum on substrates of Mo(110)c(14 x 7)-O, designated MoO(x), and of clean Mo(110). It was found that as-deposited islands and layers exhibited bulk palladium adsorption properties for CO when deposited at room temperature and for palladium thicknesses in excess of about 3 monolayers. CO adsorption was drastically reduced, however, on annealing. For islands, annealing temperatures of as low as 400 K led to some reduction in CO adsorption whereas more severe reductions were found to occur at 600 K for islands and at 800 K for continuous multilayers. The deactivation depended on the palladium thickness, the substrate species and the extent of thermal treatments. Auger electron spectroscopy, temperature-programmed desorption and Delta-Phi measurements were combined to interpret the deactivation behavior in terms of substrate-support interactions involving the diffusion of substrate species towards the palladium surface.
Nanostructured carbon films with oriented graphitic planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, E. H. T.; Kalish, R.; Kulik, J.
2011-03-21
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less
NASA Astrophysics Data System (ADS)
Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.
2017-10-01
We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.
Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films
Yu, Ing-Song; Cheng, Hsyi-En; Chang, Chun-Chieh; ...
2017-02-06
The plasmonic properties of titanium nitride (TiN) films depend on the type of substrate when using typical deposition methods such as sputtering. We show atomic layer deposition (ALD) of TiN films with very weak dependence of plasmonic properties on the substrate, which also suggests the prediction and evaluation of plasmonic performance of TiN nanostructures on arbitrary substrates under a given deposition condition. Our results also observe that substrates with more nitrogen-terminated (N-terminated) surfaces will have significant impact on the deposition rate as well as the film plasmonic properties. Furthermore, we illustrate that the plasmonic properties of ALD TiN films canmore » be tailored by simply adjusting the deposition and/or post-deposition annealing temperatures. These characteristics and the capability of conformal coating make ALD TiN films on templates ideal for applications that require the fabrication of complex 3D plasmonic nanostructures.« less
Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates
NASA Astrophysics Data System (ADS)
Grimberg, I.; Weiss, B. Z.
1995-04-01
The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.
The effect of heat treatment on superhydrophilicity of TiO2 nano thin films
NASA Astrophysics Data System (ADS)
Ashkarran, A. A.; Mohammadizadeh, M. R.
2007-11-01
TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.
Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime
NASA Astrophysics Data System (ADS)
Riboux, Guillaume; Gordillo, Jose Manuel
2015-11-01
At room temperature, when a drop impacts against a smooth solid surface at a velocity above the so called critical velocity for splashing, the drop loses its integrity and fragments into tiny droplets violently ejected radially outwards. Below this critical velocity, the drop simply spreads over the substrate. Splashing is also reported to occur for solid substrate temperatures above the Leidenfrost temperature, T, for which a vapor layer prevents the drop from touching the substrate. In this case, the splashing morphology largely differs from the one reported at room temperature because, thanks to the presence of the gas layer, the shear stresses on the liquid do not decelerate the ejected lamella. Our purpose here is to predict, for wall temperatures above T, the dependence of the critical impact velocity on the temperature of the substrate as well as the maximum spreading radius for impacting velocities below the critical velocity for splashing. This is done making use of boundary integral simulations, where the velocity and the height of the liquid layer at the root of the ejected lamella are calculated numerically. This information constitutes the initial conditions for the one dimensional mass and momentum equations governing the dynamics of the toroidal rim limiting the edge of the lamella.
Ideal glass transitions in thin films: An energy landscape perspective
NASA Astrophysics Data System (ADS)
Truskett, Thomas M.; Ganesan, Venkat
2003-07-01
We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperature of thin films, suggesting the utility of landscape-based approaches for studying the behavior of confined fluids.
Athermalization of resonant optical devices via thermo-mechanical feedback
Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.
2016-01-19
A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.
Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Yu, Kuai; Ang, Priscilla Kailian; Cao, Hanh Duyen; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua
2011-05-01
We report a facile and general method for the preparation of alkylamine capped metal (Au and Ag) nanoparticle "ink" with high solubility. Using these metal nanoparticle "inks", we have demonstrated their applications for large scale fabrication of highly efficient surface enhanced Raman scattering (SERS) substrates by a facile solution processing method. These SERS substrates can detect analytes down to a few nM. The flexible plastic SERS substrates have also been demonstrated. The annealing temperature dependent conductivity of the nanoparticle films indicated a transition temperature above which high conductivity was achieved. The transition temperature could be tailored to the plastic compatible temperatures by using proper alkylamine as the capping agent. The ultrafast electron relaxation studies of the nanoparticle films demonstrated that faster electron relaxation was observed at higher annealing temperatures due to stronger electronic coupling between the nanoparticles. The applications of these highly concentrated alkylamine capped metal nanoparticle inks for the printable electronics were demonstrated by printing the oleylamine capped gold nanoparticles ink as source and drain for the graphene field effect transistor. Furthermore, the broadband photoresponse properties of the Au and Ag nanoparticle films have been demonstrated by using visible and near-infrared lasers. These investigations demonstrate that these nanoparticle "inks" are promising for applications in printable SERS substrates, electronics, and broadband photoresponse devices. © The Royal Society of Chemistry 2011
Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements
NASA Astrophysics Data System (ADS)
Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki
2018-04-01
Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.
NASA Astrophysics Data System (ADS)
Maulana, Frendi; Eko Prastyo, W.; Nuryani; Purnama, B.
2017-11-01
We have conducted an experiment of magnetoimpedance with a variation of annealing temperature of [Ni80Fe20/Cu)]3 multilayers. The multilayer is electrodeposited on Cu-PCB substrate. Magnetoimpedance effect is impedance measure on account of external magnetic field. The found MI (magnetoimpedance) ratio is 7,63 % (without annealing) and 4,75 % (using annealing) of 100 ºC. We find that MI ratio depends on to annealing temperature and current frequence. MI ratio decreases due to rising temperature and identified increase due to the frequency. The highest MI ratio is on a sample without annealing temperature and measurement at 100 kHz frequence.
Relaxation Dynamics in Heme Proteins.
NASA Astrophysics Data System (ADS)
Scholl, Reinhard Wilhelm
A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the highest tier, tier 0, but not on the relaxation rates. Two different viscosities in myoglobin-CO are compared. The dependence of relaxations on the thermodynamic history of a sample is shown. For substrate-free P450cam-CO, relaxations after a p-jump are observed far above the glass transition of the protein-solvent system.
Diffusive charge transport in graphene
NASA Astrophysics Data System (ADS)
Chen, Jianhao
The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.
Formation of organized nanostructures from unstable bilayers of thin metallic liquids
NASA Astrophysics Data System (ADS)
Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki
2011-12-01
Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.
Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia
2016-12-01
During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Temperature dependent droplet impact dynamics on flat and textured surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong
Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at variousmore » temperatures.« less
NASA Astrophysics Data System (ADS)
Peng, Cheng-Jien
The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.
2017-01-15
The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposuremore » to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.« less
2010-09-17
depends on the material type of the substrate and the metal melting temperature. Based on the reaction -free theory, the contact angle of an Au...Luo, Q.; Zhang, X. Nano Lett. 2004, 4, 1085-1088. (13) Maillard , M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611-1615. (14) Jin, R.; Cao, Y. C.; Hao
Electron beam physical vapor deposition of thin ruby films for remote temperature sensing
NASA Astrophysics Data System (ADS)
Li, Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.
2013-04-01
Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al2O3, ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al2O3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.
Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing
NASA Astrophysics Data System (ADS)
Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi
2018-05-01
SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.
Power dependence of reflectivity of metallic films.
Yeh, Y C; Stafsudd, O M
1976-01-01
The reflectivity of vacuum-deposited gold films on quartz glass substrates was studied as a function of 10.6-microm radiation power density. A simple linear model of the temperature dependence of the absorptivity of the gold film is developed. This temperature dependence is coupled with a three-dimensional heat flow analysis and fits the experimental data well. The absorptivity alpha is written as alpha(0)(1 + betaT) and the values of alpha(0) and beta are determined, respectively, as (0.88 +/- 0.01) x 10(-2) and 12 x 10(-4)/ degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
Spontaneous recombination current in InGaAs/GaAs quantum well lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blood, P.; Fletcher, E.D.; Woodbridge, K.
1990-10-08
We have studied the intrinsic factors which determine the threshold current and its temperature dependence in 160-A-wide In{sub 0.2}Ga{sub 0.8}As single well quantum lasers with GaAs barriers, grown by molecular beam epitaxy on GaAs substrates. By measuring the relative temperature dependence of the spontaneous emission intensity at threshold we show that radiative transitions between higher order ({ital n}=2,3) electron and heavy hole subbands make a significant contribution to the threshold current and its temperature sensitivity, even in devices where the laser transitions are between {ital n}=1 subbands. These higher transitions will also influence the dependence of threshold current and itsmore » temperature sensitivity on well width.« less
Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates
NASA Astrophysics Data System (ADS)
Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo
2016-06-01
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.
One-stage pulsed laser deposition of conductive zinc oxysulfide layers
NASA Astrophysics Data System (ADS)
Bereznev, Sergei; Kocharyan, Hrachya; Maticiuc, Natalia; Naidu, Revathi; Volobujeva, Olga; Tverjanovich, Andrey; Kois, Julia
2017-12-01
Zinc oxysulfide - Zn(O,S) is one of the prospective materials for substitution of conventional CdS buffer layer in complete optoelectronic devices due to its optimal bandgap and low toxicity. In this work Zn(O,S) thin films have been prepared by one-step pulsed laser deposition technique. The films with a thickness of 650 nm were deposited onto the FTO/glass substrates at different substrate temperatures from room temperature to 400 °C. Zn(O,S) layers were characterized by means of scanning electron microscopy, energy dispersive spectroscopy, Raman, X-ray diffraction, UV-vis spectroscopy and Van der Pauw technique. It was found, that obtained Zn(O,S) layers are mainly polycrystalline, highly uniform, transparent, electrically conductive and demonstrate good adhesion to the FTO/glass substrates. In addition, we show that elemental composition of PLD Zn(O,S) films depends on the substrate temperature. For the first time high quality single phase conductive Zn(O,S) layers were prepared by one stage PLD in high vacuum at relatively low temperature 200 °C without any post treatment. The properties of prepared Zn(O,S) films suggest that these films can be applied as buffer layer in optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihao; Preble, Stefan F.; Yao, Ruizhe
2015-12-28
InAs quantum dot (QD) laser heterostructures have been grown by molecular beam epitaxy system on GaAs substrates, and then transferred to silicon substrates by a low temperature (250 °C) Pd-mediated wafer bonding process. A low interfacial resistivity of only 0.2 Ω cm{sup 2} formed during the bonding process is characterized by the current-voltage measurements. The InAs QD lasers on Si exhibit comparable characteristics to state-of-the-art QD lasers on silicon substrates, where the threshold current density J{sub th} and differential quantum efficiency η{sub d} of 240 A/cm{sup 2} and 23.9%, respectively, at room temperature are obtained with laser bars of cavity length and waveguide ridgemore » of 1.5 mm and 5 μm, respectively. The InAs QD lasers also show operation up to 100 °C with a threshold current density J{sub th} and differential quantum efficiency η{sub d} of 950 A/cm{sup 2} and 9.3%, respectively. The temperature coefficient T{sub 0} of 69 K from 60 to 100 °C is characterized from the temperature dependent J{sub th} measurements.« less
Photo-Assisted Epitaxial Growth for III-V Semiconductors
1993-02-01
interferometric technique with an accuracy of ±3 "C. The MOMBE growth of GaAs, InAs, and InGaAs was first studied, by monitoring intensity oscillations of...temperatures. In Section 2.1, we report the use of an infrared laser interferometric technique to calibrate the substrate temperature with a higher accuracy...of AO as a function of AT is not feasible. Therefore, we calibrated the dependence of AO on AT experimentally (the dependence of the interferometric
NASA Astrophysics Data System (ADS)
Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May
2011-10-01
We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.
Preparation and Characterization of RF Sputtered BARIUM(2) SILICON(2) Titanium OXYGEN(8) Thin Films
NASA Astrophysics Data System (ADS)
Li, Yi.
Thin films of barium titanium silicate ( Ba_2Si_2TiO_8) are grown on crystalline (100) Si at substrate temperatures raging from 750 to 955^circC by the radio-frequency triode sputtering technique. The chemical composition, microstructure, physical properties, and growth conditions of the deposited films are investigated by dc and high-frequency dielectric measurements, wavelength dispersive and energy dispersive x-ray spectrometries, x-ray diffraction spectrometry, and optical and scanning electron microscopies. The results of the x-ray diffraction analysis show that the Ba_2Si_2TiO _8 films deposited at the optimum condition of substrate temperature of 845^circ C, 4 cm source-substance distance, 50 W rf power, and 1.2 times 10^ {-3} torr pressure of Ar, are highly c -axis oriented. The as-deposited films are smooth, glossy, polycrystalline films, exhibiting a bulk resistivity range of 10^6 Omegacdotcm, and an isotropic surface resistivity of 1.5 times 10^3 Omegacdot cm. The relative dielectric constant is 0.05, and the dielectric loss is lower than 1.0, in the frequency band 9 ~ 1000 MHz. The high-frequency impedance of BST films, which is typical for piezoelectric materials, gives a minimum impedance frequency of 9.0 MHz and a series resonant frequency of 9.5 MHz. Optical and SEM observations show that the film texture is dependent on the substrate conditions. The non-liquid-like grain coalescence of the Ba_2Si_2TiO _8 grains is characteristic of a strong film -substrate interaction. The grain growth kinetics obtained from "short-time" sputtering gives an initial lateral grain growth rate of 770 nm/min at 845^circ C, which decreases with the grain size. The initial film growth rate in the direction of thickness, measured from SEM micrographs, is 1.95 nm/min, and decreases with sputtering time. The activation free energy for grain growth is 359 +/- 30 KJ/mol for the initial stage, decreasing to 148 +/- 20 KJ/mol for the final stage. The variation of the grain growth rate and the activation energy with grain size is the result of a combined nucleation and growth mechanism in the initial stage of the film growth, and a coalescence -dominated growth mechanism at longer sputtering time and at higher temperature. Film orientation is sensitive to the supersaturation adjacent to the film surface, which depends on the source-substrate distance and substrate temperature. The effect of the substrate temperature on the orientation of the film is investigated over a wide temperature range using (100) and (111) Si substrates. Several orientations for the BST films, including an amorphous state, are obtained with increasing substrate temperature. This is discussed in relation to the atomic plane density and the energetics for the deposition process.
Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response
Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...
2017-07-03
Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less
Deng, Guoliang; Feng, Guoying; Zhou, Shouhuan
2017-04-03
Substrate temperature is an important parameter for controlling the properties of femtosecond laser induced surface structures besides traditional ways. The morphology on silicon surface at different temperatures are studied experimentally. Compared to those formed at 300 K, smoother ripples, micro-grooves and nano/micro-holes are formed at 700 K. A two temperature model and FDTD method are used to discuss the temperature dependence of surface structures. The results show that the increased light absorption at elevated temperature leads to the reduction of surface roughness. The type-g feature in the FDTD-η map at 700 K, which corresponds to the energy deposition modulation parallel to the laser polarization with a periodicity bigger than the wavelength, is the origin of the formation of grooves. This work can benefit both surface structures based applications and the study of femtosecond laser-matter interactions.
Hot Films on Ceramic Substrates for Measuring Skin Friction
NASA Technical Reports Server (NTRS)
Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne
2003-01-01
Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.
Harnessing Thermoresponsive Aptamers and Gels To Trap and Release Nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; He, Ximin; Aizenberg, Michael; Aizenberg, Joanna; Balazs, Anna
We use computational modeling to design a device that can controllably trap and release particles in solution in response to variations in temperature. The system exploits the thermoresponsive properties of end-grafted fibers and the underlying gel substrate. The fibers mimic the temperature-dependent behavior of biological aptamers, which form a hairpin structure at low temperatures (T) and unfold at higher T, consequently losing their binding affinity. The gel substrate exhibits a lower critical solution temperature and thus, expands at low tempertures and contracts at higher T. By developing a new dissipative particle dynamics simulation, we examine the behavior of this hybrid system in a flowing fluid that contains buoyant nanoparticles. Our findings provide guidelines for creating fluidic devices that are effective at purifying contaminated solutions or trapping cells for biological assays.
Radiation effects in heteroepitaxial InP solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Curtis, H. B.; Swartz, C. K.; Brinker, D. J.; Vargas-Aburto, C.
1993-01-01
Heteroepitaxial InP solar cells, with GaAs substrates, were irradiated by 0.5 and 3 MeV protons and their performance, temperature dependency, and carrier removal rates determined as a function of fluence. The radiation resistance of the present cells was significantly greater than that of non-heteroepitaxial InP cells at both proton energies. A clear difference in the temperature dependency of V(sub oc), was observed between heteroepitaxial and homoepitaxial InP cells. The analytically predicted dependence of dV(sub oc)/dT on Voc was confirmed by the fluence dependence of these quantities. Carrier removal was observed to increase with decreasing proton energy. The results obtained for performance and temperature dependency were attributed to the high dislocation densities present in the heteroepitaxial cells while the energy dependence of carrier removal was attributed to the energy dependence of proton range.
Defect analysis of the LED structure deposited on the sapphire substrate
NASA Astrophysics Data System (ADS)
Nie, Qichu; Jiang, Zhimin; Gan, Zhiyin; Liu, Sheng; Yan, Han; Fang, Haisheng
2018-04-01
Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.
Graphitic carbon grown on fluorides by molecular beam epitaxy.
Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun
2013-01-03
We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.
Graphitic carbon grown on fluorides by molecular beam epitaxy
2013-01-01
We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate. PMID:23286607
Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates
NASA Astrophysics Data System (ADS)
Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.
2018-01-01
Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.
Integration of Indium Phosphide Based Devices with Flexible Substrates
NASA Astrophysics Data System (ADS)
Chen, Wayne Huai
2011-12-01
Flexible substrates have many advantages in applications where bendability, space, or weight play important roles or where rigid circuits are undesirable. However, conventional flexible thin film transistors are typically characterized as having low carrier mobility as compared to devices used in the electronics industry. This is in part due to the limited temperature tolerance of plastic flexible substrates, which commonly reduces the highest processing temperature to below 200°C. Common approaches of implementation include low temperature deposition of organic, amorphous, or polycrystalline semiconductors, all of which result in carrier mobility well below 100 cm2V -1s-1. High quality, single crystalline III-V semiconductors such as indium phosphide (InP), on the other hand, have carrier mobility well over 1000 cm 2V-1s-1 at room temperature, depending on carrier concentration. Recently, the ion-cut process has been used in conjunction with wafer bonding to integrate thin layers of III-V material onto silicon for optoelectronic applications. This approach has the advantage of high scalability, reusability of the initial III-V substrate, and the ability to tailor the location (depth) of the layer splitting. However, the transferred substrate usually suffers from hydrogen implantation damage. This dissertation demonstrates a new approach to enable integration of InP with various substrates, called the double-flip transfer process. The process combines ion-cutting with adhesive bonding. The problem of hydrogen implantation was overcome by patterned ion-cut transfer. In this type of transfer, areas of interest are shielded from implantation but still transferred by surrounding implanted regions. We found that patterned ion-cut transfer is strongly dependent upon crystal orientation and that using cleavage-plane oriented donors can be beneficial in transferring large areas of high quality semiconductor material. InP-based devices were fabricated to demonstrate the transfer process and test functionality following transfer. Passive devices (photodetectors) as well as active transistors were transferred and fabricated on various substrates. The transferred device layers were either implanted through with a blanket implant or protected with an ion-mask during implantation. Results demonstrate the viability of the double-flip ion-cut process in achieving very high electron mobility (˜2800 cm2V-1s-1) transistors on plastic flexible substrates.
NASA Astrophysics Data System (ADS)
Hagel Svendsen, Sarah; Schostag, Morten; Voriskova, Jana; Kramshøj, Magnus; Priemé, Anders; Suhr Jacobsen, Carsten; Rinnan, Riikka
2017-04-01
Emissions of biogenic volatile organic compounds (BVOCs) from natural ecosystems have significant impact on atmospheric chemistry and belowground chemical processes. Most attention has been given to emissions from plants. However, several studies have found that soil, and especially the decomposing leaf and needle litter, emits substantial amounts of BVOCs. The contribution of litter to ecosystem BVOC emissions may be increasingly significant in the Arctic, where the living plant biomass is low, and the amount of litter increasing due to the expansion of deciduous vegetation in response to climate change. It is known that the types and amounts of BVOCs emitted from the soil are highly dependent on the microbial community composition and the type of substrate. In this study we measured emissions of BVOCs from the leaf litter of common arctic plant species at different temperatures. The BVOC measurements were coupled with an analysis of the relative abundance of dominating bacterial species (determined as operational taxonomic units, OTUs). Leaf litter from evergreen Cassiope tetragona and two species of deciduous Salix were collected from two arctic locations; one in the High Arctic and one in the Low Arctic. The litter was incubated in dark at 5 ?C. Over an eight week period the temperature was increased 7 ?C every two weeks, giving temperature incubations at 5 ?C, 12 ?C, 19 ?C and 26 ?C. Emissions of BVOCs from the litter were sampled in adsorbent cartridges weekly and analyzed using gas chromatography-mass spectrometry. The relative abundance of bacteria was determined at the end of the incubation at each temperature using DNA sequencing. Results showed that emissions of BVOCs belonging to different chemical functional groups responded differently to increasing temperatures and were highly dependent on the type of substrate. For instance, terpenoid emissions from the Cassiope litter increased with increasing temperature, whereas the emissions from the Salix litter decreased. Likewise, the relative abundance of bacteria depended on temperature and the type of substrate. Especially the actinobacteria showed strong increasing trends with increasing temperature in the Salix litter. Acidobacteria had much higher relative abundance in the Cassiope litter than in the Salix litter. Multivariate analyses were used to assess potential links between the BVOC and bacterial abundance datasets. Similar patterns in the BVOC emissions and bacterial community composition at different temperatures and for different substrates suggest that the differences in BVOC emissions, at least to some extent, are driven by changes in the microbial community composition.
Rubber friction: role of the flash temperature
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2006-08-01
When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
Electrothermal DC characterization of GaN on Si MOS-HEMTs
NASA Astrophysics Data System (ADS)
Rodríguez, R.; González, B.; García, J.; Núñez, A.
2017-11-01
DC characteristics of AlGaN/GaN on Si single finger MOS-HEMTs, for different gate geometries, have been measured and numerically simulated with substrate temperatures up to 150 °C. Defect density, depending on gate width, and thermal resistance, depending additionally on temperature, are extracted from transfer characteristics displacement and the AC output conductance method, respectively, and modeled for numerical simulations with Atlas. The thermal conductivity degradation in thin films is also included for accurate simulation of the heating response. With an appropriate methodology, the internal model parameters for temperature dependencies have been established. The numerical simulations show a relative error lower than 4.6% overall, for drain current and channel temperature behavior, and account for the measured device temperature decrease with the channel length increase as well as with the channel width reduction, for a set bias.
Temperature dependent growth of GaN nanowires using CVD technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram
2016-05-23
Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.
Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates
NASA Technical Reports Server (NTRS)
To, H. Y.; Valco, G. J.; Bhasin, K. B.
1993-01-01
YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.
NASA Astrophysics Data System (ADS)
Samanta, Piyas; Mandal, Krishna C.
2015-12-01
Hole injection into silicon dioxide (SiO2) films (8-40 nm thick) is investigated for the first time during substrate electron injection via Fowler-Nordheim (FN) tunneling in n-type 4H- and 6H-SiC (silicon carbide) based metal-oxide-semiconductor (MOS) structures at a wide range of temperatures (T) between 298 and 598 K and oxide electric fields Eox from 6 to 10 MV/cm. Holes are generated in heavily doped n-type polycrystalline silicon (n+ -polySi) gate serving as the anode as well as in the bulk silicon dioxide (SiO2) film via hot-electron initiated band-to-band ionization (BTBI). In absence of oxide trapped charges, it is shown that at a given temperature, the hole injection rates from either of the above two mechanisms are higher in n-4H-SiC MOS devices than those in n-6H-SiC MOS structures when compared at a given Eox and SiO2 thickness (tox). On the other hand, relative to n-4H-SiC devices, n-6H-SiC structures exhibit higher hole injection rates for a given tox during substrate electron injection at a given FN current density je,FN throughout the temperature range studied here. These two observations clearly reveal that the substrate material (n-6H-SiC and n-4H-SiC) dependencies on time-to-breakdown (tBD) or injected charge (electron) to breakdown (QBD) of the SiO2 film depend on the mode of FN injections (constant field/voltage and current) from the substrate which is further verified from the rigorous device simulation as well.
Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film
NASA Astrophysics Data System (ADS)
Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua
2013-11-01
A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.
Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film
NASA Astrophysics Data System (ADS)
Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan
2014-08-01
A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.
MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications.
Kim, Jeong-Hun; Jung, Yong-Chul; Suh, Sang-Hee; Kim, Jin-Sang
2006-11-01
Metal organic chemical vapour deposition (MOCVD) has been investigated for growth of Bi2Te3 and Sb2Te3 films on (001) GaAs substrates using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. The surface morphologies of Bi2Te3 and Sb2Te3 films were strongly dependent on the deposition temperatures as it varies from a step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor ratio of VI/V and deposition temperature. By optimizing growth parameters, we could clearly observe an electrically intrinsic region of the carrier concentration over the 240 K in Bi2Te3 films. The high Seebeck coefficient (of -160 microVK(-1) for Bi2Te3 and +110 microVK(-1) for Sb2Te3 films, respectively) and good surface morphologies of these materials are promising for the fabrication of a few nm thick periodic Bi2Te3/Sb2Te3 super lattice structures for thin film thermoelectric device applications.
Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boev, M. V.; Kovalev, V. M., E-mail: vadimkovalev@isp.nsc.ru
We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocitymore » renormalization are strongly different below and above the critical temperature.« less
NASA Astrophysics Data System (ADS)
Qiao, Liang; Bi, Xiaofang
2008-02-01
Highly (001)-textured BaTiO3 films were grown epitaxially on the LaNiO3 buffered Si substrate. A strong in-plane tensile strain has been revealed by using x-ray diffraction and high resolution transmission electron microscopy. The BaTiO3 film has exhibited a small remnant polarization, indicating the presence of ca1/ca2/ca1/ca2 polydomain state in the film. Temperature dependent dielectric permittivity has demonstrated that two phase transitions occurred at respective temperatures of 170 and 30°C. The result was discussed in detail based on the misfit strain-temperature phase diagrams theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vais, Abhitosh, E-mail: Abhitosh.Vais@imec.be; Martens, Koen; DeMeyer, Kristin
2015-08-03
This paper presents a detailed investigation of the temperature dependence of frequency dispersion observed in capacitance-voltage (C-V) measurements of III-V metal-oxide-semiconductor (MOS) devices. The dispersion in the accumulation region of the capacitance data is found to change from 4%–9% (per decade frequency) to ∼0% when the temperature is reduced from 300 K to 4 K in a wide range of MOS capacitors with different gate dielectrics and III-V substrates. We show that such significant temperature dependence of C-V frequency dispersion cannot be due to the temperature dependence of channel electrostatics, i.e., carrier density and surface potential. We also show that the temperaturemore » dependence of frequency dispersion, and hence, the capture/emission process of border traps can be modeled by a combination of tunneling and a “temperature-activated” process described by a non-radiative multi-phonon model, instead of a widely believed single-step elastic tunneling process.« less
Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2
NASA Astrophysics Data System (ADS)
Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu
2016-08-01
We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.
Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán
2014-05-02
A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.
1986-08-01
variety of factors crab eggs has been linked to increased including depth, latitude, tempera- egg mortality because of mechanical ture, salinity and...time. crabs seem less dependent on epibenthic cover and can be found over more exposed substrates. Most crabs Temperature- Salinity Interactions remain...13 Salinity . .. ....... ........................................ 14 Temperature- Salinity Interactions. .. .... ....... ....... 14
NASA Astrophysics Data System (ADS)
Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge
2010-02-01
Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.
NASA Astrophysics Data System (ADS)
He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming
2017-02-01
The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin
2015-09-15
Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overallmore » mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.« less
NASA Astrophysics Data System (ADS)
Pinterich, T.; Winkler, P. M.; Vrtala, A. E.; Wagner, P. E.
2011-08-01
In this paper we present the results of contact angle measurements between n-propanol and silver substrates in the temperature range from -10 °C to 30 °C. The interest in a potential temperature dependence of contact angles originates from recent experiments by S. Schobesberger et al. (Schobesberger S., Strange temperature dependence observed for heterogeneous nucleation of n-propanol vapor on NaCl particles. Master's thesis, University of Vienna, 2008; Schobesberger S. et al., Experiments on the temperature dependence of heterogeneous nucleation on NaCl and Ag particles. In preparation.) investigating the temperature dependence for heterogeneous nucleation of n-propanol vapour on NaCl and on silver particles. We determined dynamic advancing θ a and receding θ r angles on variously prepared silver probes. The Dynamic Wilhelmy method (Wilhelmy L., Über die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann. Phys. Chem., 199:177-217, 1863) was applied using a Krüss K12 Tensiometer, with a refrigerated double-walled glass top. With respect to its potential influence on heterogeneous nucleation mainly the advancing angle is of interest. The uniform probe geometry required was achieved by accurate cutting and by multiple polishing stages up to the accomplishment of a 0.04 μm grain size. The original probes consist of 925 sterling silver including a 7.5% copper content. Additional coating with silver pro Analysi (p.A.) was applied making use of pure silver powder evaporation process via Physical Vapour Deposition (PVD). Results show that a surface contamination by copper cannot be neglected for the specification of contact angles. It turned out that additional PVD coatings not only change the values of θa but also their temperature dependence. With increasing the number of coatings of a plate the contact angle decreases and its temperature dependence inverts. Since the contact angle hysteresis θhyst. obtained for the variously often coated probes remained practically constant possible changes in surface roughness with increasing number of PVD layers could be excluded.
Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates.
Imajo, T; Toko, K; Takabe, R; Saitoh, N; Yoshizawa, N; Suemasu, T
2018-01-16
Semiconductor strontium digermanide (SrGe 2 ) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe 2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe 2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe 2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe 2 to high-efficiency thin-film solar cells.
Heteroepitaxial growth of Ge films on (100) GaAs by pyrolysis of digermane
NASA Astrophysics Data System (ADS)
Eres, Djula; Lowndes, Douglas H.; Tischler, J. Z.; Sharp, J. W.; Geohegan, D. B.; Pennycook, S. J.
1989-08-01
Pyrolysis of high-purity digermane (Ge2 H6 ) has been used to grow epitaxial Ge films of high crystalline quality on (100) GaAs substrates in a low-pressure environment. X-ray double-crystal diffractometry shows that fully commensurate, coherently strained epitaxial Ge films can be grown on (100) GaAs at digermane partial pressures of 0.05-40 mTorr for substrate temperatures of 380-600 °C. Amorphous films also were deposited. Information about the crystalline films surface morphology, growth mode, and microstructure was obtained from scanning electron microscopy, cross-section transmission electron microscopy, and in situ reflectivity measurements. The amorphous-to-crystalline transition temperature and the morphology of the crystalline films were both found to depend on deposition conditions (primarily the incidence rate of Ge-bearing species and the substrate temperature). Epitaxial growth rates using digermane were found to be about two orders of magnitude higher than rates using germane (GeH4 ) under similar experimental conditions.
Step edge sputtering yield at grazing incidence ion bombardment.
Hansen, Henri; Polop, Celia; Michely, Thomas; Friedrich, Andreas; Urbassek, Herbert M
2004-06-18
The surface morphology of Pt(111) was investigated by scanning tunneling microscopy after 5 keV Ar+ ion bombardment at grazing incidence in dependence of the ion fluence and in the temperature range between 625 and 720 K. The average erosion rate was found to be strongly dependent on the ion fluence and the substrate temperature during bombardment. This dependence is traced back to the variation of step concentration with temperature and fluence. We develop a simple model allowing us to determine separately the constant sputtering yields for terraces and for impact area stripes in front of ascending steps. The experimentally determined yield of these stripes--the step-edge sputtering yield--is in excellent agreement with our molecular dynamics simulations performed for the experimental situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynbaev, K. D., E-mail: mynkad@mail.ioffe.ru; Zablotsky, S. V.; Shilyaev, A. V.
Defects in mercury-cadmium-telluride heteroepitaxial structures (with 0.3 to 0.4 molar fraction of cadmium telluride) grown by molecular-beam epitaxy on silicon substrates are studied. The low-temperature photoluminescence method reveals that there are comparatively deep levels with energies of 50 to 60 meV and shallower levels with energies of 20 to 30 meV in the band gap. Analysis of the temperature dependence of the minority carrier lifetime demonstrates that this lifetime is controlled by energy levels with an energy of ∼30 meV. The possible relationship between energy states and crystal-structure defects is discussed.
NASA Astrophysics Data System (ADS)
Qiao, K. M.; Li, J.; Liu, Y.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.
2018-06-01
In this paper, we have investigated the magnetocaloric effect (MCE) and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 (LPCMO) films grown on (0 1 1)-oriented PMN-PT substrates. As a typical perovskite manganite with phase separation, the LPCMO bulk shows a considerable MCE, but the MCE of the LPCMO films has never been investigated. We found that the LPCMO films exhibit a MCE over a wide temperature range. A modulation of magnetization by electric field has been observed in the temperature dependent (M-T) and magnetic field dependent (M-H) curves. As a result, enhanced magnetic entropy change and refrigeration capacity by about 4% under an electric field of +6 kV/cm has been demonstrated.
Decoupling thermal, chemical, and mechanical strain components in thin films
NASA Astrophysics Data System (ADS)
Silberstein, Meredith; Crumlin, Ethan; Shao-Horn, Yang; Boyce, Mary
2011-03-01
Many electrochemical systems have performance which is affected by internal strains due to thermal and/or chemical stimuli. The bi-material curvature method is a means to quantify these thermal and chemical strains and their coupling with mechanical stress. In this method, a thin layer of the material of interest is deposited on a substrate of intermediate thickness. The composite assumes a curvature that depends on the mismatch strains between the substrate and film. The Stoney formula provides an explicit expression for the film stress as a function of the elastic substrate properties, film and substrate thickness, and curvature. Here we study two distinct materials systems: Nafion used as the polymer electrolyte in low temperature fuel cells, and epitaxial perovskite thin films used as a catalyst for the oxygen reduction reaction in solid oxide fuel cells. The thermal, chemical, and mechanical strains are quantitatively determined as functions of temperature and atmospheric conditions by monitoring the curvature evolution with changes in these parameters. The extent of coupling of the thermal and chemical strains with mechanical stress is evaluated by conducting the experiment at multiple substrate thicknesses.
Formation of β-FeSi 2 thin films by partially ionized vapor deposition
NASA Astrophysics Data System (ADS)
Harada, Noriyuki; Takai, Hiroshi
2003-05-01
The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.
Högberg, Helena; Engblom, Lars; Ekdahl, Asa; Lidell, Veronica; Walum, Erik; Alberts, Peteris
2006-04-01
The aims were to compare the temperature dependence of the metabolic rate in young ob/ob mice with that in mature ob/ob and db/db mice and to examine the effect on the metabolic substrate preference of leptin and etomoxir in ob/ob, C57BL/6J (wild-type), and db/db mice. In vivo oxygen consumption and carbon dioxide production were continuously measured by indirect calorimetry, and body temperature and total locomotor activity were measured by an implanted transponder. Leptin, etomoxir, or vehicle was administered intraperitoneally. The temperature dependence of the metabolic rate of mature ob/ob and db/db mice were similar to that in wild-type mice. In young 6-week-old ob/ob mice, the metabolic rate was almost doubled at 15 degrees C. Leptin (2 x 3 mg/kg) decreased the respiratory quotient (RQ) and carbon dioxide production but did not alter oxygen consumption, body temperature, or locomotor activity in ob/ob and C57BL/6J mice and had no effect in the db/db mice. Etomoxir (2 x 30 mg/kg) enhanced RQ and decreased oxygen consumption, carbon dioxide production, and body temperature in ob/ob, C57BL/6J, and db/db mice. Total locomotor activity was reduced in ob/ob and C57BL/6J mice. In young ob/ob mice, the temperature sensitivity was enhanced compared with mature mice. Leptin and etomoxir had opposite effects on metabolic substrate preference. Leptin and lowered environmental temperature increased the relative fat oxidation as indicated by decreased RQ, possibly through activation of the sympathetic nervous system.
Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán
2014-01-01
A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632
Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
Eres, Diula; Lowndes, Douglas H.
1992-01-01
A method and apparatus for the rapid and economical deposition of uniform and high quality films upon a substrate for subsequent use in producing electronic devices, for example. The resultant films are either epitaxial (crystalline) or amorphous depending upon the incidence rate and the temperature and structure of the substrate. The deposition is carried out in a chamber maintained at about 10.sup.-6 Torr. A gaseous source of the material for forming the deposit is injected into the deposition chamber in the form of a pulsed supersonic jet so as to obtain a high incidence rate. The supersonic jet is produced by a pulsed valve between a relatively high presure reservoir, containing the source gaseous molecules, and the deposition chamber; the valve has a small nozzle orifice (e.g., 0.1-1.0 mm diameter). The type of deposit (crystalline amorphous) is then dependent upon the temperature and structure of the substrate. Very high deposition rates are achieved, and the deposit is very smooth and of uniform thickness. Typically the deposition rate is about 100 times that of much more expensive conventional molecular beam methods for deposition, and comparable to certain expensive plasma-assisted CVD methods of the art. The high growth rate of this method results in a reduced contamination of the deposit from other elements in the environment. The method is illustrated by the deposition of epitaxial and amorphour germanium films upon GaAs substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, M., E-mail: mohammad.haidar@Physics.gu.se; Ranjbar, M.; Balinsky, M.
The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization bymore » impurities or defects at the surfaces.« less
Transport properties of ultrathin black phosphorus on hexagonal boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doganov, Rostislav A.; Özyilmaz, Barbaros; Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
2015-02-23
Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explainmore » the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.« less
Capacity of a nickel hydrogen boilerplate cell as a function of temperature
NASA Technical Reports Server (NTRS)
Rodgers, H. H.; Dalton, P. J.; Tinker, L. A.
1981-01-01
An evaluation of the components was conducted with special emphasis on positive electrodes. Electrochemically impregnated positive electrodes were used which were made on a slurry plaque by using a perforated steel substrate. The capacity of the test cell was consistent with the loading level used and the effect of temperature on capacity seems to depend on the cobalt level.
Influence of vapor deposition on structural and charge transport properties of ethylbenzene films
Antony, Lucas W.; Jackson, Nicholas E.; Lyubimov, Ivan; ...
2017-04-14
Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that themore » model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. Finally, these results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.« less
Influence of vapor deposition on structural and charge transport properties of ethylbenzene films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antony, Lucas W.; Jackson, Nicholas E.; Lyubimov, Ivan
Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that themore » model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. Finally, these results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.« less
Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films
2017-01-01
Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that the model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. These results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design. PMID:28573203
Magnetotransport parameters of La0.67Ca0.33MnO3 films grown on neodymium gallate substrates
NASA Astrophysics Data System (ADS)
Boikov, Yu. A.; Volkov, M. P.
2013-01-01
Weakly mechanically stressed 40-nm-thick La0.67Ca0.33MnO3 films have been grown coherently on a (001)NdGaO3 substrate by laser evaporation. The electrical resistivity ρ of the La0.67Ca0.33MnO3 film reaches a maximum at a temperature T C ≈ 255 K. At temperatures below 0.6 T C, the temperature dependences of ρ are well approximated by the relation ρ = ρdef + C 1 T 2 + C 2 T 4.5, in which the first term on the right-hand side accounts for the contribution of structural defects to electrical resistivity, and the second and third terms stand for those of the electron-electron and electron-magnon interactions, respectively. The parameters ρdef ≈ 1 x 10-4 Ω cm and C 1 ≈ 7.7 × 10-9 Ω cm K-2 do not depend on temperature and magnetic field H. The coefficient C 2 decreases with increasing H to reach about 4.9 × 10-15 Ω cm K-4.5 at μ0 H = 14 T.
Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F
2012-08-01
Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.
NASA Astrophysics Data System (ADS)
Fernandez, Ruben; Jodoin, Bertrand
2017-08-01
Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.
Nanowire surface fastener fabrication on flexible substrate.
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-27
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm -2 ) and low contact resistivity (2.2 × 10 -4 Ω cm 2 ).
Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo
2012-09-26
Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.
Nanowire surface fastener fabrication on flexible substrate
NASA Astrophysics Data System (ADS)
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-01
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).
Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan
1999-01-01
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046
2007-02-21
dependent upon the carbon gross growth efficiency ( GGE ) and the C:N:P ratio of the organic substrate. This calculation and its structural...product of the temperature adjusted maximum gross carbon assimilation rate, the carbon gross growth efficiency ( GGE ), and the uptake kinetics for DOC...substrate: max T 4 [ ]( ) [ ]Cb b DOCg g GGE n DOC ⎛ ⎞ = ⎜ ⎟+⎝ ⎠ (21) and ( )( 30)max T m30 m30min[ , ]Kt Tb b bg g g e −= (22) To
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.
1987-01-01
Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.
NASA Astrophysics Data System (ADS)
Zhou, Tong; Zhong, Zhenyang
2014-02-01
A dramatically enhanced self-assembly of GeSi quantum dots (QDs) is disclosed on slightly miscut Si (001) substrates, leading to extremely dense QDs and even a growth mode transition. The inherent mechanism is addressed in combination of the thermodynamics and the growth kinetics both affected by steps on the vicinal surface. Moreover, temperature-dependent photoluminescence spectra from dense GeSi QDs on the miscut substrate demonstrate a rather strong peak persistent up to 300 K, which is attributed to the well confinement of excitons in the dense GeSi QDs due to the absence of the wetting layer on the miscut substrate.
NASA Astrophysics Data System (ADS)
Wei, Chao-Tsang; Shieh, Han-Ping D.
2005-10-01
In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.
Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors
NASA Astrophysics Data System (ADS)
Marrs, Michael
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
Badran, R I; Umar, Ahmad
2017-01-01
Herein, we report the growth and characterizations of well-crystalline n-ZnO nanowires assembled in micro flower-shaped morphologies. The nanowires are grown on p-Silicon substrate and characterized in terms of their structural, morphological and electrical properties. Temperature dependent transport characteristics of the fabricated n-ZnO/p-Si heterojunction diode were examined. The morphological studies revealed that the nanowires are grown in high-density and arrange in special micro flower shaped morphology. The structural characterizations confirmed that the nanowires are well-crystalline and possessing wurtzite hexagonal phase. The electrical properties were evaluated by examining the I–V characteristics of the fabricated n-ZnO/p-Si heterojunction diode. The I–V characteristics were studied at temperature <300 K and ≥300 K in the forward and reverse bias conditions. The detailed temperature dependent electrical properties revealed that the fabricated heterojunction assembly shows a diode-like behavior with a turn-on voltage of 5 V at almost all temperatures and the delivered current changes between ˜1 to ˜5 μA when temperature changes from 77 K to 425 K. The rectifying behavior of the fabricated heterojunction diode, at 5 V, was demonstrated by rectifying ratio of ˜4 at 77 K which decreases to ˜1.5 at 425 K. This analysis also showed that the mean potential barrier of the fabricated heterojunction (˜1.2 eV) is larger than the energy difference (0.72 eV) of the work functions between Si and ZnO.
Rubber friction: role of the flash temperature.
Persson, B N J
2006-08-16
When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
Thermal conductance of Nb thin films at sub-kelvin temperatures.
Feshchenko, A V; Saira, O-P; Peltonen, J T; Pekola, J P
2017-02-03
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T 4.5 , instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Thermal conductance of Nb thin films at sub-kelvin temperatures
NASA Astrophysics Data System (ADS)
Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.
2017-02-01
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Polarized luminescence of nc-Si-SiO x nanostructures on silicon substrates with patterned surface
NASA Astrophysics Data System (ADS)
Michailovska, Katerina; Mynko, Viktor; Indutnyi, Ivan; Shepeliavyi, Petro
2018-05-01
Polarization characteristics and spectra of photoluminescence (PL) of nc-Si-SiO x structures formed on the patterned and plane c-Si substrates are studied. The interference lithography with vacuum chalcogenide photoresist and anisotropic wet etching are used to form a periodic relief (diffraction grating) on the surface of the substrates. The studied nc-Si-SiO x structures were produced by oblique-angle deposition of Si monoxide in vacuum and the subsequent high-temperature annealing. The linear polarization memory (PM) effect in PL of studied structure on plane substrate is manifested only after the treatment of the structures in HF and is explained by the presence of elongated Si nanoparticles in the SiO x nanocolumns. But the PL output from the nc-Si-SiO x structure on the patterned substrate depends on how this radiation is polarized with respect to the grating grooves and is much less dependent on the polarization of the exciting light. The measured reflection spectra of nc-Si-SiO x structure on the patterned c-Si substrate confirmed the influence of pattern on the extraction of polarized PL.
NASA Astrophysics Data System (ADS)
Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong
2018-06-01
The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.
Temperature dependence of acoustic impedance for specific fluorocarbon liquids
NASA Astrophysics Data System (ADS)
Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.
2002-12-01
Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.
NASA Astrophysics Data System (ADS)
Billings, S. A.; Ballantyne, F.; Lehmeier, C.; Min, K.
2014-12-01
Soil organic matter (SOM) transformation rates generally increase with temperature, but whether this is realized depends on soil-specific features. To develop predictive models applicable to all soils, we must understand two key, ubiquitous features of SOM transformation: the temperature sensitivity of myriad enzyme-substrate combinations and temperature responses of microbial physiology and metabolism, in isolation from soil-specific conditions. Predicting temperature responses of production of CO2 vs. biomass is also difficult due to soil-specific features: we cannot know the identity of active microbes nor the substrates they employ. We highlight how recent empirical advances describing SOM decay can help develop theoretical tools relevant across diverse spatial and temporal scales. At a molecular level, temperature effects on purified enzyme kinetics reveal distinct temperature sensitivities of decay of diverse SOM substrates. Such data help quantify the influence of microbial adaptations and edaphic conditions on decay, have permitted computation of the relative availability of carbon (C) and nitrogen (N) liberated upon decay, and can be used with recent theoretical advances to predict changes in mass specific respiration rates as microbes maintain biomass C:N with changing temperature. Enhancing system complexity, we can subject microbes to temperature changes while controlling growth rate and without altering substrate availability or identity of the active population, permitting calculation of variables typically inferred in soils: microbial C use efficiency (CUE) and isotopic discrimination during C transformations. Quantified declines in CUE with rising temperature are critical for constraining model CUE estimates, and known changes in δ13C of respired CO2 with temperature is useful for interpreting δ13C-CO2 at diverse scales. We suggest empirical studies important for advancing knowledge of how microbes respond to temperature, and ideas for theoretical work to enhance the relevance of such work to the world's soils.
Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan
2014-01-28
We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.
NASA Astrophysics Data System (ADS)
Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Ho, Ching-Yuan; Yang, Chun-Chuen; Shen, Ji-Lin; Chiu, Kuan-Cheng
2017-01-01
We report on the optical and structural characterization of rubrene polycrystalline films fabricated from vacuum deposition with various substrate temperatures (Tsub). Depending on Tsub, the role of twisted and planar rubrene conformational isomers on the properties of rubrene films is focused. The temperature (T)-dependent inverse optical transmission (IOT) and photoluminescence (PL) spectra were performed on these rubrene films. The origins of these IOT and PL peaks are explained in terms of the features from twisted and planar rubrene molecules and of the band characteristics from rubrene molecular solid films. Here, two rarely reported weak-peaks at 2.431 and 2.605 eV were observed from IOT spectra, which are associated with planar rubrene. Besides, the T-dependence of optical bandgap deduced from IOT spectra is discussed with respect to Tsub. Together with IOT and PL spectra, for Tsub > 170 °C, the changes in surface morphology and unit cell volume were observed for the first time, and are attributed to the isomeric transformation from twisted to planar rubrenes during the deposition processes. Furthermore, a unified schematic diagram in terms of Frenkel exciton recombination is suggested to explain the origins of the dominant PL peaks performed on these rubrene films at 15 K.
2006-06-30
may operate for certain substrates. The reaction of equation 1 proceeds with the intermediacy of CO2 as shown in Figure 1. Although it is well...competition between paths 5 and 6 will depend on the conditions and the nature of the substrate S. Note that figures, equations , etc. in the...1 shows the complete reaction scheme used to model the equilibration reaction at low temperature. Table 1 Kinetic equations and their
Photoreflectance from GaAs and GaAs/GaAs interfaces
NASA Astrophysics Data System (ADS)
Sydor, Michael; Angelo, James; Wilson, Jerome J.; Mitchel, W. C.; Yen, M. Y.
1989-10-01
Photoreflectance from semi-insulating GaAs, and GaAs/GaAs interfaces, is discussed in terms of its behavior with temperature, doping, epilayer thickness, and laser intensity. Semi-insulating substrates show an exciton-related band-edge signal below 200 K and an impurity-related photoreflectance above 400 K. At intermediate temperatures the band-edge signal from thin GaAs epilayers contains a contribution from the epilayer-substrate interface. The interface effect depends on the epilayer's thickness, doping, and carrier mobility. The effect broadens the band-edge photoreflectance by 5-10 meV, and artifically lowers the estimates for the critical-point energy, ECP, obtained through the customary third-derivative functional fit to the data.
The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films
NASA Astrophysics Data System (ADS)
Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin
In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cui; Liu, Qingbin; Li, Jia
2014-11-03
We investigate the temperature dependent electrical transport properties of quasi-free standing bilayer graphene on 4H-SiC (0001) substrate. Three groups of monolayer epitaxial graphene and corresponding quasi-free standing bilayer graphene with different crystal quality and layer number homogeneity are prepared. Raman spectroscopy and atomic-force microscopy are used to obtain their morphologies and layer number, and verify the complete translation of buffer layer into graphene. The highest room temperature mobility reaches 3700 cm{sup 2}/V·s for the quasi-free standing graphene. The scattering mechanism analysis shows that poor crystal quality and layer number inhomogeneity introduce stronger interacting of SiC substrate to the graphene layer andmore » more impurities, which limit the carrier mobility of the quasi-free standing bilayer graphene samples.« less
Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition
NASA Astrophysics Data System (ADS)
Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.
Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.
NASA Astrophysics Data System (ADS)
Li, Shi-na; Ma, Rui-xin; Ma, Chun-hong; Li, Dong-ran; Xiao, Yu-qin; He, Liang-wei; Zhu, Hong-min
2013-05-01
Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10-4Ω·cm-1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm-3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.
Optimum deposition conditions of ultrasmooth silver nanolayers
2014-01-01
Reduction of surface plasmon-polariton losses due to their scattering on metal surface roughness still remains a challenge in the fabrication of plasmonic devices for nanooptics. To achieve smooth silver films, we study the dependence of surface roughness on the evaporation temperature in a physical vapor deposition process. At the deposition temperature range 90 to 500 K, the mismatch of thermal expansion coefficients of Ag, Ge wetting layer, and sapphire substrate does not deteriorate the metal surface. To avoid ice crystal formation on substrates, the working temperature of the whole physical vapor deposition process should exceed that of the sublimation at the evaporation pressure range. At optimum room temperature, the root-mean-square (RMS) surface roughness was successfully reduced to 0.2 nm for a 10-nm Ag layer on sapphire substrate with a 1-nm germanium wetting interlayer. Silver layers of 10- and 30-nm thickness were examined using an atomic force microscope (AFM), X-ray reflectometry (XRR), and two-dimensional X-ray diffraction (XRD2). PACS 63.22.Np Layered systems; 68. Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization PMID:24685115
NASA Astrophysics Data System (ADS)
Berglund, Eva; Rousk, Johannes
2017-04-01
Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation experiments including temperatures from 0 to 35˚ C. Temperature relationships were modelled using the Ratkowsky model, and cardinal points including minimum temperature (Tmin) for growth and respiration along with temperature sensitivity (Q10) values were used as indices to compare sites. Microbial communities were cold-adapted in cold sites and warm-adapted in warm sites, as shown by Tmin values ranging from ca. -20 ˚ C to 0 ˚ C. For every 1˚ C rise in MAT, Tmin increased by 0.22˚ C and 0.28˚ C for bacteria and fungi, respectively. Soil respiration was less dependent on MAT, increasing 0.16 ˚ C per 1˚ C. Temperature dependence analyses grew stronger when regressed against summer temperatures, and weaker when regressed against winter temperatures. Hence, microbial communities adjusted their temperature dependence for growth more than for respiration, and higher temperatures had more impact than low temperatures did. The correlation between Tmin and MAT resulted in Q10s increasing with MAT, showing that microorganisms from cold regions were less temperature sensitive than those from warmer regions. For every 1˚ C increase in MAT, Q10 increased with 0.04 and 0.03 units for bacterial and fungal growth respectively, and 0.08 units for soil respiration. In contrast to previous studies, we found no relationship between temperature sensitivity and substrate quality. We demonstrate that the strongest driver of variation in microbial temperatures sensitivities (Q10s) is the microbial adaptation to its thermal environment. Surprisingly, the quality of SOM had no influence on the temperature sensitivity. This calls for a revision of the understanding for how microbial decomposers feed-back to climate warming. Specifically, the thermal adaptation of microbial communities need to be incorporated into climate models to capture responses to warming, while the quality of SOM can be ignored.
NASA Astrophysics Data System (ADS)
Chèze, C.; Feix, F.; Lähnemann, J.; Flissikowski, T.; Kryśko, M.; Wolny, P.; Turski, H.; Skierbiszewski, C.; Brandt, O.
2018-01-01
Previously, we found that N-polar (In,Ga)N/GaN quantum wells prepared on freestanding GaN substrates by plasma-assisted molecular beam epitaxy at conventional growth temperatures of about 650 °C do not exhibit any detectable luminescence even at 10 K. In the present work, we investigate (In,Ga)N/GaN quantum wells grown on Ga- and N-polar GaN substrates at a constant temperature of 730 °C . This exceptionally high temperature results in a vanishing In incorporation for the Ga-polar sample. In contrast, quantum wells with an In content of 20% and abrupt interfaces are formed on N-polar GaN. Moreover, these quantum wells exhibit a spatially uniform green luminescence band up to room temperature, but the intensity of this band is observed to strongly quench with temperature. Temperature-dependent photoluminescence transients show that this thermal quenching is related to a high density of nonradiative Shockley-Read-Hall centers with large capture coefficients for electrons and holes.
Morphology and electronic transport of polycrystalline pentacene thin-film transistors
NASA Astrophysics Data System (ADS)
Knipp, D.; Street, R. A.; Völkel, A. R.
2003-06-01
Temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene. Devices were fabricated with plasma-enhanced chemical vapor deposited silicon nitride gate dielectrics. The influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentacene films were studied. Although films on rougher gate dielectrics and films prepared at low deposition temperatures exhibit similar grain size, the electronic properties are different. Increasing the dielectric roughness reduces the free carrier mobility, while low substrate temperature leads to more and deeper hole traps.
Rubber friction: The contribution from the area of real contact.
Tiwari, A; Miyashita, N; Espallargas, N; Persson, B N J
2018-06-14
There are two contributions to the friction force when a rubber block is sliding on a hard and rough substrate surface, namely, a contribution F ad = τ f A from the area of real contact A and a viscoelastic contribution F visc from the pulsating forces exerted by the substrate asperities on the rubber block. Here we present experimental results obtained at different sliding speeds and temperatures, and we show that the temperature dependency of the shear stress τ f , for temperatures above the rubber glass transition temperature T g , is weaker than that of the bulk viscoelastic modulus. The physical origin of τ f for T > T g is discussed, and we propose that its temperature dependency is determined by the rubber molecule segment mobility at the sliding interface, which is higher than in the bulk because of increased free-volume effect due to the short-wavelength surface roughness. This is consistent with the often observed reduction in the glass transition temperature in nanometer-thick surface layers of glassy polymers. For temperatures T < T g , the shear stress τ f is nearly velocity independent and of similar magnitude as observed for glassy polymers such as PMMA or polyethylene. In this case, the rubber undergoes plastic deformations in the asperity contact regions and the contact area is determined by the rubber penetration hardness. For this case, we propose that the frictional shear stress is due to slip at the interface between the rubber and a transfer film adsorbed on the concrete surface.
Rubber friction: The contribution from the area of real contact
NASA Astrophysics Data System (ADS)
Tiwari, A.; Miyashita, N.; Espallargas, N.; Persson, B. N. J.
2018-06-01
There are two contributions to the friction force when a rubber block is sliding on a hard and rough substrate surface, namely, a contribution Fad = τf A from the area of real contact A and a viscoelastic contribution Fvisc from the pulsating forces exerted by the substrate asperities on the rubber block. Here we present experimental results obtained at different sliding speeds and temperatures, and we show that the temperature dependency of the shear stress τf, for temperatures above the rubber glass transition temperature Tg, is weaker than that of the bulk viscoelastic modulus. The physical origin of τf for T > Tg is discussed, and we propose that its temperature dependency is determined by the rubber molecule segment mobility at the sliding interface, which is higher than in the bulk because of increased free-volume effect due to the short-wavelength surface roughness. This is consistent with the often observed reduction in the glass transition temperature in nanometer-thick surface layers of glassy polymers. For temperatures T < Tg, the shear stress τf is nearly velocity independent and of similar magnitude as observed for glassy polymers such as PMMA or polyethylene. In this case, the rubber undergoes plastic deformations in the asperity contact regions and the contact area is determined by the rubber penetration hardness. For this case, we propose that the frictional shear stress is due to slip at the interface between the rubber and a transfer film adsorbed on the concrete surface.
Writing and Reading of Ultrathin Ferroelectric Domains on Commensurate SrTiO3 on Silicon
NASA Astrophysics Data System (ADS)
Levy, Jeremy; Cen, Cheng; Sleasman, Charles R.; Warusawithana, Maitri; Schlom, Darrell G.
2008-03-01
Ferroelectricity in ultrathin epitaxial SrTiO3 grown commensurately by oxide-molecular beam epitaxy (MBE) on silicon substrates was investigated using piezoforce microscopy (PFM). A series of samples containing n molecular layers (ML) of SrTiO3 (n = 3, 4, 5, 6, 8, 10, 20) was grown on silicon substrates. Room-temperature ferroelectricity was observed for samples containing n = 5, 6, 8, 10 ML. Temperature-dependent measurements indicate that the sample with n = 5 exhibits a ferroelectric phase transition at Tc˜317 K. Sample with n = 6 remains ferroelectric up to at least 393K. Polar domains created on the n = 6 was found to be stable at room temperature for more than 72 hours. The implications of these results for fundamental and device-related applications will be discussed briefly.
NASA Astrophysics Data System (ADS)
Ten, Jyi Sheuan; Sparkes, Martin; O'Neill, William
2017-02-01
A rapid, mask-less deposition technique for the deposition of conductive tracks to nano- and micro-devices has been developed. The process uses a 405 nm wavelength laser diode for the direct deposition of tungsten tracks on silicon substrates via laser assisted chemical vapour deposition. Unlike lithographic processes this technique is single step and does not require chemical masks that may contaminate the substrate. To demonstrate the process, tungsten was deposited from tungsten hexacarbonyl precursors to produce conductive tracks with widths of 1.7-28 μm and heights of 0.05-35 μm at laser scan speeds up to 40 μm/s. The highest volumetric deposition rate achieved is 1×104 μm3/s, three orders of magnitude higher than that of focused ion beam deposition and on par with a 515 nm wavelength argon ion laser previously reported as the laser source. The microstructure and elemental composition of the deposits are comparable to that of largearea chemical vapour deposition methods using the same chemical precursor. The contact resistance and track resistance of the deposits has been measured using the transfer length method to be 205 μΩ cm. The deposition temperature has been estimated at 334 °C from a laser heat transfer model accounting for temperature dependent optical and physical properties of the substrate. The peak temperatures achieved on silicon and other substrates are higher than the thermal dissociation temperature of numerous precursors, indicating that this technique can also be used to deposit other materials such as gold and platinum on various substrates.
NASA Astrophysics Data System (ADS)
Shinbo, Kazunari; Uno, Akihiro; Hirakawa, Ryo; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao
2013-05-01
In this study, we fabricated a novel quartz-crystal-microbalance (QCM)/optical-waveguide hybrid sensor. An in situ observation of a lead phthalocyanine (PbPc) thin-film deposition was conducted during vacuum evaporation, and the effectiveness of the sensor was demonstrated. The film thickness was obtained from the QCM frequency, and the optical absorption of the film was observed by optical waveguide spectroscopy using part of the QCM substrate without the electrode. The film absorption depends on the polarization direction, substrate temperature and deposition rate, owing to aggregate formation. The thickness dependence of the absorption property was also investigated.
Optimization of Cold Spray Deposition of High-Density Polyethylene Powders
NASA Astrophysics Data System (ADS)
Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.
2017-10-01
When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2001-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Structure and optical properties of evaporated films of the Cr- and V-group metals
NASA Technical Reports Server (NTRS)
Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.
1980-01-01
Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.
Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
Janeček, V; Nikolayev, V S
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Reversible tuning of magnetocaloric Ni-Mn-Ga-Co films on ferroelectric PMN-PT substrates.
Schleicher, Benjamin; Niemann, Robert; Schwabe, Stefan; Hühne, Ruben; Schultz, Ludwig; Nielsch, Kornelius; Fähler, Sebastian
2017-10-31
Tuning functional properties of thin caloric films by mechanical stress is currently of high interest. In particular, a controllable magnetisation or transition temperature is desired for improved usability in magnetocaloric devices. Here, we present results of epitaxial magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg 1/3 Nb 2/3 ) 0.72 Ti 0.28 O 3 (PMN-PT) substrates. Utilizing X-ray diffraction measurements, we demonstrate that the strain induced in the substrate by application of an electric field can be transferred to the thin film, resulting in a change of the lattice parameters. We examined the consequences of this strain on the magnetic properties of the thin film by temperature- and electric field-dependent measurements. We did not observe a change of martensitic transformation temperature but a reversible change of magnetisation within the austenitic state, which we attribute to the intrinsic magnetic instability of this metamagnetic Heusler alloy. We demonstrate an electric field-controlled entropy change of about 31 % of the magnetocaloric effect - without any hysteresis.
Influence of deposition temperature on WTiN coatings tribological performance
NASA Astrophysics Data System (ADS)
Londoño-Menjura, R. F.; Ospina, R.; Escobar, D.; Quintero, J. H.; Olaya, J. J.; Mello, A.; Restrepo-Parra, E.
2018-01-01
WTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm-31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate.
Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces
NASA Astrophysics Data System (ADS)
Janeček, V.; Nikolayev, V. S.
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Effects of fasting on maximum thermogenesis in temperature-acclimated rats
NASA Astrophysics Data System (ADS)
Wang, L. C. H.
1981-09-01
To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahato, S., E-mail: som.phy.ism@gmail.com; Shiwakoti, N.; Kar, A. K.
2015-06-24
This article reports the measurement of temperature-dependent barrier height and ideality factor of n-CdSe/Cu Schottky barrier diode. The Cadmium Selenide (CdSe) thin films have been deposited by simple electrodeposition technique. The XRD measurements ravels the deposited single phase CdSe films are highly oriented on (002) plane and the average particle size has been calculated to be ~18 nm. From SEM characterization, it is clear that the surface of CdSe thin films are continuous, homogeneous and the film is well adhered to the substrate and consists of fine grains which are irregular in shape and size. Current-Voltage characteristics have been measured atmore » different temperatures in the range (298 K – 353 K). The barrier height and ideality factor are found to be strongly temperature dependent. The inhomogenious barrier height increases and ideality factor decreases with increase in temperature. The expectation value has been calculated and its value is 0.30 eV.« less
NASA Astrophysics Data System (ADS)
Kosugi, Takahiro; Hayashi, Shigehiko
2011-01-01
Psychrophilic α-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic α-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.
Role of Thickness Confinement on Relaxations of the Fast Component in a Miscible A/B Blend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Peter; Sharma, Ravi P.; Dong, Ban Xuan
Spatial compositional heterogeneity strongly influences the dynamics of the A and B components of bulk miscible blends. Its effects are especially apparent in mixtures, such as poly(vinyl methyl ether) (PVME)/polystyrene (PS), where there exist significant disparities between the component glass transition temperatures (Tgs) and relaxation times. The relaxation processes characterized by distinct temperature dependencies and relaxation rates manifest different local compositional environments for temperatures above and below the glass transition temperature of the miscible blend. This same behavior is shown to exist in miscible PS/PVME films as thin as 100 nm. Moreover, in thin films, the characteristic segmental relaxation timesmore » t of the PVME component of miscible PVME/PS blends confined between aluminum (Al) substrates decrease with increasing molecular weight M of the PS component. These relaxation rates are film thickness dependent, in films up to a few hundred nanometers in thickness. This is in remarkable contrast to homopolymer films, where thickness confinement effects are apparent only on length scales on the order of nanometers. These surprisingly large length scales and M dependence are associated with the preferential interfacial enrichment - wetting layer formation - of the PVME component at the external Al interfaces, which alters the local spatial blend composition within the interior of the film. The implications are that the dynamics of miscible thin film blends are dictated in part by component Tg differences, disparities in component relaxation rates, component-substrate interactions, and chain lengths (entropy of mixing).« less
NASA Astrophysics Data System (ADS)
Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen
2016-11-01
We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.
Dalal, Shakeel S.; Walters, Diane M.; Lyubimov, Ivan; ...
2015-03-23
Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. In this paper, we apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (T substrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by T substrate/T g, where T g is themore » glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. Finally, by showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.« less
Suppressing hillock formation in Si-supported pure Al films
NASA Astrophysics Data System (ADS)
Liu, N. Z.; Liu, Y.
2018-04-01
To suppress the hillock formation and hence improve the service performance of pure Al thin films deposited on Si substrate, dependence of hillock formation on film thickness and annealing temperature was systematically investigated. Experimental results revealed that the hillock volume increased linearly with both the film thickness and annealing temperature. While the evolution of hillock density with film thickness was complicated, strongly depending on the annealing temperature. It was evident that the hillock formation could be effectively suppressed at a critical annealing temperature especially in thinner thickness, similar to the previous findings in Mo/glass-supported pure Al films. These experimental evidences clearly demonstrated that the hillock formation should be controlled by the plastic deformation in the surrounding film, which was further rationalized by a micromechanics model.
Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.
Jung, Minkyung; Song, Woon; Sung Lee, Joon; Kim, Nam; Kim, Jinhee; Park, Jeunghee; Lee, Hyoyoung; Hirakawa, Kazuhiko
2008-12-10
We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450 K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Liwang, E-mail: liwang.liu@hotmail.com; Meng, Lei; Wang, Ling
The temperature dependence of the fluorescence spectrum of CdSe−ZnS core–shell quantum dots embedded in a polystyrene matrix is characterized between 30 °C and 60 °C. The spectrally integrated photoluminescence intensity is found to linearly decrease with −1.3%/ °C. This feature is exploited in a dual coating-substrate-configuration, consisting of a layer of this nanocomposite material, acting as a temperature sensor with optical readout, on top of an optically absorbing and opaque layer, acting as a photothermal excitation source, and covering a substrate material or structure of interest. From the frequency dependence of the optically detected photothermal signal in the frequency range between 5 Hz andmore » 150 Hz, different thermal parameters of the constituent layers are determined. The fitted values of thermal properties of the different layers, determined in different scenarios in terms of the used a priori information about the layers, are found to be internally consistent, and consistent with literature values.« less
Biphasic Kinetic Behavior of E. coli WrbA, an FMN-Dependent NAD(P)H:Quinone Oxidoreductase
Kishko, Iryna; Harish, Balasubramanian; Zayats, Vasilina; Reha, David; Tenner, Brian; Beri, Dhananjay; Gustavsson, Tobias; Ettrich, Rüdiger; Carey, Jannette
2012-01-01
The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of this report is to bring under wider attention the apparently widespread phenomenon of two-plateau Michaelis-Menten plots. PMID:22952804
A novel polyimide based micro heater with high temperature uniformity
Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...
2017-02-06
MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less
A novel polyimide based micro heater with high temperature uniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shifeng; Wang, Shuyu; Lu, Ming
MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less
NASA Technical Reports Server (NTRS)
Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George
2004-01-01
System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced electron mobility as well as the processes that limit mobility, and will be presented.
Mathematical model of organic substrate degradation in solid waste windrow composting.
Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro
2016-01-01
Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.
Microbial lipolysis at low temperatures.
Andersson, R E
1980-01-01
It was found that lipase production during the growth of Pseudomonas fluorescens was not a function of the total number of bacteria. The optimal temperatures for bacterial growth and lipase production were determined as 20 and 8 degrees C, respectively. The lipolytic activity was studied in emulsions of olive oil at temperatures ranging from +8 to -30 degrees C. After an initially rapid lipolysis, the reactions retarded at different levels depending on storage temperature. Transference to a higher temperature resulted in a resumed lipolysis. Also, at low temperatures, lipolysis was studied as a function of water activity and was found to occur in dehydrated substrates. PMID:6766702
Kirby, Brian J; Hasselbrink, Ernest F
2004-01-01
This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.
Control of droplet morphology for inkjet-printed TIPS-pentacene transistors
Lee, Myung Won; Ryu, Gi Seong; Lee, Young Uk; Pearson, Christopher; Petty, Michael C.; Song, Chung Kun
2012-01-01
We report on methods to control the morphology of droplets of 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-PEN), which are then used in the fabrication of organic thin film transistors (OTFTs). The grain size and distribution of the TIPS-PEN were found to depend on the temperature of the droplets during drying. The performance of the OTFTs could be improved by heating the substrate and also by changing the relative positions of the inkjet-printed droplets. In our experiments, the optimum substrate temperature was 46 °C in air. Transistors with the TIPS-PEN grain boundaries parallel to the current flow between the source and drain electrodes exhibited charge carrier mobilities of 0.44 ± 0.08 cm2/V s.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hang; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.
2015-03-01
We studied temperature dependence of crystalline quality of AlN layers at 1050-1250 °C with a fine increment step of around 18 °C. The AlN layers were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD) and characterized by X-ray diffraction (XRD) ω-scans and atomic force microscopy (AFM). At 1050-1068 °C, the templates exhibited poor quality with surface pits and higher XRD (002) and (102) full-width at half-maximum (FWHM) because of insufficient Al atom mobility. At 1086 °C, the surface became smooth suggesting sufficient Al atom mobility. Above 1086 °C, the (102) FWHM and thus edge dislocation density increased with temperatures which may be attributed to the shorter growth mode transition from three-dimension (3D) to two-dimension (2D). Above 1212 °C, surface macro-steps were formed due to the longer diffusion length of Al atoms than the expected step terrace width. The edge dislocation density increased rapidly above 1212 °C, indicating this temperature may be a threshold above which the impact of the transition from 3D to 2D is more significant. The (002) FWHM and thus screw dislocation density were insensitive to the temperature change. This study suggests that high-quality AlN/sapphire templates may be potentially achieved at temperatures as low as 1086 °C which is accessible by most of the III-nitride MOCVD systems.
Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying
NASA Astrophysics Data System (ADS)
Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.
2016-06-01
Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.
NASA Astrophysics Data System (ADS)
Komlev, Anton A.; Minzhulina, Ekaterina A.; Smirnov, Vladislav V.; Shapovalov, Viktor I.
2018-01-01
The paper describes physical characteristics of the hot target sputtering process, which have not been known before. To switch a magnetron over to the hot target regime, a titanium disk of 1 mm thick with a 1-mm-gap was attached on a 4-mm-thick copper plate cooled by running water. A thermocouple sensor was used to investigate the thermal processes occurring in substrates. The study was performed at the discharge current density of 20-40 mA/cm2 and argon pressure of 3-7 mTorr. The accuracy of temperature measurement appeared to be within ± 5%, due the application of a chromel-copel thermocouple. The study reveals that under these conditions the heating curves have the inflection points positioned proportionally to the discharge current density and argon pressure on a time axis. The inflection point appears in the kinetic curves due to the finite value of the target heating time constant. The study shows that the substrate fixed temperature and substrate heating time constant depend on the argon pressure and relate to the current density by the polynomials of the first and second degrees, respectively. The influence of a target on the substrate heating kinetics is considered in an analytical description by the introduction of a multiplier in the form of an exponential function of time. The results of the research make a novel contribution to the field of the sputtering process.
Xie, Chiyu; Liu, Guangzhi; Wang, Moran
2016-08-16
The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.
Thermally assisted interlayer magnetic coupling through Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3} barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carreira, Santiago J.; Steren, Laura B.; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autonoma de Buenos Aires C1425FQB
2016-08-08
We report on the interlayer exchange coupling across insulating barriers observed on Ni{sub 80}Fe{sub 20}/Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3}/La{sub 0.66}Sr{sub 0.33}MnO{sub 3} (Py/BST{sub 0.05}/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO{sub 3} (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate.more » An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST{sub 0.05}. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.« less
Shear sensitive monomer-polymer laminate structure and method of using same
NASA Technical Reports Server (NTRS)
Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); Parmar, Devendra S. (Inventor)
1993-01-01
Monomer cholesteric liquid crystals have helical structures which result in a phenomenon known as selective reflection, wherein incident white light is reflected in such a way that its wavelength is governed by the instantaneous pitch of the helix structure. The pitch is dependent on temperature and external stress fields. It is possible to use such monomers in flow visualization and temperature measurement. However, the required thin layers of these monomers are quickly washed away by a flow, making their application time dependent for a given flow rate. The laminate structure according to the present invention comprises a liquid crystal polymer substrate attached to a test surface of an article. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface. Novel aspects of the invention include its firm bonding of a liquid crystal monomer to a model and its use of a coating to reduce interference from light unreflected by the monomer helical structure.
[Characterization of polygalacturonase covalently bonded to Sepharose].
Bock, W; Krause, M; Anger, H; Flemming, C
1981-01-01
For the soluble endo-polygalacturonase (EC 3.2.1.15.) from Aspergillus spec., investigated in the present work, the defined substrate turnover U at 50% loss of viscosity if 0.2% and is independent on the reaction temperature. In the case of the covalently-bonded enzyme, the following linear equation applies to U, depending on the specific activity A and in the limits from A = O [U] and Amax: U = [U] + S square root of A. U is influenced by the kind of linkage, the conditions of immobilization and the properties of the carrier: it is a measure of the postulated conformational change of the polygalacturonase. The characteristic limiting value for the substrate turnover at A = O [U] is also temperature-independent and proves to be a true increment of binding, whereas Amax depends essentially on the porosity of the carrier. Polygalacturonase-sepharose complexes with a real substrate turnover U of 3--20% were prepared by varying systematically the kind of linkage and the specific activity A. It was found that with increasing U these complexes were, as a rule, inhibited to a lesser extent by a non-competitive pectinase inhibitor than the soluble polygalacturonase. Furthermore, their ability to liberate or enrich oligomeric galacturonic acids with a degree of polymerization greater than 3 was markedly reduced.
Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.
Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison
2017-05-01
In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming
2017-01-01
Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673
Effect of substrate temperature on magnetic properties of MnFe2O4 thin films
NASA Astrophysics Data System (ADS)
Rajagiri, Prabhu; Sahu, B. N.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.
2018-05-01
MnFe2O4 thin films were pulsed laser deposited on to quartz substrate from room temperature (RT) to 650 °C in a pure argon environment. Temperature dependence of spontaneous magnetization (4πMS) was measured on these films from 10 K to 350 K using a vibrating sample magnetometer. Ferromagnetic resonance (FMR) study was also carried out at 300 K. The exchange stiffness constant (D) values were obtained by fitting the 4πMS data to the Bloch's equation. The D values of the films thus found decreases while the 4πMS value increases, though non-monotonically, with the increase in TS and tend to reach bulk values at TS = 650 °C. The variation in D and 4πMS values of the films are explained based on the degree of inversion and oxidation state of cations in thin films.
Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions
NASA Astrophysics Data System (ADS)
Ling, Bo; Zhao, Jun Liang; Sun, Xiao Wei; Tan, Swee Tiam; Kyaw, Aung Ko Ko; Divayana, Yoga; Dong, Zhi Li
2010-07-01
Wide-range color tuning from red to blue was achieved in phosphor-free p+-Si/p-CuAlO2/n-ZnO nanorod light-emitting diodes at room temperature. CuAlO2 films were deposited on p+-Si substrates by sputtering followed by annealing. ZnO nanorods were further grown on the annealed p+-Si/p-CuAlO2 substrates by vapor phase transport. The color of the p-CuAlO2/n-ZnO nanorod array heterojunction electroluminescence depended on the annealing temperature of the CuAlO2 film. With the increase of the annealing temperature from 900 to 1050 °C, the emission showed a blueshift under the same forward bias. The origin of the blueshift is related to the amount of Cu concentration diffused into ZnO.
Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik
2013-04-01
Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).
Thermal conductance of Nb thin films at sub-kelvin temperatures
Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.
2017-01-01
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1–0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection. PMID:28155895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika
2016-05-23
The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less
Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus
NASA Astrophysics Data System (ADS)
Hussnain, A.; Rawat, R. S.; Ahmad, R.; Umar, Z. A.; Hussain, T.; Lee, P.; Chen, Z.
2015-07-01
Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3 kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.
NASA Technical Reports Server (NTRS)
Finkbeiner, Fred Michael; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L.; Brown, Ari David; Chang, Meng-Ping; Chervenak, James A.; Chiao, Meng P.; Datesman, Aaron; Eckart, Megan E.;
2016-01-01
We are exploring the properties of electron-beam evaporated molybdenum thin films on silicon nitride coated silicon wafers at substrate temperatures between room temperature and 650 C. The temperature dependence of film stress, transition temperature, and electrical properties are presented. X-ray diffraction measurements are performed to gain information on molybdenum crystallite size and growth. Results show the dominant influence of the crystallite size on the intrinsic properties of our films. Wafer-scale uniformity, wafer yield, and optimal thermal bias regime for TES fabrication are discussed.
NASA Astrophysics Data System (ADS)
Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.
2017-09-01
Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.
NASA Astrophysics Data System (ADS)
Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.
2011-08-01
A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.
Temperature dependent surface and spectral modifications of nano V2O5 films
NASA Astrophysics Data System (ADS)
Manthrammel, M. Aslam; Fatehmulla, A.; Al-Dhafiri, A. M.; Alshammari, A. S.; Khan, Aslam
2017-03-01
Nanocrystalline V2O5 films have been deposited on glass substrates at 300°C substrate temperature using thermal evaporation technique and were subjected to thermal annealing at different temperatures 350, 400, and 550°C. X-ray diffraction (XRD) spectra exhibit sharper and broader characteristic peaks respectively indicating the rearrangement of nanocrystallite phases with annealing temperatures. Other phases of vanadium oxides started emerging with the rise in annealing temperature and the sample converted completely to VO2 (B) phase at 550°C annealing. FESEM images showed an increase in crystallite size with 350 and 400°C annealing temperatures followed by a decrease in crystallite size for the sample annealed at 550°C. Transmission spectra showed an initial redshift of the fundamental band edge with 350 and 400°C while a blue shift for the sample annealed at 550°C, which was in agreement with XRD and SEM results. The films exhibited smart window properties as well as nanorod growth at specific annealing temperatures. Apart from showing the PL and defect related peaks, PL studies also supported the observations made in the transmission spectra.
USDA-ARS?s Scientific Manuscript database
The performance of the deammonification process depends on the microbial activity of ammonia oxidizing bacteria (AOB) and ANAMMOX bacteria. These autotrophic organisms have different preferences for substrate, operating conditions and some external factors that may cause inhibition or imbalance of t...
Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets
NASA Astrophysics Data System (ADS)
Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung
2018-01-01
The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.
Effect of charged impurities and morphology on oxidation reactivity of graphene
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Cullen, William; Einstein, Theodore; Fuhrer, Michael
2012-02-01
Chemical reactivity of single layer graphene supported on a substrate is observed to be enhanced over thicker graphene. Possible mechanisms for the enhancement are Fermi level fluctuations due to ionized impurities on the substrate, and structural deformation of graphene induced by coupling to the substrate geometry. Here, we study the substrate-dependent oxidation reactivity of graphene, employing various substrates such as SiO2, mica, SiO2 nanoparticle thin film, and hexagonal boron nitride, which exhibit different charged impurity concentrations and surface roughness. Graphene is prepared on each substrate via mechanical exfoliation and oxidized in Ar/O2 mixture at temperatures from 400-600 ^oC. After oxidation, the Raman spectrum of graphene is measured, and the Raman D to G peak ratio is used to quantify the density of point defects introduced by oxidation. We will discuss the correlations among the defect density in oxidized graphene, substrate charge inhomogeneity, substrate corrugations, and graphene layer thickness. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.
Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs
NASA Astrophysics Data System (ADS)
Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.
2014-03-01
The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.
Surface electronic states of low-temperature H-plasma-exposed Ge(100)
NASA Astrophysics Data System (ADS)
Cho, Jaewon; Nemanich, R. J.
1992-11-01
The surface of low-temperature H-plasma-cleaned Ge(100) was studied by angle-resolved UV-photoemission spectroscopy and low-energy electron diffraction (LEED). The surface was prepared by an ex situ preclean followed by an in situ H-plasma exposure at a substrate temperature of 150-300 °C. Auger-electron spectroscopy indicated that the in situ H-plasma clean removed the surface contaminants (carbon and oxygen) from the Ge(100) surface. The LEED pattern varied from a 1×1 to a sharp 2×1, as the substrate temperature was increased. The H-induced surface state was identified at ~5.6 eV below EF, which was believed to be mainly due to the ordered or disordered monohydride phases. The annealing dependence of the spectra showed that the hydride started to dissociate at a temperature of 190 °C, and the dangling-bond surface state was identified. A spectral shift upon annealing indicated that the H-terminated surfaces were unpinned. After the H-plasma clean at 300 °C the dangling-bond surface state was also observed directly with no evidence of H-induced states.
Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakawa, Takeshi; Okajima, Toshihide; Kuroda, Shun'ichi
A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate {alpha}-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the {alpha}-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reactionmore » of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.« less
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Zeng, Jianping; Geng, Chong; Cong, Peipei; Sun, Lili; Wei, Tongbo; Zhao, Lixia; Yan, Qingfeng; He, Chenguang; Qin, Zhixin; Li, Jinmin
2014-06-01
We report high-performance AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates (NPSS) using metal-organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth on NPSS, 4-μm AlN buffer layer has shown strain relaxation and a coalescence thickness of only 2.5 μm. The full widths at half-maximum of X-ray diffraction (002) and (102) ω-scan rocking curves of AlN on NPSS are only 69.4 and 319.1 arcsec. The threading dislocation density in AlGaN-based multi-quantum wells, which are grown on this AlN/NPSS template with a light-emitting wavelength at 283 nm at room temperature, is reduced by 33% compared with that on flat sapphire substrate indicated by atomic force microscopy measurements, and the internal quantum efficiency increases from 30% to 43% revealed by temperature-dependent photoluminescent measurement.
NASA Astrophysics Data System (ADS)
Do, Minh Thanh; Tong, Quang Cong; Luong, Mai Hoang; Lidiak, Alexander; Ledoux-Rak, Isabelle; Lai, Ngoc Diep
2016-05-01
We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.
Scanning electron microscopy of the surfaces of ion implanted SiC
NASA Astrophysics Data System (ADS)
Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.
2015-07-01
This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.
NASA Astrophysics Data System (ADS)
Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng
2018-05-01
Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.
Modeling and experimental result analysis for high-power VECSELs
NASA Astrophysics Data System (ADS)
Zakharian, Aramais R.; Hader, Joerg; Moloney, Jerome V.; Koch, Stephan W.; Lutgen, Stephan; Brick, Peter; Albrecht, Tony; Grotsch, Stefan; Luft, Johann; Spath, Werner
2003-06-01
We present a comparison of experimental and microscopically based model results for optically pumped vertical external cavity surface emitting semiconductor lasers. The quantum well gain model is based on a quantitative ab-initio approach that allows calculation of a complex material susceptibility dependence on the wavelength, carrier density and lattice temperature. The gain model is coupled to the macroscopic thermal transport, spatially resolved in both the radial and longitudinal directions, with temperature and carrier density dependent pump absorption. The radial distribution of the refractive index and gain due to temperature variation are computed. Thermal managment issues, highlighted by the experimental data, are discussed. Experimental results indicate a critical dependence of the input power, at which thermal roll-over occurs, on the thermal resistance of the device. This requires minimization of the substrate thickness and optimization of the design and placement of the heatsink. Dependence of the model results on the radiative and non-radiative carrier recombination lifetimes and cavity losses are evaluated.
NASA Astrophysics Data System (ADS)
Peltier, Abigail; Sapkota, Gopal; Potter, Matthew; Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.; Poutous, Menelaos K.
2017-02-01
Random anti-reflecting subwavelength surface structures (rARSS) have been shown to suppress Fresnel reflection and scatter from optical surfaces. The structures effectively function as a gradient-refractive-index at the substrate boundary, and the spectral transmission properties of the boundary have been shown to depend on the structure's statistical properties (diameter, height, and density.) We fabricated rARSS on fused silica substrates using gold masking. A thin layer of gold was deposited on the surface of the substrate and then subjected to a rapid thermal annealing (RTA) process at various temperatures. This RTA process resulted in the formation of gold "islands" on the surface of the substrate, which then acted as a mask while the substrate was dry etched in a reactive ion etching (RIE) process. The plasma etch yielded a fused silica surface covered with randomly arranged "rods" that act as the anti-reflective layer. We present data relating the physical characteristics of the gold "island" statistical populations, and the resulting rARSS "rod" population, as well as, optical scattering losses and spectral transmission properties of the final surfaces. We focus on comparing results between samples processed at different RTA temperatures, as well as samples fabricated without undergoing RTA, to relate fabrication process statistics to transmission enhancement values.
Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.
Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan
2018-06-25
We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.
Martin, Brent R; Deerinck, Thomas J; Ellisman, Mark H; Taylor, Susan S; Tsien, Roger Y
2007-09-01
The tetracysteine sequence YRECCPGCCMWR fused to the N terminus of green fluorescent protein (GFP) self-aggregates upon biarsenical labeling in living cells or in vitro. Such dye-triggered aggregates form temperature-dependent morphologies and are dispersed by photobleaching. Fusion of the biarsenical aggregating GFP to the regulatory (R) or catalytic (C) subunit of PKA traps intact holoenzyme in compact fluorescent puncta upon biarsenical labeling. Contrary to the classical model of PKA activation, elevated cAMP does not allow RIalpha and Calpha to diffuse far apart unless the pseudosubstrate inhibitor PKI or locally concentrated substrate is coexpressed. However, RIIalpha releases Calpha upon elevated cAMP alone, dependent on autophosphorylation of the RIIalpha inhibitory domain. DAKAP1alpha overexpression induced R and C outer mitochondrial colocalization and showed similar regulation. Overall, effective separation of type I PKA is substrate dependent, whereas type II PKA dissociation relies on autophosphorylation.
Growth and Properties of Lattice Matched GaAsSbN Epilayer on GaAs for Solar Cell Applications
NASA Technical Reports Server (NTRS)
Bharatan, Sudhakar; Iyer, Shanthi; Matney, Kevin; Collis, Ward J.; Nunna Kalyan; Li, Jia; Wu, Liangjin; McGuire, Kristopher; McNeil, Laurie E.
2006-01-01
The growth and properties of GaAsSbN single quantum wells (SQWs) are investigated in this work. The heterostructures were grown on GaAs substrates in an elemental solid source molecular beam epitaxy (MBE) system assisted with a RF plasma nitrogen source. A systematic study has been carried out to determine the influence of various growth conditions, such as the growth temperature and the source shutter-opening sequence, on the quality of the grown layers and the incorporation of N and Sb. The effects of ex situ and in situ annealing under As overpressure on the optical properties of the layers have also been investigated. Substrate temperature in the range of 450-470 C was found to be optimum. Simultaneous opening of the source shutters was found to yield sharper QW interfaces. N and Sb incorporations were found to depend strongly upon substrate temperatures and source shutter opening sequences. A significant increase in PL intensity with a narrowing of PL line shape and blue shift in emission energy were observed on annealing the GaAsSbN/GaAs SQW, with in situ annealing under As overpressure providing better results, compared to ex situ annealing.
Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry
Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.; ...
2017-10-20
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less
Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less
Characterization and purification of polyphenol oxidase from artichoke (Cynara scolymus L.).
Dogan, Serap; Turan, Yusuf; Ertürk, Hatibe; Arslan, Oktay
2005-02-09
In this study, the polyphenol oxidase (PPO) of artichoke (Cynara scolymus L.) was first purified by a combination of (NH(4))(2)SO(4) precipitation, dialysis, and a Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity column. At the end of purification, 43-fold purification was achieved. The purified enzyme migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis indicated that PPO had a 57 kDa molecular mass. Second, the contents of total phenolic and protein of artichoke head extracts were determined. The total phenolic content of artichoke head was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 425 mg 100 g(-1) on a fresh weight basis. Protein content was determined according to Bradford method. Third, the effects of substrate specificity, pH, temperature, and heat inactivation were investigated on the activity of PPO purified from artichoke. The enzyme showed activity to 4-methylcatechol, pyrogallol, catechol, and L-dopa. No activity was detected toward L-tyrosine, resorsinol, and p-cresol. According to V(max)/K(m) values, 4-methylcatechol (1393 EU min(-1) mM(-1)) was the best substrate, followed by pyrogallol (1220 EU min(-1) mM(-1)), catechol (697 EU min(-1) mM(-1)), and L-dopa (102 EU min(-1) mM(-1)). The optimum pH values for PPO were 5.0, 8.0, and 7.0 using 4-methylcatechol, pyrogallol, and catechol as substrate, respectively. It was found that optimum temperatures were dependent on the substrates studied. The enzyme activity decreased due to heat denaturation of the enzyme with increasing temperature and inactivation time for 4-methylcatechol and pyrogallol substrates. However, all inactivation experiments for catechol showed that the activity of artichoke PPO increased with mild heating, reached a maximum, and then decreased with time. Finally, inhibition of artichoke PPO was investigated with inhibitors such as L-cysteine, EDTA, ascorbic acid, gallic acid, d,L-dithiothreitol, tropolone, glutathione, sodium azide, benzoic acid, salicylic acid, and 4-aminobenzoic acid using 4-methylcatechol, pyrogallol, and catechol as substrate. The presence of EDTA, 4-aminobenzoic acid, salicylic acid, gallic acid, and benzoic acid did not cause the inhibition of artichoke PPO. A competitive-type inhibition was obtained with sodium azide, L-cysteine, and d,L-dithiothreitol inhibitors using 4-methylcatechol as substrate; with L-cysteine, tropolone, d,L-dithiothreitol, ascorbic acid, and sodium azide inhibitors using pyrogallol as substrate; and with L-cysteine, tropolone, d,L-dithiotreitol, and ascorbic acid inhibitors using catechol as a substrate. A mixed-type inhibition was obtained with glutathione inhibitor using 4-methylcatechol as a substrate. A noncompetitive inhibition was obtained with tropolone and ascorbic acid inhibitors using 4-methylcatechol as substrate, with glutathione inhibitor using pyrogallol as substrate, and with glutathione and sodium azide inhibitors using catechol as substrate. From these results, it can be said that the most effective inhibitor for artichoke PPO is tropolone. Furthermore, it was found that the type of inhibition depended on the origin of the PPO studied and also on the substrate used.
Dynamic Model for Life History of Scyphozoa
Xie, Congbo; Fan, Meng; Wang, Xin; Chen, Ming
2015-01-01
A two-state life history model governed by ODEs is formulated to elucidate the population dynamics of jellyfish and to illuminate the triggering mechanism of its blooms. The polyp-medusa model admits trichotomous global dynamic scenarios: extinction, polyps survival only, and both survival. The population dynamics sensitively depend on several biotic and abiotic limiting factors such as substrate, temperature, and predation. The combination of temperature increase, substrate expansion, and predator diminishment acts synergistically to create a habitat that is more favorable for jellyfishes. Reducing artificial marine constructions, aiding predator populations, and directly controlling the jellyfish population would help to manage the jellyfish blooms. The theoretical analyses and numerical experiments yield several insights into the nature underlying the model and shed some new light on the general control strategy for jellyfish. PMID:26114642
Dynamic Model for Life History of Scyphozoa.
Xie, Congbo; Fan, Meng; Wang, Xin; Chen, Ming
2015-01-01
A two-state life history model governed by ODEs is formulated to elucidate the population dynamics of jellyfish and to illuminate the triggering mechanism of its blooms. The polyp-medusa model admits trichotomous global dynamic scenarios: extinction, polyps survival only, and both survival. The population dynamics sensitively depend on several biotic and abiotic limiting factors such as substrate, temperature, and predation. The combination of temperature increase, substrate expansion, and predator diminishment acts synergistically to create a habitat that is more favorable for jellyfishes. Reducing artificial marine constructions, aiding predator populations, and directly controlling the jellyfish population would help to manage the jellyfish blooms. The theoretical analyses and numerical experiments yield several insights into the nature underlying the model and shed some new light on the general control strategy for jellyfish.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2000-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
NASA Technical Reports Server (NTRS)
Oh, J. E.; Bhattacharya, P. K.; Chen, Y. C.; Tsukamoto, S.
1989-01-01
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures.
Temperature dependent exchange bias training effect in single-crystalline BiFeO{sub 3}/Co bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, M. C.; You, B.; Tu, H. Q.
2015-05-07
Single-crystalline BiFeO{sub 3} (BFO)/Co bilayers were prepared by combined pulsed laser deposition and magnetron sputtering on (001) SrTiO{sub 3} substrates. Exchange bias (EB) and accompanying training effect have been studied as a function of temperature (T) between 5 K and 300 K. A non-monotonic exchange field variation with sharp increase below 100 K has been observed. In the meanwhile, strong training effect was recorded when T < 100 K and it weakens monotonically with increasing T up to 300 K. These temperature dependent EB and training effect may be caused by the uncompensated spins in both the interfacial spin-glass (SG) phase at low temperature and the antiferromagneticmore » BFO layer at higher temperature. The low temperature EB training results can be well fitted by a modified Binek's model considering asymmetric changes of the pinning SG spins at the descending and the ascending branches.« less
Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates
NASA Astrophysics Data System (ADS)
de Jong, M. M.
2013-01-01
In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the nanocrystalline silicon (nc-Si) regime. In the nc-Si regime, the crystalline fraction can be further controlled by changing the power input into the plasma. With these layers, a-Si thin film solar cells were fabricated, on glass and PC substrates. The adverse effect of the low temperature growth on the photoactive material is further mitigated by using thinner silicon layers, which can deliver a good current only with an adequate light trapping technique. We have simulated and experimentally tested three light trapping techniques, using embossed structures in PC substrates and random structures on glass: regular pyramid structures larger than the wavelength of light (micropyramids), regular pyramid structures comparable to the wavelength of light (nanopyramids) and random nano-textures (Asahi U-type). The use of nanostructured polycarbonate substrates results in initial conversion efficiencies of 7.4%, compared to 7.6% for cells deposited under identical conditions on Asahi U-type glass. The potential of manufacturing thin film solar cells at processing temperatures lower than 130oC is further illustrated by obtained results on texture-etched aluminium doped zinc-oxide (ZnO:Al) on glass: we achieved 6.9% for nc-Si cells using a very thin absorber layer of only 750 nm, and by combining a-Si and nc-Si cells in tandem solar cells we reached an initial conversion efficiency of 9.5%.
Temperature dependent lattice constant of InSb above room temperature
NASA Astrophysics Data System (ADS)
Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove
2013-10-01
Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).
NASA Technical Reports Server (NTRS)
Miller, Kevin H.; Quijada, Manuel A.; Leviton, Doug
2015-01-01
The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras with seven optical elements each that include various types of Ohara glass substrates. The successful implementation both panchromatic and thermal lens assembly designs for these cameras requires a fairly accurate (up to 1E-6) knowledge of the temperature and wavelength dependence of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 um and temperature range of 110-310 K for the following Ohara glasses: S-LAH55, S-LAH55V, SLAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for the title substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d lambda) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14, will be presented.
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl
2015-04-01
The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of
Method for removing semiconductor layers from salt substrates
Shuskus, Alexander J.; Cowher, Melvyn E.
1985-08-27
A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.
Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Johnson, Bradley R.; Sundaram, S. K.
2006-12-01
Nanowire Formation in Arsenic Trisulfide Brian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract: Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule. Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment. Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). Surface topography and chemistrymore » of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space. Thermodyamic properties (available from literature) of this system are also incorporated in this map. Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices. Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.« less
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
NASA Astrophysics Data System (ADS)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
NASA Astrophysics Data System (ADS)
Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.
2018-02-01
The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.
Superconducting properties of nano-sized SiO2 added YBCO thick film on Ag substrate
NASA Astrophysics Data System (ADS)
Almessiere, Munirah Abdullah; Al-Otaibi, Amal lafy; Azzouz, Faten Ben
2017-10-01
The microstructure and the flux pinning capability of SiO2-added YBa2Cu3Oy thick films on Ag substrates were investigated. A series of YBa2Cu3Oy thick films with small amounts (0-0.5 wt%) of nano-sized SiO2 particles (12 nm) was prepared. The thicknesses of the prepared thick films was approximately 100 µm. Phase analysis by x-ray diffraction and microstructure examination by scanning electron microscopy were performed and the critical current density dependence on the applied magnetic field Jc(H) and electrical resistivity ρ(T) were investigated. The magnetic field and temperature dependence of the critical current density (Jc) was calculated from magnetization measurements using Bean's critical state model. The results showed that the addition of a small amount (≤0.02 wt%) of SiO2 was effective in enhancing the critical current densities in the applied magnetic field. The sample with 0.01 wt% of added SiO2 exhibited a superconducting characteristics under an applied magnetic field for a temperature ranging from 10 to 77 K.
Stress-Engineered Quantum Dots for Multispectral Infra-Red Detector Arrays
2006-06-30
moment in self-assembled InAs/GaAs(001) QDs. Simultaneously, the interband dipole moment is also determined [publication 25]. 10. Observed temperature... dependence of intraband transition induced dipole moment in self-assembled InAs/GaAs(001) QDs [unpublished]. 11. Utilized cathodoluminescence...001) QDs than that of GaAs capped InAs/GaAs(0O1) QDs [publications 8, 11]. 12. Studied the substrate orientation dependence of the formation of InSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, A. V.; Drozdov, M. N.; Novikov, A. V., E-mail: anov@ipmras.ru
2015-11-15
The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures withmore » a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.« less
Superconductivity in BiPbCaSrCuO thin films
NASA Astrophysics Data System (ADS)
Fu, S. M.; Yang, H. C.; Chen, F. C.; Horng, H. E.; Jao, J. C.
1989-12-01
Thin films of BiPbCaSrCuO sample were prepared by RF sputtering from sintered ceramic targets. Single crystal of MgO(100) was selected as substrate. The sputtering was held at room temperature. Different annealing conditions were carried out to obtain optimum conditions. High temperature resistivity was measured in air to study the thermodynamic reaction of the sintered films. An resistivity anomaly was found in the first heating cycle which suggests a thermodynamic reaction. A temperature dependence of I c was measured to study the coupling of grains in the granular films in different temperature ranges and the results will be discussed.
Study of the photovoltaic effect in thin film barium titanate
NASA Technical Reports Server (NTRS)
Grannemann, W. W.; Dharmadhikari, V. S.
1982-01-01
Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.
NASA Astrophysics Data System (ADS)
Stafford, B. H.; Sieger, M.; Ottolinger, R.; Meledin, A.; Strickland, N. M.; Wimbush, S. C.; Van Tendeloo, G.; Hühne, R.; Schultz, L.
2017-05-01
We grow BaHfO3 (BHO) nanorods in REBa2Cu3O7-x (REBCO, RE: Gd or Y) thin films on metal tapes coated with the inclined substrate deposited (ISD)-MgO template by both electron beam physical vapour deposition and pulsed laser deposition. In both cases the nanorods are inclined by an angle of 21°-29° with respect to the sample surface normal as a consequence of the tilted growth of the REBCO film resulting from the ISD-MgO layer. We present angular critical current density (J c) anisotropy as well as field- and temperature-dependant J c data of the BHO nanorod-containing GdBCO films demonstrating an increase in J c over a wide range of temperatures between 30 and 77 K and magnetic fields up to 8 T. In addition, we show that the angle of the peak in the J c anisotropy curve resulting from the nanorods is dependent both on temperature and magnetic field. The largest J c enhancement from the addition of the nanorods was found to occur at 30 K, 3 T, resulting in a J c of 3.0 MA cm-2.
Simulation, design and fabrication of a planar micro thermoelectric generator
NASA Astrophysics Data System (ADS)
Pelegrini, S.; Adami, A.; Collini, C.; Conci, P.; Lorenzelli, L.; Pasa, A. A.
2013-05-01
This study describes the design, simulation, and micro fabrication of a micro thermoelectric generator (μTEG) based on planar technology using constantan (CuNi) and copper (Cu) thermocouples deposited electrochemically (ECD) on silicon substrate. The present thin film technology can be manufactured into large area and also on flexible substrate with low cost of production and can be used to exploit waste heat from equipments or hot surfaces in general. In the current implementation, the silicon structure has been designed and optimized with analytical models and FE simulations in order to exploit the different thermal conductivity of silicon and air gaps to produce the maximum temperature difference on a planar surface. The results showed that a temperature difference of 10K across the structure creates a temperature difference of 5.3K on the thermocouples, thus providing an efficiency of thermal distribution up to 55%, depending on the heat convection at the surface. Efficiency of module has been experimentally tested under different working condition, showing the dependence of module output on the external heat exchange (natural and forced convection). Maximum generated potential at 6m/s airflow is 5.7V/m2 K and thermoelectric efficiency is 1.9μW K-2 m-2.
Effect of temperature on series resistance of organic/inorganic semiconductor junction diode
NASA Astrophysics Data System (ADS)
Tripathi, Udbhav; Kaur, Ramneek; Bharti, Shivani
2016-05-01
The paper reports the fabrication and characterization of CuPc/n-Si organic/inorganic semiconductor diode. Copper phthalocyanine, a p-type organic semiconductor layer has been deposited on Si substrate by thermal evaporation technique. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Temperature dependence of the schottky diode parameters has been studied and discussed in the temperature range, 303 K to 353 K. Series resistance of the diode has been determined using Cheung's function method. Series resistance decreases with increase in temperature. The large value of series resistance at low temperature has been explained on the basis of barrier inhomogeneities in the diode.
NASA Astrophysics Data System (ADS)
Basu, Raktima; Dhara, Sandip
2018-04-01
Vanadium is a transition metal with multiple oxidation states and V2O5 is the most stable form among them. Besides catalysis, chemical sensing, and photo-chromatic applications, V2O5 is also reported to exhibit a semiconductor to metal transition (SMT) at a temperature range of 530-560 K. Even though there are debates in using the term "SMT" for V2O5, the metallic behavior above the transition temperature and its origin are of great interest in the scientific community. In this study, V2O5 nanostructures were deposited on a SiO2/Si substrate by the vapour transport method using Au as a catalyst. Temperature dependent electrical measurement confirms the SMT in V2O5 without any structural change. Temperature dependent photoluminescence analysis proves the appearance of oxygen vacancy related peaks due to reduction of V2O5 above the transition temperature, as also inferred from temperature dependent Raman spectroscopic studies. The newly evolved defect levels in the V2O5 electronic structure with increasing temperature are also understood from the downward shift of the bottom most split-off conduction bands due to breakdown of pdπ bonds leading to metallic behavior in V2O5 above the transition temperature.
NASA Astrophysics Data System (ADS)
Guillén-Santiago, A.; Olvera, M. De La L.; Maldonado, A.; Asomoza, R.; Acosta, D. R.
2004-04-01
Conductive and highly transparent fluorine-doped zinc oxide (ZnO:F) thin films were deposited onto glass substrates by the chemical spray technique, using zinc acetate and hydrofluoric acid as precursors. Electrical, structural, morphological and optical characteristics were analyzed as a function of the ageing-time of the starting solution, alcoholic solvent type (methanol or ethanol) and the substrate temperature. The results show that these variables play a crucial role on the physical properties measured. The growth rates obtained were of 3 nm/s, showing that the chemical species involved are adequate for the film growth. The effect of the solution ageing-time on the electrical properties was monitored along three weeks. A gradual resistivity decrease with the ageing-time was observed, until a minimum value is reached, at 7 or 9 days depending on the alcohol employed. Films deposited after this time have resistivity values slightly higher. All the films were polycrystalline, with a hexagonal wurtzite structure whose preferential growth is strongly dependent on the deposition variables. Under optimal deposition conditions, ZnO:F films with a high transmittance in the visible spectrum (>85%), resistivity as low as 7 × 10-3 cm and maximum electronic mobility around of 4 cm2/(V-s) were obtained.
Christou, Konstantin; Knorr, Inga; Ihlemann, Jürgen; Wackerbarth, Hainer; Beushausen, Volker
2010-12-07
The fabrication of SERS-active substrates, which offer high enhancement factors as well as spatially homogeneous distribution of the enhancement, plays an important role in the expansion of surface-enhanced Raman scattering (SERS) spectroscopy to a powerful, quantitative, and noninvasive measurement technique for analytical applications. In this paper, a novel method for the fabrication of SERS-active substrates by laser treatment of 20, 40, and 60 nm thick gold and of 40 nm thick silver films supported on quartz glass is presented. Single 308 nm UV-laser pulses were applied to melt the thin gold and silver films. During the cooling process of the noble metal, particles were formed. The particle size and density were imaged by atomic force microscopy. By varying the fluence, the size of the particles can be controlled. The enhancement factors of the nanostructures were determined by recording self-assembled monolayers of benzenethiol. The intensity of the SERS signal from benzenethiol is correlated to the mean particle size and thus to the fluence. Enhancement factors up to 10(6) with a high reproducibility were reached. Finally we have analyzed the temperature dependence of the SERS effect by recording the intensity of benzenethiol vibrations from 300 to 120 K. The temperature dependence of the SERS effect is discussed with regard to the metal properties.
NASA Astrophysics Data System (ADS)
Ren, Yanzhi; Asanuma, Morito; Iimura, Ken-ichi; Kato, Teiji
2001-01-01
Temperature-variable grazing incidence reflection absorption (GIR) spectra were recorded for the single monolayer of [CF3(CF2)m(CH2)nCOO)]2Cd [(m,n)=(7,10), (7,16), (7,22), (5,22), and (3,22)], transferred from aqueous Cd2+ subphase to gold- and aluminum-evaporated glass substrates. The spectra reveal that these monolayers have better thermal stability on Al substrates than on Au. An "interaction band" is identified at 1484˜1480 cm-1, due to the νs(COO-) mode of carboxylate headgroups in ionic bonding with the Al surface. It is found that both the van der Waals interaction between the trans zig-zag hydrocarbon chains and the overlapping interaction between the fluorocarbon helixes are responsible for the systematic variation of the monolayer thermal behavior with (m,n). The thermal behavior of a single monolayer of cadmium stearate, serving as a model system, has been investigated to further confirm the spectral interpretation about the partially fluorinated monolayer. In addition, temperature-dependent friction measurements show that the single monolayers of (m,n)=(7,16), (7,22), (5,22), and (3,22) are potential molecular lubricants that can be used in the range of 25˜140 °C.
Measurement and thermal modeling of sapphire substrate temperature at III-Nitride MOVPE conditions
Creighton, J. Randall; Coltrin, Michael E.; Figiel, Jeffrey J.
2017-04-01
Here, growth rates and alloy composition of AlGaN grown by MOVPE is often very temperature dependent due to the presence of gas-phase parasitic chemical processes. These processes make wafer temperature measurement highly important, but in fact such measurements are very difficult because of substrate transparency in the near- IR (~900 nm) where conventional pyrometers detect radiation. The transparency problem can be solved by using a mid-IR pyrometer operating at a wavelength (~7500 nm) where sapphire is opaque. We employ a mid- IR pyrometer to measure the sapphire wafer temperature and simultaneously a near-IR pyrometer to measure wafer pocket temperature, whilemore » varying reactor pressure in both a N 2 and H 2 ambient. Near 1300 °C, as the reactor pressure is lowered from 300 Torr to 10 Torr the wafer temperature drops dramatically, and the ΔT between the pocket and wafer increases from ~20 °C to ~250 °C. Without the mid-IR pyrometer the large wafer temperature change with pressure would not have been noted. In order to explain this behavior we have developed a quasi-2D thermal model that includes a proper accounting of the pressure-dependent thermal contact resistance, and also accounts for sapphire optical transmission. The model and experimental results demonstrate that at most growth conditions the majority of the heat is transported from the wafer pocket to the wafer via gas conduction, in the free molecular flow limit. In this limit gas conductivity is independent of gap size but first order in pressure, and can quantitatively explain results from 20 to 300 Torr. Further analysis yields a measure of the thermal accommodation coefficients; α(H 2) =0.23, α(N 2) =0.50, which are in the range typically measured.« less
Secundo, Francesco; Russo, Consiglia; Giordano, Antonietta; Carrea, Giacomo; Rossi, Mosè; Raia, Carlo A
2005-08-23
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.
Distributed Capacitive Sensor for Sample Mass Measurement
NASA Technical Reports Server (NTRS)
Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey
2011-01-01
Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass substrate. The fabricated proof-of-concept devices have successfully demonstrated tens to hundreds of picofarads of capacitance change when a simulated sample (100 g to 500 g) is placed on the membrane.
Adaption of a microwave plasma source for low temperature diamond deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulczynski, M.; Reinhard, D.K.; Asmussen, J.
1996-12-31
This report describes the adaption of a microwave plasma reactor for low temperature diamond deposition. The reactor is of a resonant cavity design. Three approaches have been taken to establish plasma conditions for diamond deposition on substrates which are in the range of 450 C to 550 C. In the first, the substrate is heated only by the plasma and the source is operated at pressures on the order of 10 torr, such that the volumetric power density is sufficiently low to achieve these temperatures. In the second, the plasma pressure and microwave input power were reduced and a substratemore » heater was used to maintain the desired deposition temperatures. In the third approach, the plasma pressure and microwave power were increased and a substrate cooler was used to keep the substrate temperature in the desired range. Reactor performance and deposition results will be described for the three configurations. For the plasma heated substrate assembly, substrate dimensions were up to 10 cm diameter. For the heated and cooled substrate assemblies, substrate dimensions were up to 7.5 cm diameter. Deposition results on a variety of substrates will be reported including low-temperature substrates such as borosilicate glass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean
Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.
Canion, Andy; Overholt, Will A; Kostka, Joel E; Huettel, Markus; Lavik, Gaute; Kuypers, Marcel M M
2014-10-01
The temperature dependency of denitrification and anaerobic ammonium oxidation (anammox) rates from Arctic fjord sediments was investigated in a temperature gradient block incubator for temperatures ranging from -1 to 40°C. Community structure in intact sediments and slurry incubations was determined using Illumina SSU rRNA gene sequencing. The optimal temperature (Topt ) for denitrification was 25-27°C, whereas anammox rates were optimal at 12-17°C. Both denitrification and anammox exhibited temperature responses consistent with a psychrophilic community, but anammox bacteria may be more specialized for psychrophilic activity. Long-term (1-2 months) warming experiments indicated that temperature increases of 5-10°C above in situ had little effect on the microbial community structure or the temperature response of denitrification and anammox. Increases of 25°C shifted denitrification temperature responses to mesophilic with concurrent community shifts, and anammox activity was eliminated above 25°C. Additions of low molecular weight organic substrates (acetate and lactate) caused increases in denitrification rates, corroborating the hypothesis that the supply of organic substrates is a more dominant control of respiration rates than low temperature. These results suggest that climate-related changes in sinking particulate flux will likely alter rates of N removal more rapidly than warming. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes
NASA Astrophysics Data System (ADS)
Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.
2015-02-01
A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.
Hedhili, K; Dimitrov, K; Vauchel, P; Sila, A; Chataigné, G; Dhulster, P; Nedjar, N
2015-10-01
Bovine hemoglobin is the major component of the cruor (slaughterhouse by-product) and can be considered as an important source of active peptides that could be obtained by pepsic hydrolysis. The kinetics of appearance and disappearance of several antibacterial peptides from α 1-32 family during hydrolysis of synthesized α 1-32 peptide, of purified bovine hemoglobin and of cruor was studied, and reaction scheme for the hydrolysis of α 1-32 family peptides from these three sources was determined. On this basis, a mathematical model was proposed to predict the concentration of each peptide of interest of this family depending on hydrolysis time, and also on temperature (in the range 15-37 °C), pH (in the range 3.5-5.5) and enzyme to substrate ratio (in the range 1/50-1/200 for the synthesized peptide and 1/5-1/20 for purified bovine hemoglobin and cruor). Apparent rate constants of reactions were determined by applying the model on a set of experimental data and it was shown that they depended on the temperature according to Arrhenius's law, that their dependence on the pH was linear, and that enzyme to substrate ratio influence was limited (in the studied range).
The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.
1995-01-01
We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.
Dendrochronology of strain-relaxed islands.
Merdzhanova, T; Kiravittaya, S; Rastelli, A; Stoffel, M; Denker, U; Schmidt, O G
2006-06-09
We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes.
Fu, Xinmiao; Chang, Zengyi
2004-04-02
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.
Geum, Dae-Myeong; Kim, SangHyeon; Kang, SooSeok; Kim, Hosung; Park, Hwanyeol; Rho, Il Pyo; Ahn, Seung Yeop; Song, Jindong; Choi, Won Jun; Yoon, Euijoon
2018-03-05
In this paper, InAs 0.81 Sb 0.19 -based hetero-junction photovoltaic detector (HJPD) with an In 0.2 Al 0.8 Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs 0.81 Sb 0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm 2 /V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.
Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp; Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Tok, Engsoon
2013-09-01
Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the samemore » epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.« less
Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal
NASA Astrophysics Data System (ADS)
Cañeda-Guzmán, E.; Moreno-Razo, J. A.; Díaz-Herrera, E.; Sambriski, E. J.
2014-04-01
Phase diagrams for Gay-Berne (GB) fluids were obtained from molecular dynamics simulations for GB(2, 5, 1, 2) (i.e. short mesogens) and GB(3, 5, 1, 2) (i.e. long mesogens), which yield isotropic, nematic, and smectic-B phases. The long-mesogen fluid also yields the smectic-A phase. Ordered phases of the long-mesogen fluid form at higher temperatures and lower densities when compared to those of the short-mesogen fluid. The effect of confinement under weak and strong substrate couplings in slab geometry was investigated. Compared to the bulk, the isotropic-nematic transition does not shift in temprature significantly for the weakly coupled substrate in either mesogen fluid. However, the strongly coupled substrate shifts the transition to lower temperature. Confinement induces marked stratification in the short-mesogen fluid. This effect diminishes with distance from the substrate, yielding bulk-like behaviour in the slab central region. Fluid stratification is very weak for the long-mesogen fluid, but the strongly coupled substrate induces 'smectisation', an ordering effect that decays with distance. Orientation of the fluid on the substrate depends on the mesogen. There is no preferred orientation in a plane parallel to the substrate for the weakly coupled case. In the strongly coupled case, the mesogen orientation mimics that of adjacent fluid layers. Planar anchoring is observed with a broad distribution of orientations in the weakly coupled case. In the strongly coupled case, the distribution leans toward planar orientations for the short-mesogen fluid, while a marginal preference for tilting persists in the long-mesogen fluid.
Temperature dependent dielectric behavior of sol-gel grown Y0.95Ca0.05MnO3/Si junction
NASA Astrophysics Data System (ADS)
Dhruv, Davit; Joshi, Zalak; Solanki, Sapana; Sagapariya, Khushal; Makwana, Pratima; Kansara, S. B.; Joshi, A. D.; Pandya, D. D.; Solanki, P. S.; Shah, N. A.
2017-05-01
We have successfully fabricated divalent doped Y0.95Ca0.05MnO3 film on (100) single crystalline n-type Si substrate by spin coating assisted chemical solution deposition technique. The X-ray diffraction (XRD) pattern of thin film depicts that the film has (h00) directional growth on substrate. Thin film possesses -1.4% compressive strain at the interface level and thin film thickness is found to be ˜ 78nm. Dielectric property of film has been studied by Agilent LCR meter from 100Hz to 2MHz applied field frequency at temperatures 150 to 300K. Real dielectric permittivity decreases and imaginary dielectric permittivity increases with increasing applied frequency. Furthermore, at low temperatures, higher dielectric is observed in all the frequency range studied and it decreases with increasing temperature due to thermal excitation induced increased charge carrier movements across the film lattice. The relaxation mechanism of Y0.95Ca0.05MnO3 film has been understood through cole-cole plots.
NASA Astrophysics Data System (ADS)
Bénédic, Fabien; Baudrillart, Benoit; Achard, Jocelyn
2018-02-01
In this paper we investigate a distributed antenna array Plasma Enhanced Chemical Vapor Deposition system, composed of 16 microwave plasma sources arranged in a 2D matrix, which enables the growth of 4-in. diamond films at low pressure and low substrate temperature by using H2/CH4/CO2 gas chemistry. A self-consistent two-dimensional plasma model developed for hydrogen discharges is used to study the discharge behavior. Especially, the gas temperature is estimated close to 350 K at a position corresponding to the substrate location during the growth, which is suitable for low temperature deposition. Multi-source discharge modeling evidences that the uniformity of the plasma sheet formed by the individual plasmas ignited around each elementary microwave source strongly depends on the distance to the antennas. The radial profile of the film thickness homogeneity may be thus linked to the local variations of species density. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tibeinea Minea.
Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.
2017-09-01
The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.
Molecular dynamics study about the effect of substrate temperature on a-Si:H structure
NASA Astrophysics Data System (ADS)
Luo, Yaorong; Gong, Hongyong; Zhou, Naigen; Huang, Haibin; Zhou, Lang
2018-01-01
Molecular dynamics simulation of the microstructure of hydrogenated amorphous silicon (a-Si:H) thin film with different substrate temperatures has been performed based on the Tersoff potential. The results showed that: the silicon thin film maintained amorphous structure in the substrate temperature range from 200 to 1000 K; high substrate temperature could smooth the surface. The first neighbour Voronoi polyhedron was dominated by the tetrahedron. When the substrate temperature increased, the content of tetrahedrons increased due to the transition from pentahedrons and hexahedrons to tetrahedrons. The change of the second neighbour Voronoi polyhedron could be classified into two cases: one case with low medium coordination number decreased as temperature increased, while the other one with high medium coordination number showed an opposite change tendency. It indicated that the local paracrystalline structure arrangement of the second neighbour atoms had been enhanced as substrate temperature rose.
Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.
1998-01-01
A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.
A metal-insulator transition study of VO 2 thin films grown on sapphire substrates
Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...
2017-12-15
In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less
Zinc nitride thin films: basic properties and applications
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.
2017-02-01
Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.
Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.
Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan
2017-02-10
This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Raoufi, Davood; Taherniya, Atefeh
2015-06-01
In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.
High count-rate study of two TES x-ray microcalorimeters with different transition temperatures
NASA Astrophysics Data System (ADS)
Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.
2017-10-01
We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.
Ferromagnetic order in epitaxially strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Fuchs, D.; Pinta, C.; Schwarz, T.; Schweiss, P.; Nagel, P.; Schuppler, S.; Schneider, R.; Merz, M.; Roth, G.; v. Löhneysen, H.
2007-04-01
LaCoO3 films grown epitaxially on ⟨001⟩ oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates by pulsed laser deposition exhibit ferromagnetic ordering below a critical temperature, Tc , of 85K . Polycrystalline films of LaCoO3 prepared in the same way did not show ferromagnetic order down to T≈5K , and their temperature dependent susceptibility was identical to that of bulk LaCoO3 . The ferromagnetism in epitaxial films is not simply a property of the surface region, rather it extends over the complete film thickness, as shown by the linear increase of the saturated magnetic moment with increasing film thickness. We discuss this surprising result in terms of epitaxial tensile strain via the properly chosen substrate inducing ferromagnetic order.
Production of Ochratoxins in Different Cereal Products by Aspergillus ochraceus1
Trenk, Hugh L.; Butz, Mary E.; Chu, Fun Sun
1971-01-01
The effects of temperature and length of incubation on ochratoxin A production in various substrates were studied. The optimal temperature for toxin production by Aspergillus ochraceus NRRL-3174 was found to be around 28 C. Very low levels of ochratoxin A are produced in corn, rice, and wheat bran at 4 C. The optimal time for ochratoxin A production depends on the substrate, ranging from 7 to 14 days at 28 C. Ochratoxin B and dihydroisocoumaric acid, i.e., one of the hydrolysis products of ochratoxin A, were produced in rice but at levels considerably lower than ochratoxin A. No ochratoxin C was produced in rice at 28 C. When added to rice cereal or oatmeal, the toxin was found to be very stable over prolonged storage and even to autoclaving for 3 hr. PMID:5564676
An Analytical Model of Joule Heating in Piezoresistive Microcantilevers
Ansari, Mohd Zahid; Cho, Chongdu
2010-01-01
The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever. PMID:22163433
An analytical model of joule heating in piezoresistive microcantilevers.
Ansari, Mohd Zahid; Cho, Chongdu
2010-01-01
The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.
Tribology Study of High-Technological Composite Coatings Applied Using High Velocity Oxy-Fuel
NASA Astrophysics Data System (ADS)
Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Ivanov, Pl; Kalichin, Zh
2018-01-01
In the work are studied the differential parameters of wear and wear resistance of high-tech composite coatings of powder superalloys with nickel matrix, WC-12Co and mixed compositions. Coatings were created and applied to a substrate of steel with a different flame velocity - 700 m/s and 1000 m/s without preheating the substrate and with preheating the substrate to 650° C. The wear is carried out with a "thumb-disk" tribotester under dry surface friction with fixed black corundum abrasive particles. Comparative results were obtained for the microstructure and texture of the pre- and post- friction coating, the porosity, roughness, hardness, the dependence of mass wear, the speed and wear intensity and the wear resistance of the coatings on the number of friction cycles. Influence of the flame rate and substrate temperature on wear resistance and differential wear parameters has been determined.
NASA Astrophysics Data System (ADS)
Mello, Kevin Edward
The partially ionized beam deposition system was utilized to deposit CoGesb2 thin films heteroepitaxially on GaAs(100) substrates in a conventional vacuum. The CoGesb2 films were structurally characterized using conventional 2theta diffraction, reflection X-ray pole figure analysis, and alpha particle channeling techniques. Three distinct crystallographic relationships of the CoGesb2 films to the GaAs(100) substrates were observed, dependent upon the substrate temperature and Gesp+ ion energy used during deposition. The CoGesb2(001) (100)sp°GaAs(100) (001) orientation, which has the smallest lattice mismatch to GaAs(100), was found to occur for depositions performed at a substrate temperature during deposition near 280sp°C with approximately 1160 eV Gesp+ ions. Lowering the substrate temperature or reducing the Gesp+ ion energy results in CoGesb2(100) orientation domination with CoGe2(100) (010)sp°GaAs(100) (001) and CoGesb2(100) (001)sp°GaAs(100) (001). Substrate temperature alone was seen to produce only the CoGesb2(100) orientation. For CoGesb2(001) films, additional energy was required from Gesp+ ions in the evaporant stream. Angular yield profiles for axial Hesp{++} ion channeling yielded values for the minimum yield, Ysb{min}, of 25% for the CoGesb2(001) orientation and 34% for the CoGesb2(100) orientation. The critical angle for channeling, Psisb{c}, was measured to be 1.0sp° for both orientations. Channeling theory was used to predict the minimum yield and critical angle for each orientation. The theoretical values agreed qualitatively with the experimentally measured values, and the theory correctly predicted the lower minimum yield for the CoGesb2(001) orientation. Annealing the films to allow for epitaxial grain growth resulted in orientation selection of CoGesb2(001) at the expense of CoGesb2(100), exposing CoGesb2(100) as a metastable orientation. The CoGesb2(001) films were stable up to 500sp°C, 30 minute anneals, showing no orientation changes and enhanced thermal stability over the CoGesb2(100) films. Current-voltage measurements of CoGesb2 contacts deposited on n-type GaAs(100) were used to determine the electrical nature of the different CoGesb2 orientations. The CoGesb2 (001) (100)sp°GaAs (100) (001) heterostructure deposited at a substrate temperature of 280sp°C with 1160 eV Gesp+ ions was found to exhibit Ohmic behavior, while contacts deposited at lower or higher substrate temperatures displayed non-Ohmic behavior.
Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu
2016-01-01
In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216
NASA Astrophysics Data System (ADS)
Choi, Jeongyong; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Duong, Anh Tuan; Cho, Sunglae
2018-03-01
Fe2SiO4 thin films have been grown on n-type, p-type and semi-insulating Si(100) substrates by molecular beam epitaxy. When Fe-O thin films were deposited on Si(100) substrate at 300 °C, the film reacted with Si, resulting in a Fe2SiO4 film because of the high reactivity between Fe and Si. The electrical resistance and Seebeck coefficient of Fe2SiO4 thin films grown were different in different doping states. On n-type and p-type Si(100), the electrical resistance decreased suddenly and increased again at 350 and 250 K, respectively, while on semi-insulating Si(100), it exhibited typical semiconducting resistance behavior. We observed similar crossovers at 350 and 250 K in temperature dependent Seebeck coefficients on n-type and p-type Si(100), respectively. These results suggest that the measured electrical and thermoelectric properties originate from Si substrate.
Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum
Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole
2015-01-01
Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062
Formation of graphene on BN substrate by vapor deposition method and size effects on its structure
NASA Astrophysics Data System (ADS)
Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo
2018-04-01
We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.
NASA Astrophysics Data System (ADS)
Benlakehal, D.; Belfedal, A.; Bouizem, Y.; Sib, J. D.; Chahed, L.; Zellama, K.
2016-12-01
The dependence on the temperature range, T, of the electronic transport mechanism in intrinsic and doped hydrogenated nanocrystalline silicon films, deposited by radiofrequency-magnetron sputtering at low substrate temperature, has been studied. Electrical conductivity measurements σ(T) have been conducted on these films, as a function of temperature, in the 93-450 K range. The analysis of these results clearly shows a thermally activated conduction process in the 273-450 K range which allows us to estimate the associated activation energy as well as the preexponential conductivity factor. While, in the lower temperature range (T < 273 K), a non-ohmic behavior is observed for the conductivity changes. The conductivity σ(T) presents a linear dependence on (T-1/4) , and a hopping mechanism is suggested to explain these results. By using the Percolation theory, further information can be gained about the density of states near the Fermi level as well as the range and the hopping energy.
Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng
2018-05-18
Rhenium diselenide (ReSe 2 ), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe 2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe 2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe 2 grown on Au foils, which present concurrent red shifts of E g -like and A g -like modes with increasing measurement temperature from 77-290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe 2 lattice. More importantly, the strong interaction of ReSe 2 with Au, with respect to that with SiO 2 /Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.
Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas
2015-12-19
Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Joe; Limelette, Patrice; Funakubo, Hiroshi
2015-12-14
We prepared V{sub 2}O{sub 3} thin films on C- or R-plane sapphire (Al{sub 2}O{sub 3}) substrates by a pulsed laser deposition method. X-ray diffraction analyses confirmed that single-phase V{sub 2}O{sub 3} films were epitaxially grown on both C- and R-planes under an Ar gas ambient of 2 × 10{sup −2} mbar at a substrate temperature of 873 K. Depending on the deposition conditions, c/a ratios at room temperature of (0001)-oriented V{sub 2}O{sub 3} films widely ranged from 2.79 to 2.88. Among them, the films of 2.81 ≤ c/a ≤ 2.84 showed complex metal (M)–insulator (I)–M transition during cooling from 300 to 10 K, while those of larger c/a ratiosmore » were accompanied by metallic properties throughout this temperature range. All the films on R-plane substrates underwent simple M-I transition at ∼150 K, which was more abrupt than the films on C-plane, whereas their c/a ratios were narrowly distributed. The distinct difference of M-I transition properties between C- and R-plane films is explained by the intrinsic a- and c-axes evolution through the transition from M to I phases.« less
Temperature dependence of the band gap of GaAsSb epilayers
NASA Astrophysics Data System (ADS)
Lukic-Zrnic, R.; Gorman, B. P.; Cottier, R. J.; Golding, T. D.; Littler, C. L.; Norman, A. G.
2002-12-01
We have optically characterized a series of GaAs1-xSbx epilayers (0.19
Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air
NASA Astrophysics Data System (ADS)
Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai
2018-05-01
ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.
Electrical Characterization of Graphite/InP Schottky Diodes by I-V-T and C-V Methods
NASA Astrophysics Data System (ADS)
Tiagulskyi, Stanislav; Yatskiv, Roman; Grym, Jan
2018-02-01
A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I-V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current-voltage and capacitance-voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.
Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.
Heim, Amy; Lundholm, Jeremy
2013-01-01
Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats. They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs. In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall. Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.
Meng, Lijian; Teixeira, Vasco; Dos Santos, M P
2013-02-01
ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT-500 degrees C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 degrees C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 degrees C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.
Substrate Specificity of Human Protein Arginine Methyltransferase 7 (PRMT7)
Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G.
2014-01-01
Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-NG-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. PMID:25294873
Sb-Te alloy nanostructures produced on a graphite surface by a simple annealing process
NASA Astrophysics Data System (ADS)
Kuwahara, Masashi; Uratsuji, Hideaki; Abe, Maho; Sone, Hayato; Hosaka, Sumio; Sakai, Joe; Uehara, Yoichi; Endo, Rie; Tsuruoka, Tohru
2015-08-01
We have produced Sb-Te alloy nanostructures from a thin Sb2Te3 layer deposited on a highly oriented pyrolytic graphite substrate using a simple rf-magnetron sputtering and annealing technique. The size, shape, and chemical composition of the structures were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectrometry (EDX), respectively. The shape of the nanostructures was found to depend on the annealing temperature; nanoparticles appear on the substrate by annealing at 200 °C, while nanoneedles are formed at higher temperatures. Chemical composition analysis has revealed that all the structures were in the composition of Sb:Te = 1:3, Te rich compared to the target composition Sb2Te3, probably due to the higher movability of Te atoms on the substrate compared with Sb. We also tried to observe the production process of nanostructures in situ using SEM. Unfortunately, this was not possible because of evaporation in vacuum, suggesting that the formation of nanostructures is highly sensitive to the ambient pressure.
LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping
2018-01-01
This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.
Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond
Hemawan, Kadek W.; Hemley, Russell J.
2015-08-03
Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C 2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculatedmore » from measurements of the C 2 Swan band (d 3Π → a 3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH 4 + H 2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.« less
NASA Technical Reports Server (NTRS)
2005-01-01
The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.
Antiferromagnetic Interlayer Exchange Coupling in All-Semiconducting EuS/PbS/EuS Trilayers
NASA Technical Reports Server (NTRS)
Smits, C. J. P.; Filip, A. T.; Swagten, H. J. M.; Koopmans, B.; deJonge, W. J. M.; Chernyshova, M.; Kowalczyk, L.; Grasza, K.; Szczerbakow, A.; Story, T.
2003-01-01
A comprehensive experimental study on the antiferromagnetic interlayer exchange coupling in high quality epitaxial all-semiconducting EuSPbSEuS trilayers is reported. The influence of substrates, the thickness of the non-magnetic PbS spacer layer, and of temperature, was investigated by means of SQUID magnetometry. In trilayers with a PbS thickness between 4 and 12 deg A the low temperature hysteresis loops showed the signature of antiferromagnetic coupling. The value of the interlayer exchange coupling energy was determined by simulating the data with a modified Stoner model, including Zeeman, anisotropy, and exchange coupling energies. An important observation was of a strong dependence of the interlayer exchange coupling energy on temperature, consistent with a power law dependence of the exchange coupling constant on the saturation magnetization of the EuS layers. While no theoretical description is readily available, we conjecture that the observed behavior is due to a dependence of the interlayer exchange coupling energy on the exchange splitting of the EuS conduction band.
NASA Astrophysics Data System (ADS)
Msolli, Sabeur; Kim, Heung Soo
2018-07-01
This framework assesses the mechanical behavior of some potential thin/thick metallization systems in use as either ohmic contacts for diamond semi-conductors or for metallization on copper double bounded ceramic substrates present in the next-generation power electronics packaging. The interesting and unique characteristic of this packaging is the use of diamond as a semi-conductor material instead of silicon to increase the lifetime of embedded power converters for use in aeronautical applications. Theoretically, such packaging is able to withstand temperatures of up to 300 °C without breaking the semi-conductor, provided that the constitutive materials of the packaging are compatible. Metallization is very important to protect the chips and substrates. Therefore, we address this issue in the present work. The tested metallization systems are Ni/Au, Ni/Cr/Au and Ni/Cr. These specific systems were studied since they can be used in conjunction with existing bonding technologies, including AuGe soldering, Ag-In Transient liquid Phase Bonding and silver nanoparticle sintering. The metallization is achieved via electrodeposition, and a mechanical test, consisting of a microtension technique, is carried out at room temperature inside a scanning electron microscopy chamber. The technique permits observations the cracks initiation and growth in the metallization to locate the deformation zones and identify the fracture mechanisms. Different failure mechanisms were shown to occur depending on the metallic layers deposited on top of the copper substrate. The density of these cracks depends on the imposed load and the involved metallization. These observations will help choose the metallization that is compatible with the particular bonding material, and manage mechanical stress due to thermal cycling so that they can be used as a constitutive component for high-temperature power electronics packaging.
NASA Astrophysics Data System (ADS)
Msolli, Sabeur; Kim, Heung Soo
2018-03-01
This framework assesses the mechanical behavior of some potential thin/thick metallization systems in use as either ohmic contacts for diamond semi-conductors or for metallization on copper double bounded ceramic substrates present in the next-generation power electronics packaging. The interesting and unique characteristic of this packaging is the use of diamond as a semi-conductor material instead of silicon to increase the lifetime of embedded power converters for use in aeronautical applications. Theoretically, such packaging is able to withstand temperatures of up to 300 °C without breaking the semi-conductor, provided that the constitutive materials of the packaging are compatible. Metallization is very important to protect the chips and substrates. Therefore, we address this issue in the present work. The tested metallization systems are Ni/Au, Ni/Cr/Au and Ni/Cr. These specific systems were studied since they can be used in conjunction with existing bonding technologies, including AuGe soldering, Ag-In Transient liquid Phase Bonding and silver nanoparticle sintering. The metallization is achieved via electrodeposition, and a mechanical test, consisting of a microtension technique, is carried out at room temperature inside a scanning electron microscopy chamber. The technique permits observations the cracks initiation and growth in the metallization to locate the deformation zones and identify the fracture mechanisms. Different failure mechanisms were shown to occur depending on the metallic layers deposited on top of the copper substrate. The density of these cracks depends on the imposed load and the involved metallization. These observations will help choose the metallization that is compatible with the particular bonding material, and manage mechanical stress due to thermal cycling so that they can be used as a constitutive component for high-temperature power electronics packaging.
Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas
2016-04-30
Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.
Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id
Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less
NASA Astrophysics Data System (ADS)
Deshpande, Anand; Inman, Ronald; Jursich, Gregory; Takoudis, Christos
2004-09-01
In this work thin films of hafnium oxide are deposited on Si(100) substrates by means of atomic layer deposition (ALD) using tetrakis(diethylamino)hafnium and water vapor at substrate temperatures of 250-350ºC. Our system capabilities include fast transient delivery of reactive fluids, real-time vapor phase detection (in situ tunable diode laser hygrometer), precursor thermochemical capabilities, and ppt level elemental analysis by inductive coupling plasma mass spectrometry. The composition, purity, and other properties of the films and resulting interfaces are determined using x-ray and Fourier transform infrared spectroscopies, Z-contrast imaging and electron energy loss spectroscopy in a scanning transmission electron microscope with A˚ scale resolution, and spectroscopic ellipsometry. The observed ALD rate is ~1.4 A˚ per cycle. The nonuniformity across the film is less than 4%. Negligible carbon contamination is found in the resulting stoichiometric films under all conditions studied. The pulse sequence was optimized to prevent disastrous particulate problems while still minimizing purge times. The film deposition is investigated as a function of substrate temperature and reagent pulsing characteristics. A mild inverse temperature dependence of the ALD rate is observed. The initial stage of the HfO2 growth is investigated in detail.
Metal-insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals
NASA Astrophysics Data System (ADS)
Yang, Z.; Ko, C.; Ramanathan, S.
2010-10-01
Phase transitions exhibited by correlated oxides could be of potential relevance to the emerging field of oxide electronics. We report on the synthesis of high-quality VO2 thin films grown on single crystal Ge(100) substrates by physical vapor deposition and their metal-insulator transition (MIT) properties. Thermally triggered MIT is demonstrated with nearly three orders of magnitude resistance change across the MIT with transition temperatures of 67 °C (heating) and 61 °C (cooling). Voltage-triggered hysteretic MIT is observed at room temperature at threshold voltage of ˜2.1 V for ˜100 nm thickness VO2 films. Activation energies for electron transport in the insulating and conducting states are obtained from variable temperature resistance measurements. We further compare the properties of VO2 thin films grown under identical conditions on Si(100) single crystals. The VO2 thin films grown on Ge substrate show higher degree of crystallinity, slightly reduced compressive strain, larger resistance change across MIT compared to those grown on Si. Depth-dependent x-ray photoelectron spectroscopy measurements were performed to provide information on compositional variation trends in the two cases. These results suggest Ge could be a suitable substrate for further explorations of switching phenomena and devices for thin film functional oxides.
Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. J. Miller
The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within ±3°C and ±5% RH. The temperature and humidity conditions used for thismore » test series were: 40°F/40%RH, ~70°F/20%RH (samples left on benchtop), 70°F/70%RH, 70°F/95%RH, 95°F/40%RH, 95°F/70%RH, and 95°F/95%RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a junked car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM) in an attempt to determine how the explosive was bound to the substrate.« less
Filled and Unfilled Temperature-Dependent Epoxy Resin Blends for Lossy Transducer Substrates
Eames, Matthew D.C.; Hossack, John A.
2016-01-01
In the context of our ongoing investigation of low-cost 2-dimensional (2-D) arrays, we studied the temperature-dependent acoustic properties of epoxy blends that could serve as an acoustically lossy backing material in compact 2-D array-based devices. This material should be capable of being machined during array manufacture, while also providing adequate signal attenuation to mitigate backing block reverberation artifacts. The acoustic impedance and attenuation of 5 unfilled epoxy blends and 2 filled epoxy blends—tungsten and fiberglass fillers—were analyzed across a 35°C temperature range in 5°C increments. Unfilled epoxy materials possessed an approximately linear variation of impedance and sigmoidal variation of attenuation properties over the range of temperatures of interest. An intermediate epoxy blend was fitted to a quadratic trend line with R2 values of 0.94 and 0.99 for attenuation and impedance, respectively. It was observed that a fiberglass filler induces a strong quadratic trend in the impedance data with temperature, which results in increased error in the characterization of attenuation and impedance. The tungsten-filled epoxy was not susceptible to such problems because a different method of fabrication was required. At body temperature, the tungsten-filled epoxy could provide a 44 dB attenuation of the round-trip backing block echo in our application, in which the center frequency is 5 MHz and the backing material is 1.1 mm thick. This is an 11 dB increase in attenuation compared with the fiberglass-filled epoxy in the context of our application. This work provides motivation for exploring the use of custom-made tungsten-filled epoxy materials as a substitute PCB-based substrate to provide electrical signal interconnect. PMID:19406716
NASA Technical Reports Server (NTRS)
Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.
2015-01-01
The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras and a Data Handling Unit (DHU) fitted with CCD detectors and associated electronics. Each camera consist of a lens assembly with seven optical elements that include various types of Ohara glass substrates. The successful implementation of a panchromatic and a thermal lens assembly design for these cameras requires a fairly accurate (up to 0.000001 (1e-6)) knowledge of the temperature- and wavelength-dependent of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 micrometers and temperature range of 110-300 K for the following Ohara glasses: S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for all these substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14 reported by Yamamuro et al. [Yamamuro et al., Opt. Eng. 45(8), 083401 (2006)], will be presented.
NASA Astrophysics Data System (ADS)
Sadoh, Taizoh; Kai, Yuki; Matsumura, Ryo; Moto, Kenta; Miyao, Masanobu
2016-12-01
To realize the advanced thin-film transistors (TFTs), high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigated the solid-phase crystallization of amorphous-GeSn films on insulating substrates under a wide range of Sn concentrations (0%-20%), film thicknesses (30-500 nm), and annealing temperatures (380-500 °C). Our results reveal that a Sn concentration close to the solid solubility of Sn in Ge (˜2%) is effective in increasing the grain-size of poly-GeSn. In addition, we discovered that the carrier mobility depends on the film thickness, where the mobilities are determined by the counterbalance between two different carrier scattering mechanisms. Here, vacancy-related defects dominate the carrier scattering near the insulating substrates (≤˜120 nm), and grain-size determined by bulk nucleation dominates the grain-boundary scattering of thick films (≥˜200 nm). Consequently, we obtained the maximum mobilities in samples with a Sn concentration of 2% and a film thickness of 200 nm. The effect of increasing the grain-size of poly-GeSn by lowering the annealing temperature was also clarified. By combining these results, a very high carrier mobility of 320 cm2/Vs was obtained at a low temperature of 380 °C. This mobility is about 2.5 times as high as previously reported data for Ge and GeSn films grown at low temperatures (≤500 °C). Our technique therefore opens up the possibility of high-speed TFTs for use in the next generation of electronics.
Vieira, Fabricio Rocha; Pecchia, John Andrew
2018-02-01
Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.
NASA Astrophysics Data System (ADS)
Zumbach, Volker; Schäfer, Jörg; Tobai, Jens; Ridder, Michael; Dreier, Thomas; Schaich, Thomas; Wolfrum, Jürgen; Ruf, Bernhard; Behrendt, Frank; Deutschman, Olaf; Warnatz, Jürgen
1997-10-01
A joint investigation has been undertaken of the gas-phase chemistry taking place in a hot-filament chemical vapor-deposition (HFCVD) process for diamond synthesis on silica surfaces by a detailed comparison of numerical modeling and experimental results. Molecular beam sampling using quadrupole mass spectroscopy and resonance-enhanced multiphoton ionization time of flight mass spectroscopy (REMPI-TOF-MS) has been used to determine absolute concentrations of stable hydrocarbons and radicals. Resulting species of a CH4/H2, a CH4/D2 (both 0.5%/99.5%) and a C2H2/H2 (0.25%/99.75%) feedgas mixture were investigated for varying filament and substrate temperatures. Spatially resolved temperature profiles at various substrate temperatures, obtained from coherent anti-Stokes Raman spectroscopy (CARS) of hydrogen, are used as input parameters for the numerical code to reproduce hydrogen atom, methyl radical, methane, acetylene, and ethylene concentration profiles in the boundary layer of the substrate. In addition, the concentration of vibrationally excited hydrogen is determined by CARS. Results reveal only qualitative agreement between measured data and simulations, concerning concentrations of stable species and radicals probed near the surface, on filament and substrate temperature dependence, respectively. Hydrogen and deuterium experiments show similar behaviour for all species. In the case of CH4 as feedgas the model describes measured concentration profiles of CH3, CH4, and C2H2 qualitatively well. Large differences between model and experiment occur for hydrogen atoms (factor of 2) and C2H4 (factor of 3). For acetylene as feedgas the model is not able to give any predictions because no conversion of C2H2 is seen in the model in contrast to the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, X.; Liang, J. H.; Chen, B. L.
2015-07-28
Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.
NASA Astrophysics Data System (ADS)
William, R. V.; Sivaprakash, P.; Marikani, A.; Reddy, V. Raghavendra; Arumugam, S.
2018-02-01
We present here the experimental results of BiFe0.75Cr0.25O3 (BFCO) thin film deposited by sol-gel spin coating technique directly on Pt(111)/Ti/SiO2/Si substrate at different thicknesses. The crystal structure of BFCO has been investigated using X-ray diffraction which acts as a double perovskite structure with high crystallinity obtained at 400 °C. Further microscopic studies such as scanning electron microscope (SEM) with EDAX, transmission electron microscope (TEM) were also used in identifying the grain size and particle distribution over Pt (111) substrate. Atomic force microscopy (AFM) on the films at a different thickness (- 80 to - 250 nm) reveals that the surface roughness and other amplitude parameters increases with the increase in thickness signifying an increase of grain size with thickness. Increase in grain size and substrate clamping effect between the BFCO film and the substrate induces change in ferroelectric polarization and dielectric properties in relation to thickness effect. Similarly, decrease in magnetization from 9.241 emu/cm3 (- 80 nm) to 5.7791 emu/cm3 (- 250 nm) is attributed to the formation of anti-sites and anti-phase boundaries in the films. In addition, temperature dependence of magnetization reveals ferromagnetic super-exchange interaction of BFCO which is unlike the spin structure of antiferromagnetic BiFeO3.
Temperature-dependent settlement of planula larvae of two scyphozoan jellyfish from the North Sea
NASA Astrophysics Data System (ADS)
Gambill, Maria; McNaughton, Sadie L.; Kreus, Markus; Peck, Myron A.
2018-02-01
Exploring the settlement dynamics of the planula larvae is critical to understanding the establishment of polyp populations that can give rise to blooms of scyphozoan jellyfish. We conducted experiments to examine the effects of temperature on settlement of planulae of the scyphozoans Cyanea lamarckii and Chrysaora hysoscella, two jellyfish commonly encountered within the North Sea. When provided immediate access to substrate, larvae of C. lamarckii were able to settle at each of 12 temperatures between 9 and 27 °C. Most settlement occurred within the first five days and warmer temperatures were not only associated with decreased time to settlement but also increased settlement success. When not allowed access to substrate and maintained in the water column, planula larvae remained competent to settle for 21, 21 and 14 days at 11.3, 13.4 and 19.4 °C, respectively. Based on these maximum times of competency, hydrodynamic model simulations suggested that the planula larvae of C. lamarckii released in May could be transported up to 100 km before settlement. A substrate choice experiment indicated that larvae of C. hysoscella settled in similar numbers onto PET, wood and concrete. Settlement was highest at 20 °C and a 12/12 light/dark regime and lower at 10 °C and 15 °C in total darkness. The results of all three experiments suggest that projected warming of the North Sea will not impede the settlement of planula larvae of resident C. lamarckii and C. hysoscella populations. Species- and/or population-specific differences may exist in the ecophysiology of planula larvae and additional experiments are needed to understand the mechanisms promoting the establishment of new benthic populations of polyps. That information, combined with process knowledge on the productivity of benthic polyps, will be needed to better understand and predict climate-dependent changes in the production of scyphozoans and other gelatinous plankton.
Wang, Jian; Yang, Pan; Wei, Xiaowei
2015-02-18
NiO nanocones decorated with ZnO nanothorns on NiO foil substrates are shown to be an ammonia sensor with excellent comprehensive performance, which could, in real-time, detect and monitor NH3 in the surrounding environment. Gas-sensing measurements indicate that assembling nanocones decorated with nanothorns on NiO foil substrate is an effective strategy for simultaneously promoting the stability, reproducibility, and sensitivity of the sensor, because the NiO foil substrate as a whole can quickly and stably transfer electrons between the gas molecules and the sensing materials and the large specific surface area of both nanocones and nanothorns provide good accessibility of the gas molecules to the sensing materials. Moreover, p-type NiO, with majority charge carriers of holes, has higher binding affinity for the electron-donating ammonia, resulting in a significant increase in selectivity toward NH3 over other organic gases. Compared with the NiO nanowires and pure NiO nanocones, the heterogeneous NiO nanocones/ZnO nanothorns exhibit less dependence on the temperature and humidity in response/recovery speed and sensitivity of sensing NH3. Our investigation indicates that two factors are responsible for reducing the dependence on the gas sensing characteristics under various environmental conditions. One is that the n-type ZnO nanothorns growing on the surface of nanocones, with majority charge carriers of electrons, speed up adsorption and desorption of gas molecules. The other is that the abundant cone-shaped and thornlike superstructures on the substrate are favorable for constructing a hydrophobic surface, which prevents the gas sensing material from being wetted.
Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots
NASA Astrophysics Data System (ADS)
Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs
We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.
Gallium nitride heterostructures on 3D structured silicon.
Fündling, Sönke; Sökmen, Unsal; Peiner, Erwin; Weimann, Thomas; Hinze, Peter; Jahn, Uwe; Trampert, Achim; Riechert, Henning; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas
2008-10-08
We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.
High free carrier concentration in p-GaN grown on AlN substrates
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Mita, Seiji; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Tweedie, James; Bryan, Isaac; Bryan, Zachary; Kirste, Ronny; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko
2017-07-01
A high free hole concentration in III-nitrides is important for next generation optoelectronic and high power electronic devices. The free hole concentration exceeding 1018 cm-3 and resistivity as low as 0.7 Ω cm are reported for p-GaN layers grown by metalorganic vapor phase epitaxy on single crystal AlN substrates. Temperature dependent Hall measurements confirmed a much lower activation energy, 60-80 mV, for p-GaN grown on AlN as compared to sapphire substrates; the lowering of the activation energy was due to screening of Coulomb potential by free carriers. It is also shown that a higher doping density (more than 5 × 1019 cm-3) can be achieved in p-GaN/AlN without the onset of self-compensation.
Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.
This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding whitemore » emission.« less
Tuning temperature and size of hot spots and hot-spot arrays.
Saïdi, Elika; Babinet, Nicolas; Lalouat, Loïc; Lesueur, Jérôme; Aigouy, Lionel; Volz, Sébastian; Labéguerie-Egéa, Jessica; Mortier, Michel
2011-01-17
By using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire. These results are in good agreement with numerical simulations, which provide dependences between silica-layer thickness and nanodot shape and temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Soylu, M.; Yazici, T.
2017-12-01
Undoped CdO films were prepared on glass substrate and p-type silicon wafer using sol-gel spin coating method. The structural and optical properties of the films were investigated as a function of the annealing temperature. X-ray diffraction (XRD) patterns reveal that the films are formed from CdO with cubic crystal structure and (1 1 1) preferred orientation. It is seen that good crystallinity is due to the high annealing temperature. The surface morphology of the CdO films was found to be depending on the annealing temperature, showing cauliflower like structure. Optical band gaps for annealing temperature of 250 °C and 450 °C were found to be 2.49 eV and 2.27 eV, respectively, showing a decrease with raising temperature. Optics parameters such as extinction coefficient, refractive index, and surface-volume energy loss were determined with spectrophotometric analysis as a function of annealing temperature. CdO/p-Si heterojunction structure showed weak rectifying behavior. The diode parameters were found to be depending on annealing temperature. The results are encouraging to get better conjunction with CdO thin film component at optimize annealing temperature.
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Xu, X. B.; Lei, Z. F.; Y Liao, X.; Wang, X.; Zeng, C.; En, Y. F.; Huang, Y.
2015-01-01
A metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-semiconductor capacitor was fabricated, and the temperature dependence of its electrical properties was investigated. Within the temperature range of 300-220 K, the maximum memory window is up to 1.26 V, and it could be attributed to a higher coercive field of the ferroelectric film at a lower temperature, which is induced by the deeper and more box-shaped potential well based on the defect-domain interaction model. The memory window decreases with increasing temperature from 300 to 400 K, and the larger sweep voltage leads to a smaller memory window at a higher temperature, which could be attributed to temperature-dependent polarization of the ferroelectric film and charge injection from an Si substrate of the capacitor. With the temperature increasing from 220 to 400 K, the leakage current density increases with temperature by about one order, and the corresponding conduction mechanism is discussed. The results could provide useful guidelines for design and application of ferroelectric memory.
Process optimization of ultrasonic spray coating of polymer films.
Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer
2013-06-11
In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.
Contact Angles and Surface Tension of Germanium-Silicon Melts
NASA Technical Reports Server (NTRS)
Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.
NASA Astrophysics Data System (ADS)
Yuan, Hao-Chih
This research focuses on developing high-performance single-crystal Si-based nanomembranes and high-frequency thin-film transistors (TFTs) using these nanomembranes on flexible plastic substrates. Unstrained Si or SiGe nanomembranes with thickness of several tens to a couple of hundred nanometers are derived from silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) and are subsequently transferred and integrated with flexible plastic host substrates via a one-step dry printing technique. Biaxial tensile-strained Si membranes that utilize elastic strain-sharing between Si and additionally grown SiGe thin films are also successfully integrated with plastic host substrates and exhibit predicted strain status and negligible density of dislocations. Biaxial tensile strain enhances electron mobility and lowers Schottky contact resistance. As a result, flexible TFTs built on the strained Si-membranes demonstrate much higher electron effective mobility and higher drive current than the unstrained counterpart. The dependence of drive current and transconductance on uniaxial tensile strain introducing by mechanical bending is also discussed. A novel combined "hot-and-cold" TFT fabrication process is developed specifically for realizing a wide spectrum of micro-electronics that can exhibit RF performance and can be integrated on low-temperature plastic substrate. The "hot" process that consists of ion implant and high-temperature annealing for desired doping type, profile, and concentration is realized on the bulk SOI/SGOI substrates followed by the "cold" process that includes room-temperature silicon-monoxide (SiO) deposition as gate dielectric layer to ensure the process compatibility with low-temperature, low-cost plastics. With these developments flexible Si-membrane n-type RF TFTs for analog applications and complementary TFTs for digital applications are demonstrated for the first time. RF TFTs with 1.5-mum channel length have demonstrated record-high f T and fmax values of 2.04 and 7.8 GHz, respectively. A small-signal equivalent circuit model study on the RF TFTs reveals the physics of how device layout affects fT and f max, which paves the way for further performance optimization and realization of integrated circuit on flexible substrate in the future.
NASA Astrophysics Data System (ADS)
Chowdhury, Ataur
Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.
NASA Astrophysics Data System (ADS)
Pongpaiboonkul, Suriyong; Kasa, Yumairah; Phokharatkul, Ditsayut; Putasaeng, Bundit; Hodak, Jose H.; Wisitsoraat, Anurat; Hodak, Satreerat K.
2016-11-01
Researchers have paid considerable attention to CaCu3Ti4O12 (CCTO) due to the colossal dielectric constant over a wide range of frequency and temperature. Despite of the growing number of works dealing with CCTO, there have been few studies of the role played by the substrate in inducing structural and dielectric effects of this material. In this work, highly-oriented CCTO thin films have been deposited on LaAlO3(100), NdGaO3(100) and NdGaO3(110) substrates using a sol-gel method. These single crystal substrates were chosen in terms of small lattice mismatch between CCTO and the substrate. The X-ray diffraction patterns showed that the CCTO film layers grow with different orientations depending upon the substrate used. We show that the preferred orientation of CCTO thin films can be manipulated to a high degree by growing it on specific crystal planes of the substrates without the use of buffer layers. Colossal dielectric constants are observed in our films which appear to correlate with the film crystallinity and preferred orientation.
Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors
2012-01-01
Background New products aimed at augmenting or replacing chemical insecticides must have operational profiles that include both high efficacy in reducing vector numbers and/or blocking parasite transmission and be long lasting following application. Research aimed at developing fungal spores as a biopesticide for vector control have shown considerable potential yet have not been directly assessed for their viability after long-term storage or following application in the field. Methods Spores from a single production run of the entomopathogenic fungi Beauveria bassiana were dried and then stored under refrigeration at 7°C. After 585 days these spores were sub-sampled and placed at either 22°C, 26°C or 32°C still sealed in packaging (closed storage) or in open beakers and exposed to the 80% relative humidity of the incubator they were kept in. Samples were subsequently taken from these treatments over a further 165 days to assess viability. Spores from the same production run were also used to test their persistence following application to three different substrates, clay, cement and wood, using a hand held sprayer. The experiments were conducted at two different institutes with one using adult female Anopheles stephensi and the other adult female Anopheles gambiae. Mosquitoes were exposed to the treated substrates for one hour before being removed and their survival monitored for the next 14 days. Assays were performed at monthly intervals over a maximum seven months. Results Spore storage under refrigeration resulted in no loss of spore viability over more than two years. Spore viability of those samples kept under open and closed storage was highly dependent on the incubation temperature with higher temperatures decreasing viability more rapidly than cooler temperatures. Mosquito survival following exposure was dependent on substrate type. Spore persistence on the clay substrate was greatest achieving 80% population reduction for four months against An. stephensi and for at least five months against Anopheles gambiae. Cement and wood substrates had more variable mortality with the highest spore persistence being two to three months for the two substrates respectively. Conclusions Spore shelf-life under refrigeration surpassed the standard two year shelf-life expected of a mosquito control product. Removal to a variety of temperatures under either closed or open storage indicated that samples sent out from refrigeration should be deployed rapidly in control operations to avoid loss of viability. Spore persistence following application onto clay surfaces was comparable to a number of chemical insecticides in common use. Persistence on cement and wood was shorter but in one assay still comparable to some organophosphate and pyrethroid insecticides. Optimized formulations could be expected to improve spore persistence still further. PMID:23098323
Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors.
Blanford, Simon; Jenkins, Nina E; Christian, Riann; Chan, Brian H K; Nardini, Luisa; Osae, Michael; Koekemoer, Lizette; Coetzee, Maureen; Read, Andrew F; Thomas, Matthew B
2012-10-25
New products aimed at augmenting or replacing chemical insecticides must have operational profiles that include both high efficacy in reducing vector numbers and/or blocking parasite transmission and be long lasting following application. Research aimed at developing fungal spores as a biopesticide for vector control have shown considerable potential yet have not been directly assessed for their viability after long-term storage or following application in the field. Spores from a single production run of the entomopathogenic fungi Beauveria bassiana were dried and then stored under refrigeration at 7°C. After 585 days these spores were sub-sampled and placed at either 22°C, 26°C or 32°C still sealed in packaging (closed storage) or in open beakers and exposed to the 80% relative humidity of the incubator they were kept in. Samples were subsequently taken from these treatments over a further 165 days to assess viability. Spores from the same production run were also used to test their persistence following application to three different substrates, clay, cement and wood, using a hand held sprayer. The experiments were conducted at two different institutes with one using adult female Anopheles stephensi and the other adult female Anopheles gambiae. Mosquitoes were exposed to the treated substrates for one hour before being removed and their survival monitored for the next 14 days. Assays were performed at monthly intervals over a maximum seven months. Spore storage under refrigeration resulted in no loss of spore viability over more than two years. Spore viability of those samples kept under open and closed storage was highly dependent on the incubation temperature with higher temperatures decreasing viability more rapidly than cooler temperatures. Mosquito survival following exposure was dependent on substrate type. Spore persistence on the clay substrate was greatest achieving 80% population reduction for four months against An. stephensi and for at least five months against Anopheles gambiae. Cement and wood substrates had more variable mortality with the highest spore persistence being two to three months for the two substrates respectively. Spore shelf-life under refrigeration surpassed the standard two year shelf-life expected of a mosquito control product. Removal to a variety of temperatures under either closed or open storage indicated that samples sent out from refrigeration should be deployed rapidly in control operations to avoid loss of viability. Spore persistence following application onto clay surfaces was comparable to a number of chemical insecticides in common use. Persistence on cement and wood was shorter but in one assay still comparable to some organophosphate and pyrethroid insecticides. Optimized formulations could be expected to improve spore persistence still further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.; School of Sciences, Anhui University of Science and Technology, Huainan 232001; He, G., E-mail: hegang@ahu.edu.cn
2015-10-15
Highlights: • ALD-derived HfO{sub 2} gate dielectrics have been deposited on Si substrates. • The leakage current mechanism for different deposition temperature was discussed. • Different emission at different field region has been determined precisely. - Abstract: The effect of deposition temperature on the growth rate, band gap energy and electrical properties of HfO{sub 2} thin film deposited by atomic layer deposition (ALD) has been investigated. By means of characterization of spectroscopy ellipsometry and ultraviolet–visible spectroscopy, the growth rate and optical constant of ALD-derived HfO{sub 2} gate dielectrics are determined precisely. The deposition temperature dependent electrical properties of HfO{sub 2}more » films were determined by capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements. The leakage current mechanism for different deposition temperature has been discussed systematically. As a result, the optimized deposition temperature has been obtained to achieve HfO{sub 2} thin film with high quality.« less
Superconducting properties of ion-implanted gold-silicon thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisrawi, N.M.
The superconducting properties of thin Au{sub x}Si{sub 1{minus}x}, films prepared by ion beam implantation and ion beam mixing are studied. The films are prepared by evaporation of single Au layers on Si substrates and mixing them with Si, Ar, or Xe, or by Xe beam mixing of alternate multilayers of Au and Si sputtered on Al{sub 2}O{sub 3} substrates. The superconducting transition temperature and upper critical fields are determined by measuring the temperature and magnetic field dependence of resistivity. Temperatures as low as 20mK and magnetic fields as high as 8 T were used. Superconductivity in these films is discussedmore » in connection with metastable metallic phases that are reportedly produced in the Au-Si system by high quenching rate preparation techniques like quenching from the vapor or the melt or ion implantation. Preliminary structural studies provide evidence for the existence of these phases and near-edge X-ray absorption and X-ray photoelectron spectroscopy measurements indicate a metallic type of bonding from which compound formation is inferred. The quality of the films is strongly dependent on the conditions of implantation. The maximum superconducting transition temperature attained is about 1.2 K. The upper critical fields have a maximum of 6T. An unusual double transition in the field dependence of resistivity is observed at low temperatures. The effect is very pronounced at compositions near x = 0.5 where the maximum {Tc} occurs. A model is presented to explain this result which invokes the properties of the metastable metallic phases and assumes the formation of more than two such phases in the same sample as the implantation dose increases. The Si-Au interface plays an important role in understanding the model and in interpreting the results of this thesis in general.« less
Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V
2018-03-01
Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.
Conversion treatment of thin titanium layer deposited on carbon steel
NASA Astrophysics Data System (ADS)
Benarioua, Younes; Wendler, Bogdan; Chicot, Didier
2018-05-01
The present study has been conducted in order to obtain titanium carbide layer using a conversion treatment consisting of two main steps. In the first step a thin pure titanium layer was deposited on 120C4 carbon steel by PVD. In the second step, the carbon atoms from the substrate diffuse to the titanium coating due to a vacuum annealing treatment and the Ti coating transforms into titanium carbide. Depending on the annealing temperature a partial or complete conversion into TiC is obtained. The hardness of the layer can be expected to differ depending on the processing temperatures. By a systematic study of the hardness as a function of the applied load, we confirm the process of growth of the layer.
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong; Xiao, Mufei
2018-05-01
We herein propose a far-field super-resolution imaging with metal thin films based on the temperature-dependent electron-phonon collision frequency effect. In the proposed method, neither fluorescence labeling nor any special properties are required for the samples. The 100 nm lands and 200 nm grooves on the Blu-ray disk substrates were clearly resolved and imaged through a laser scanning microscope of wavelength 405 nm. The spot size was approximately 0.80 μm , and the imaging resolution of 1/8 of the laser spot size was experimentally obtained. This work can be applied to the far-field super-resolution imaging of samples with neither fluorescence labeling nor any special properties.
Uluisik, Rizvan; Romero, Elvira; Gadda, Giovanni
2017-11-01
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[ 2 H 4 ]-choline as a substrate. The limiting rate constants k lim1 and k lim2 at saturating substrate were well separated (k lim1 /k lim2 >9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that k lim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that k lim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the k lim1 and k lim2 values increased with increasing temperature, allowing for the analyses of H + and H - transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the k lim1 value ( H2O k lim1 / D2O k lim1 ) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the k lim2 value gave lines with the slope (choline) >slope (D-choline) , suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed. Copyright © 2017 Elsevier B.V. All rights reserved.
Growth and characterization of ultra thin vanadium oxide films
NASA Astrophysics Data System (ADS)
Song, Fangfang
This dissertation focuses on the growth and characterization of ultra thin VO2 films on technologically relevant Si/SiO2 substrate. The samples were prepared by magnetron sputtering with varying deposition and post annealing conditions. VO2(M1) films prepared under optimal condition with thickness around 42nm shows a continuous micro-structure and a metal insulator transition with resistivity change of two orders of magnitude. The transition temperature is determined to be 345K with a hysteresis width of approximately 8°C. The activation energy of the low temperature semiconducting VO2 monoclinic phase is determined to be 0.16+/-0.03ev. These properties are found to be fairly stable over time under ambient atmosphere. Temperature dependent hall measurements suggest that the decrease of the resistivity with increasing temperature is mainly caused by the increase of the number density of charge carriers, the energy gap of VO2 film in the semiconducting phase is 0.4ev and phonon scattering is the dominant scattering mechanism in the temperature range from 195K to 340K. Analysis based on composite model suggested that the sample has some untransitional phases with a length that is 1/4 of the grain size. Stress measurements using X-ray diffraction indicate that the ultra thin VO2 film has a large tensile stress of 2.0+/-0.2GPa. This value agrees well with that calculated thermal stress assuming the stress is due to differential thermal expansion between VO2 film and substrate. The stress is expected to lead to a shift of the transition temperature in the film, as observed. Using magnetron sputtering, VO2(B) film was able to obtained on Si substrate. The temperature dependent current voltage measurement on VO2(B) film did not show any abrupt change in the electrical resistivity. W - VO2(B) thin film - W metal semiconductor-metal I-V properties were found to be determined by reverse biased Schottky barrier at the W/VO 2(b) interface. And the Schottky height between VO2(B) and W was determined to be about 0.15ev, which indicate the electron affinity of the VO2(B) is about 4.35ev.
Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films
NASA Astrophysics Data System (ADS)
Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi
2018-05-01
Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.
Promising features of low-temperature grown Ge nanostructures on Si(001) substrates
NASA Astrophysics Data System (ADS)
Wang, Ze; Wang, Shuguang; Yin, Yefei; Liu, Tao; Lin, Dongdong; Li, De-hui; Yang, Xinju; Jiang, Zuimin; Zhong, Zhenyang
2017-03-01
High-quality Ge nanostructures are obtained by molecular beam epitaxy of Ge on Si(001) substrates at 200 °C and ex situ annealing at 400 °C. Their structural properties are comprehensively characterized by atomic force microscopy, transmission electron microscopy and Raman spectroscopy. It is disclosed that they are almost defect free except for some defects at the Ge/Si interface and in the subsequent Si capping layer. The misfit strain in the nanostructure is substantially relaxed. Dramatically strong photoluminescence (PL) from the Ge nanostructures is observed. Detailed analyses on the power- and temperature-dependent PL spectra, together with a self-consistent calculation, indicate the confinement and the high quantum efficiency of excitons within the Ge nanostructures. Our results demonstrate that the Ge nanostructures obtained via the present feasible route may have great potential in optoelectronic devices for monolithic optical-electronic integration circuits.
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demaurex, Bénédicte, E-mail: benedicte.demaurex@epfl.ch; Bartlome, Richard; Seif, Johannes P.
2014-08-07
Low-temperature (≤200 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only frommore » the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less
Electrooptical properties and structural features of amorphous ITO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amosova, L. P., E-mail: l-amosova@mail.ru
2015-03-15
Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms.more » At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.« less
Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J
2007-09-25
The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.
Wada, Takao; Ueda, Noriaki
2013-01-01
The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843
Electronic transport properties of Ti-impurity band in Si
NASA Astrophysics Data System (ADS)
Olea, J.; González-Díaz, G.; Pastor, D.; Mártil, I.
2009-04-01
In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.
Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order
Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...
2017-10-04
Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties
Demaurex, Bénédicte; Bartlome, Richard; Seif, Johannes P.; ...
2014-08-05
Low-temperature (≤ 180 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-ehanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems notmore » only from the growth conditions but also from unintentional contamination of the reactor. As a result of our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less
Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates
NASA Astrophysics Data System (ADS)
Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.
2014-07-01
Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.
Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang
Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less
Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius
NASA Technical Reports Server (NTRS)
Gregory, Otto; Fralick, Gustave (Technical Monitor)
2003-01-01
Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.
Flow effects in a vertical CVD reactor
NASA Technical Reports Server (NTRS)
Young, G. W.; Hariharan, S. I.; Carnahan, R.
1992-01-01
A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.
Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.
Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice
2018-05-01
Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.
Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme.
Dajnowicz, Steven; Johnston, Ryne C; Parks, Jerry M; Blakeley, Matthew P; Keen, David A; Weiss, Kevin L; Gerlits, Oksana; Kovalevsky, Andrey; Mueser, Timothy C
2017-10-16
Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B 6 ) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.Pyridoxal 5'-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.
Hiramine, Yasushi; Tanabe, Toshizumi
2011-06-01
Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.
On the crystallization of amorphous germanium films
NASA Astrophysics Data System (ADS)
Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.
1993-06-01
The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Liang; Xiu Faxian; Huang Guan
In this paper, we report the epitaxial growth of Bi{sub 2}Se{sub 3} thin films on Si (111) substrate, using molecular beam epitaxy (MBE). We show that the as-grown samples have good crystalline quality, and their surfaces exhibit terracelike quintuple layers. Angel-resolved photoemission experiments demonstrate single-Dirac-conelike surface states. These results combined with the temperature- and thickness-dependent magneto-transport measurements, suggest the presence of a shallow impurity band. Below a critical temperature of {approx}100K, the surface states of a 7 nm thick film contribute up to 50% of the total conduction.
Variation of superconducting transition temperature by proximity effect in NbN/FeN bilayers
NASA Astrophysics Data System (ADS)
Hwang, Tae-Jong; Kim, Dong-Ho
2017-09-01
We report on the proximity effect in superconductor/ferromagnet bilayers made of a new combination of NbN for the superconductor and FeN for the ferromagnet. The bilayers were prepared by reactive magnetron sputtering on a thermally oxidized Si substrate. For a constant NbN layer thickness, the superconducting transition temperatures of the bilayers exhibited a nonmonotonic dependence on the thickness of the FeN layer. The results were interpreted in terms of the proximity effect between the superconductor and ferromagnetic materials.
NASA Astrophysics Data System (ADS)
Horwitz, James S.; Dorsey, Paul C.; Koon, N. C.; Rubinstein, M.; Byers, J. M.; Gillespie, D. J.; Osofsky, Michael S.; Harris, V. G.; Grabowski, K. S.; Knies, D. L.; Donovan, Edward P.; Treece, Randolph E.; Chrisey, Douglas B.
1996-04-01
The effect of substrate temperature and oxygen deposition pressure on the structure and properties of thin films of LaxCa1-xMnO(delta ) has been investigated. Thin films (approximately 1000 angstroms) of La0.67Ca0.33MnO(delta ) were deposited onto LaAlO3 (100) substrates by pulsed laser deposition at a substrate temperature of 600 and 700 degree(s)C. A series of films were grown on different oxygen pressures, between 15 and 400 mTorr, which systematically changed the oxygen concentrations in the films. As-deposited films exhibited an oriented orthorhombic structure. At low oxygen deposition pressures films were preferentially (202) oriented. At high pressures deposited films had a (040) preferred orientation. A 900 degree(s)C anneal in flowing oxygen of a film deposited at low oxygen pressure resulted in a decrease in the a lattice parameter and a change in the preferred orientation from (202) to (040). Vacuum annealing at 550 degree(s)C resulted in an increase in the a lattice parameter. The resistivity as a function of temperature showed a significant variation as a function of growth conditions. The peak in the resistivity curve (Tm) varied between 73 and 150 K depending upon the growth conditions. The activation energy associated with the semiconducting phase was approximately the same for all films (approximately 100 meV).
NASA Astrophysics Data System (ADS)
Sreelalitha, K.; Thyagarajan, K.
2016-01-01
In the present study, we investigate the structural, morphological and magnetic properties of sol-gel spin-coated PZT thin films on alumina substrate. The morphotropic phase boundary (MPB) of PZT [Pb (Zr1-xTix)03] between the tetragonal and rhombohedral phases occurs at the Zr/Ti ratio of 52/48. At the MPB the physical properties of PZT are of far-reaching importance due to their possible crystalline phases. In this study Pb(Zr0.52Ti0.48)03 sols are prepared at room temperature and at 125 °C. The gels are coated onto alumina substrate using a spin-coating unit as two and three layers. The structural studies using XRD confirm the perovskite phase formation at an annealing temperature of 660 °C for both films. The structural parameter grain size, dislocation density, lattice parameters and strain were dependent on the sol temperature. The SEM morphology of the samples represents well-developed dense grain structure and thickness in micrometer ranges. The VSM analysis shows diamagnetic and ferromagnetic hysteresis loop. The ferromagnetism at low fields in PZT films is confirmed by studying the magnetic properties of powder made of the same gel. The effect of heat treatment on the gel preparation is observed on structural, morphological and magnetic properties of PZT thin films. The ferromagnetism in PZT can be attributed to oxygen vacancies. The squareness ratio of the films shows the application of the films as a high-density recording medium.
Periodic cracks and temperature-dependent stress in Mo/Si multilayers on Si substrates
NASA Astrophysics Data System (ADS)
Kravchenko, Grygoriy; Tran, Hai T.; Volinsky, Alex A.
2018-07-01
This work examines formation of the peculiar periodic crack patterns observed in the thermally loaded Mo/Si multilayers. Using the substrate curvature measurements, the macroscopic film stress evolution during thermal cycling was investigated. Then high-speed microscopic observation of crack propagation in the annealed Mo/Si multilayers was presented providing experimental evidence of the mechanism underlying formation of the periodic crack patterns. The origin of the peculiar periodic crack patterns was determined. They were observed to form by the slow crack propagation under quasi-static conditions as a result of the interaction between the channelling crack propagation and the advance of the delamination front.
NASA Astrophysics Data System (ADS)
Yohanasari, R. H.; Utari; Purnama, B.
2017-11-01
In this paper, we studied the magneto-impedance effect in multilayered [Ni80Fe20/Cu]N with variation in the number of parallel-line on Cu PCB substrate. The method used in this research is the electrodeposition at a room temperature with Pt as an electrode. The results show that the magneto-impedance ratio increases with the increase in the number of parallel-line on Cu PCB. The maximum magneto-impedance ratio obtained in Cu PCB substrate which four parallel lines were 4.5%. Likewise, frequency variation, the magneto-impedance ratio increases with increasing frequency.
Epitaxial graphene on SiC(0001): functional electrical microscopy studies and effect of atmosphere.
Kazakova, O; Burnett, T L; Patten, J; Yang, L; Yakimova, R
2013-05-31
Surface potential distribution, V(CPD), and evolution of atmospheric adsorbates on few and multiple layers (FLG and MLG) of graphene grown on SiC(0001) substrate have been investigated by electrostatic and Kelvin force microscopy techniques at T = 20-120 °C. The change of the surface potential distribution, ΔV(CPD), between FLG and MLG is shown to be temperature dependent. The enhanced ΔV(CPD) value at 120 °C is associated with desorption of adsorbates at high temperatures and the corresponding change of the carrier balance. The nature of the adsorbates and their evolution with temperature are considered to be related to the process of adsorption and desorption of the atmospheric water on MLG domains. We demonstrate that both the nano- and microscale wettability of the material are strongly dependent on the number of graphene layers.
CdHgTe heterostructures for new-generation IR photodetectors operating at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varavin, V. S.; Vasilyev, V. V.; Guzev, A. A.
2016-12-15
The parameters of multilayer Cd{sub x}Hg{sub 1–x}Te heterostructures for photodetectors operating at wavelengths of up to 5 μm, grown by molecular-beam epitaxy (MBE) on silicon substrates, are studied. The passivating properties of thin CdTe layers on the surface of these structures are analyzed by measuring the C–V characteristics. The temperature dependences of the minority carrier lifetime in the photoabsorption layer after growth and thermal annealing are investigated. Samples of p{sup +}–n-type photodiodes are fabricated by the implantation of arsenic ions into n-type layers, doped with In to a concentration of (1–5) × 10{sup 15} cm{sup –3}. The temperature dependences ofmore » the reverse currents are measured at several bias voltages; these currents turn out to be almost two orders of magnitude lower than those for n{sup +}–p-type diodes.« less
Anharmonic phonon decay in cubic GaN
NASA Astrophysics Data System (ADS)
Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.
2015-08-01
We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menges, F.; Spieser, M.; Riel, H.
The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-basedmore » scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.« less
NASA Astrophysics Data System (ADS)
Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.
2018-06-01
Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.
Electronic transport and photovoltaic properties in Bi2Sr2Co2Oyepitaxial heterostructures
NASA Astrophysics Data System (ADS)
Guo, Hai-Zhong; Gu, Lin; Yang, Zhen-Zhong; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Le; Jin, Kui-Juan; Lu, Hui-Bin; Wang, Can; Ge, Chen; He, Meng; Yang, Guo-Zhen
2013-08-01
Epitaxial heterostructures constructed from the thermoelectric cobalt Bi2Sr2Co2Oy thin films and SrTiO3 as well as SrTi0.993Nb0.007O3 substrates were fabricated by pulsed-laser deposition. The scanning transmission electron microscopy results confirm that the heterostructures are epitaxial, with sharp and coherent interfaces. The temperature-dependent electrical transport properties and the Hall effects were systematically investigated. The Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 p-n heterostructure exhibits good rectifying current-voltage characteristics over a wide temperature range. A strong photovoltaic effect was observed in the Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 heterostructure, with the temperature-dependent photovoltage being systematically investigated. The present work shows a great potential of this new heterostructures as photoelectric devices.
Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications
Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel
2013-01-01
We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685
Silicon carbide-based hydrogen gas sensors for high-temperature applications.
Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel
2013-10-09
We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.
NASA Astrophysics Data System (ADS)
Baek, Gyeong Yun; Lee, Ki Yong; Park, Sang Hu; Shim, Do Sik
2017-11-01
This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.
Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.
1998-07-28
A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.
Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats
NASA Astrophysics Data System (ADS)
Miller, C. J.; Yoder, T. S.
2012-06-01
Both the quantity and the amount of time that an explosive is present on the surface of a material is dependent upon the amount of explosive originally deposited on the surface, the adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within ±3 °C and ±5 % RH. The temperature and humidity conditions used for this test series were: 4 °C/40 %RH, 21 °C/20 %RH (samples left on benchtop), 21 °C/70 %RH, 21 °C/95 %RH, 35 °C/40 %RH, 35 °C/70 %RH, and 35 °C/95 %RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50 % cotton/50 % polyester as found in T-shirts, 100 % cotton with a smooth surface such as that found in a cotton dress shirt, 100 % cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples were examined using scanning electron microscopy and atomic force microscopy in an attempt to determine how the explosive was bound to the substrate. This is the second article in a series on the effects of temperature and relative humidity on trace explosive threats.
Substrate temperature effect on structural and optical properties of Bi2Te3 thin films
NASA Astrophysics Data System (ADS)
Jariwala, B. S.; Shah, D. V.; Kheraj, Vipul
2012-06-01
Structural and optical properties of Bi2Te3 thin films, thermally evaporated on well-cleaned glass substrates at different substrate temperatures, are reported here. X-ray diffraction was carried out for the structural characterization. XRD patterns of the films exhibit preferential orientation along the [0 1 5] direction for the films deposited at all the substrate temperatures together with other supported planes [2 0 5] & [1 1 0]. All other deposition conditions like thickness, deposition rate and pressure were maintained same throughout the experiment. X-ray diffraction lines confirm that the grown films are polycrystalline in nature with hexagonal crystal structure. The effect of substrate temperature on lattice constants, grain size, micro strain, number of crystallites and dislocation density have been investigated and reported in this paper. Also the substrate temperature effect on the optical property has been also investigated using the FTIR spectroscopy.
Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander
1999-01-01
A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speliotis, T; Varvaro, G; Testa, AM
2015-05-15
L1(0) FePt thin films with an island-like morphology and magnetic perpendicular anisotropy were grown at low temperature (300 < T-dep< 375 degrees C) by magnetron sputtering on Hoya glass substrates using a 30-nm thick Cr (2 0 0) underlayer. An MgO buffer layer with a thickness of 2 nm was used to inhibit the diffusion from the Cr underlayer and promote the growth of (0 0 1) oriented L1(0) FePt films by inducing an in-plane lattice distortion. By varying the substrate temperature and the Ar sputter pressure (3.5 < P-Ar< 15 mTorr) during the deposition, the degree of chemical order,more » the microstructure and the magnetic properties were tuned and the best properties in term of squareness ratio (M-r/M-s similar to 0.95) and coercive field (H-c similar to 14 kOe) were observed for films deposited at T-dep = 350 degrees C and P-Ar= 5 mTorr, due to the appearance of a tensile strain, which favors the perpendicular anisotropy. The analysis of the angular dependence of remanent magnetization curves on the optimized sample suggests that the magnetization reversal is highly incoherent due to the inter-island interactions. Our results provide useful information on the low temperature growth of FePt films with perpendicular anisotropy onto glass substrates, which are relevant for a variety of technological applications, such as magnetic recording and spintronic devices. (C) 2015 Elsevier B.V. All rights reserved.« less
Influence of substrate temperature on properties of MgF 2 coatings
NASA Astrophysics Data System (ADS)
Yu, Hua; Qi, Hongji; Cui, Yun; Shen, Yanming; Shao, JianDa; Fan, ZhengXiu
2007-05-01
Thermal boat evaporation was employed to prepare MgF 2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 °C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 °C that the refractive index was higher than those deposited at 244 and 277 °C. The tensile residual stresses were exhibited in all MgF 2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 °C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail.
NASA Astrophysics Data System (ADS)
Campanelli, Sabina L.; Angelastro, Andrea; Latte, Marco; Rizzo, Antonella; Palano, Fania
2018-02-01
Direct Laser Metal Deposition (DLMD) has been successfully applied for the coating or the repair of several kind of components, such as molds and dies. Recently, the aeronautical sector is also showing a high interest in this process for the repair of turbines and transmissions. However, technical requirements to be met for the repair of aeronautical components are much more stringent than standards of other industrial fields. Some of the deposited material defects that need to be carefully controlled are cracks and porosity, which largely depend on the temperature peaks and the cooling rates generated during the process. The aim of this work is to monitor the temperature field that was generated during the DLMD process, analyze its variation with some process parameters and study its effects on clad geometry and on dilution with the substrate. In this research, a number of experimental tests were designed for the deposition of single clads of a Nickel superalloy powder on an AISI 304 stainless steel substrate, using an Ytterbium fiber laser source. Temperature fields monitoring was carried out using a thermal camera capable of detecting temperatures up to 2500 °C.
NASA Astrophysics Data System (ADS)
Zhai, Jiwei; Yao, Xi; Xu, Zhengkui; Chen, Haydn
2006-08-01
Thin films of ferroelectric PbxSr1-xTiO3 (PST) with x =0.3-0.7 and graded composition were fabricated on LaNiO3 buffered Pt /Ti/SiO2/Si substrates by a sol-gel deposition method. The thin films crystallized into a single perovskite structure and exhibited highly (100) preferred orientation after postdeposition annealing at 650°C. The grain size of PST thin films systematically decreased with the increase of Sr content. Dielectric and ferroelectric properties were investigated as a function of temperature, frequency, and dc applied field. Pb0.6Sr0.4TiO3 films showed a dominant voltage dependence of dielectric constant with a high tunability in a temperature range of 25-230°C. The compositionally graded PST thin films with x =0.3-0.6 also showed the high tunability. The graded thin films exhibited a diffused phase transition accompanied by a diffused peak in the temperature variations of dielectric constants. This kind of thin films has a potential in a fabrication of a temperature stable tunable device.
Silicon crystallization in nanodot arrays organized by block copolymer lithography
NASA Astrophysics Data System (ADS)
Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard
2014-12-01
Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.
Temperature limits trail following behaviour through pheromone decay in ants
NASA Astrophysics Data System (ADS)
van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim
2011-12-01
In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.
Influence of solidification on the impact of supercooled water drops onto cold surfaces
NASA Astrophysics Data System (ADS)
Li, Hai; Roisman, Ilia V.; Tropea, Cameron
2015-06-01
This study presents an experimental investigation of the impact of a supercooled drop onto hydrophilic and superhydrophobic substrates. The aim is to better understand the process of airframe icing caused by supercooled large droplets, which has been recently identified as a severe hazard in aviation. The Weber number and Reynolds number of the impinging drop ranged from 200 to 300 and from 2600 to 5800, respectively. Drop impact, spreading, and rebound were observed using a high-speed video system. The maximum spreading diameter of an impacting drop on hydrophilic surfaces was measured. The temperature effect on this parameter was only minor for a wide range of the drop and substrate temperatures. However, ice/water mixtures emerged when both the drop and substrate temperatures were below 0 °C. Similarly, drop rebound on superhydrophobic substrates was significantly hindered by solidification when supercooled drop impacted onto substrates below the freezing point. The minimum receding diameter and the speed of ice accretion on the substrate were measured for various wall temperatures. Both parameters increased almost linearly with decreasing wall temperature, but eventually leveled off beyond a certain substrate temperature. The rate of ice formation on the substrate was significantly higher than the growth rate of free ice dendrites, implying that multiple nucleation sites were present.
NASA Astrophysics Data System (ADS)
Kis, A.; Kasas, S.; Babić, B.; Kulik, A. J.; Benoît, W.; Briggs, G. A.; Schönenberger, C.; Catsicas, S.; Forró, L.
2002-11-01
We have determined the mechanical anisotropy of a single microtubule by simultaneously measuring the Young's and the shear moduli in vitro. This was achieved by elastically deforming the microtubule deposited on a substrate tailored by electron-beam lithography with a tip of an atomic force microscope. The shear modulus is 2orders of magnitude lower than the Young's, giving rise to a length-dependent flexural rigidity of microtubules. The temperature dependence of the microtubule's bending stiffness in the (5-40) °C range shows a strong variation upon cooling coming from the increasing interaction between the protofilaments.
Wang, Xiao; Rogalla, Detlef; Ludwig, Alfred
2018-04-09
The mechanical stress change of VO 2 film substrate combinations during their reversible phase transformation makes them promising for applications in micro/nanoactuators. V 1- x W x O 2 thin film libraries were fabricated by reactive combinatorial cosputtering to investigate the effects of the addition of W on mechanical and other transformation properties. High-throughput characterization methods were used to systematically determine the composition spread, crystalline structure, surface topography, as well as the temperature-dependent phase transformation properties, that is, the hysteresis curves of the resistance and stress change. The study indicates that as x in V 1- x W x O 2 increases from 0.007 to 0.044 the crystalline structure gradually shifts from the VO 2 (M) phase to the VO 2 (R) phase. The transformation temperature decreases by 15 K/at. % and the resistance change is reduced to 1 order of magnitude, accompanied by a wider transition range and a narrower hysteresis with a minimal value of 1.8 K. A V 1- x W x O 2 library deposited on a Si 3 N 4 /SiO 2 -coated Si cantilever array wafer was used to study simultaneously the temperature-dependent stress change σ( T) of films with different W content through the phase transformation. Compared with σ( T) of ∼700 MPa of a VO 2 film, σ( T) in V 1- x W x O 2 films decreases to ∼250 MPa. Meanwhile, σ( T) becomes less abrupt and occurs over a wider temperature range with decreased transformation temperatures.
Oxidation resistant slurry coating for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Rybicki, G. C. (Inventor)
1985-01-01
An oxidation resistant coating is produced on carbon-base materials, and the same processing step effects an infiltration of the substrate with silicon containing material. The process comprises making a slurry of nickel and silicon powders in a nitrocellulose lacquer, spraying onto the graphite or carbon-carbon substrate, and sintering in vacuum to form a fused coating that wets and covers the surface as well as penetrates into the pores of the substrate. Optimum wetting and infiltration occurs in the range of Ni-60 w/o Si to Ni-90 w/o Si with deposited thicknesses of 25-100 mg/sq. cm. Sintering temperatures of about 1200 C to about 1400 C are used, depending on the melting point of the specific coating composition. The sintered coating results in Ni-Si intermetallic phases and SiC, both of which are highly oxidation resistant.
On the growth mechanisms of polar (100) surfaces of ceria on copper (100)
NASA Astrophysics Data System (ADS)
Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.
2018-05-01
We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.
Method for single crystal growth of photovoltaic perovskite material and devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinsong; Dong, Qingfeng
Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.
NASA Astrophysics Data System (ADS)
Chatterjee, Payel; Basumatary, Himalay; Raja, M. Manivel
2018-05-01
Co2FeSi thin films of 25 nm thickness with 50 nm thick Cr buffer layer was deposited on thermally oxidized Si substrates. Structural and magnetic properties of the films were studied as a function of annealing temperature and substrate temperatures. While the coercivity increases with increase in annealing temperature, it is found to decrease with increase in substrate temperature. A minimum coercivity of 18 Oe has been obtained for the film deposited at 550°C substrate temperature. This was attributed to the formation of L12 phase as observed from the GIXRD studies. The films with a good combination of soft magnetic properties and L21 crystal structure are suitable for spintronic applications.
Control of lithium metal anode cycleability by electrolyte temperature
NASA Astrophysics Data System (ADS)
Ishikawa, Masashi; Kanemoto, Manabu; Morita, Masayuki
Precycling of lithium (Li) metal on a nickel substrate at low temperatures (0 and -20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) was found to enhance Li cycleability in the subsequent cycles at a room temperature (25°C). In contrast when the precycling at the low temperatures was performed in PC mixed with 2-methyltetrahydrofuran (2MeTHF) and LiPF 6 (LiPF 6-PC/2MeTHF), no improvement in the Li cycling efficiency was observed in the subsequent cycles at 25°C. These results suggest that the low-temperature precycling effect on the Li cycleability depends on a co-solvent used in the PC-based electrolytes. Ac impedance analysis revealed that the precycling in the low-temperature LiPF 6-PC/DMC electrolyte provided a compact Li interface with a low resistance. In marked constant to this, a Li anode interface formed by the precycling in the LiPF 6-PC/2MeTHF system was irregular and resistive to Li-ion diffusion. The origins of the low-temperature precycling effect dependent on the co-solvents were discussed.
Variable temperature semiconductor film deposition
Li, X.; Sheldon, P.
1998-01-27
A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Variable temperature semiconductor film deposition
Li, Xiaonan; Sheldon, Peter
1998-01-01
A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Magnetic properties of Fe implanted SrTiO{sub 3} perovskite crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şale, A.G.; Kazan, S.; Gatiiatova, Ju.I.
2013-08-01
Graphical abstract: - Highlights: • The results of investigations of magnetic properties of Fe implanted SrTiO{sub 3} are presented. • The measurements of the temperature dependence of the magnetization were performed. • Ferromagnetic hysteresis loops in Fe implanted SrTiO{sub 3} were observed at low temperatures. • Superparamagnetic behavior of the samples at high temperatures was revealed. • It was shown that the magnetization of the samples depends on the fluency of implantation. - Abstract: The results of investigations of magnetic properties of SrTiO{sub 3} perovskite crystal implanted with 40 keV Fe ions at the fluencies between 0.5 × 10{sup 17}more » and 1.5 × 10{sup 17} ion/cm{sup 2} are presented. It has been revealed that high-fluency implantation with Fe ions results in the formation of a granular metal particulate composite in the irradiated near-surface layer of SrTiO{sub 3} substrate, which exhibits remarkable ferromagnetic behavior. The measurements of the temperature dependence of the magnetic moment showed that the samples exhibit blocking temperature at about 350 K, above which a superparamagnetic behavior has been observed. Ferromagnetic ordering and magnetic hysteresis loops were observed in Fe implanted SrTiO{sub 3} at the temperatures lower than 350 K. It has been shown that the magnetization of the ferromagnetic state depends on the fluency of implantation.« less
Solution processed aluminum paper for flexible electronics.
Lee, Hye Moon; Lee, Ha Beom; Jung, Dae Soo; Yun, Jung-Yeul; Ko, Seung Hwan; Park, Seung Bin
2012-09-11
As an alternative to vacuum deposition, preparation of highly conductive papers with aluminum (Al) features is successfully achieved by the solution process consisting of Al precursor ink (AlH(3){O(C(4)H(9))(2)}) and low temperature stamping process performed at 110 °C without any serious hydroxylation and oxidation problems. Al features formed on several kinds of paper substrates (calendar, magazine, and inkjet printing paper substrates) are less than ~60 nm thick, and their electrical conductivities were found to be as good as thermally evaporated Al film or even better (≤2 Ω/□). Strong adhesion of Al features to paper substrates and their excellent flexibility are also experimentally confirmed by TEM observation and mechanical tests, such as tape and bending tests. The solution processed Al features on paper substrates show different electrical and mechanical performance depending on the paper type, and inkjet printing paper is found to be the best substrate with high and stable electrical and mechanical properties. The Al conductive papers produced by the solution process may be applicable in disposal paper electronics.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng
2018-01-01
Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.
NASA Astrophysics Data System (ADS)
He, Bo; Zhao, Lei; Xu, Jing; Xing, Huaizhong; Xue, Shaolin; Jiang, Meng
2013-10-01
In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω•cm, while the carrier concentration and mobility are as high as 3.461 × 1021 atom/cm3 and 19.1 cm2/Vṡs, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2017-02-01
CaCu3Ti4O12 (CCTO) thin films have been deposited by RF magnetron sputtering on silicon substrates at room temperature. As-deposited thin films were subjected to rapid thermal annealing (RTA) at different temperatures ranging from 850°C to 1000°C. XRD and capacitance - voltage studies indicate that the structural and electrical properties of CCTO thin film strongly depend upon the annealing temperature. XRD pattern of CCTO thin film annealed at 950°C revealed the polycrystalline nature with evolutions of microstructures. Electrical properties of the dielectric films were investigated by fabricating Al/CCTO/Si metal oxide semiconductor structure. Electrical properties were found to be deteriorated with increasing in annealing temperature.
Temperature and Microstructural Effects on the Superconducting Properties of Niobium Thin Films
Beebe, Melissa R.; Valente-Feliciano, Anne -Marie; Beringer, Douglas B.; ...
2016-11-23
Here, superconducting thin films have a wide range of dc and RF applications, from detectors to superconducting radio frequency. Amongst the most used materials, niobium (Nb) has the highest critical temperature (TC) and highest lower critical field (HC1) of the elemental superconductors and can be deposited on a variety of substrates, making Nb thin films very appealing for such applications. Here, we present temperature-dependent dc studies on the critical temperature and critical fields of Nb thin films grown on copper and r-plane sapphire surfaces. Additionally, we correlate the dc superconducting properties of these films with their microstructure, which allows formore » the possibility of tailoring future films for a specific application.« less
Temperature dependent DC characterization of InAlN/(AlN)/GaN HEMT for improved reliability
NASA Astrophysics Data System (ADS)
Takhar, K.; Gomes, U. P.; Ranjan, K.; Rathi, S.; Biswas, D.
2015-02-01
InxAl1-xN/AlN/GaN HEMT device performance is analysed at various temperatures with the help of physics based 2-D simulation using commercially available BLAZE and GIGA modules from SILVACO. Various material parameters viz. band-gap, low field mobility, density of states, velocity saturation, and substrate thermal conductivity are considered as critical parameters for predicting temperature effect in InxAl1-xN/AlN/GaN HEMT. Reduction in drain current and transconductance has been observed due to the decrease of 2-DEG mobility and effective electron velocity with the increase in temperature. Degradation in cut-off frequency follows the transconductance profile as variation in gate-source/gate-drain capacitances observed very small.
NASA Astrophysics Data System (ADS)
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-04-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi
2006-08-17
The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-01-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
A kinetic model for the thermal nitridation of SiO2/Si
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.
1986-01-01
To explain the observed nitrogen distributions in thermally nitridated SiO2 films, a kinetic model is proposed in which the nitridation process is simulated, using the first-order chemical kinetics and Arrhenius dependence of the diffusion and reaction rates on temperature. The calculations show that initially, as the substrate reacts with diffusing nitrogen, a nitrogen-rich oxynitride forms at the SiO2-Si interface, while at nitridation temperatures above 1000 C, an oxygen-rich oxynitride subsequently forms at the interface, due to reaction of the substrate with an increasingly concentrated oxygen displaced by the slower nitridation of the SiO2. This sequence of events results in a nitrogen distribution in which the peak of the interfacial nitrogen concentration occurs away from the interface. The results are compared with the observed nitrogen distribution. The calculated results have correctly predicted the positions of the interfacial nitrogen peaks at the temperatures of 800, 1000, and 1150 C. To account for the observed width of the interfacial nitrogen distribution, it was found necessary to include in the simulations the effect of interfacial strain.
Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains.
Sabokbar, Nayereh; Khodaiyan, Faramarz
2015-06-01
Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel probiotic beverage by kefir grains. Different fermentation conditions were used as viz: two fermentation temperature (19 ºC and 25 ºC) and two levels of kefir grains inoculum (5 % and 8%w/v). pH, acidity, lactose consumption as well as organic acids formation were determined during 32 hours of fermentation. Results showed that kefir grains were able to utilize lactose and decrease pH, increase acidity, produce lactic acid and acetic acid, while the level of citric acid decreased. It was observed these change depended on temperature and level of kefir grains with the highest changes at the temperature of 25 ºC and kefir grains inoculum of 8%w/v. Pomegranate juice and whey mixture therefore may serve as a suitable substrate for the production of novel probiotic dairy-fruit juice beverage by kefir grains and the sensory characteristics of this beverage were shown desirable results.
Fabrication of polycrystalline thin films by pulsed laser processing
Mitlitsky, Fred; Truher, Joel B.; Kaschmitter, James L.; Colella, Nicholas J.
1998-02-03
A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.
Fabrication of polycrystalline thin films by pulsed laser processing
Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.
1998-02-03
A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.
2015-03-01
On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.
NASA Astrophysics Data System (ADS)
Park, M. G.; Choi, W. S.; Hong, B.; Kim, Y. T.; Yoon, D. H.
2002-05-01
In this article, we investigated the dependence of optical and electrical properties of hydrogenated amorphous silicon carbide (a-SiC:H) films on annealing temperature (Ta) and radio frequency (rf) power. The substrate temperature (Ts) was 250 °C, the rf power was varied from 30 to 400 W, and the range of Ta was from 400 to 600 °C. The a-SiC:H films were deposited by using the plasma enhanced chemical vapor deposition system on Corning 7059 glasses and p-type Si (100) wafers with a SiH4+CH4 gas mixture. The experimental results have shown that the optical bandgap energy (Eg) of the a-SiC:H thin films changed little on the annealing temperature while Eg increased with the rf power. The Raman spectrum of the thin films annealed at high temperatures showed that graphitization of carbon clusters and microcrystalline silicon occurs. The current-voltage characteristics have shown good electrical properties in relation to the annealed films.
Atomic Layer Deposition of Vanadium Dioxide and a Temperature-dependent Optical Model.
Currie, Marc; Mastro, Michael A; Wheeler, Virginia D
2018-05-23
Vanadium dioxide is a material that has a reversible metal-insulator phase change near 68 °C. To grow VO2 on a wide variety of substrates, with wafer-scale uniformity and angstrom level control of thickness, the method of atomic-layer deposition was chosen. This ALD process enables high-quality, low-temperature (≤150 °C) growth of ultrathin films (100-1000 Å) of VO2. For this demonstration, the VO2 films were grown on sapphire substrates. This low temperature growth technique produces mostly amorphous VO2 films. A subsequent anneal in an ultra-high vacuum chamber with a pressure of 7x10 -4 Pa of ultra-high purity (99.999%) oxygen produced oriented, polycrystalline VO2 films. The crystallinity, phase, and strain of the VO2 were determined by Raman spectroscopy and X-ray diffraction, while the stoichiometry and impurity levels were determined by X-ray photoelectron spectroscopy, and finally the morphology was determined by atomic force microscopy. These data demonstrate the high-quality of the films grown by this technique. A model was created to fit to the data for VO2 in its metallic and insulating phases in the near infrared spectral region. The permittivity and refractive index of the ALD VO2 agreed well with the other fabrication methods in its insulating phase, but showed a difference in its metallic state. Finally, the analysis of the films' optical properties enabled the creation of a wavelength- and temperature-dependent model of the complex optical refractive index for developing VO2 as a tunable refractive index material.
Method for wetting a boron alloy to graphite
Storms, E.K.
1987-08-21
A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.
Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G
2014-11-21
Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-N(G)-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Henkel, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.
2018-03-01
We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 +1 ) -dimensional space-time in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.
Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation
NASA Astrophysics Data System (ADS)
Bedekar, M. M.; Safari, A.; Wilber, W.
1992-11-01
Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.
NASA Technical Reports Server (NTRS)
Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.
1999-01-01
During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.
Burrier, R E; Brecher, P
1983-10-10
An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.
NASA Astrophysics Data System (ADS)
Chang, Sung-Jin; Park, Jong Bae; Lee, Gaehang; Kim, Hae Jin; Lee, Jin-Bae; Bae, Tae-Sung; Han, Young-Kyu; Park, Tae Jung; Huh, Yun Suk; Hong, Woong-Ki
2014-06-01
We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress.We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress. Electronic supplementary information (ESI) available: Illustration, photograph, Raman data, and EDX spectra. See DOI: 10.1039/c4nr01118j
Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.
Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang
2017-10-25
Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.
Microwave studies of weak localization and antilocalization in epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabińska, Aneta; Kamińska, Maria; Wołoś, Agnieszka
2013-12-04
A microwave detection method was applied to study weak localization and antilocalization in epitaxial graphene sheets grown on both polarities of SiC substrates. Both coherence and scattering length values were obtained. The scattering lengths were found to be smaller for graphene grown on C-face of SiC. The decoherence rate was found to depend linearly on temperature, showing the electron-electron scattering mechanism.
NiMnGa/Si Shape Memory Bimorph Nanoactuation
NASA Astrophysics Data System (ADS)
Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred
2016-12-01
The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.
Cheng, Y.T.; Poli, A.A.; Meltser, M.A.
1999-03-23
A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.
Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates
NASA Astrophysics Data System (ADS)
Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei
2018-05-01
Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.
Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei
2018-05-25
Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.
A novel assay of DGAT activity based on high temperature GC/MS of triacylglycerol.
Greer, Michael S; Zhou, Ting; Weselake, Randall J
2014-08-01
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG), a high-energy compound composed of three fatty acids esterified to a glycerol backbone. In vitro DGAT assays, which are usually conducted with radiolabeled substrate using microsomal fractions, have been useful in identifying compounds and genetic modifications that affect DGAT activity. Here, we describe a high-temperature gas chromatography (GC)/mass spectrometry (MS)-based method for monitoring molecular species of TAG produced by the catalytic action of microsomal DGAT. This method circumvents the need for radiolabeled or modified substrates, and only requires a simple lipid extraction prior to GC. The utility of the method is demonstrated using a recombinant type-1 Brassica napus DGAT produced in a strain of Saccharomyces cerevisae that is deficient in TAG synthesis. The GC/MS-based assay of DGAT activity was strongly correlated with the typical in vitro assay of the enzyme using [1-(14)C] acyl-CoA as an acyl donor. In addition to determining DGAT activity, the method is also useful for determining substrate specificity and selectivity properties of the enzyme.
NASA Astrophysics Data System (ADS)
Christen, H. M.; Rouleau, C. M.; Ohkubo, I.; Zhai, H. Y.; Lee, H. N.; Sathyamurthy, S.; Lowndes, D. H.
2003-09-01
A method for continuous compositional-spread (CCS) thin-film fabrication based on pulsed-laser deposition (PLD) is introduced. This approach is based on a translation of the substrate heater and the synchronized firing of the excimer laser, with the deposition occurring through a slit-shaped aperture. Alloying is achieved during film growth (possible at elevated temperature) by the repeated sequential deposition of submonolayer amounts. Our approach overcomes serious shortcomings in previous in situ implementation of CCS based on sputtering or PLD, in particular the variation of thickness across the compositional spread and the differing deposition energetics as a function of position. While moving-shutter techniques are appropriate for PLD approaches yielding complete spreads on small substrates (i.e., small as compared to distances over which the deposition parameters in PLD vary, typically ≈1 cm), our method can be used to fabricate samples that are large enough for individual compositions to be analyzed by conventional techniques, including temperature-dependent measurements of resistivity and dielectric and magnetic properties (i.e., superconducting quantum interference device magnetometry). Initial results are shown for spreads of (Sr1-xCax)RuO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amani, Matin; Chin, Matthew L.; Mazzoni, Alexander L.
2014-05-19
We report on the electronic transport properties of single-layer thick chemical vapor deposition (CVD) grown molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) on Si/SiO{sub 2} substrates. MoS{sub 2} has been extensively investigated for the past two years as a potential semiconductor analogue to graphene. To date, MoS{sub 2} samples prepared via mechanical exfoliation have demonstrated field-effect mobility values which are significantly higher than that of CVD-grown MoS{sub 2}. In this study, we will show that the intrinsic electronic performance of CVD-grown MoS{sub 2} is equal or superior to that of exfoliated material and has been possibly masked by a combinationmore » of interfacial contamination on the growth substrate and residual tensile strain resulting from the high-temperature growth process. We are able to quantify this strain in the as-grown material using pre- and post-transfer metrology and microscopy of the same crystals. Moreover, temperature-dependent electrical measurements made on as-grown and transferred MoS{sub 2} devices following an identical fabrication process demonstrate the improvement in field-effect mobility.« less
Ellipsometric study of YBa2Cu3O(7-x) laser ablated and co-evaporated films
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. E.; Warner, J. D.; Stan, M. A.; Vitta, S.
1990-01-01
High temperature superconducting films of YBa2Cu3O(7-x) (YBCO were grown on SrTiO3, LaA1O3, and YSZ substrates using two techniques: excimer laser ablation with in situ annealing and co-evaporation of Y, Cu, and BaF2 with ex-situ annealing. Film thicknesses were typically 5000 A, with predominant c-axis alignment perpendicular to the substrate. Critical temperatures up to Tc(R=O)=90 K were achieved by both techniques. Ellipsometric measurements were taken in the range 1.6 to 4.3 eV using a variable angle spectroscopic ellipsometer. The complex dielectric function of the laser ablated films was reproducible from run to run, and was found to be within 10 percent of that previously reported for (001) oriented single crystals. A dielectric overlayer was observed in these films, with an index of refraction of approximately 1.55 and nearly zero absorption. For the laser ablated films the optical properties were essentially independent of substrate material. The magnitude of the dielectric function obtained for the co-evaported films was much lower than the value reported for single crystals, and was sample dependent.
Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation
NASA Astrophysics Data System (ADS)
Fauchais, P.; Vardelle, M.; Goutier, S.
2016-12-01
The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.
Choi, Jin Myung; Lee, Yong-Jik; Cao, Thinh-Phat; Shin, Sun-Mi; Park, Min-Kyu; Lee, Han-Seung; di Luccio, Eric; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo
2016-04-15
Thermophilic l-arabinose isomerase (AI), which catalyzes the interconversion of l-arabinose and l-ribulose, can be used to produce d-tagatose, a sugar substitute, from d-galactose. Unlike mesophilic AIs, thermophilic AIs are highly dependent on divalent metal ions for their catalytic activity and thermostability at elevated temperatures. However, the molecular basis underlying the substrate preferences and metal requirements of multimeric AIs remains unclear. Here we report the first crystal structure of the apo and holo forms of thermophilic Geobacillus kaustophilus AI (GKAI) in hexamer form. The structures, including those of GKAI in complex with l-arabitol, and biochemical analyses revealed not only how the substrate-binding site of GKAI is formed through displacement of residues at the intersubunit interface when it is bound to Mn(2+), but also revealed the water-mediated H-bonding networks that contribute to the structural integrity of GKAI during catalysis. These observations suggest metal-mediated isomerization reactions brought about by intersubunit interactions at elevated temperatures are responsible for the distinct active site features that promote the substrate specificity and thermostability of thermophilic AIs. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sekhar, M. Chandra; Uthanna, S.; Martins, R.; Jagadeesh Chandra, S. V.; Elangovan, E.
2012-04-01
Thin films of (Ta2O5)0.85(TiO2)0.15 were deposited on quartz and p-Si substrates by DC reactive magnetron sputtering at different substrate temperatures (Ts) in the range 303 - 873 K. The films deposited at 303 0K were in the amorphous and it transformed to crystalline at substrate temperatures >= 573 0K. The crystallite size was increased from 50 nm to 72 nm with the increase of substrate temperature. The surface morphology was significantly influenced with the substrate temperature. After deposition of the (Ta2O5)0.85(TiO2)0.15 films on Si, aluminium (Al) electrode was deposited to fabricate metal/oxide/semiconductor (MOS) capacitors with a configuration of Al/(Ta2O5)0.85(TiO2)0.15/Si. A low leakage current of 7.7 × 10-5 A/cm2 was obtained from the films deposited at 303 K. The leakage current was decreased to 9.3 × 10-8 A/cm2 with the increase of substrate temperature owing to structural changes. The conduction mechanism of the Al/(Ta2O5)0.85(TiO2)0.15/Si capacitors was analyzed and compared with mechanisms of Poole-Frenkel and Schottky emissions. The optical band gap (Eg) was decreased from 4.45 eV to 4.38 eV with the increase in substrate temperature.
Temperature Dependence of Diffusion and Reaction at a Pd/SiC Contact
NASA Technical Reports Server (NTRS)
Shi, D.T.; Lu, W. J.; Bryant, E.; Elshot, K.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.
1998-01-01
Schottky diodes of Palladium/SiC are good candidates for hydrogen and hydrocarbon gas sensors at elevated temperature. The detection sensibility of the diodes has been found heavily temperature dependent. In this work, emphasis has been put on the understanding of changes of physical and chemical properties of the Schottky diodes with variation of temperature. Schottky diodes were made by depositing ultra-thin palladium films onto silicon carbide substrates. The electrical and chemical properties of Pd/SiC Schottky contacts were studied by XPS and AES at different annealing temperatures. No significant change in the Schottky barrier height of the Pd/SiC contact was found in the temperature range of RT-400 C. However, both palladium diffused into SiC and silicon migrated into palladium thin film as well as onto surface were observed at room temperature. The formation of palladium compounds at the Pd/SiC interface was also observed. Both diffusion and reaction at the Pd/SiC interface became significant at 300 C and higher temperature. In addition, silicon oxide was found also at the interface of the Pd/SiC contact at high temperature. In this report, the mechanism of diffusion and reaction at the Pd/SiC interface will be discussed along with experimental approaches.
Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.
Yvon-Durocher, Gabriel; Allen, Andrew P; Bastviken, David; Conrad, Ralf; Gudasz, Cristian; St-Pierre, Annick; Thanh-Duc, Nguyen; del Giorgio, Paul A
2014-03-27
Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH4 to total greenhouse gas emissions from aquatic ecosystems, terrestrial wetlands and rice paddies.
NASA Astrophysics Data System (ADS)
Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder
2018-05-01
In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).
Laser ablation of sub-10 nm silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinovev, Alexander; Moore, Jerome F.; Baryshev, Sergey V.
Laser ablation of silver nanoparticles (NPs) was studied with laser post-ionization (LPI) time-of-flight mass spectrometry (TOF MS). Silver NPs containing ~15 000 Ag atoms (4 nm radius) were deposited by soft landing (energy 3 eV/atom) onto indium tin oxide (ITO)/glass substrates. Laser ablation was performed using frequency-doubled Ti:sapphire nanosecond pulsed laser irradiation at three different wavelengths (371, 401, and 421 nm), whereas for post-ionization, pulses from an F 2 laser were used. Laser fluences and time delay dependencies of Ag and In signals were obtained. Using these data, the temperature of the desorption source as well as its time durationmore » were calculated. It was found that the peak temperature of NPs was above their melting point and they cooled down slowly, with temperature decay time of several hundreds of nanoseconds. This anomalous behavior was explained based on a model where the semiconducting ITO substrate is initially transparent to the desorption laser radiation but starts to adsorb it due to the temperature increase arising from heat exchange with NPs. Poor heat conduction in the ITO film creates conditions for long-lived hot spots on the surface and initiates further optical damage of the substrate. No difference in the ablation process due to plasmon resonance was detected, likely due to thermal expansion and melting of NPs during laser irradiation, which then broadens the plasmon absorption band enough to cover all wavelengths used. Here, these results clearly demonstrate that the process of NP interaction with laser radiation is governed not only by initial optical and thermophysical parameters of NPs and the surrounding media, but also by their alteration due to temperature increases during the irradiation process.« less
Laser ablation of sub-10 nm silver nanoparticles
Zinovev, Alexander; Moore, Jerome F.; Baryshev, Sergey V.; ...
2017-04-13
Laser ablation of silver nanoparticles (NPs) was studied with laser post-ionization (LPI) time-of-flight mass spectrometry (TOF MS). Silver NPs containing ~15 000 Ag atoms (4 nm radius) were deposited by soft landing (energy 3 eV/atom) onto indium tin oxide (ITO)/glass substrates. Laser ablation was performed using frequency-doubled Ti:sapphire nanosecond pulsed laser irradiation at three different wavelengths (371, 401, and 421 nm), whereas for post-ionization, pulses from an F 2 laser were used. Laser fluences and time delay dependencies of Ag and In signals were obtained. Using these data, the temperature of the desorption source as well as its time durationmore » were calculated. It was found that the peak temperature of NPs was above their melting point and they cooled down slowly, with temperature decay time of several hundreds of nanoseconds. This anomalous behavior was explained based on a model where the semiconducting ITO substrate is initially transparent to the desorption laser radiation but starts to adsorb it due to the temperature increase arising from heat exchange with NPs. Poor heat conduction in the ITO film creates conditions for long-lived hot spots on the surface and initiates further optical damage of the substrate. No difference in the ablation process due to plasmon resonance was detected, likely due to thermal expansion and melting of NPs during laser irradiation, which then broadens the plasmon absorption band enough to cover all wavelengths used. Here, these results clearly demonstrate that the process of NP interaction with laser radiation is governed not only by initial optical and thermophysical parameters of NPs and the surrounding media, but also by their alteration due to temperature increases during the irradiation process.« less
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1985-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Theory of the reaction dynamics of small molecules on metal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Bret
The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H 2, H 2O and CH 4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimentalmore » data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).« less
NASA Astrophysics Data System (ADS)
Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.
2000-06-01
The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).
Fang, F; Markwitz, A
2009-05-01
Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.
Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition
NASA Astrophysics Data System (ADS)
Cui, H.; Eres, G.; Howe, J. Y.; Puretkzy, A.; Varela, M.; Geohegan, D. B.; Lowndes, D. H.
2003-06-01
The temperature and time dependences of carbon nanotube (CNT) growth by chemical vapor deposition are studied using a multilayered Al/Fe/Mo catalyst on silicon substrates. Within the 600-1100 °C temperature range of these studies, narrower temperature ranges were determined for the growth of distinct types of aligned multi-walled CNTs and single-walled CNTs by using high-resolution transmission electron microscopy and Raman spectroscopy. At 900 °C, in contrast to earlier work, double-walled CNTs are found more abundant than single-walled CNTs. Defects also are found to accumulate faster than the ordered graphitic structure if the growth of CNTs is extended to long durations.
Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter
NASA Technical Reports Server (NTRS)
Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.
1992-01-01
The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.
Electron drift velocity and mobility in graphene
NASA Astrophysics Data System (ADS)
Dong, Hai-Ming; Duan, Yi-Feng; Huang, Fei; Liu, Jin-Long
2018-04-01
We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Digraskar, Renuka, E-mail: renukad120@gmail.com; Sathe, Bhaskar, E-mail: bhaskarsathe@gmail.com; Gattu, Ketan
2016-05-06
In the present work, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been fabricated onto the glass substrate by simple and economic chemical bath deposition technique{sup 1}, and the effect of deposition temperature is reported. The deposition temperatures used were 50°C and 60°C for a deposition time of 60 min, which are significantly lower than earlier reports. These CZTS thin films were characterized for optical, electrical, morphological and elemental properties using, UV-Vis spectrophotometer, I-V system for photosensitivity, two probe resistivity system for resistivity, scanning electron microscopy, energy dispersive spectroscopy and Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Maaßdorf, A.; Zeimer, U.; Grenzer, J.; Weyers, M.
2013-07-01
AlxGa1-xAs grown on GaAs is known to be almost perfectly lattice matched with a maximum lattice mismatch of 0.14% at room temperature and even less at temperatures of 700 °C-800 °C. However, as layer structures for edge-emitting diode lasers exhibit an increasing overall thickness of several microns of AlxGa1-xAs, e.g., diode lasers comprising a super-large optical cavity, the accumulated elastic strain energy increases as well. Depending on the growth temperature the formation energy of dislocations can be reached, which is limiting the pseudomorphic growth. In this regard, the thermal expansion coefficient difference between layer and substrate is an important parameter. We utilize in situ curvature measurements during growth of AlxGa1-xAs by metal-organic vapour phase epitaxy to determine the thermal expansion coefficient α. The curvature change with increasing layer thickness, as well as with wafer temperature at constant layer thickness is used to assess α. This is compared to ex situ temperature dependent X-ray diffraction measurements to obtain α. All determined values for α are in good agreement, yielding αAlAs=4.1×10-6 K-1 for a given GaAs linear thermal expansion coefficient of αGaAs=5.73×10-6 K-1.
Deposition of Cubic AlN Films on MgO (100) Substrates by Laser Molecular Beam Epitaxy
NASA Astrophysics Data System (ADS)
Mo, Z. K.; Yang, W. J.; Weng, Y.; Fu, Y. C.; He, H.; Shen, X. M.
2017-12-01
Cubic AlN (c-AlN) films were deposited on MgO (100) substrates by laser molecular beam epitaxy (LMBE) technique. The crystal structure and surface morphology of deposited films with various laser pulse energy and substrate temperature were investigated. The results indicate that c-AlN films exhibit the (200) preferred orientation, showing a good epitaxial relationship with the substrate. The surface roughness of c-AlN films increases when the laser pulse energy and substrate temperature increase. The film grown at laser pulse energy of 150 mJ and substrate temperature of 700 °C shows the best crystalline quality and relatively smooth surface.
The Impact of Condensed-Phase Viscosity on Multiphase Oxidation Kinetics Involving O3, NO3, and OH
NASA Astrophysics Data System (ADS)
Li, J.; Forrester, S. M.; Knopf, D. A.
2017-12-01
Organic aerosol (OA) particles are ubiquitous in the atmosphere and have a significant influence on air quality, human health, cloud formation processes and global climate. By now it is well-recognized that organic particulate species can be amorphous in nature, existing in liquid, semi-solid and solid (glassy) phase states. The phase state is modulated by particle composition and environmental conditions such as relative humidity and temperature. These modifications can influence particle viscosity and molecular diffusion and, therefore, impact the reactive uptake of gas-phase oxidants and radicals by the organic substrate. In this study, we determined the reactive uptake coefficients (γ) of O3 by canola oil, NO3 by levoglucosan (LEV) and a LEV/xylitol mixture, and OH by glucose/sulfuric acid mixtures and glucose/1,2,6-hexanetriol mixtures under dry conditions and for temperatures ranging from 293 K to 213 K. Uptake coefficients have been measured employing a chemical ionization mass spectrometer coupled to a temperature-controlled rotating-wall flow reactor. Glass transition temperatures (Tg) of applied substrates were estimated by the Gordon-Taylor equation. Phase states were qualitatively probed via poking experiment using a temperature-controlled cooling stage. Shattering of the substrates indicated the formation of a glassy state. Results show a significant impact of condensed phase state on reactive uptake kinetics whereby γ changed most profoundly around estimated Tg. For example, γ decreases from 6.5×10-4 to 1.9 ×10-5 for O3 uptake by canola oil and from 8.3×10-4 to 3.1×10-4 for NO3 uptake by the LEV/xylitol mixture, respectively. The decrease in γ will be discussed with regard to phase state, desorption lifetime, and Arrhenius temperature dependence of reaction rates. First results of OH uptakes at low temperatures are presented, together with a discussion of the relevant atmospheric implications.
Photothermal damage is correlated to the delivery rate of time-integrated temperature
NASA Astrophysics Data System (ADS)
Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.
2016-03-01
Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.
USDA-ARS?s Scientific Manuscript database
Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with controlled release fertilizers (CRF). The objective of this research was to observe how initial substrate moisture content and storage temperature affect the chemical p...
Plasmonic nanostructure assisted HHG in NIR spectrum and thermal analysis
NASA Astrophysics Data System (ADS)
Ebadian, H.; Mohebbi, M.
2018-02-01
We study plasmonic nanoparticle assisted high-order harmonic generation (HHG), illuminated by near infrared (NIR) laser sources, and the effect of the geometry of some different dimers on HHG cutoff frequency is evaluated. Dimers are installed on different dielectric substrates and the electric field enhancement factors are simulated. We demonstrate that NIR femto-fiber sources are good options for the HHG process. Such sources can induce significant inhomogeneous electric fields in the nanogaps; and consequently, high harmonic cutoff orders more than 250 will be obtained. Moreover, by time dependent thermal analysis of Au nanoparticles exposed to NIR ultrafast high power lasers, we could determine the temperature distribution in the nanoparticle and substrate.
High Count-Rate Study of Two TES X-Ray Microcalorimeters With Different Transition Temperatures
NASA Technical Reports Server (NTRS)
Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.;
2017-01-01
We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures T(sub c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T(sub c)(sup s) had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.eV at 6 keV from lower and higher T(sub c) devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the socalled event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96 Percent throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T(sub c) (faster) device, and 5.8 eV FWHM with 97 Percent throughput with the lower T(sub c) (slower) device at 722 Hz.
Hengge, Alvan C; Stein, Ross L
2004-01-27
To probe the mechanistic origins of convex Eyring plots that have been observed for alpha-chymotrypsin (alpha-CT)-catalyzed hydrolysis of specific p-nitroanilide substrates [Case, A., and Stein, R. L. (2003) Biochemistry 42, 3335-3348], we determined the temperature-dependence of (15)N-kinetic isotope effects for the alpha-CT-catalyzed hydrolysis of N-succinyl-Phe p-nitroanilide (Suc-Phe-pNA). To provide an interpretational context for these enzymatic isotope effects, we also determined 15N-KIE for alkaline hydrolysis of p-nitroacetanilide. In 0.002 and 2 N hydroxide (30 degrees C), 15N-KIE values are 1.035 and 0.995 (+/-0.001), respectively, and are consistent with the reported [HO-]-dependent change in rate-limiting step from leaving group departure from an anionic tetrahedral intermediate in dilute base, to hydroxide attack in concentrated base. For the alpha-CT-catalyzed hydrolysis of Suc-Phe-pNA, 15N-KIE is on kc/Km and thus reflects structural features of transition states for all reaction steps up to and including acylation of the active site serine. The isotope effect at 35 degrees C is 1.014 (+/-0.001) and suggests that in the transition state for this reaction, departure of leaving group from the tetrahedral intermediate is well advanced. Significantly, 15N-KIE does not vary over the temperature range 5-45 degrees C. This result eliminates one of the competing hypotheses for the convex Eyring plot observed for this reaction, that is, a temperature-dependent change in rate-limiting step within the chemical manifold of acylation, but supports a mechanism in which an isomerization of enzyme conformation is coupled to active site chemistry. We finally suggest that the near absolute temperature-independence of 15N-KIE may point to a unique transition state for this process.
Ion beam deposition of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-01-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria-stabilized zirconia substrates by ion beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 80.5 K without post-deposition anneals. Both the deposition rate and the c lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c dimensions and low Tc's. Higher power sputtering produced a continuous decrease in the c lattice parameter and an increase in critical temperatures.
Physical vapor deposition as a route to glasses with liquid crystalline order
NASA Astrophysics Data System (ADS)
Gomez, Jaritza
Physical vapor deposition (PVD) is an effective route to prepare glasses with a unique combination of properties. Substrate temperatures near the glass transition (Tg) and slow deposition rates can access enhanced mobility at the surface of the glass allowing molecules at the surface additional time to sample different molecular configurations. The temperature of the substrate can be used to control molecular mobility during deposition and properties in the resulting glasses such as higher density, kinetic stability and preferential molecular orientation. PVD was used to prepare glasses of itraconazole, a smectic A liquid crystal. We characterized molecular orientation using infrared and ellipsometry. Molecular orientation can be controlled by choice of Tsubstrate in a range of temperatures near Tg. Glasses deposited at Tsubstrate = Tg show nearly vertical molecular orientation relative to the substrate; at lower Tsubstrate, molecules are nearly parallel to the substrate. The molecular orientation depends on the temperature of the substrate during preparation and not on the molecular orientation of the underlying layer. This allows preparing samples of layers with differing orientations. We find these glasses are homogeneous solids without evidence of domain boundaries and are molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. We report the thermal and structural properties of glasses prepared using PVD of a rod-like molecule, posaconazole, which does not show equilibrium liquid crystal phases. These glasses show substantial molecular orientation that can be controlled by choice of Tsubstrate during deposition. Ellipsometry and IR indicate that glasses prepared at Tg - 3 K are highly ordered. At these Tsubstrate, molecules show preferential vertical orientation and orientation is similar to that measured in aligned nematic liquid crystal. Our results are consistent with a recently proposed mechanism where molecular orientation in equilibrium liquids can be trapped in PVD glasses and suggest that the orientation at the free surface of posaconazole is nematic-like. In addition, we show posaconazole glasses show high kinetic stability controlled by Tsubstrate.
The origin of star-shaped oscillations of Leidenfrost drops
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Burton, Justin C.
We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop
Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M
2017-10-21
We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.
Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures
Deng, Tianqi; Su, Haibin
2015-01-01
We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715
Antibacterial characteristics of thermal plasma spray system.
Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A
2018-03-15
The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an important parameter for progressing mechanical properties of the antiseptic deposition.
Deposition of tantalum carbide coatings on graphite by laser interactions
NASA Technical Reports Server (NTRS)
Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.
1994-01-01
Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.
An evaluation of direct PCR amplification
Hall, Daniel E.; Roy, Reena
2014-01-01
Aim To generate complete DNA profiles from blood and saliva samples deposited on FTA® and non-FTA® paper substrates following a direct amplification protocol. Methods Saliva samples from living donors and blood samples from deceased individuals were deposited on ten different FTA® and non-FTA® substrates. These ten paper substrates containing body fluids were kept at room temperature for varying lengths of time ranging from one day to approximately one year. For all assays in this research, 1.2 mm punches were collected from each substrate containing one type of body fluid and amplified with reagents provided in the nine commercial polymerase chain reaction (PCR) amplification kits. The substrates were not subjected to purification reagent or extraction buffer prior to amplification. Results Success rates were calculated for all nine amplification kits and all ten substrates based on their ability to yield complete DNA profiles following a direct amplification protocol. Six out of the nine amplification kits, and four out of the ten paper substrates had the highest success rates overall. Conclusion The data show that it is possible to generate complete DNA profiles following a direct amplification protocol using both standard (non-direct) and direct PCR amplification kits. The generation of complete DNA profiles appears to depend more on the success of the amplification kit rather than the than the FTA®- or non-FTA®-based substrates. PMID:25559837