Majkut, Stephanie F; Discher, Dennis E
2012-11-01
In this review, we discuss recent studies on the mechanosensitive morphology and function of cardiomyocytes derived from embryos and neonates. For early cardiomyocytes cultured on substrates of various stiffnesses, contractile function as measured by force production, work output and calcium handling is optimized when the culture substrate stiffness mimics that of the tissue from which the cells were obtained. This optimal contractile function corresponds to changes in sarcomeric protein conformation and organization that promote contractile ability. In light of current models for myofibillogenesis, a recent mathematical model of striation and alignment on elastic substrates helps to illuminate how substrate stiffness modulates early myofibril formation and organization. During embryonic heart formation and maturation, cardiac tissue mechanics change dynamically. Experiments and models highlighted here have important implications for understanding cardiomyocyte differentiation and function in development and perhaps in regeneration processes.
Apparatus for depositing a low work function material
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2006-10-10
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Low work function surface layers produced by laser ablation using short-wavelength photons
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2000-01-01
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Effect of nanoscale size and medium on metal work function in oleylamine-capped gold nanocrystals
NASA Astrophysics Data System (ADS)
Abdellatif, M. H.; Ghosh, S.; Liakos, I.; Scarpellini, A.; Marras, S.; Diaspro, A.; Salerno, M.
2016-02-01
The work function is an important material property with several applications in photonics and optoelectronics. We aimed to characterize the work function of clusters resulting from gold nanocrystals capped with oleylamine surfactant and drop-casted onto gold substrate. We used scanning Kelvin probe microscopy to investigate the work function, and complemented our study mainly with X-ray diffraction and X-ray photoelectron spectroscopy. The oleylamine works as an electron blocking layer through which the electrical conduction takes place by tunneling effect. The surface potential appears to depend on the size of the clusters, which can be ascribed to their difference in effective work function with the substrate. The charge state of gold clusters is discussed in comparison with theory, and their capacitance is calculated from a semi-analytical equation. The results suggest that at the nanoscale the work function is not an intrinsic property of a material but rather depends on the size and morphology of the clusters, including also effects of the surrounding materials.
Electronic structures of 1-ML C84/Ag(111): Energy level alignment and work function variation
NASA Astrophysics Data System (ADS)
Wang, Peng; Zhao, Li-Li; Zhang, Jin-Juan; Li, Wen-Jie; Liu, Wei-Hui; Chen, Da; Sheng, Chun-Qi; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; Li, Hong-Nian
2017-12-01
The electronic structures of fullerene/metal interface are critical to the performance of devices based on fullerene in molecular electronics and organic electronics. Herein, we investigate the electronic structures at the interface between C84 and Ag(111) by photoelectron spectroscopy and soft X-ray absorption spectroscopy techniques. It is observed that C84 monolayer on Ag(111) surface (1-ML C84/Ag(111)) has metallic nature. A charge transfer from substrate to the unoccupied states of C84 is determined to be 1.3 electrons per molecule. However, the work function of 1-ML C84 (4.72 eV) is observed slightly larger than that of the clean Ag(111) substrate (4.50 eV). A bidirectional charge transfer model is introduced to understand the work function variation of the fullerene/metal system. In addition to the charge transfer from substrate to the adsorbate's unoccupied states, there exists non-negligible back charge transfer from fullerene occupied molecular orbital to the metal substrate through interfacial hybridization. The Fermi level will be pinned at ∼4.72 eV for C84 monolayer on coinage metal substrate.
Low work function, stable compound clusters and generation process
Dinh, Long N.; Balooch, Mehdi; Schildbach, Marcus A.; Hamza, Alex V.; McLean, II, William
2000-01-01
Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.
Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.
Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang
2016-12-14
The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.
Coverage dependent work function of graphene on a Cu(111) substrate with intercalated alkali metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Brandon G.; Russakoff, Arthur; Varga, Kalman
2015-05-26
Using first-principles calculations, it is shown that the work function of graphene on copper can be adjusted by varying the concentration of intercalated alkali metals. Using density functional theory, we calculate the modulation of work function when Li, Na, or K are intercalated between graphene and a Cu(111) surface. Furthermore, the physical origins of the change in work function are explained in terms of phenomenological models accounting for the formation and depolarization of interfacial dipoles and the shift in the Fermi-level induced via charge transfer.
Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air
NASA Astrophysics Data System (ADS)
Abdellatif, M. H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco
2017-05-01
The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.
NASA Astrophysics Data System (ADS)
Imadate, Hiroyoshi; Mishima, Tomoyoshi; Shiojima, Kenji
2018-04-01
We report the electrical characteristics of Schottky contacts with nine different metals (Ag, Ti, Cr, W, Mo, Au, Pd, Ni, and Pt) formed on clean m-plane surfaces by cleaving freestanding GaN substrates, compared with these of contacts on Ga-polar c-plane n-GaN surfaces grown on GaN substrates. The n-values from the forward current–voltage (I–V) characteristics are as good as 1.02–1.18 and 1.02–1.09 for the m- and c-plane samples, respectively. We found that the reverse I–V curves of both samples can be explained by the thermionic field emission theory, and that the Schottky barrier height of the cleaved m-plane contacts shows a metal work function dependence.
D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity
NASA Astrophysics Data System (ADS)
Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.
2015-11-01
The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.
Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.
2015-01-01
Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538
Effect of Substrate Mechanics on Cardiomyocyte Maturation and Growth
Tallawi, Marwa; Rai, Ranjana; Boccaccini, Aldo. R.
2015-01-01
Cardiac tissue engineering constructs are a promising therapeutic treatment for myocardial infarction, which is one of the leading causes of death. In order to further advance the development and regeneration of engineered cardiac tissues using biomaterial platforms, it is important to have a complete overview of the effects that substrates have on cardiomyocyte (CM) morphology and function. This article summarizes recent studies that investigate the effect of mechanical cues on the CM differentiation, maturation, and growth. In these studies, CMs derived from embryos, neonates, and mesenchymal stem cells were seeded on different substrates of various elastic modulus. Measuring the contractile function by force production, work output, and calcium handling, it was seen that cell behavior on substrates was optimized when the substrate stiffness mimicked that of the native tissue. The contractile function reflected changes in the sarcomeric protein confirmation and organization that promoted the contractile ability. The analysis of the literature also revealed that, in addition to matrix stiffness, mechanical stimulation, such as stretching the substrate during cell seeding, also played an important role during cell maturation and tissue development. PMID:25148904
Zanchi, Chiara; Lucotti, Andrea; Cancogni, Damiano; Fontana, Francesca; Trusso, Sebastiano; Ossi, Paolo M; Tommasini, Matteo
2018-05-31
Nanostructured gold thin films can be fabricated by controlled pulsed laser deposition to get efficient sensors, with uniform morphology and optimized plasmon resonance, to be employed as plasmonic substrates in surface enhanced Raman scattering spectroscopy. By attaching 5-aza[5]helicen-6-yl-6-hexanethiol to such gold nanostructures, used in a previous work for label-free drug sensing with biomedical purposes, we successfully prepared functionalized substrates with remarkable surface enhanced Raman scattering activity. The long-term motivation is to develop probes for drug detection at low concentrations, where sensitivity to specific chiral targets is required. © 2018 Wiley Periodicals, Inc.
Work function measurements by the field emission retarding potential method
NASA Technical Reports Server (NTRS)
Swanson, L. W.; Strayer, R. W.; Mackie, W. A.
1971-01-01
Using the field emission retarding potential method true work functions have been measured for the following monocrystalline substrates: W(110), W(111), W(100), Nb(100), Ni(100), Cu(100), Ir(110) and Ir(111). The electron elastic and inelastic reflection coefficients from several of these surfaces have also been examined near zero primary beam energy.
Highly reflective polymeric substrates functionalized utilizing atomic layer deposition
NASA Astrophysics Data System (ADS)
Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato
2015-08-01
Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki
Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Functionmore » was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.« less
Work function characterization of solution-processed cobalt silicide
Ullah, Syed Shihab; Robinson, Matt; Hoey, Justin; ...
2012-05-08
Cobalt silicide thin films were prepared by spin-coating Si6H12-based inks onto various substrates followed by a thermal treatment. The work function of the solution processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoelectron spectroscopy (UPS). The UPS-derived work function was 4.80 eV for a Co-Si film on Si (100) while C-V of MOS structures yielded a work function of 4.36 eV where the metal was solution-processed Co-Si, the oxide was SiO2 and the semiconductor was a B-doped Si wafer.
Lacher, Sebastian; Matsuo, Yutaka; Nakamura, Eiichi
2011-10-26
The surface properties of inorganic substrates can be altered by coating with organic molecules, which may result in the improvement of the properties suitable for electronic or biological applications. This article reports a systematic experimental study on the influence of the molecular and supramolecular properties of umbrella-shaped penta(organo)[60]fullerene derivatives, and on the work function and the water contact angle of indium-tin oxide (ITO) and gold surfaces. We could relate these macroscopic characteristics to single-molecular level properties, such as ionization potential and molecular dipole. The results led us to conclude that the formation of a SAM of a polar compound generates an electronic field through intermolecular interaction of the molecular charges, and this field makes the overall dipole of the SAM much smaller than the one expected from the simple sum of the dipoles of all molecules in the SAM. This effect, which was called depolarization and previously discussed theoretically, is now quantitatively probed by experiments. The important physical properties in surface science such as work function, ionization potential, and water contact angles have been mutually correlated at the level of molecular structures and molecular orientations on the substrate surface. We also found that the SAMs on ITO and gold operate under the same principle except that the "push-back" effect operates specifically for gold. The study also illustrates the ability of the photoelectron yield spectroscopy technique to rapidly measure the work function of a SAM-covered substrate and the ionization potential value of a molecule on the surface.
NASA Technical Reports Server (NTRS)
Forman, R.
1976-01-01
Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.
Development of chemically vapor deposited rhenium emitters of (0001) preferred crystal orientation
NASA Technical Reports Server (NTRS)
Yang, L.; Hudson, R. G.
1973-01-01
Rhenium thermionic emitters were prepared by the pyrolysis of rhenium chlorides formed by the chlorination of rhenium pellets. The impurity contents, microstructures, degrees of (0001) preferred crystal orientation, and vacuum electron work functions of these emitters were determined as a function of deposition parameters, such as substrate temperature, rhenium pellet temperature and chlorine flow rate. A correlation between vacuum electron work function and degree of (0001) preferred crystal orientation was established. Conditions for depositing porosity-free rhenium emitters of high vacuum electron work functions were defined. Finally, three cylindrical rhenium emitters were prepared under the optimum deposition conditions.
Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung
2016-03-01
The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film. Copyright © 2015 Elsevier Inc. All rights reserved.
Electron emitting device and method of making the same
Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael
1977-04-19
A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.
Work function measurements by the field emission retarding potential method.
NASA Technical Reports Server (NTRS)
Strayer, R. W.; Mackie, W.; Swanson, L. W.
1973-01-01
Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.
MoOx modified ZnGaO based transparent conducting oxides
NASA Astrophysics Data System (ADS)
Dutta, Titas; Gupta, P.; Bhosle, V.; Narayan, J.
2009-03-01
We report here the growth of high work function bilayered structures of thin MoOx (2.0
Selective-area growth and controlled substrate coupling of transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Bersch, Brian M.; Eichfeld, Sarah M.; Lin, Yu-Chuan; Zhang, Kehao; Bhimanapati, Ganesh R.; Piasecki, Aleksander F.; Labella, Michael, III; Robinson, Joshua A.
2017-06-01
Developing a means for true bottom-up, selective-area growth of two-dimensional (2D) materials on device-ready substrates will enable synthesis in regions only where they are needed. Here, we demonstrate seed-free, site-specific nucleation of transition metal dichalcogenides (TMDs) with precise control over lateral growth by utilizing an ultra-thin polymeric surface functionalization capable of precluding nucleation and growth. This polymer functional layer (PFL) is derived from conventional photoresists and lithographic processing, and is compatible with multiple growth techniques, precursors (metal organics, solid-source) and TMDs. Additionally, we demonstrate that the substrate can play a major role in TMD transport properties. With proper TMD/substrate decoupling, top-gated field-effect transistors (FETs) fabricated with selectively-grown monolayer MoS2 channels are competitive with current reported MoS2 FETs. The work presented here demonstrates that substrate surface engineering is key to realizing precisely located and geometrically-defined 2D layers via unseeded chemical vapor deposition techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...
2017-07-07
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Get a Grip: Substrate Orientation and Digital Grasping Pressures in Strepsirrhines.
Congdon, Kimberly A; Ravosa, Matthew J
2016-01-01
Skeletal functional morphology in primates underlies many fossil interpretations. Understanding the functional correlates of arboreal grasping is central to identifying locomotor signatures in extinct primates. We tested 3 predictions linking substrate orientation and digital grasping pressures: (1) below-branch pressures are greater than above-branch and vertical-branch pressures; (2) there is no difference in pressure exerted across digits within autopods at any substrate orientation, and (3) there is no difference in pressure exerted between homologous digits across autopods at any substrate orientation. Adult males and females from 3 strepsirrhine species crossed an artificial arboreal substrate oriented for above-, below- and vertical-branch locomotion. We compared digital pressures within and across behaviors via ANOVA and Tukey's Honest Significant Difference test. Results show limited support for all predictions: below-branch pressures exceeded vertical-branch pressures and above-branch pressures for some digits and species (prediction 1), lateral digits often exerted greater pressures than medial digits (prediction 2), and pedal digits occasionally exerted greater pressures than manual digits during above-branch and vertical orientations but less often for below-branch locomotion (prediction 3). We observed functional variability across autopods, substrate and species that could underlie morphological variation within and across primates. Future work should consider the complexity of arboreality when inferring locomotor modes in fossils. © 2016 S. Karger AG, Basel.
Cell orientation gradients on an inverse opal substrate.
Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze
2015-05-20
The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.
High performance ZnO:Al films deposited on PET substrates using facing target sputtering
NASA Astrophysics Data System (ADS)
Guo, Tingting; Dong, Guobo; Gao, Fangyuan; Xiao, Yu; Chen, Qiang; Diao, Xungang
2013-10-01
ZnO:Al (ZAO) thin films have been deposited on flexible PET substrates using a plasma damage-free facing target sputtering system at room temperature. The structure, surface morphology, electrical and optical properties were investigated as a function of working power. All the samples have a highly preferred orientation of the c-axis perpendicular to the PET substrate and have a high quality surface. With increased working power, the carrier concentration changes slightly, the mobility increases at the beginning and decreases after it reaches a maximum value, in line with electrical conductivity. The figure of merit has been significantly improved with increasing of the working power. Under the optimized condition, the lowest resistivity of 1.3 × 10-3 Ω cm with a sheet resistance of 29 Ω/□ and the relative visible transmittance above 93% in the visible region were obtained.
NASA Astrophysics Data System (ADS)
Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration
2013-03-01
Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.
Low work function, stable thin films
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2000-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
Influence of H2 and D2 plasmas on the work function of caesiated materials
NASA Astrophysics Data System (ADS)
Friedl, R.; Fantz, U.
2017-08-01
Caesium-covered surfaces are used in negative hydrogen ion sources as a low work function converter for H-/D- surface production. The work function χ of the converter surface is one of the key parameters determining the performance of the ion source. Under idealized conditions, pure bulk Cs has 2.14 eV. However, residual gases at ion source background pressures of 10-7-10-6 mbar and the plasma surface interaction with the hydrogen discharge in front of the caesiated surface dynamically affect the actual surface work function. Necessary fundamental investigations on the resulting χ are performed at a dedicated laboratory experiment. Under the vacuum conditions of ion sources, the incorporation of impurities into the Cs layer leads to very stable Cs compounds. The result is a minimal work function of χvac ≈ 2.75 eV for Cs evaporation rates of up to 10 mg/h independent of substrate material and surface temperature (up to 260 °C). Moreover, a distinct degradation behavior can be observed in the absence of a Cs flux onto the surface leading to a deterioration of the work function by about 0.1 eV/h. However, in a hydrogen discharge with plasma parameters close to those of ion sources, fluxes of reactive hydrogen species and VUV photons impact on the surface which reduces the work function of the caesiated substrate down to about 2.6 eV even without Cs supply. Establishing a Cs flux onto the surface with ΓCs ≈ 1017 m-2 s-1 further enhances the work function obtaining values around 2.1 eV, which can be maintained stable for several hours of plasma exposure. Hence, Cs layers with work functions close to that of pure bulk Cs can be achieved for both H2 and D2 plasmas. Isotopic differences can be neglected within the measurement accuracy of about 0.1 eV due to comparable plasma parameters. Furthermore, after shutting down the Cs evaporation, continuing plasma exposure helps against degradation of the Cs layer resulting in a constant low work function for at least 1 h.
High quality GaAs single photon emitters on Si substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bietti, S.; Sanguinetti, S.; Cavigli, L.
2013-12-04
We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer.
Imaging prototypical aromatic molecules on insulating surfaces: a review
NASA Astrophysics Data System (ADS)
Hoffmann-Vogel, R.
2018-01-01
Insulating substrates allow for in-plane contacted molecular electronics devices where the molecule is in contact with the insulator. For the development of such devices it is important to understand the interaction of molecules with insulating surfaces. As substrates, ionic crystals such as KBr, KCl, NaCl and CaF2 are discussed. The surface energies of these substrates are small and as a consequence intrinsic properties of the molecules, such as molecule–molecule interaction, become more important relative to interactions with the substrates. As prototypical molecules, three variants of graphene-related molecules are used, pentacene, C60 and PTCDA. Pentacene is a good candidate for molecular electronics applications due to its high charge carrier mobility. It shows mainly an upright standing growth mode and the morphology of the islands is strongly influenced by dewetting. A new second flat-lying phase of the molecule has been observed. Studying the local work function using the Kelvin method reveals details such as line defects in the center of islands. The local work function differences between the upright-standing and flat-lying phase can only be explained by charge transfer that is unusual on ionic crystalline surfaces. C60 nucleation and growth is explained by loosely bound molecules at kink sites as nucleation sites. The stability of C60 islands as a function of magic numbers is investigated. Peculiar island shapes are obtained from unusual dewetting processes already at work during growth, where molecules ‘climb’ to the second molecular layer. PTCDA is a prototypical semiconducting molecule with strong quadrupole moment. It grows in the form of elongated islands where the top and the facets can be molecularly resolved. In this way the precise molecular arrangement in the islands is revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han
2010-07-02
Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acidsmore » (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.« less
Epitaxial hexagonal boron nitride on Ir(111): A work function template
NASA Astrophysics Data System (ADS)
Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter
2014-06-01
Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.
Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.
Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing
2016-08-22
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Theoretical study of cathode surfaces and high-temperature superconductors
NASA Technical Reports Server (NTRS)
Mueller, Wolfgang
1994-01-01
The surface-dipole properties of model cathode surfaces have been investigated with relativistic scattered-wave cluster calculations. Work-function/coverage curves have been derived from these data by employing the depolarization model of interacting surface dipoles. Accurate values have been obtained for the minimum work functions of several low-work-function surfaces. In the series BaO on bcc W, hcp Os, and fcc Pt, BaO/Os shows a lower and BaO/Pt a higher work function than BaO/W, which is attributed to the different substrate crystal structures involved. Results are also presented on the electronic structure of the high-temperature superconductor YBa2Cu3O7, which has been investigated with fully relativistic calculations for the first time.
Lu, Cheng-Tsung; Huang, Kai-Yao; Su, Min-Gang; Lee, Tzong-Yi; Bretaña, Neil Arvin; Chang, Wen-Chi; Chen, Yi-Ju; Chen, Yu-Ju; Huang, Hsien-Da
2013-01-01
Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein-protein interaction and domain-domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.
Size and shape dependence of CO adsorption sites on sapphire supported Fe microcrystals
NASA Technical Reports Server (NTRS)
Papageorgopoulos, C.; Heinemann, K.
1985-01-01
The surface structure and stoichiometry of alumina substrates, as well as the size, growth characteristics, and shape of Fe deposits on sapphire substrates have been investigated by low energy electron diffraction (LEED), Auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoemission spectroscopy (XPS), as well as work function measurements, in conjunction with transition electron microscopy observations. The substrates used in this work were the following: (1) new, clean Al2O3; (2) same surface amorphized by Ar ion bombardment; (3) same surface regenerated by 650 C annealing; (4) amorphous alumina films on Ta slab; and (5) polycrystal alumina films, obtained by heating amorphous films to 600 C. Substrate cleaning was found to be most effective in producing a reproducible surface upon oxygen RF plasma treatment. The Fe nucleation and growth process was found to depend strongly on the type of substrate surface and deposition conditions. Ar ion bombardment under beam flooding, and subsequent annealing at 650 C was found an effective means to restore the original Al2O3 (1102) surface for renewed Fe deposition.
Surface modification and characterization of indium-tin oxide for organic light-emitting devices.
Zhong, Z Y; Jiang, Y D
2006-10-15
In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.
Shehu, Dayyabu; Alias, Zazali
2018-05-19
Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
NASA Astrophysics Data System (ADS)
Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki
2010-11-01
We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.
Aira, Manuel; Domínguez, Jorge
2011-01-01
Background Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects). Methodology/Principal Findings To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered. Conclusion/Significance Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity. PMID:21298016
Generation of low work function, stable compound thin films by laser ablation
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2001-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
A neural network model for transference and repetition compulsion based on pattern completion.
Javanbakht, Arash; Ragan, Charles L
2008-01-01
In recent years because of the fascinating growth of the body of neuroscientific knowledge, psychoanalytic scientists have worked on models for the neurological substrates of key psychoanalytic concepts. Transference is an important example. In this article, the psychological process of transference is described, employing the neurological function of pattern completion in hippocampal and thalamo-cortical pathways. Similarly, repetition compulsion is seen as another type of such neurological function; however, it is understood as an attempt for mastery of the unknown, rather than simply for mastery of past experiences and perceptions. Based on this suggested model of neurological function, the myth of the psychoanalyst as blank screen is seen as impossible and ineffective, based on neurofunctional understandings of neuropsychological process. The mutative effect of psychoanalytic therapy, correcting patterns of pathological relatedness, is described briefly from conscious and unconscious perspectives. While cognitive understanding (insight) helps to modify transferentially restored, maladaptive patterns of relatedness, the development of more adaptive patterns is also contingent upon an affective experience (working through), which alters the neurological substrates of unconscious, pathological affective patterns and their neurological functional correlates.
Multifunctional epitaxial systems on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968
2016-09-15
Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less
Photoelectron spectroscopic studies of ultra-thin CuPc layers on a Si(111)-(√3 × √3)R30°-B surface
NASA Astrophysics Data System (ADS)
Menzli, S.; Laribi, A.; Mrezguia, H.; Arbi, I.; Akremi, A.; Chefi, C.; Chérioux, F.; Palmino, F.
2016-12-01
The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)-(√3 × √3)R30°-B surface is investigated at room temperature under ultra-high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results shed light on the growth mechanism of CuPc on this substrate. At one monolayer coverage the growth mode was characterized by the formation of crystalline 3D nanoislands. The molecular packing deduced from this study appears very close to the one of the bulk CuPc α phase. The 3D islands are formed by molecules aligned in a standing manner. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate. However there is charge transfer from molecules to the substrate. During the growth, the work function (WF) was found to decrease from 4.50 eV for the clean substrate to 3.70 eV for the highest coverage (30 monolayers). Within a thickness of two monolayers deposition, an interface dipole of 0.50 eV was found. A substrate band bending of 0.25 eV was deduced over all the range of exposure. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.30 eV. The changes in the work function, in the Fermi level position and in the onset of the molecular HOMO state have been used to determine the energy level alignment at the interface.
Kijlstra, Jan David; Hu, Dongjian; van der Meer, Peter; Domian, Ibrahim J
2017-11-15
Human pluripotent stem-cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and electrical activity, calcium cycling, and force generation, is therefore of paramount importance. hPSC-CMs cultured on stiff substrates like glass or polystyrene do not have the ability to shorten during contraction, making them less suitable for the study of hPSC-CM contractile function. Other approaches require highly specialized hardware and are difficult to reproduce. Here we describe a protocol for the preparation of hPSC-CMs on soft substrates that enable shortening, and subsequently the simultaneous quantitative analysis of their contractile and electrical activity, calcium cycling, and force generation at single-cell resolution. This protocol requires only affordable and readily available materials and works with standard imaging hardware. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Thin-film cadmium telluride photovoltaic cells
NASA Astrophysics Data System (ADS)
Compaan, A. D.; Bohn, R. G.
1994-09-01
This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.
Nashida, Norihiro; Satoh, Wataru; Fukuda, Junji; Suzuki, Hiroaki
2007-06-15
An integrated microfluidic device with injecting, flushing, and sensing functions was realized using valves that operate based on direct electrowetting. The device consisted of two substrates: a glass substrate with driving and sensing electrodes and a poly(dimethylsiloxane) (PDMS) substrate. Microfluidic transport was achieved using the spontaneous movement of solutions in hydrophilic flow channels formed with a dry-film photoresist layer. The injection and flushing of solutions were controlled by gold working electrodes, which functioned as valves. The valves were formed either in the channels or in a through-hole in the glass substrate. To demonstrate the system's applicability to an immunoassay, the detection of immobilized antigens was performed as a partial simulation of a sandwich immunoassay. Human alpha-fetoprotein (AFP) or an anti-human AFP antibody was immobilized on a platinum working electrode in the chamber using a plasma-polymerized film (PPF). By applying a potential to the injection valves, necessary solutions were injected one by one through the channels into a reaction chamber at the center of the chip and incubated for reasonable periods of time. The solutions were then flushed through the flushing valve and absorbed in a filter paper placed under the device. After incubation with the corresponding antibodies labeled with glucose oxidase (GOD), electrochemical detection was conducted. In both cases, the obtained current depended on the amount of immobilized antigen. The calibration curves were sigmoidal, and the detection limit was 0.1 ng. The developed microfluidic system could potentially be a fundamental component for a micro immunoassay of the next generation.
Swanson, Stephanie; Ioerger, Thomas R.; Rigel, Nathan W.; Miller, Brittany K.; Braunstein, Miriam
2015-01-01
ABSTRACT While SecA is the ATPase component of the major bacterial secretory (Sec) system, mycobacteria and some Gram-positive pathogens have a second paralog, SecA2. In bacteria with two SecA paralogs, each SecA is functionally distinct, and they cannot compensate for one another. Compared to SecA1, SecA2 exports a distinct and smaller set of substrates, some of which have roles in virulence. In the mycobacterial system, some SecA2-dependent substrates lack a signal peptide, while others contain a signal peptide but possess features in the mature protein that necessitate a role for SecA2 in their export. It is unclear how SecA2 functions in protein export, and one open question is whether SecA2 works with the canonical SecYEG channel to export proteins. In this study, we report the structure of Mycobacterium tuberculosis SecA2 (MtbSecA2), which is the first structure of any SecA2 protein. A high level of structural similarity is observed between SecA2 and SecA1. The major structural difference is the absence of the helical wing domain, which is likely to play a role in how MtbSecA2 recognizes its unique substrates. Importantly, structural features critical to the interaction between SecA1 and SecYEG are preserved in SecA2. Furthermore, suppressor mutations of a dominant-negative secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG or the translocating polypeptide substrate. These results support a model in which the mycobacterial SecA2 works with SecYEG. IMPORTANCE SecA2 is a paralog of SecA1, which is the ATPase of the canonical bacterial Sec secretion system. SecA2 has a nonredundant function with SecA1, and SecA2 exports a distinct and smaller set of substrates than SecA1. This work reports the crystal structure of SecA2 of Mycobacterium tuberculosis (the first SecA2 structure reported for any organism). Many of the structural features of SecA1 are conserved in the SecA2 structure, including putative contacts with the SecYEG channel. Several structural differences are also identified that could relate to the unique function and selectivity of SecA2. Suppressor mutations of a secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG. PMID:26668263
Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying
NASA Astrophysics Data System (ADS)
Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.
2016-06-01
Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.
2015-11-18
thickness of the film, or substrate. In this work, we report calculations for titanium nitride ( TiN ), a promising material for plasmonic applications...stoichiometric bulk TiN , as well as of the TiN (100), TiN (110), and TiN (111) outermost surfaces. Density functional theory (DFT) and many-body GW methods...and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity
Li, Fengxue; Xu, Dingguo
2015-08-01
Hyaluronan lyase from Streptococcus pneumoniae can degrade hyaluronic acid, which is one of the major components in the extracellular matrix. Hyaluronan can regulate water balance, osmotic pressure, and act as an ion exchange resin. Followed by our recent work on the catalytic reaction mechanism and substrate binding mode, we in this work further investigate the functional role of active site arginine residue, R462, in the degradation of hyaluronan. The site directed mutagenesis simulation of R462A and R462Q were modeled using a combined quantum mechanical and molecular mechanical method. The overall substrate binding features upon mutations do not have significant changes. The energetic profiles for the reaction processes are essentially the same as that in wild type enzyme, but significant activation barrier height changes can be observed. Both mutants were shown to accelerate the overall enzymatic activity, e.g., R462A can reduce the barrier height by about 2.8 kcal mol(-1), while R462Q reduces the activation energy by about 2.9 kcal mol(-1). Consistent with the active site model calculated using density functional theory, our results can support that the positive charge on R462 guanidino side chain group plays a negative role in the catalysis. Finally, the functional role of R462 was proposed to facilitate the formation of initial enzyme-substrate complex, but not in the subsequent catalytic degradation reaction. Graphical Abstract Degradation of hyaluronan catalyzed by hyaluronate lyase from Streptococcus pneumoniae.
NASA Astrophysics Data System (ADS)
Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo
2016-02-01
In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.
Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo
2016-01-01
In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830
Analysis and characterization of graphene-on-substrate devices
NASA Astrophysics Data System (ADS)
Berdebes, Dionisis
The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.
Silver nanoparticles with tunable work functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp; Tanaka, Daisuke; Ryuzaki, Sou
To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probemore » force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.« less
The interaction of small metal particles with refractory oxide supports
NASA Technical Reports Server (NTRS)
Park, C.; Heinemann, K.
1985-01-01
Islands and continuous layers of Pd were grown in UHV on Mo and MoO subtrates. As-deposited Pd islands and layers exhibited bulk Pd adsorption properties for CO when the Pd had been deposited at RT and at thicknesses exceeding 3 ML. However, CO adsorption was drastically reduced upon annealing. This deactivation was interpreted in terms of substrate/support interaction involving the diffusion of substrate species toward the Pd surface, using AES, TPD, and work function measurement techniques. A study of the growth and annealing behavior of Pd on Mo(110) was made for thicknesses up to 12 monolayers and substrate temperatures up to 1300K, using AES, XPS, LEED, and work function measurements. At low tempertures Pd formed a monolayer without alloying. In thick layers (12 ML) annealed about 700 K, Mo diffusion into the Pd layer and alloying were noted. Such layers remained continuous up to 1100 K. Thinner Pd layers were less stable and started coalescing upon annealing to as little as 550 K. Significant changes in Pd Auger peak shape, as well as shifts of Pd core levels, were observed during layer growth and annealing.
NASA Astrophysics Data System (ADS)
Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.
2018-01-01
Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.
Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.
Schlisske, Stefan; Held, Martin; Rödlmeier, Tobias; Menghi, Silvia; Fuchs, Kathleen; Ruscello, Marta; Morfa, Anthony J; Lemmer, Uli; Hernandez-Sosa, Gerardo
2018-05-29
Digital printing enables solution processing of functional materials and opens a new route to fabricate low-cost electronic devices. One crucial parameter that affects the wettability of inks for all printing techniques is the surface free energy (SFE) of the substrate. Siloxanes, with their huge variety of side chains and their ability to form self-assembled monolayers, offer exhaustive control of the substrate SFE from hydrophilic to hydrophobic. Thus, siloxane treatment is a suitable approach to adjust the substrate conditions to the desired ink, instead of optimizing the ink to an arbitrary substrate. In this work, the influence of different fluorinated and nonfluorinated siloxanes on the SFE of different substrates, such as polymers, glasses, and metals, are examined. By mixing several siloxanes, we demonstrate the fine tuning of the surface energy. The polar and dispersive components of the SFE are determined by the Owens-Wendt-Rabel-Kaelble (OWRK) method. Furthermore, the impact of the siloxanes and therefore the SFE on the pinning of droplets and wet films are assessed via dynamic contact angle measurements. SFE-optimized substrates enable tailoring the resolution of inkjet printed silver structures. A nanoparticulate silver ink was used for printing single drops, lines, and source-drain electrodes for transistors. These were examined in terms of diameter, edge quality, and functionality. We show that by adjusting the SFE of an arbitrary substrate, the printed resolution is substantially increased by minimizing the printed drop size by up to 70%.
Structure-function properties of anticorrosive exopolyaccharides
USDA-ARS?s Scientific Manuscript database
Nanoscale biobased exopolymer films were shown that provide protection to metal substrates under corrosive environments and that the films could be self-repairing in aqueous environments. This work describes the fundamental properties of thin exopolymer films including thermodynamic properties, film...
Au nanoparticles films used in biological sensing
NASA Astrophysics Data System (ADS)
Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.
2009-05-01
Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.
Structural basis for phosphatidylinositol-phosphate biosynthesis
NASA Astrophysics Data System (ADS)
Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo
2015-10-01
Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.
O'Daniels, Sean T; Kesler, Dylan C; Mihail, Jeanne D; Webb, Elisabeth B; Werner, Scott J
2017-05-15
Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms. Published by Elsevier Inc.
O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.
2017-01-01
Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.
Atomistic characterization of SAM coatings as gate insulators in Si-based FET devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, F.; Zollo, G.
2014-06-19
Many nano-material systems are currently under consideration as possible candidates for gate dielectric insulators in both metal-oxide-semiconductor (MOSFET) and organic (OFET) field-effect transistors. In this contribution, the possibility of employing self-assembled monolayers (SAMs) of hydroxylated octadecyltrichlorosilane (OTS) chains on a (111) Si substrate as gate dielectrics is discussed; in particular ab initio theoretical simulations have been employed to study the structural properties, work function modifications, and the insulating properties of OTS thin film coatings on Si substrates.
Atomistic characterization of SAM coatings as gate insulators in Si-based FET devices
NASA Astrophysics Data System (ADS)
Gala, F.; Zollo, G.
2014-06-01
Many nano-material systems are currently under consideration as possible candidates for gate dielectric insulators in both metal-oxide-semiconductor (MOSFET) and organic (OFET) field-effect transistors. In this contribution, the possibility of employing self-assembled monolayers (SAMs) of hydroxylated octadecyltrichlorosilane (OTS) chains on a (111) Si substrate as gate dielectrics is discussed; in particular ab initio theoretical simulations have been employed to study the structural properties, work function modifications, and the insulating properties of OTS thin film coatings on Si substrates.
NASA Astrophysics Data System (ADS)
Chen, I.-Nan; Wu, Shiuan-Yau; Chen, Hsin-Tsung
2018-05-01
In this work, we perform density functional theory (DFT) calculations to investigate the hydrogen adsorption on Pt4 cluster supported on pristine, B-, and N-doped graphene sheets. It is found that the doping B or N atom in the graphene could enhance the interaction between the Pt4 cluster and the supporting substrate. The first H2 molecule is found to be dissociative chemisorption on the three substrates. Further, dissociative and molecular adsorption of multiple H2 molecules are co-adsorbed on the three substrates. In addition, the interaction between Pt4(H2)x and the substrate is illustrated for the stability of Pt4(H2)x on the substrate. AIMD simulation is also performed to verify the stability and hydrogen storage. Accordingly, the B-graphene is predicted to be the most potential materials for hydrogen storage among these three materials.
Postadsorption Work Function Tuning via Hydrogen Pressure Control
2015-01-01
The work function of metal substrates can be easily tuned, for instance, by adsorbing layers of molecular electron donors and acceptors. In this work, we discuss the possibility of changing the donor/acceptor mixing ratio reversibly after adsorption by choosing a donor/acceptor pair that is coupled via a redox reaction and that is in equilibrium with a surrounding gas phase. We discuss such a situation for the example of tetrafluoro-1,4-benzenediol (TFBD)/tetrafluoro-1,4-benzoquinone (TFBQ), adsorbed on Cu(111) and Ag(111) surfaces. We use density functional theory and ab initio thermodynamics to show that arbitrary TFBD/TFBQ mixing ratios can be set using hydrogen pressures attainable in low to ultrahigh vacuum. Adjusting the mixing ratio allows modifying the work function over a range of about 1 eV. Finally, we contrast single-species submonolayers with mixed layers to discuss why the resulting inhomogeneities in the electrostatic energy above the surface have different impacts on the interfacial level alignment and the work function. PMID:26692915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledee, Dolena; Smith, Lincoln; Bruce, Margaret
Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less
Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...
2015-08-12
Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Tetsuya; Matsuoka, Takaaki; Ohmi, Tadahiro
Novel magnetron-sputtering equipment, called rotation magnet sputtering (ROT-MS), was developed to overcome various disadvantages of current magnetron-sputtering equipment. Disadvantages include (1) very low target utilization of less than 20%, (2) difficulty in obtaining uniform deposition on the substrate, and (3) charge-up damages and ion-bombardment-induced damages resulting from very high electron temperature (>3 eV) and that the substrate is set at the plasma excitation region. In ROT-MS, a number of moving high-density plasma loops are excited on the target surface by rotating helical magnets, resulting in very high target utilization with uniform target erosion and uniform deposition on the substrate. Thismore » excellent performance can be principally maintained even if equipment size increases for very large-substrate deposition. Because strong horizontal magnetic fields (>0.05 T) are produced within a very limited region just at the target surface, very low electron-temperature plasmas (<2.5 eV for Ar plasma and <1 eV for direct-current-excited Xe plasma) are excited at the very limited region adjacent to the target surface with a combination of grounded plate closely mounted on the strong magnetic field region. Consequently, the authors can establish charge-up damage-free and ion-bombardment-induced damage-free processes. ROT-MS has been applied for thin-film formation of LaB{sub 6}, which is well known as a stable, low-work-function bulk-crystal material for electron emissions. The work function of the LaB{sub 6} film decreased to 2.8 eV due to enhanced (100)-orientation crystallinity and reduced resistivity realized by adjusting the flux of low-energy bombarding ions impinging on the depositing surface, which work very efficiently, improving the performance of the electron emission devices.« less
Rodríguez de Olmos, A; Bru, E; Garro, M S
2015-03-02
The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture
Jacchetti, Emanuela; Emilitri, Elisa; Rodighiero, Simona; Indrieri, Marco; Gianfelice, Antonella; Lenardi, Cristina; Podestà, Alessandro; Ranucci, Elisabetta; Ferruti, Paolo; Milani, Paolo
2008-01-01
Background Poly(amidoamine)s (PAAs) are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine) hydrogel film incorporating 4-aminobutylguanidine (agmatine) moieties to create RGD-mimicking repeating units for promoting cell adhesion. Results A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine) hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. Conclusion The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices. PMID:19014710
Loch, Christian M; Strickler, James E
2012-11-01
Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.
Methods of making functionalized nanorods
Gur, Ilan [San Francisco, CA; Milliron, Delia [Berkeley, CA; Alivisatos, A Paul [Oakland, CA; Liu, Haitao [Berkeley, CA
2012-01-10
A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.
Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.
2018-03-01
In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.
Adsorption study of copper phthalocyanine on Si(111)(√3 × √3)R30°Ag surface
NASA Astrophysics Data System (ADS)
Menzli, S.; Ben Hamada, B.; Arbi, I.; Souissi, A.; Laribi, A.; Akremi, A.; Chefi, C.
2016-04-01
The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)(√3 × √3)R30°Ag surface is studied at room temperature under ultra high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results indicate that after one monolayer deposition the molecular layer is highly ordered with a flat lying adsorption configuration. The corresponding pattern reveals the coexistence of three symmetrically equivalent orientations of molecules with respect to the substrate. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate; however there is evidence of Fermi level movement. During the growth, the work function was found to decrease from 4.90 eV for the clean substrate to 4.35 eV for the highest coverage (60 monolayers). Within a thickness of two monolayer deposition an interface dipole of 0.35 eV and a band bending of 0.2 eV have been found. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.55 eV. The changes in the work function, in the Fermi level position and in the HOMO state have been used to determine the energy level alignment at the interface.
Leroy, Frédéric; Müller-Plathe, Florian
2015-08-04
We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.
Thin-film X-ray filters on microstructured substrates and their thermophysical properties
NASA Astrophysics Data System (ADS)
Mitrofanov, A. V.
2018-02-01
It is shown that structured substrates having micron- or submicron-sized through holes and coated with an ultrathin organic film can be used for the fabrication of thin-film X-ray filters via direct growth of functional layers on a substrate by sputter deposition, without additional complex processing steps. An optimised process is considered for the fabrication of X-ray filters on support structures in the form of electroplated fine nickel grids and on track-etched polymer membranes with micron- and submicrondiameter through pores. 'Optimisation' is here taken to mean matching the sputter deposition conditions with the properties of substrates so as to avoid overheating. The filters in question are intended for both imaging and single-channel detectors operating in the soft X-ray and vacuum UV spectral regions, at wavelengths from 10 to 60 nm. Thermal calculations are presented for the heating of ultrathin layers of organic films and thin-film support substrates during the sputter deposition of aluminium or other functional materials. The paper discusses approaches for cooling thinfilm composites during the sputter deposition process and the service of the filters in experiments and gives a brief overview of the works that utilised filters produced by the described technique on microstructured substrates, including orbital solar X-ray research in the framework of the CORONAS programme and laboratory laser plasma experiments.
Le Page, Lydia M; Rider, Oliver J; Lewis, Andrew J; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A; Heather, Lisa C; Tyler, Damian J
2015-08-01
Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Analysis of oxygen binding-energy variations for BaO on W
NASA Astrophysics Data System (ADS)
Haas, G. A.; Shih, A.; Mueller, D.; Thomas, R. E.
Interatomic Auger analyses have been made of different forms of BaO layers on W substrates. Variations in Auger spectroscopy energies of the Ba4dBa5pO2p interatomic Auger transition were found to be largely governed by the O2p binding energy of the BaO adsorbate. This was illustrated by comparing results of the Auger data values with values derived from O2p binding energies using ultraviolet photoelectron spectroscopy. Very good agreement was observed not only for the W<100> substrate but also for the W<110> substrate which showed two oxygen-induced electronics state. Variations in binding energy were noted for different states of BaO lattice formation and for different amounts of oxidation, ranging from the transition of Ba to BaO and continuing to the BaO 2 stoichiometry and beyond. Effects were also reported for adsorbate alignment and thermal activation (i.e., reduction) of the oxidized state. An empirical relationship was found suggesting that the more tightly bound the O2p states of the BaO adsorbate were, the lower its work function would be. This link between binding energy and work function was observed to be valid not only for cases of poisoning by oxidation, but held as well during reactivation by the subsequent reduction of the oxide. In addition, this relationship also appeared to predict the low work function obtained through the introduction of substances such as Sc to the BaO-W system. Possible qualitative reasons which might contribute to this are discussed in terms of enhanced dipole effects and shifts in band structure.
Vargiu, Attilio V; Collu, Francesca; Schulz, Robert; Pos, Klaas M; Zacharias, Martin; Kleinekathöfer, Ulrich; Ruggerone, Paolo
2011-07-20
The tripartite efflux pump AcrAB-TolC is responsible for the intrinsic and acquired multidrug resistance in Escherichia coli. Its active part, the homotrimeric transporter AcrB, is in charge of the selective binding of substrates and energy transduction. The mutation F610A has been shown to significantly reduce the minimum inhibitory concentration of doxorubicin and many other substrates, although F610 does not appear to interact strongly with them. Biochemical study of transport kinetics in AcrB is not yet possible, except for some β-lactams, and other techniques should supply this important information. Therefore, in this work, we assess the impact of the F610A mutation on the functionality of AcrB by means of computational techniques, using doxorubicin as substrate. We found that the compound slides deeply inside the binding pocket after mutation, increasing the strength of the interaction. During subsequent conformational alterations of the transporter, doxorubicin was either not extruded from the binding site or displaced along a direction other than the one associated with extrusion. Our study indicates how subtle interactions determine the functionality of multidrug transporters, since decreased transport might not be simplistically correlated to decreased substrate binding affinity.
Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate
NASA Astrophysics Data System (ADS)
Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa
2018-01-01
P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.
Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits
NASA Astrophysics Data System (ADS)
Dubois, Jonathan; Lee, Donghwa; Lordi, Vince
2014-03-01
Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
"Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.
Tai, Yanlong; Lubineau, Gilles
2017-04-01
Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.
NASA Astrophysics Data System (ADS)
Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.
2005-03-01
Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and substrate decreases in the following order: COO-Ca2+/OH > COO-Ca2+/CONHCH3 > COO-Ca2+/CH3.
Fluorinated tin oxide back contact for AZTSSe photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershon, Talia S.; Gunawan, Oki; Haight, Richard A.
A photovoltaic device includes a substrate, a back contact comprising a stable low-work function material, a photovoltaic absorber material layer comprising Ag.sub.2ZnSn(S,Se).sub.4 (AZTSSe) on a side of the back contact opposite the substrate, wherein the back contact forms an Ohmic contact with the photovoltaic absorber material layer, a buffer layer or Schottky contact layer on a side of the absorber layer opposite the back contact, and a top electrode on a side of the buffer layer opposite the absorber layer.
Snakes on a plane: modeling flexible active nematics
NASA Astrophysics Data System (ADS)
Selinger, Robin
Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.
Weak Coordination as a Powerful Means for Developing Broadly Useful C–H Functionalization Reactions
Engle, Keary M.; Mei, Tian-Sheng; Wasa, Masayuki
2011-01-01
Conspectus Reactions that convert carbon–hydrogen (C–H) bonds into carbon–carbon (C–C) or carbon–heteroatom (C–Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C–H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C–H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal–catalyzed C–H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as “first functionalization.” Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C–H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid over-functionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C–H functionalization involves substrates containing one or more pre-existing functional groups, termed “further functionalization.” One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C–H cleavage. Precoordination can overcome the paraffin nature of C–H bonds by increasing the effective concentration of the substrate so that it needn't be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs—the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C–H cleavage through weak coordinations. We discuss our motivation for studying Pd-catalyzed C–H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from higher reactivity of the less stable cyclopalladated intermediates held in place by weak coordinations. PMID:22166158
A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase.
Liebherr, Raphaela B; Renner, Max; Gorris, Hans H
2014-04-23
The mechanisms that drive the evolution of new enzyme activity have been investigated by comparing the kinetics of wild-type and in vitro evolved β-glucuronidase (GUS) at the single molecule level. Several hundred single GUS molecules were separated in large arrays of 62,500 ultrasmall reaction chambers etched into the surface of a fused silica slide to observe their individual substrate turnover rates in parallel by fluorescence microscopy. Individual GUS molecules feature long-lived but divergent activity states, and their mean activity is consistent with classic Michaelis-Menten kinetics. The large number of single molecule substrate turnover rates is representative of the activity distribution within an entire enzyme population. Partially evolved GUS displays a much broader activity distribution among individual enzyme molecules than wild-type GUS. The broader activity distribution indicates a functional division of work between individual molecules in a population of partially evolved enzymes that-as so-called generalists-are characterized by their promiscuous activity with many different substrates.
Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei
2017-01-01
In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.
In vitro cell response to differences in poly-L-lactide crystallinity.
Park, A; Cima, L G
1996-05-01
Many different processing techniques are currently being used to produce tissue regeneration devices from polyesters in the polylactide/polyglycolide family. While it is generally well recognized that processing techniques influence bulk mechanical and degradation properties of these materials, the effects on surface properties are relatively less well studied. We thus investigated the effects of processing conditions that are known to change bulk properties, but not composition, on the surface properties of poly-L-lactide (PLLA). Specifically, we investigated the role of bulk crystallinity of PLLA substrates on several physiochemical aspects of the surface and on the attachment, morphology, and differentiated function of cultured primary hepatocytes and growth of 3T3 fibroblasts. We fabricated smooth, clear PLLA films of 13-37% crystallinity. Glancing angle X-ray diffraction indicated that low crystallinity films lacked order in the first 50 A of the surface while relatively high crystallinity films had detectable order in this range. In other aspects, the surfaces of all PLLA substrates appeared identical with XPS, SEM, and advancing contact angle analysis, but contact angle hysteresis was slightly greater for more crystalline films. Although the physicochemical properties of the surfaces appeared almost identical, we observed differences in cell behavior on less crystalline versus more crystalline films. Hepatocytes formed spheroids on all PLLA substrates, but spheroid formation was faster (24-48 H) on crystalline substrates. quantitative image analysis was used to assess the average cell area as a function of time in culture, and our data confirm previous reports that retention of differentiated function is inversely related to cell spreading where function was assessed by P-450 enzyme activity. In addition, the growth rate of 3T3 fibroblasts was lower on crystalline substrates than on amorphous substrates. An important conclusion from this work is that processing techniques that lead to seemingly inconsequential changes in bulk and surface properties of these polymers may influence biological response.
NASA Astrophysics Data System (ADS)
Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo
2015-11-01
Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.
Zheng, Bing; Yu, Hai-tao; Xie, Ying; Lian, Yong-fu
2014-11-26
First-principles density functional theory calculations were performed to study the effect of Li adsorption on the structural and electronic properties, particularly the work function, of boron α-sheet. The calculated binding energies indicated that boron α-sheet could be well stabilized by the adsorption of Li atoms. Furthermore, the work functions of Li-adsorbed boron α-sheets were observed to decrease drastically with increasing Li coverage. The work functions are lower than that of Mg and even, for some of them, lower than that of Ca, indicating a considerable potential application of Li-adsorbed boron α-sheets as field-emission and electrode materials. Based on the calculated geometric and electronic structures, we discuss in details some possible aspects affecting the work function. The Li coverage dependence of the work functions of Li-adsorbed boron α-sheets was further confirmed by electrostatic potential analyses. The relationship between the work function variation and the Fermi and vacuum energy level shifts was also discussed, and we observed that the variation of the work function is primarily associated with the shift of the Fermi energy level. It is the surface dipole formed by the interaction between adatoms and substrate that should be responsible for the observed variation of the work function, whereas the increasing negative charge and rumpling for boron α-sheet only play minor roles. Additionally, the effect of Li adatoms on the work function of boron α-sheet was confirmed to be much stronger than that of graphene or a graphene double layer.
Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.
Engle, Keary M; Mei, Tian-Sheng; Wasa, Masayuki; Yu, Jin-Quan
2012-06-19
Reactions that convert carbon-hydrogen (C-H) bonds into carbon-carbon (C-C) or carbon-heteroatom (C-Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C-H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C-H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal-catalyzed C-H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as "first functionalization". Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C-H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid overfunctionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C-H functionalization involves substrates containing one or more pre-existing functional groups, termed "further functionalization". One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C-H cleavage. Precoordination can overcome the paraffin nature of C-H bonds by increasing the effective concentration of the substrate so that it need not be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs; the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C-H cleavage through weak coordination. We discuss our motivation for studying Pd-catalyzed C-H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from the high reactivity of the cyclopalladated intermediates, which are held together through weak interactions.
NASA Astrophysics Data System (ADS)
Liu, Yawei; Zhang, Xianren
2016-12-01
In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.
Elasticity modulated Electrowetting of a sessile liquid droplet
NASA Astrophysics Data System (ADS)
Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman
2017-11-01
The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.
NASA Astrophysics Data System (ADS)
Danila, B.; McGurn, A. R.
2005-03-01
A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.
Removal of DLC film on polymeric materials by low temperature atmospheric-pressure plasma jet
NASA Astrophysics Data System (ADS)
Kobayashi, Daichi; Tanaka, Fumiyuki; Kasai, Yoshiyuki; Sahara, Junki; Asai, Tomohiko; Hiratsuka, Masanori; Takatsu, Mikio; Koguchi, Haruhisa
2017-10-01
Diamond-like carbon (DLC) thin film has various excellent functions. For example, high hardness, abrasion resistance, biocompatibility, etc. Because of these functionalities, DLC has been applied in various fields. Removal method of DLC has also been developed for purpose of microfabrication, recycling the substrate and so on. Oxygen plasma etching and shot-blast are most common method to remove DLC. However, the residual carbon, high cost, and damage onto the substrate are problems to be solved for further application. In order to solve these problems, removal method using low temperature atmospheric pressure plasma jet has been developed in this work. The removal effect of this method has been demonstrated for DLC on the SUS304 substrate. The principle of this method is considered that oxygen radical generated by plasma oxidize carbon constituting the DLC film and then the film is removed. In this study, in order to widen application range of this method and to understand the mechanism of film removal, plasma irradiation experiment has been attempted on DLC on the substrate with low heat resistance. The DLC was removed successfully without any significant thermal damage on the surface of polymeric material.
Kowal, Anthony S; Chisholm, Rex L
2011-05-01
Previous work from our laboratory showed that the Dictyostelium discoideum SadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue the sadA adhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. Glutathione S-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA.
Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony
Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S.
2016-01-01
Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity, the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations. PMID:28154616
Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony.
Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S
2016-01-01
Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity , the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations.
Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A
2017-06-01
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping
2018-03-07
The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.
NASA Astrophysics Data System (ADS)
Vigil-Fowler, Derek; Lischner, Johannes; Louie, Steven
2013-03-01
Understanding many-electron interaction effects and the influence of the substrate in graphene-on-substrate systems is of great theoretical and practical interest. Thus far, both model Hamiltonian and ab initio GW calculations for the quasiparticle properties of such systems have employed crude models for the effect of the substrate, often approximating the complicated substrate dielectric matrix by a single constant. We develop a method in which the spatially-dependent dielectric matrix of the substrate (e.g., SiC) is incorporated into that of doped graphene to obtain an accurate total dielectric matrix. We present ab initio GW + cumulant expansion calculations, showing that both the cumulant expansion (to include higher-order electron correlations) and a proper account of the substrate screening are needed to achieve agreement with features seen in ARPES. We discuss how this methodology could be used in other systems. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NERSC and NICS. D.V-F. acknowledges funding from the DOD's NDSEG fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay,L.; Dunaway-Mariano, D.; Allen, K.
2006-01-01
The HAD superfamily is a large superfamily of proteins which share a conserved core domain that provides those active site residues responsible for the chemistry common to all family members. The superfamily is further divided into the four subfamilies I, IIA, IIB, and III, based on the topology and insertion site of a cap domain that provides substrate specificity. This structural and functional division implies that members of a given HAD structural subclass may target substrates that have similar structural characteristics. To understand the structure/function relationships in all of the subfamilies, a type IIA subfamily member, NagD from Escherichia colimore » K-12, was selected (type I, IIB, and III members have been more extensively studied). The structure of the NagD protein was solved to 1.80 Angstroms with R{sub work} = 19.8% and R{sub free} = 21.8%. Substrate screening and kinetic analysis showed NagD to have high specificity for nucleotide monophosphates with kcat/Km = 3.12 x 10{sup 4} and 1.28 x 10{sup 4} {micro}M{sup -1} s{sup -1} for UMP and GMP, respectively. This specificity is consistent with the presence of analogues of NagD that exist as fusion proteins with a nucleotide pyrophosphatase from the Nudix family. Docking of the nucleoside substrate in the active site brings it in contact with conserved residues from the cap domain that can act as a substrate specificity loop (NagD residues 144-149) in the type IIA subfamily. NagD and other subfamily IIA and IIB members show the common trait that substrate specificity and catalytic efficiencies (k{sub cat}/K{sub m}) are low (1 x 10{sup 4} M{sup -1} s{sup -1}) and the boundaries defining physiological substrates are somewhat overlapping. The ability to catabolize other related secondary metabolites indicates that there is regulation at the genetic level.« less
Method of processing a substrate
Babayan, Steven E [Huntington Beach, CA; Hicks, Robert F [Los Angeles, CA
2008-02-12
The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.
Engle, Keary M.; Yu, Jin-Quan
2013-01-01
Homogeneous transition metal–catalyzed reactions are indispensable to all facets of modern chemical synthesis. It is thus difficult to imagine that for much of the early 20th century, the reactivity and selectivity of all known homogeneous metal catalysts paled in comparison to their heterogeneous and biological counterparts. In the intervening decades, advances in ligand design bridged this divide, such that today some of the most demanding bond-forming events are mediated by ligand-supported homogeneous metal species. While ligand design has propelled many areas of homogeneous catalysis, in the field of Pd(II)-catalyzed C–H functionalization, suitable ligand scaffolds are lacking, which has hampered the development of broadly practical transformations based on C–H functionalization logic. In this review, we offer an account of our research employing three ligand scaffolds, mono-N-protected amino acids, 2,6-disubstituted pyridines, and 2,2′-bipyridines, to address challenges posed by several synthetically versatile substrate classes. Drawing on this work, we discuss principles of ligand design, such as the need to match a ligand to a particular substrate class, and how ligand traits such as tunability and modularity can be advantageous in reaction discovery. PMID:23565982
Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates
NASA Astrophysics Data System (ADS)
Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.
2016-12-01
In this research work, extracellular biosynthesis of gold nanoparticles (AuNPs) using marine bacterial isolates (Streptomyces sp.) as a reducing/capping/stabilizing bio-agent and chlolauric acid (HAuCl4) as a precursor has been investigated. Surface modification of cotton and viscose knitted fabrics using O2-plasma followed by subsequent treatment with bio-synthesized AuNPs alone and in combination with TiO2NPs or ZnONPs to impart new functional properties namely antibacterial and UV-blocking were studied. The results show that loading of nominated nanomaterials onto the activated fabric samples results in a significant improvement in antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) along with a remarkable enhancement in the UV-protection functionality of the treated fabrics. The highest antibacterial and anti-UV values were obtained when O2-plasma treated fabrics were loaded with AuNPs/ZnONPs combination, irrespective of the used substrate. The imparted functional properties demonstrated remarkable retention even after 15 washings.
Photo-Attachment of Biomolecules for Miniaturization on Wicking Si-Nanowire Platform
Cheng, He; Zheng, Han; Wu, Jia Xin; Xu, Wei; Zhou, Lihan; Leong, Kam Chew; Fitzgerald, Eugene; Rajagopalan, Raj; Too, Heng Phon; Choi, Wee Kiong
2015-01-01
We demonstrated the surface functionalization of a highly three-dimensional, superhydrophilic wicking substrate using light to immobilize functional biomolecules for sensor or microarray applications. We showed here that the three-dimensional substrate was compatible with photo-attachment and the performance of functionalization was greatly improved due to both increased surface capacity and reduced substrate reflectivity. In addition, photo-attachment circumvents the problems induced by wicking effect that was typically encountered on superhydrophilic three-dimensional substrates, thus reducing the difficulty of producing miniaturized sites on such substrate. We have investigated various aspects of photo-attachment process on the nanowire substrate, including the role of different buffers, the effect of wavelength as well as how changing probe structure may affect the functionalization process. We demonstrated that substrate fabrication and functionalization can be achieved with processes compatible with microelectronics processes, hence reducing the cost of array fabrication. Such functionalization method coupled with the high capacity surface makes the substrate an ideal candidate for sensor or microarray for sensitive detection of target analytes. PMID:25689680
Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier
2017-04-01
Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.
Work Function and Conductivity Change in Polyaniline.
NASA Astrophysics Data System (ADS)
Chinn, Douglas Alan
1995-01-01
The purpose of this study was to elucidate some basic material properties of the conducting polymer polyaniline. Because of the intractable nature of the polymer, methods to make thin films were developed. The polymer was dissolved in formic acid and cast onto silicon substrates that had four metal leads in a parallel configuration. It was discovered that a cast film could be used as a substrate for the subsequent growth of additional film by electrochemical techniques. The polymer will spontaneously change oxidation states both in air and in solution if oxidized or reduced electrochemically. The change in oxidation states is seen as a changing open cell potential in solution and a change in work function and resistance in air. UV-visible and infrared spectroscopy were used to characterize the polymer during relaxation. The work function decreases from both the oxidized and reduced states, but resistance increases from the reduced state and decreases from the oxidized state in air. A two-phase model which has ordered conducting regions and disordered insulating regions has been used to describe the relaxation phenomena. The relaxation is caused by rearrangement within the film of dopant acid and water, allowing the film to develop ordered regions. It has been determined that chemical polyaniline and electrochemical polyaniline are nearly identical chemically, with the main differences being morphological. The relaxation phenomena can be used to make chemical sensors. As the film relaxes, electrons become available. The electrons reduce metallic ions, which interact with a detectant gas in a gas stream above the film. In films containing Hg_2Cl_2 work function decreases and resistance decreases when in contact with hydrogen cyanide in a dry nitrogen stream.
Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao
2016-04-01
Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Junction-based field emission structure for field emission display
Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.
2002-01-01
A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.
Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F
2016-03-01
Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.
ERIC Educational Resources Information Center
Buckingham, Hugh W.; Buckingham, Sarah S.
2011-01-01
Recent work in neuropsychology, clinical aphasiology and neuropharmacology have presented evidence that the causative substrates of recurrent perseveration in adults with aphasia are more recondite and subject to distinct interpretations than originally thought. This article will discuss and evaluate how various proposals from theory, from the…
Frontal Deficits in Alcoholism: An ERP Study
ERIC Educational Resources Information Center
George, Mary Reeni M.; Potts, Geoffrey; Kothman, Delia; Martin, Laura; Mukundan, C. R.
2004-01-01
Alcoholism is a major health problem afflicting people all over the world. Understanding the neural substrates of this addictive disorder may provide the basis for effective interventions. So-called ''executive processes'' play a role in cognitive functions like attention and working memory, and appear to be disrupted in alcoholism (Noel et al.,…
NASA Astrophysics Data System (ADS)
Pavel, Akeed A.; Khan, Mehjabeen A.; Kirawanich, Phumin; Islam, N. E.
2008-10-01
A methodology to simulate memory structures with metal nanocrystal islands embedded as floating gate in a high-κ dielectric material for simultaneous enhancement of programming speed and retention time is presented. The computational concept is based on a model for charge transport in nano-scaled structures presented earlier, where quantum mechanical tunneling is defined through the wave impedance that is analogous to the transmission line theory. The effects of substrate-tunnel dielectric conduction band offset and metal work function on the tunneling current that determines the programming speed and retention time is demonstrated. Simulation results confirm that a high-κ dielectric material can increase programming current due to its lower conduction band offset with the substrate and also can be effectively integrated with suitable embedded metal nanocrystals having high work function for efficient data retention. A nano-memory cell designed with silver (Ag) nanocrystals embedded in Al 2O 3 has been compared with similar structure consisting of Si nanocrystals in SiO 2 to validate the concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilukuri, Bhaskar; Mazur, Ursula; Hipps, Kerry W.
A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly tomore » Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff–Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin–substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.« less
Chilukuri, Bhaskar; Mazur, Ursula; Hipps, K W
2014-07-21
A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly to Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff-Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin-substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.
NASA Astrophysics Data System (ADS)
Mu, Luye; Droujinine, Ilia; Rajan, Nitin; Sawtelle, Sonya; Reed, Mark
2015-03-01
The ability to measure enzyme-substrate interactions is essential in areas such as diagnostics, treatment, and biochemical screens. Many enzymatic reactions alter the pH of its environment, suggesting of a simple and direct method for detection. We show the ability of Al2O3-coated Si nanoribbon field-effect transistor biosensors to sensitively measure various aspects of enzyme-substrate interactions through measuring the pH. Urea in phosphate buffered saline (PBS) and penicillinase in PBS and urine were measured to limits of <200 μM and 0.02 units/mL, respectively. We also show the ability to extract accurate kinetics from the interaction of acetylcholine and its esterase. Prior work on FET sensors has been limited by the use of surface functionalization, which not only alters enzyme-substrate affinity, but also makes enzyme activity quantification difficult. Our method involves direct detection of reactions in solution without requiring alteration to the reactants, allowing us to obtain repeatable results and sensitive limits of detection. This method is a simple, inexpensive, and effective platform for detection of enzymatic reactions, and can be readily generalized to many unrelated classes of reactants. This work was supported in part by U.S. Army Research Office and Air Force Research Laboratory.
Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin
2014-12-01
Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.
Identification of Arabidopsis MYB56 as a novel substrate for CRL3(BPM) E3 ligases.
Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo
2015-02-01
Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work, MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies have indicated that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling flowering time in plants. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Bakrania, Bhavisha; Granger, Joey P.; Harmancey, Romain
2016-01-01
The mammalian heart is a major consumer of ATP and requires a constant supply of energy substrates for contraction. Not surprisingly, alterations of myocardial metabolism have been linked to the development of contractile dysfunction and heart failure. Therefore, unraveling the link between metabolism and contraction should shed light on some of the mechanisms governing cardiac adaptation or maladaptation in disease states. The isolated working rat heart preparation can be used to follow, simultaneously and in real time, cardiac contractile function and flux of energy providing substrates into oxidative metabolic pathways. The present protocol aims to provide a detailed description of the methods used in the preparation and utilization of buffers for the quantitative measurement of the rates of oxidation for glucose and fatty acids, the main energy providing substrates of the heart. The methods used for sample analysis and data interpretation are also discussed. In brief, the technique is based on the supply of 14C- radiolabeled glucose and a 3H- radiolabeled long-chain fatty acid to an ex vivo beating heart via normothermic crystalloid perfusion. 14CO2 and 3H2O, end byproducts of the enzymatic reactions involved in the utilization of these energy providing substrates, are then quantitatively recovered from the coronary effluent. With knowledge of the specific activity of the radiolabeled substrates used, it is then possible to individually quantitate the flux of glucose and fatty acid in the oxidation pathways. Contractile function of the isolated heart can be determined in parallel with the appropriate recording equipment and directly correlated to metabolic flux values. The technique is extremely useful to study the metabolism/contraction relationship in response to various stress conditions such as alterations in pre and after load and ischemia, a drug or a circulating factor, or following the alteration in the expression of a gene product. PMID:27768055
Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong
2011-03-07
Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.
Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism.
Zheng, Yulin; Wang, Wenliang; Li, Xiaochan; Li, Yuan; Huang, Liegen; Li, Guoqiang
2017-08-16
The polarity of GaN epitaxial films grown on LiGaO 2 (001) substrates by pulsed laser deposition has been well controlled. It is experimentally proved that the GaN epitaxial films grown on nitrided LiGaO 2 (001) substrates reveal Ga-polarity, while the GaN epitaxial films grown on non-nitrided LiGaO 2 (001) substrates show N-polarity. The growth mechanisms for these two cases are systematically studied by first-principles calculations based on density functional theory. Theoretical calculation presents that the adsorption of a Ga atom preferentially occurs at the center of three N atoms stacked on the nitrided LiGaO 2 (001) substrates, which leads to the formation of Ga-polarity GaN. Whereas the adsorption of a Ga atom preferentially deposits at the top of a N atom stacked on the non-nitrided LiGaO 2 (001) substrates, which results in the formation of N-polarity GaN. This work of controlling the polarity of GaN epitaxial films is of paramount importance for the fabrication of group-III nitride devices for various applications.
NASA Astrophysics Data System (ADS)
Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd
In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.
Wu, Zhao-Min; Bralten, Janita; An, Li; Cao, Qing-Jiu; Cao, Xiao-Hua; Sun, Li; Liu, Lu; Yang, Li; Mennes, Maarten; Zang, Yu-Feng; Franke, Barbara; Hoogman, Martine; Wang, Yu-Feng
2017-08-01
Few studies have investigated verbal working memory-related functional connectivity patterns in participants with attention-deficit/hyperactivity disorder (ADHD). Thus, we aimed to compare working memory-related functional connectivity patterns in healthy children and those with ADHD, and study effects of methylphenidate (MPH). Twenty-two boys with ADHD were scanned twice, under either MPH (single dose, 10 mg) or placebo, in a randomised, cross-over, counterbalanced placebo-controlled design. Thirty healthy boys were scanned once. We used fMRI during a numerical n-back task to examine functional connectivity patterns in case-control and MPH-placebo comparisons, using independent component analysis. There was no significant difference in behavioural performance between children with ADHD, treated with MPH or placebo, and healthy controls. Compared with controls, participants with ADHD under placebo showed increased functional connectivity within fronto-parietal and auditory networks, and decreased functional connectivity within the executive control network. MPH normalized the altered functional connectivity pattern and significantly enhanced functional connectivity within the executive control network, though in non-overlapping areas. Our study contributes to the identification of the neural substrates of working memory. Single dose of MPH normalized the altered brain functional connectivity network, but had no enhancing effect on (non-impaired) behavioural performance.
Functional design of electrolytic biosensor
NASA Astrophysics Data System (ADS)
Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.
2017-11-01
A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.
Pharmacogenomics of CYP2C9: Functional and Clinical Considerations†
Rettie, Allan E.; Fowler, Douglas M.; Miners, John O.
2017-01-01
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare ‘variants of uncertain significance’, which are increasingly detected as more exome and genome sequencing of diverse populations is conducted. PMID:29283396
Leandro, João; Stokka, Anne J; Teigen, Knut; Andersen, Ole A; Flatmark, Torgeir
2017-07-01
Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l-phenylalanine (l-Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l-Phe is the key player in this transition. X-ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr 138 -loop to the active site in the presence of l-Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr 138 point mutants. A high linear correlation ( r 2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate-activated full-length tetramers. In the tetramers, a correlation ( r 2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l-Phe concentration. The new data support a similar functional importance of the Tyr 138 -loop in the catalytic domain and the full-length enzyme homotetramer.
Oxygen adsorption on a Si(1 0 0) substrate: effects on secondary emission properties
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Champion, R. L.
2001-10-01
Secondary anion and electron yields resulting from low-energy (50-500 eV) Na + bombardment of an oxygen-adsorbed Si(1 0 0) substrate have been measured as a function of oxygen exposure and of Na + impact energy. Adsorbate coverage ranges from none to over half a monolayer. The dominant sputtered anion was found to be O - with SiO 2- being a minor constituent. Kinetic energy distributions of the secondary anions and electrons were also measured. The presence of an adsorbate was observed to enhance secondary anion emission to a significant degree whereas secondary electron emission was minor, in sharp contrast to what has been observed for metallic substrates. The mechanism for secondary emission appears to involve electronic excitation of Si xO -; it is suggested that electron emission is governed by a process similar to Penning ionization, in which a vacancy created by the excitation of Si xO - may be filled by an electron from the valence band. The variation in the work function as oxygen accumulated on the surface was observed to be small.
Kowal, Anthony S.; Chisholm, Rex L.
2011-01-01
Previous work from our laboratory showed that the Dictyostelium discoideum SadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue the sadA adhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. Glutathione S-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA. PMID:21441344
Effective medium model for a granular monolayer on an elastic substrate
NASA Astrophysics Data System (ADS)
Maznev, Alexei
Effective medium models have been shown to work well in describing experimental observations of the interaction of surface Rayleigh waves with contact vibrations of a monolayer of microspheres . However, these models contain intrinsic conceptual problems: for example, the local displacement of the substrate at the contact point is equated to the effective medium average value of the surface displacement. I will present a rigorous derivation of the effective medium model for a random arrangement of mass-spring oscillators on an elastic half-space using elastodynamic surface Green's function formalism. We will see that the model equating the local surface displacement to the effective medium displacement is indeed valid if the spring constant of the oscillators is modified to include the stiffness of the contact calculated in the quasistatic approximation. In the case of contact vibrations of microspheres, this means using the spring constant calculated using the Hertzian contact model. Thus the results obtained in the prior work were correct despite the apparent inconsistencies in the model. The presented analysis will provide a solid foundation for effective medium models used to describe dynamics of microparticle arrays adhered to a solid substrate. This work was supported by the U. S. Army Research Office through the Institute for Soldier Nanotechnologies under Grant W911NF-13-D-0001.
Quantum mechanical approaches to in silico enzyme characterization and drug design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilmeier, J P; Fattebert, J L; Jacobson, M P
2012-01-17
The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple,more » sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify substrate specificity. That is, we bring the power of quantum mechanics to bear on the problem of annotating enzyme function, which is a novel approach. Although it has been clear to us at the Jacobson group for some time that enzyme specificity may be encoded in transition states, rather than simply substrate recognition, the main limitation has always been computational expense. Using a hierarchy of different methods, they can reduce the list of plausible substrates of an enzyme to a small number in most cases, but even identifying the transition states for a dozen plausible substrates requires significant computational effort, beyond what is practical using standard QM/MM methods. For this project, they have chosen two enzyme superfamilies which they have used as 'model systems' for functional assignment. The enolase superfamily is a large group of {alpha}-{beta} barrel enzymes with highly diverse substrates and chemical transformations. Despite decades of work, over a third of the superfamily remains unassigned, which means that the remaining cases are by definition difficult to assign. They have focused on acid sugar dehydratases, and have considerable expertise on the matter. They are also interested in the isoprenoid synthase superfamily, which is of central interest to the synthetic biology community, because these enzymes are used by nature to create complex rare natural products of medicinal value. the most notable example of this is the artemisinin, an antimalarial compound that is found in trace amounts in the wormwod root. From the standpoint of enzyme function assignment, these enzymes are intriguing because they use a small number of chemically simple substrates to generate, potentially, tens of thousands of different products. Hence, substrate binding specificity is only a small part of the challenge; the key is determining how the enzyme directs the carbocation chemistry to specific products. These more complex modeling approaches clearly require quantum mechanical methods.« less
E3Net: a system for exploring E3-mediated regulatory networks of cellular functions.
Han, Youngwoong; Lee, Hodong; Park, Jong C; Yi, Gwan-Su
2012-04-01
Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net.
Study of development and utilization of a multipurpose atmospheric corrosion sensor
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.; Raman, A.; Bhattacharya, P. K.
1994-01-01
There has been a critical need for analyzing various aspects of atmospheric corrosion and for the development of atmospheric corrosion microsensors. The project work has involved the following activities: (1) making of multielectrode corrosion monitors on dielectric substrates; (2) testing them in the laboratory for functional characteristics; (3) preparing a report on the state of the art of atmospheric corrosion sensor development around the world; and (4) corrosion testing of electrochemical changes of sensor specimens and related fog testing. The study included work on the subject of development and utilization of a multipurpose atmospheric corrosion sensor and this report is the annual report on work carried out on this research project. This has included studies on the development of sensors of two designs, stage 1 and stage 2, and with glass and alumina substrate, experimentation and development and characterization of the coating uniformity, aspects of corrosion monitoring, literature search on the corrosion sensors and their development. A state of the art report on atmospheric corrosion sensor development was prepared and submitted.
Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven
2018-04-11
A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.
NASA Astrophysics Data System (ADS)
Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.
2016-10-01
Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm-1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm-1 (method 1) and >0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.
Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge
Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen
2016-01-01
Abstract The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure. PMID:27877854
Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.
Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E
2017-01-31
The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.
Recanatini, Maurizio; Cavalli, Andrea
2011-01-01
In humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1) plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing. To this aim we firstly docked cortisone into the catalytic site of 11β-HSD-1 (both wild type and Y177A mutant), and then we used steered molecular dynamics and metadynamics to simulate its undocking. This methodology helped shedding light at molecular level on the complex relationship between the enzyme and its natural substrate. In particular, the work highlights a) the reason behind the functional dimerisation of 11β-HSD-1, b) the key role of Y177 in the cortisone binding event, c) the fine tuning of the active site degree of solvation, and d) the role of the S228-P237 loop in ligand recognition. PMID:21966510
Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt
2002-08-16
A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.
ERIC Educational Resources Information Center
Dewar, Michaela; Pesallaccia, Martina; Cowan, Nelson; Provinciali, Leandro; Della Sala, Sergio
2012-01-01
Impairment on standard tests of delayed recall is often already maximal in the aMCI stage of Alzheimer's Disease. Neuropathological work shows that the neural substrates of memory function continue to deteriorate throughout the progression of the disease, hinting that further changes in memory performance could be tracked by a more sensitive test…
ERIC Educational Resources Information Center
Keeley, Robin J.; Wartman, Brianne C.; Hausler, Alexander N.; Holahan, Matthew R.
2010-01-01
Research has demonstrated that Long-Evans rats (LER) display superior mnemonic function over Wistar rats (WR). These differences are correlated with endogenous and input-dependent properties of the hippocampus. The present work sought to determine if juvenile pretraining might enhance hippocampal structural markers and if this would be associated…
Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.
Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M
2016-11-01
Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledee, Dolena R.; Smith, Lincoln; Kajimoto, Masaki
Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.« less
DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets
NASA Astrophysics Data System (ADS)
Zhou, Xuan; Chu, Wei; Zhou, Yanan; Sun, Wenjing; Xue, Ying
2018-05-01
Nickel doped defective h-BN nanosheets and their potential application on hydrogen storage were explored by density functional theory (DFT) calculation. Three types of defective h-BN (SW defect, VB and VN substrates) were modeled. In comparison with the SW defect, the B or N vacancy can improve the interaction between Ni atom and h-BN nanosheet strikingly. Furthermore, the Ni-doped SW defect sheet shows chemisorption on H2 molecules, and the Hsbnd H bond is partially dissociated. While on the VB sheet, Ni adatom interacts with H2 in the range of physisorption. However, the Ni-functionalized VN sheet exhibits a desirable adsorption on H2, and the corresponding energy varies from -0.40 to -0.51 eV, which is favorable for H2 adsorption and release at ambient conditions. As a result, the VN substrate is expected to a desirable support for H2 storage. Our work provides an insight into H2 storage on Ni-functionalized defective h-BN monolayer.
Quasi-2D Liquid State at Metal-Organic Interface and Adsorption State Manipulation
NASA Astrophysics Data System (ADS)
Mehdizadeh, Masih
The metal/organic interface between noble metal close-packed (111) surfaces and organic semiconducting molecules is studied using Scanning tunneling microscopy and Photoelectron Spectroscopy, supplemented by first principles density functional theory calculations and Markov Chain Monte Carlo simulations. Copper Phthalocyanine molecules were shown to have dual adsorption states: a liquid state where intermolecular interactions were shown to be repulsive in nature and largely due to entropic effects, and a disordered immobilized state triggered by annealing or applying a tip-sample bias larger than a certain temperature or voltage respectively where intermolecular forces were demonstrated to be attractive. A methodology for altering molecular orientation on the aforementioned surfaces is also proposed through introduction of a Fullerene C60 buffer layer. Density functional theory calculations demonstrate orientation-switching of Copper Phthalocyanine molecules based on the amount of charges transferred to/from the substrate to the C60-CuPc layers; suggesting existence of critical substrate work functions that cause reorientation.
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...
2017-10-02
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method
NASA Astrophysics Data System (ADS)
Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.
2018-04-01
Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.
NASA Astrophysics Data System (ADS)
Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.
2009-02-01
There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.
Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate
NASA Astrophysics Data System (ADS)
Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang
2017-03-01
Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.
NASA Astrophysics Data System (ADS)
Kuo, Tien-Chuan
For many applications, such as infrared detector and high speed devices, we need high quality cadmium telluride (CdTe) films. To fabricate CdTe films we are using a home -built Closed Hot Wall Epitaxy system (CHWE). This system consists of two growth chambers, preheat chamber, substrate exchange load lock and ultra-high vacuum system. It can exchange the substrates without disturbing the vacuum environment and prevents the source materials from contamination. Two different substrate materials, Si and InSb, are used in this work. Deposition parameters were varied in order to determine the growth condition for obtaining good quality CdTe films. The characteristics of the films were investigated by Scanning Electron Microscope, X-ray diffractormeter and Auger Electron Spectroscope. The electrical properties of Al/CdTe/InSb MIS diodes are also examined. Experimental results show that the quality of the CdTe films on these two substrates are functions of the source and substrate temperatures. The surface of CdTe films grown on Si substrate are rougher than CdTe films grown on InSb substrate. X -ray patterns show that the crystal orientations of the CdTe films are, (100) and (111), similar to those of the substrates under optimum growth conditions. The CdTe film are stoichiometric based on the results of Auger survey. Electrical measurement also indicates that CdTe films grown on InSb substrates have very high purity and are insulator. The induced stresses due to the differences of lattice constant and thermal expansion coefficient between CdTe films and substrates were observed in CdTe films. The critical thickness of CdTe films on InSb substrates are measured by X-ray diffraction to be 2.63 um.
F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals
NASA Astrophysics Data System (ADS)
Rangger, Gerold M.; Hofmann, Oliver T.; Romaner, Lorenz; Heimel, Georg; Bröker, Benjamin; Blum, Ralf-Peter; Johnson, Robert L.; Koch, Norbert; Zojer, Egbert
2009-04-01
Metal work-function modification with the help of organic acceptors is an efficient tool to significantly enhance the performance of modern state-of-the-art organic molecular electronic devices. Here, the prototypical organic acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, F4TCNQ, is characterized on Ag(111), Au(111), and Cu(111) metal surfaces by means of density-functional theory calculations. Particular attention is paid to charge-transfer processes at the metal-organic interface; a subtle balance between charge forward and backward donations in combination with a strong adsorption-induced geometry change are found to be responsible for the observed increase in the system work function. A larger effect is obtained for the metals with larger initial work function. Interestingly, this results in similar charge-injection barriers from the substrate metal into an organic semiconductor deposited on top of the F4TCNQ layer. The impact of the F4TCNQ packing density of the electronic properties of the interface is also addressed. Comparing the calculated energy-level alignments and work-function modifications to experimental data from ultraviolet photoelectron spectroscopy yields good agreement between experiments and simulations.
Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds
NASA Astrophysics Data System (ADS)
Liao, Kuangbiao; Pickel, Thomas C.; Boyarskikh, Vyacheslav; Bacsa, John; Musaev, Djamaladdin G.; Davies, Huw M. L.
2017-11-01
The synthesis of complex organic compounds usually relies on controlling the reactions of the functional groups. In recent years, it has become possible to carry out reactions directly on the C-H bonds, previously considered to be unreactive. One of the major challenges is to control the site-selectivity because most organic compounds have many similar C-H bonds. The most well developed procedures so far rely on the use of substrate control, in which the substrate has one inherently more reactive C-H bond or contains a directing group or the reaction is conducted intramolecularly so that a specific C-H bond is favoured. A more versatile but more challenging approach is to use catalysts to control which site in the substrate is functionalized. p450 enzymes exhibit C-H oxidation site-selectivity, in which the enzyme scaffold causes a specific C-H bond to be functionalized by placing it close to the iron-oxo haem complex. Several studies have aimed to emulate this enzymatic site-selectivity with designed transition-metal catalysts but it is difficult to achieve exceptionally high levels of site-selectivity. Recently, we reported a dirhodium catalyst for the site-selective functionalization of the most accessible non-activated (that is, not next to a functional group) secondary C-H bonds by means of rhodium-carbene-induced C-H insertion. Here we describe another dirhodium catalyst that has a very different reactivity profile. Instead of the secondary C-H bond, the new catalyst is capable of precise site-selectivity at the most accessible tertiary C-H bonds. Using this catalyst, we modify several natural products, including steroids and a vitamin E derivative, indicating the applicability of this method of synthesis to the late-stage functionalization of complex molecules. These studies show it is possible to achieve site-selectivity at different positions within a substrate simply by selecting the appropriate catalyst. We hope that this work will inspire the design of even more sophisticated catalysts, such that catalyst-controlled C-H functionalization becomes a broadly applied strategy for the synthesis of complex molecules.
Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A
2015-02-21
Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.
Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films
Isaksson, Simon; Watkins, Erik Benjamin; Browning, Kathryn L.; ...
2016-11-23
Here, proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein–material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film tomore » match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic–inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.« less
Lu, Zhibing; Feng, Xiaohua; Song, Ling; Han, Ying; Kim, Alexander; Herzberg, Osnat; Woodson, William R; Martin, Brian M; Mariano, Patrick S; Dunaway-Mariano, Debra
2005-12-20
The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.
NASA Astrophysics Data System (ADS)
Bridges, Richard J.; Patel, Sarjubhai A.
As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.
Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaksson, Simon; Watkins, Erik Benjamin; Browning, Kathryn L.
Here, proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein–material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film tomore » match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic–inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.« less
Petrera, Agnese; Amstutz, Beat; Gioia, Magda; Hähnlein, Janine; Baici, Antonio; Selchow, Petra; Ferraris, Davide M; Rizzi, Menico; Sbardella, Diego; Marini, Stefano; Coletta, Massimo; Sander, Peter
2012-07-01
Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.
Bhat, Shreyas; Hasenhuetl, Peter S.; Kasture, Ameya; El-Kasaby, Ali; Baumann, Michael H.; Blough, Bruce E.; Sucic, Sonja; Sandtner, Walter; Freissmuth, Michael
2017-01-01
Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to μm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants. PMID:28842491
Neural substrates of self-referential processing in Chinese Buddhists
Gu, Xiaosi; Mao, Lihua; Ge, Jianqiao; Wang, Gang; Ma, Yina
2010-01-01
Our recent work showed that self-trait judgment is associated with increased activity in the ventral medial prefrontal cortex (VMPFC) in non-religious Chinese, but in the dorsal medial prefrontal cortex (DMPFC) in Chinese Christians. The current work further investigated neural substrates of self-referential processing in Chinese Buddhists. Using functional magnetic resonance imaging, we scanned 14 Chinese Buddhists, while they conducted trait judgments of the self, Zhu Rongji (the former Chinese premier), Sakyamuni (the Buddhist leader) and Jesus (the Christian leader). We found that, relative to Zhu Rongji judgment, self-judgment in Buddhist participants failed to generate increased activation in the VMPFC but induced increased activations in the DMPFC/rostral anterior cingulate cortex, midcingulate and the left frontal/insular cortex. Self-judgment was also associated with decreased functional connectivity between the DMPFC and posterior parietal cortex compared with Zhu Rongji judgment. The results suggest that Buddhist doctrine of No-self results in weakened neural coding of stimulus self-relatedness in the VMPFC, but enhanced evaluative processes of self-referential stimuli in the DMPFC. Moreover, self-referential processing in Buddhists is characterized by monitoring the conflict between the doctrine of No-self and self-focus thinking during self-trait judgment. PMID:19620181
Identification of Arabidopsis MYB56 as a novel substrate for CRL3BPM E3 ligases.
Chen, Liyuan; Bernhardt, Anne; Lee, JooHyun; Hellmann, Hanjo
2014-10-24
Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in living cells. A key regulatory system for protein stability is given by the ubiquitin proteasome pathway, which uses E3 ligases to mark specific proteins for degradation. In this work MYB56 is identified as a novel target of a CULLIN3 (CUL3)-based E3 ligase. Its stability depends on the presence of MATH-BTB/POZ (BPM) proteins, which function as substrate adaptors to the E3 ligase. Genetic studies pointed out that MYB56 is a negative regulator of flowering, while BPMs positively affect this developmental program. The interaction between BPMs and MYB56 occurs at the promoter of FLOWERING LOCUS T (FT), a key regulator in initiating flowering in Arabidopsis, and results in instability of MYB56. Overall the work establishes MYB transcription factors as substrates of BPM proteins, and provides novel information on components that participate in controlling the flowering time point in plants. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).
Li, Chen; Hsieh, S Tonia; Goldman, Daniel I
2012-09-15
A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.
Modification of surface properties of cellulosic substrates by quaternized silicone emulsions.
Purohit, Parag S; Somasundaran, P
2014-07-15
The present work describes the effect of quaternization of silicones as well as the relevant treatment parameter pH on the frictional, morphological and relaxation properties of fabric substrates. Due to their unique surface properties, silicone polymers are extensively used to modify surface properties of various materials, although the effects of functionalization of silicones and relevant process conditions on modification of substrates are not well understood. Specifically we show a considerable reduction in fabric friction, roughness and waviness upon treatment with quaternized silicones. The treatment at acidic pH results in better deposition of silicone polymers onto the fabric as confirmed through streaming potential measurements which show charge reversal of the fabric. Interestingly, Raman spectroscopy studies show the band of C-O ring stretching mode at ∼1095 cm(-1) shift towards higher wavenumber indicating lowering of stress in fibers upon appropriate silicone treatment. Thus along with the morphological and frictional properties being altered, silicone treatment can lead to a reduction in fabric strain. It is concluded that the electrostatic interactions play an initial role in modification of the fiber substrate followed by multilayer deposition of polymer. This multi-technique approach to study fiber properties upon treatment by combining macro to molecular level methods has helped in understanding of new functional coating materials. Copyright © 2014 Elsevier Inc. All rights reserved.
Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase.
Yang, Su J; Jiang, Shih S; Hsiao, Yi Y; Van, Ru C; Pan, Yih J; Pan, Rong L
2004-06-07
Vacuolar H(+)-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) catalyzes both the hydrolysis of PP(i) and the electrogenic translocation of proton from the cytosol to the lumen of the vacuole. Vacuolar H(+)-PPase, purified from etiolated hypocotyls of mung bean (Vigna radiata L.), is a homodimer with a molecular mass of 145 kDa. To investigate the relationship between structure and function of this H(+)-translocating enzyme, thermoinactivation analysis was employed. Thermoinactivation studies suggested that vacuolar H(+)-PPase consists of two distinct states upon heat treatment and exhibited different transition temperatures in the presence and absence of ligands (substrate and inhibitors). Substrate protection of H(+)-PPase stabilizes enzyme structure by increasing activation energy from 54.9 to 70.2 kJ/mol. We believe that the conformation of this enzyme was altered in the presence of substrate to protect against the thermoinactivation. In contrast, the modification of H(+)-PPase by inhibitor (fluorescein 5'-isothiocyanate; FITC) augmented the inactivation by heat treatment. The native, substrate-bound, and FITC-labeled vacuolar H(+)-PPases possess probably distinct conformation and show different modes of susceptibility to thermoinactivation. Our results also indicate that the structure of one subunit of this homodimer exerts long distance effect on the other, suggesting a specific subunit-subunit interaction in vacuolar H(+)-PPase. A working model was proposed to interpret the relationship of the structure and function of vacuolar H(+)-PPase.
Sánchez-Martín, Pablo; Romá-Mateo, Carlos; Viana, Rosa; Sanz, Pascual
2015-12-01
Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin-laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin-laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin-laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin-laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin-laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)
Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P
2015-12-01
Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.
Multi-functional properties of CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Felix, A. A.; Rupp, J. L. M.; Varela, J. A.; Orlandi, M. O.
2012-09-01
In this work, electric transport properties of CaCu3Ti4O12 (CCTO) thin films were investigated for resistive switching, rectifying and gas sensor applications. Single phase CCTO thin films were produced by polymeric precursor method (PPM) on different substrates and their electrical properties were studied. Films produced on LNO/Si substrates have symmetrical non-ohmic current-voltage characteristics, while films deposited on Pt/Si substrates have a highly asymmetrical non-ohmic behavior which is related to a metal-semiconductor junction formed at the CCTO/Pt interface. In addition, results confirm that CCTO has a resistive switching response which is enhanced by Schottky contacts. Sensor response tests revealed that CCTO films are sensitive to oxygen gas and exhibit n-type conductivity. These results demonstrate the versatility of CCTO thin film prepared by the PPM method for gas atmosphere or bias dependent resistance applications.
Magnetic properties of epitaxial β-Nb2N thin film on SiC substrate
NASA Astrophysics Data System (ADS)
Yang, Zihao; Myers, Roberto; Katzer, D. Scott; Nepal, Neeraj; Meyer, David J.
Previously superconductivity in Nb2N was studied in thin films synthesized by reactive magnetron sputtering or pulsed laser deposition. Recently, Nb2N was synthesized by molecular beam epitaxy (MBE). Here, we report on the magnetic properties of MBE grown Nb2N measured by SQUID magnetometry. The single hexagonal β phase Nb2N is grown on a semi-insulating Si-face 4H SiC (0001) substrate in nitrogen rich conditions at a substrate temperature of 850 °C. In-plane magnetization as a function of magnetic field measured at 5 K shows type-II superconductivity with critical fields Hc1 and Hc2 of 300 Oe and 10 kOe, respectively. In-plane field-cooled and zero-field-cooled a critical temperature (Tc) of 11.5 K, higher than in sputtered Nb2N films. This work was supported by Army Research Office and the Office of Naval Research.
Optimization of Cold Spray Deposition of High-Density Polyethylene Powders
NASA Astrophysics Data System (ADS)
Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.
2017-10-01
When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.
Formation of Me-O-Si covalent bonds at the interface between polysilazane and stainless steel
NASA Astrophysics Data System (ADS)
Amouzou, Dodji; Fourdrinier, Lionel; Maseri, Fabrizio; Sporken, Robert
2014-11-01
In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se2 (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me-O-Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr-O-Si and Fe-O-Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.
Altered Substrate Specificity of Drug-Resistant Human Immunodeficiency Virus Type 1 Protease
Dauber, Deborah S.; Ziermann, Rainer; Parkin, Neil; Maly, Dustin J.; Mahrus, Sami; Harris, Jennifer L.; Ellman, Jon A.; Petropoulos, Christos; Craik, Charles S.
2002-01-01
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV. PMID:11773410
Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; ...
2015-05-09
Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled usingmore » cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.« less
Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing.
Liu, Xiao; Yue, Zhilian; Higgins, Michael J; Wallace, Gordon G
2011-10-01
Conducting polymers with pendant functionality are advantageous in various bionic and organic bioelectronic applications, as they allow facile incorporation of bio-regulative cues to provide bio-mimicry and conductive environments for cell growth, differentiation and function. In this work, polypyrrole substrates doped with chondroitin sulfate (CS), an extracellular matrix molecule bearing carboxylic acid moieties, were electrochemically synthesized and conjugated with type I collagen. During the coupling process, the conjugated collagen formed a 3-dimensional fibrillar matrix in situ at the conducting polymer interface, as evidenced by atomic force microscopy (AFM) and fluorescence microscopy under aqueous physiological conditions. Cyclic voltammetry (CV) and impedance measurement confirmed no significant reduction in the electroactivity of the fibrillar collagen-modified conducting polymer substrates. Rat pheochromocytoma (nerve) cells showed increased differentiation and neurite outgrowth on the fibrillar collagen, which was further enhanced through electrical stimulation of the underlying conducting polymer substrate. Our study demonstrates that the direct coupling of ECM components such as collagen, followed by their further self-assembly into 3-dimensional matrices, has the potential to improve the neural-electrode interface of implant electrodes by encouraging nerve cell attachment and differentiation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Liyun; Li, Yuzhi; Yuan, Yuan; Jiang, Yuanyuan; Guo, Yanzhi; Li, Menglong; Pu, Xuemei
2016-11-01
In the work, we mainly used molecular dynamics (MD) simulation and protein structure network (PSN) to study subtilisin Carlsberg (SC) immobilized onto carbon nanotube (CNT) in water, acetonitrile and heptane solvents, in order to explore activation mechanism of enzymes in non-aqueous media. The result indicates that the affinity of SC with CNT follows the decreasing order of water > acetonitrile > heptane. The overall structure of SC and the catalytic triad display strong robustness to the change of environments, responsible for the activity retaining. However, the distances between two β-strands of substrate-binding pocket are significantly expanded by the immobilization in the increasing order of water < acetonitrile < heptane, contributing to the highest substrate-binding energy in heptane media. PSN analysis further reveals that the immobilization enhances structural communication paths to the substrate-binding pocket, leading to its larger change than the free-enzymes. Interestingly, the increase in the number of the pathways upon immobilization is not dependent on the absorbed extent but the desorbed one, indicating significant role of shifting process of experimental operations in influencing the functional region. In addition, some conserved and important hot-residues in the paths are identified, providing molecular information for functional modification.
Method of producing catalytic material for fabricating nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less
Method of producing catalytic materials for fabricating nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2013-02-19
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
Simmons, Blake [San Francisco, CA; Domeier, Linda [Danville, CA; Woo, Noble [San Gabriet, CA; Shepodd, Timothy [Livermore, CA; Renzi, Ronald F [Tracy, CA
2008-04-01
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.
Methods for integrating a functional component into a microfluidic device
Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.
2014-08-19
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.
Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning.
Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin
2015-06-26
The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.
Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning
NASA Astrophysics Data System (ADS)
Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin
2015-06-01
The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.
Abdollahi Nejand, B; Nazari, P; Gharibzadeh, S; Ahmadi, V; Moshaii, A
2017-01-05
Here, a low-cost perovskite solar cell using CuI and ZnO as the respective inorganic hole and electron transport layers is introduced. Copper foil is chosen as a cheap and low-weight conductive substrate which has a similar work function to ITO. Besides, copper foil is an interesting copper atom source for the growth of the upper cuprous iodide layer on copper foil. A spray coating of a transparent silver nanowire electrode is used as a top contact. The prepared device shows a maximum power conversion efficiency of 12.80% and long-term durability providing an environmentally and market friendly perovskite solar cell.
Electron Thermionic Emission from Graphene and a Thermionic Energy Converter
NASA Astrophysics Data System (ADS)
Liang, Shi-Jun; Ang, L. K.
2015-01-01
In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.
Lysosomal multienzyme complex: pros and cons of working together.
Bonten, Erik J; Annunziata, Ida; d'Azzo, Alessandra
2014-06-01
The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this 'core' complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.
Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E
2010-08-01
The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.
Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins.
Nelson, David E; Randle, Suzanne J; Laman, Heike
2013-10-09
F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.
Development of nanostructures on plasma facing components
NASA Astrophysics Data System (ADS)
Ruzic, David; Fiflis, Peter; Kalathiparambil, Kishor Kumar
2015-11-01
Exposure to low temperature helium plasma, with parameters similar to tokamak edge plasmas, have been found to induce the growth of nanostructures on tungsten. These nanostructures results in an increase in the effective surface area, and will alter the physical properties of the components. Although this has several potential applications in the industrial scenario, it is an undesired effect for fusion reactor components, and is hence necessary to understand their growth mechanisms in order to figure out suitable remedial schemes. Work done using a high density, low temperature helicon discharge plasma source with a resistively heated tungsten wire immersed in the discharge as the substrate have demonstrated the well-defined stages of the growth as a function of total fluence. The required fluence was attained by extending the exposure time. Extensive research work has also shown that a variety of other materials are also prone to develop such structures under similar conditions. In the present work, the effect of the experimental conditions on the various stages of structure development will be presented and a comparison between the structures developed on different types of substrates will be shown.
Nanotextured thin films for detection of chemicals by surface enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Korivi, Naga; Jiang, Li; Ahmed, Syed; Nujhat, Nabila; Idrees, Mohanad; Rangari, Vijaya
2017-11-01
We report on the development of large area, nanostructured films that function as substrates for surface enhanced Raman scattering (SERS) detection of chemicals. The films are made of polyethylene terephthalate layers partially embedded with multi-walled carbon nanotubes and coated with a thin layer of gold. The films are fabricated by a facile method involving spin-coating, acid dip, and magnetron sputtering. The films perform effectively as SERS substrates when used in the detection of dye pollutants such as Congo red dye, with an enhancement factor of 1.1 × 106 and a detection limit of 10-7 M which is the lowest reported for CR detection by freestanding SERS film substrates. The films have a long shelf life, and cost US0.20 per cm2 of active area, far less than commercially available SERS substrates. This is the first such work on the use of a polymer layer modified with carbon nanotubes to create a nano-scale texture and arbitrary ‘hot-spots’, contributing to the SERS effect.
Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering
NASA Astrophysics Data System (ADS)
Perrone, A.; D'Elia, M.; Gontad, F.; Di Giulio, M.; Maruccio, G.; Cola, A.; Stankova, N. E.; Kovacheva, D. G.; Broitman, E.
2014-07-01
Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.
Impact of phosphate limitation on PHA production in a feast-famine process.
Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert
2017-12-01
Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaves Neto, Antonio Hernandes; Queiroz, Karla Cristiana; Milani, Renato; Paredes-Gamero, Edgar Julian; Justo, Giselle Zenker; Peppelenbosch, Maikel P; Ferreira, Carmen Veríssima
2011-01-01
Despite numerous reports on the ability of ascorbic acid and β-glycerophosphate (AA/β-GP) to induce osteoblast differentiation, little is known about the molecular mechanisms involved in this phenomenon. In this work, we used a peptide array containing specific consensus sequences (potential substrates) for protein kinases and traditional biochemical techniques to examine the signaling pathways modulated during AA/β-GP-induced osteoblast differentiation. The kinomic profile obtained after 7 days of treatment with AA/β-GP identified 18 kinase substrates with significantly enhanced or reduced phosphorylation. Peptide substrates for Akt, PI3K, PKC, BCR, ABL, PRKG1, PAK1, PAK2, ERK1, ERBB2, and SYK showed a considerable reduction in phosphorylation, whereas enhanced phosphorylation was observed in substrates for CHKB, CHKA, PKA, FAK, ATM, PKA, and VEGFR-1. These findings confirm the potential usefulness of peptide microarrays for identifying kinases known to be involved in bone development in vivo and in vitro and show that this technique can be used to investigate kinases whose function in osteoblastic differentiation is poorly understood.
Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA
2009-12-08
The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.
Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA
2009-09-15
The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.
Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices
Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...
2015-10-09
Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less
Studies of thermionic materials for space power applications
NASA Technical Reports Server (NTRS)
1972-01-01
The effect of microstructures of tungsten cladding on the transport rates of carbide fuel components was studied at 2073 K. hyperstoichiometric 90UC-10ZrC containing 4 wt% tungsten was clad with six types of tungsten material of 40 mil thickness. Screening tests of 1000 hours were carried out, and then selected samples were subjected to long-term tests up to 10,000 hours. The results indicate that the microstructures strongly affect the transport rates of carbide fuel components. The conditions for preparing (110) oriented cylindrical chloride tungsten emitters of high vacuum work functions were also investigated. Specimen sets were deposited on fluoride tungsten substrates for evaluating the effects of various deposition parameters on the degree and uniformity of the (110) preferred orientation and the vacuum work function. Long-term tests showed that the high vacuum work function of a cylindrical emitter was stable and the chloride tungsten to fluoride tungsten bond remained in excellent shape after 4850 hours at 2073 K.
Complex Networks - A Key to Understanding Brain Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporns, Olaf
2008-01-23
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Complex Networks - A Key to Understanding Brain Function
Sporns, Olaf
2017-12-22
The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.
Wiriyakun, Natta; Nacapricha, Duangjai; Chantiwas, Rattikan
2016-12-01
This work presents a simple hot embossing method with a shrinking procedure to produce cross-shape microchannels on poly(methyl methacrylate) (PMMA) substrate for the fabrication of an electrophoresis chip. The proposed method employed a simple two-step hot embossing technique, carried out consecutively on the same piece of substrate to make the crossing channels. Studies of embossing conditions, i.e. temperature, pressure and time, were carried out to investigate their effects on the dimension of the microchannels. Applying a simple shrinking procedure reduced the size of the channels from 700±20µm wide×150±5µm deep to 250±10µm wide×30±2µm deep, i.e. 80% and 64% reduction in the depth and width, respectively. Thermal fusion was employed to bond the PMMA substrate with a PMMA cover plate to produce the microfluidic device. Replication of microchip was achieved by precise control of conditions in the fabrication process (pressure, temperature and time), resulting in lower than 7% RSD of channel dimension, width and depth (n =10 devices). The method was simple and robust without the use of expensive equipment to construct the microstructure on a thermoplastic substrate. The PMMA microchip was used for demonstration of amine functionalization on the PMMA surface, measurement of electroosmotic flow and for electrophoretic separation of amino acids in functional drink samples. The precision of migration time and peak area of the amino acids, Lys, Ile and Phe at 125μM to 500μM, were in the range 3.2-4.2% RSD (n=9 devices) and 4.5-5.3% RSD (n=9 devices), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Control of the recombination time in photoconductive detectors
NASA Astrophysics Data System (ADS)
Pacheco, M. T. T.; Ghizoni, C. C.; Scolari, S. L.
1980-07-01
The current generated at a photoconductive cell depends upon the density of states of the electromagnetic field in the semiconductor film. This density of states is a function of the film geometry and dielectric properties. In this work we demonstrate that, for highly scattering substrate surfaces, which implies in a low density of states, the signal to noise ratio is better than that for smooth surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Aaron; Ledee, Dolena; Iwamoto, Kate
The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids,more » acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained compensated function could provide useful information for developing metabolic therapies to treat heart failure. The molecular signaling for this metabolic change may occur through O-GlcNAcylation.« less
Ruthenium-Catalyzed Cascade C—H Functionalization of Phenylacetophenones**
Mehta, Vaibhav P; García-López, José-Antonio; Greaney, Michael F
2014-01-01
Three orthogonal cascade C—H functionalization processes are described, based on ruthenium-catalyzed C—H alkenylation. 1-Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p-cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C—H functionalization methods to form C—C bonds sequentially, with the indeno furanone synthesis featuring a C—O bond formation as the terminating step. This work demonstrates the power of ruthenium-catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C—H functionalization steps taking place in a single operation to access novel carbocyclic structures. PMID:24453063
Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts.
Xia, Zhenyuan; Leonardi, Francesca; Gobbi, Marco; Liu, Yi; Bellani, Vittorio; Liscio, Andrea; Kovtun, Alessandro; Li, Rongjin; Feng, Xinliang; Orgiu, Emanuele; Samorì, Paolo; Treossi, Emanuele; Palermo, Vincenzo
2016-07-26
We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite.
Tarasevich, B.J.; Rieke, P.C.
1998-06-02
A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.
Tarasevich, Barbara J.; Rieke, Peter C.
1998-01-01
A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.
Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A
2016-12-14
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
Boomsma, Wouter; Nielsen, Sofie V; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus; Ellgaard, Lars
2016-01-01
The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is not a unique case, and that several other yeast and human E3 ligases have sequence properties that may allow them to recognize substrates by a similar mechanism as San1.
Reiss, Renate; Ihssen, Julian; Richter, Michael; Eichhorn, Eric; Schilling, Boris; Thöny-Meyer, Linda
2013-01-01
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera. PMID:23755261
NASA Astrophysics Data System (ADS)
Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton
1998-01-01
Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.
NASA Astrophysics Data System (ADS)
Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton
1997-12-01
Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.
Basis for substrate recognition and distinction by matrix metalloproteinases
Ratnikov, Boris I.; Cieplak, Piotr; Gramatikoff, Kosi; Pierce, James; Eroshkin, Alexey; Igarashi, Yoshinobu; Kazanov, Marat; Sun, Qing; Godzik, Adam; Osterman, Andrei; Stec, Boguslaw; Strongin, Alex; Smith, Jeffrey W.
2014-01-01
Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure–function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221–227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure–function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50–57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs. PMID:25246591
Distinct neural substrates for visual short-term memory of actions.
Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui
2018-06-26
Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.
Interfacial Reaction Studies Using ONIOM
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2003-01-01
In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.
A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity
St John, Franz J.; Dietrich, Diane; Crooks, Casey; Pozharski, Edwin; González, Javier M.; Bales, Elizabeth; Smith, Kennon; Hurlbert, Jason C.
2014-01-01
Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the α-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyrosolvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark β8–α8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved β8–α8 loop region of these enzymes influences xylan substrate specificity but not necessarily β-1,4-xylanase function. PMID:25372685
NASA Astrophysics Data System (ADS)
Guo, Jia; Xu, Shicai; Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong; Jiang, Shouzhen; Ning, Tingyin
2017-02-01
In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10-12 M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R2 of 612 and 773 cm-1 can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow the hybrid system a good stability and long lifetime. This GO-AgNPs-PSi substrate may provide a new way toward practical applications for the ultrasensitive and label-free SERS detection in areas of medicine, food safety and biotechnology.
Structure-based functional annotation: yeast ymr099c codes for a D-hexose-6-phosphate mutarotase.
Graille, Marc; Baltaze, Jean-Pierre; Leulliot, Nicolas; Liger, Dominique; Quevillon-Cheruel, Sophie; van Tilbeurgh, Herman
2006-10-06
Despite the generation of a large amount of sequence information over the last decade, more than 40% of well characterized enzymatic functions still lack associated protein sequences. Assigning protein sequences to documented biochemical functions is an interesting challenge. We illustrate here that structural genomics may be a reasonable approach in addressing these questions. We present the crystal structure of the Saccharomyces cerevisiae YMR099cp, a protein of unknown function. YMR099cp adopts the same fold as galactose mutarotase and shares the same catalytic machinery necessary for the interconversion of the alpha and beta anomers of galactose. The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues. This sulfate is ideally positioned to mimic the phosphate group of hexose 6-phosphate. We have subsequently successfully demonstrated that YMR099cp is a hexose-6-phosphate mutarotase with broad substrate specificity. We solved high resolution structures of some substrate enzyme complexes, further confirming our functional hypothesis. The metabolic role of a hexose-6-phosphate mutarotase is discussed. This work illustrates that structural information has been crucial to assign YMR099cp to the orphan EC activity: hexose-phosphate mutarotase.
Ogunremi, Omotade R; Agrawal, Renu; Sanni, Abiodun I
2015-11-01
Probiotic strains contribute to the functionality of foods during fermentation. In this present work, cereal-mix was fermented with probiotic Pichia kudriavzevii OG32. Selected fermentation parameters and functional properties of the product were determined. The growth of Pichia kudriavzevii OG32 was supported by the cereal-mix containing 1% salt and 0.2% red chili powder to counts of between 7.46 and 8.22 Log10 cfu/mL within 24 h. Pichia kudriavzevii OG32 increased the viscosity of cereal-mix with the highest inoculum size (1.84x105cfu/ml) giving the highest viscosity of 1793.6 mPa.S. An inoculum size of 1.98 × 10(4) cfu/mL gave the most acceptable product based on the sensory evaluation by the panelist. Forty volatile compounds were identified in the fermented product, while acids (32.21%) and esters (32.37%) accounted for the largest proportions. The cereal-based fermented product scavenged DPPH from 200 μmol/L methanolic solution by 55.71%. Probiotic yeast improved the sensory and some functional properties of cereal-based substrate during fermentation. This is one of the first reports on the volatile composition of cereal-based functional food produced with probiotic yeast.
Specific peptide for functionalization of GaN
NASA Astrophysics Data System (ADS)
Estephan, E.; Larroque, C.; Cloitre, T.; Cuisinier, F. J. G.; Gergely, C.
2008-04-01
Nanobiotechnology aims to exploit biomolecular recognition and self-assembly capabilities for integrating advanced materials into medicine and biology. However frequent problems are encountered at the interface of substrate-biological molecule, as the direct physical adsorption of biological molecules is dependent of unpredictable non-specific interactions with the surface, often causing their denaturation. Therefore, a proper functionalization of the substrate should avoid a loss of biological activity. In this work we address the functionalization of the semiconductor GaN (0001) for biosensing applications. The basic interest of using III-V class semiconductors is their good light emitting properties and a fair chemical stability that allows various applications of these materials. The technology chosen to elaborate GaN-specific peptides is the combinatorial phage-display method, a biological screening procedure based on affinity selection. An M13 bacteriophage library has been used to screen 10 10 different peptides against the GaN (0001) surface to finally isolate one specific peptide. The preferential attachment of the biotinylated selected peptide onto the GaN (0001), in close proximity to a surface of different chemical and structural composition has been demonstrated by fluorescence microscopy. Further physicochemical studies have been initiated to evaluate the semiconductor-peptide interface and understand the details in the specific recognition of peptides for semiconductor substrates. Fourier Transform Infrared spectroscopy in Attenuated Total Reflection mode (FTIR-ATR) has been employed to prove the presence of peptides on the surface. Our Atomic Force Microscopy (AFM) studies on the morphology of the GaN surface after functionalization revealed a total surface coverage by a very thin, homogeneous peptide layer. Due to its good biocompatibility, functionalized GaN devices might evolve in a new class of implantable biosensors for medical applications.
Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control
2014-01-01
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633
Moparthi, Satish Babu; Fristedt, Rikard; Mishra, Rajesh; Almstedt, Karin; Karlsson, Martin; Hammarström, Per; Carlsson, Uno
2010-02-16
The single-domain cyclophilin 18 (Cyp18) has long been known to function as a peptidyl-prolyl cis/trans isomerase (PPI) and was proposed by us to also function as a chaperone [Freskgard, P.-O., Bergenhem, N., Jonsson, B.-H., Svensson, M., and Carlsson, U. (1992) Science 258, 466-468]. Later several multidomain PPIs were demonstrated to work as both a peptidyl-prolyl cis/trans isomerase and a chaperone. However, the chaperone ability of Cyp18 has been debated. In this work, we add additional results that show that Cyp18 can both accelerate the rate of refolding and increase the yield of native protein during the folding reaction, i.e., function as both a folding catalyst and a chaperone. Refolding experiments were performed using severely destabilized mutants of human carbonic anhydrase II under conditions where the unfolding reaction is significant and a larger fraction of a more destabilized variant populates molten globule-like intermediates during refolding. A correlation of native state protein stability of the substrate protein versus Cyp18 chaperone activity was demonstrated. The induced correction of misfolded conformations by Cyp18 likely functions through rescue from misfolding of transient molten globule intermediates. ANS binding data suggest that the interaction by Cyp18 leads to an early stage condensation of accessible hydrophobic portions of the misfolding-prone protein substrate during folding. The opposite effect was observed for GroEL known as an unfoldase at early stages of refolding. The chaperone effect of Cyp18 was also demonstrated for citrate synthase, suggesting a general chaperone effect of this PPI.
NASA Astrophysics Data System (ADS)
Han, Hyun Soo; Shin, Sun; Noh, Jun Hong; Cho, In Sun; Hong, Kug Sun
2014-04-01
Hierarchically organized nanostructures were fabricated by growing SnO2 nanoparticles on a fluorine-doped tin oxide/glass substrate via a laser ablation method. Cauliflower-like clusters consisting of agglomerated nanoparticles were deposited and aligned with respect to the substrate with a large internal surface area and open channels of pores. The morphological changes of SnO2 nanostructured films were investigated as a function of the oxygen working pressure in the range of 100-500 mTorr. A nanostructured scaffold prepared at an oxygen working pressure of 100 mTorr exhibited the best photoelectrochemical (PEC) performance. A Ti:Fe2O3-SnO2 nanostructured photoanode showed the photocurrent that was 34% larger than that of a Ti:Fe2O3 flat photoanode when the amount of Ti:Fe2O3 sensitizer was identical for the two photoanodes. The larger surface area and longer electron lifetime of the Ti:Fe2O3-SnO2 nanostructured photoanode explains its improved PEC performance.
Liu, Yuanyue; Wang, Y. Morris; Yakobson, Boris I.; ...
2014-07-11
Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp 2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. We use density functional theory calculations to investigate the interactions of Li with a wide variety of sp 2 C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states withinmore » the substrate. This suggests that Li capacity is predominantly determined by two key factors—namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. Furthermore, this method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.« less
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-05
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-01
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
SERS substrates for in-situ biosensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Venugopalan, Priyamvada; Quilis, Nestor; Jakub, Dostalek; Wolfgang, Knoll
2017-06-01
Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature materials, 308(7), 2008. [2] T. Y. Jeon1, D. J. Kim, S. Park, S. Kim and D. Kim., "Nanostructured plasmonic substrates for use as SERS sensors," Nanocovergence, 3(18), 2016.
Molecular mechanism of lytic polysaccharide monooxygenases.
Hedegård, Erik Donovan; Ryde, Ulf
2018-04-21
The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs. The QM/MM scheme allows us to describe all reaction steps with a detailed protein environment and we show that this is necessary. Several active species capable of abstracting a hydrogen from the substrate have been proposed previously and starting from recent crystallographic work on a substrate-LPMO complex, we investigate previously suggested paths as well as new ones. We describe the generation of the reactive intermediates, the abstraction of a hydrogen atom from the polysaccharide substrate, as well as the final recombination step in which OH is transferred back to the substrate. We show that a superoxo [CuO 2 ] + complex can be protonated by a nearby histidine residue (suggested by recent mutagenesis studies and crystallographic work) and, provided an electron source is available, leads to formation of an oxyl-complex after cleavage of the O-O bond and dissociation of water. The oxyl complex either reacts with the substrate or is further protonated to a hydroxyl complex. Both the oxyl and hydroxyl complexes are also readily generated from a reaction with H 2 O 2 , which was recently suggested to be the true co-substrate, rather than O 2 . The C-H abstraction by the oxyl and hydroxy complexes is overall favorable with activation barriers of 69 and 94 kJ mol -1 , compared to the much higher barrier (156 kJ mol -1 ) obtained for the copper-superoxo species. We obtain good structural agreement for intermediates for which structural data are available and the estimated reaction energies agree with experimental rate constants. Thus, our suggested mechanism is the most complete to date and concur with available experimental evidence.
NASA Astrophysics Data System (ADS)
Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing
2017-10-01
The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.
Basiliko, Nathan; Henry, Kevin; Gupta, Varun; Moore, Tim R.; Driscoll, Brian T.; Dunfield, Peter F.
2013-01-01
Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses. PMID:23914185
On processing of Ni-Cr3C2 based functionally graded clads through microwave heating
NASA Astrophysics Data System (ADS)
Kaushal, Sarbjeet; Gupta, Dheeraj; Bhowmick, Hiralal
2018-06-01
In the current study, functionally graded clads (FGC) of Ni-Cr3C2 based composite powders with varying percentage of Cr3C2 (0%–30% by weight) were developed on austenitic stainless steel (SS-304) substrate through microwave hybrid heating method. A domestic microwave oven working at 2.45 GHz and variable power level of 180–900 W was used to conduct the experimental trials. The exposure time was varied with compositional gradient and was optimized. Scanning electron microscopic (SEM) image of the FGC shows the uniform distribution of Cr3C2 particles inside the Ni matrix. Presence of Ni3C, Ni3Si, Ni3Cr2, and Cr3C2 phases was observed in the different layers of FGC. The top FGC layer exhibits the maximum value of microhardness of order 576 ± 25 HV which was 2.5 times more than that of the substrate.
NASA Astrophysics Data System (ADS)
Tonna, Noemi; Bianco, Fabio; Matteoli, Michela; Cagnoli, Cinzia; Antonucci, Flavia; Manfredi, Amedea; Mauro, Nicolò; Ranucci, Elisabetta; Ferruti, Paolo
2014-08-01
This paper reports on a novel application of an amphoteric water-soluble polyamidoamine named AGMA1 bearing 4-butylguanidine pendants. AGMA1 is an amphoteric, prevailingly cationic polyelectrolyte with isoelectric point of about 10. At pH 7.4 it is zwitterionic with an average of 0.55 excess positive charges per unit, notwithstanding it is highly biocompatible. In this work, it was found that AGMA1 surface-adsorbed on cell culturing coverslips exhibits excellent properties as adhesion and proliferation promoter of primary brain cells such as microglia, as well as of hippocampal neurons and astrocytes. Microglia cells cultured on AGMA1-coated coverslips substrate displayed the typical resting, ramified morphology of those cultured on poly-L-lysine and poly-L-ornithine, employed as reference substrates. Mixed cultures of primary astrocytes and neuronal cells grown on AGMA1- and poly-L-lysine coated coverslips were morphologically undistinguishable. On both substrates, neurons differentiated axon and dendrites and eventually established perfectly functional synaptic contacts. Quantitative immunocytochemical staining revealed no difference between AGMA1 and poly-L-lysine. Electrophysiological experiments allowed recording neuron spontaneous activity on AGMA1. In addition, cell cultures on both AGMA1 and PLL displayed comparable excitatory and inhibitory neurotransmission, demonstrating that the synaptic contacts formed were fully functional.
Lysosomal Multienzyme Complex: Pros and Cons of Working Together
Bonten, Erik J.; Annunziata, Ida; d’Azzo, Alessandra
2014-01-01
The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, Protective Protein/Cathepsin A (PPCA), the sialidase, Neuraminidase-1 (NEU1), and the glycosidase β-Galactosidase (β-GAL). Next to this ‘core’ complex, the existence of sub-complexes, that may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1 and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders. PMID:24337808
Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.
Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M
2018-05-31
Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.
Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Han, E-mail: Dabombyh@aliyun.com; Yu, Zhongyuan
2014-11-15
Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facetsmore » for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.« less
Heteroepitaxial diamond growth on 4H-SiC using microwave plasma chemical vapor deposition.
Moore, Eric; Jarrell, Joshua; Cao, Lei
2017-09-01
Deposition of heteroepitaxial diamond via microwave chemical vapor deposition has been performed on a 4H-SiC substrate using bias enhanced nucleation followed by a growth step. In future work, the diamond film will serve as a protective layer for an alpha particle sensor designed to function in an electrorefiner during pyroprocessing of spent fuel. The diamond deposition on the 4H-SiC substrate was carried out using a methane-hydrogen gas mixture with varying gas flow rates. The nucleation step was conducted for 30 minutes and provided sufficient nucleation sites to grow a diamond film on various locations on the substrate. The resulting diamond film was characterized using Raman spectroscopy exhibiting the strong Raman peak at 1332 cm -1 . Scanning electron microscopy was used to observe the surface morphology and the average grain size of the diamond film was observed to be on the order of ∼2-3 μm.
A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates
Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.
2015-01-01
Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188
Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wei; Wen, Yongzheng; Yu, Xiaomei, E-mail: yuxm@pku.edu.cn
2015-03-16
This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop themore » SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.« less
Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate
NASA Astrophysics Data System (ADS)
Abid Ali, Ferdos; Renault, Ludovic; Gannon, Julian; Gahlon, Hailey L.; Kotecha, Abhay; Zhou, Jin Chuan; Rueda, David; Costa, Alessandro
2016-02-01
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Quantification of effective exoelectrogens by most probable number (MPN) in a microbial fuel cell.
Heidrich, Elizabeth S; Curtis, Thomas P; Woodcock, Stephen; Dolfing, Jan
2016-10-01
The objective of this work was to quantify the number of exoelectrogens in wastewater capable of producing current in a microbial fuel cell by adapting the classical most probable number (MPN) methodology using current production as end point. Inoculating a series of microbial fuel cells with various dilutions of domestic wastewater and with acetate as test substrate yielded an apparent number of exoelectrogens of 17perml. Using current as a proxy for activity the apparent exoelectrogen growth rate was 0.03h(-1). With starch or wastewater as more complex test substrates similar apparent growth rates were obtained, but the apparent MPN based numbers of exoelectrogens in wastewater were significantly lower, probably because in contrast to acetate, complex substrates require complex food chains to deliver the electrons to the electrodes. Consequently, the apparent MPN is a function of the combined probabilities of members of the food chain being present. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Song, Yu; Zhang, Hang; You, Hongguang; Liu, Yuanming; Chen, Chao; Feng, Xu; Yu, Xingyu; Wu, Shengyang; Wang, Libo; Zhong, Shihua; Li, Qiang; Zhu, Yanming; Ding, Xiaodong
2018-04-17
The plant sucrose nonfermenting kinase 1 (SnRK1) kinases play the central roles in the processes of energy balance, hormone perception, stress resistance, metabolism, growth, and development. However, the functions of these kinases are still elusive. In this study, we used GsSnRK1 of wild soybean as bait to perform library-scale screens by the means of yeast two-hybrid to identify its interacting proteins. The putative interactions were verified by yeast retransformation and β-galactosidase assays, and the selected interactions were further confirmed in planta by bimolecular fluorescence complementation and biochemical Co-IP assays. Protein phosphorylation analyses were carried out by phos-tag assay and anti-phospho-(Ser/Thr) substrate antibodies. Finally, we obtained 24 GsSnRK1 interactors and several putative substrates that can be categorized into SnRK1 regulatory β subunit, protein modification, biotic and abiotic stress-related, hormone perception and signalling, gene expression regulation, water and nitrogen transport, metabolism, and unknown proteins. Intriguingly, we first discovered that GsSnRK1 interacted with and phosphorylated the components of soybean nodulation and symbiotic nitrogen fixation. The interactions and potential functions of GsSnRK1 and its associated proteins were extensively discussed and analysed. This work provides plausible clues to elucidate the novel functions of SnRK1 in response to variable environmental, metabolic, and physiological requirements. © 2018 John Wiley & Sons Ltd.
Grafting of functionalized polymer on porous silicon surface using Grignard reagent
NASA Astrophysics Data System (ADS)
Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.
2017-11-01
Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).
Kuhn, Peer-Hendrik; Colombo, Alessio Vittorio; Schusser, Benjamin; Dreymueller, Daniela; Wetzel, Sebastian; Schepers, Ute; Herber, Julia; Ludwig, Andreas; Kremmer, Elisabeth; Montag, Dirk; Müller, Ulrike; Schweizer, Michaela; Saftig, Paul; Bräse, Stefan; Lichtenthaler, Stefan F
2016-01-01
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain. DOI: http://dx.doi.org/10.7554/eLife.12748.001 PMID:26802628
Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P.
Klemm, Bradley P; Karasik, Agnes; Kaitany, Kipchumba J; Shanmuganathan, Aranganathan; Henley, Matthew J; Thelen, Adam Z; Dewar, Allison J L; Jackson, Nathaniel D; Koutmos, Markos; Fierke, Carol A
2017-12-01
Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex. © 2017 Klemm et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Lenz, Stefan A P; Wetmore, Stacey D
2016-02-09
Human alkyladenine DNA glycosylase (AAG) functions as part of the base excision repair (BER) pathway by cleaving the N-glycosidic bond that connects nucleobases to the sugar-phosphate backbone in DNA. AAG targets a range of structurally diverse purine lesions using nonspecific DNA-protein π-π interactions. Nevertheless, the enzyme discriminates against the natural purines and is inhibited by pyrimidine lesions. This study uses molecular dynamics simulations and seven different neutral or charged substrates, inhibitors, or canonical purines to probe how the bound nucleotide affects the conformation of the AAG active site, and the role of active site residues in dictating substrate selectivity. The neutral substrates form a common DNA-protein hydrogen bond, which results in a consistent active site conformation that maximizes π-π interactions between the aromatic residues and the nucleobase required for catalysis. Nevertheless, subtle differences in DNA-enzyme contacts for different neutral substrates explain observed differential catalytic efficiencies. In contrast, the exocyclic amino groups of the natural purines clash with active site residues, which leads to catalytically incompetent DNA-enzyme complexes due to significant reorganization of active site water. Specifically, water resides between the A nucleobase and the active site aromatic amino acids required for catalysis, while a shift in the position of the general base (E125) repositions (potentially nucleophilic) water away from G. Despite sharing common amino groups, the methyl substituents in cationic purine lesions (3MeA and 7MeG) exhibit repulsion with active site residues, which repositions the damaged bases in the active site in a manner that promotes their excision. Overall, we provide a structural explanation for the diverse yet discriminatory substrate selectivity of AAG and rationalize key kinetic data available for the enzyme. Specifically, our results highlight the complex interplay of many different DNA-protein interactions used by AAG to facilitate BER, as well as the crucial role of the general base and water (nucleophile) positioning. The insights gained from our work will aid the understanding of the function of other enzymes that use flexible active sites to exhibit diverse substrate specificity.
Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.
NASA Astrophysics Data System (ADS)
Lopinski, Gregory Peter
Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift as well as the form of the observed coverage dependence differ from the predictions of the traditional charge transfer model of alkali adsorption. The relevance of the vibrational results to the Na-induced structural changes observed on this surface are also discussed. Na adsorption has been found to dramatically alter the interaction of oxygen with this surface, due to the presence of a strong attractive interaction between Na and O that forces O atoms to occupy a different binding site than on a clean surface.
Doped carbon nanostructure field emitter arrays for infrared imaging
Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN
2009-10-27
An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liangyu
2015-01-01
This work reports a theoretical and experimental study of 4H-SiC JFET threshold voltage as a function of substrate body bias, device position on the wafer, and temperature from 25 C (298K) to 500 C (773K). Based on these results, an alternative approach to SPICE circuit simulation of body effect for SiC JFETs is proposed.
McClernon, Francis Joseph; Froeliger, Brett; Rose, Jed E; Kozink, Rachel V; Addicott, Merideth A; Sweitzer, Maggie M; Westman, Eric C; Van Wert, Dana M
2016-07-01
Smoking abstinence impairs executive function, which may promote continued smoking behavior and relapse. The differential influence of nicotine and non-nicotine (i.e. sensory, motor) smoking factors and related neural substrates is not known. In a fully factorial, within-subjects design, 33 smokers underwent fMRI scanning following 24 hours of wearing a nicotine or placebo patch while smoking very low nicotine content cigarettes or remaining abstinent from smoking. During scanning, blood oxygenation level-dependent (BOLD) signal was acquired while participants performed a verbal N-back task. Following 24-hour placebo (versus nicotine) administration, accuracy on the N-back task was significantly worse and task-related BOLD signal lower in dorsomedial frontal cortex. These effects were observed irrespective of smoking. Our data provide novel evidence that abstinence-induced deficits in working memory and changes in underlying brain function are due in large part to abstinence from nicotine compared with non-nicotine factors. This work has implications both for designing interventions that target abstinence-induced cognitive deficits and for nicotine-reduction policy. © 2015 Society for the Study of Addiction.
Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli
2016-08-01
DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures. © 2016 Federation of European Biochemical Societies.
Chen, Yi-Ju; Lu, Cheng-Tsung; Huang, Kai-Yao; Wu, Hsin-Yi; Chen, Yu-Ju; Lee, Tzong-Yi
2015-01-01
S-glutathionylation, the covalent attachment of a glutathione (GSH) to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA). TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM) is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN) and human protein tyrosine phosphatase 1b (PTP1B). Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/), for identifying uncharacterized GSH substrate sites on the protein sequences. PMID:25849935
Medrano, A; Peña, A; Rigau, T; Rodrìguez-Gil, J E
2005-10-01
In this work the role of energy substrates in the maintenance of boar-sperm survival during storage at 15-17 degrees C was tested. For this purpose, boar spermatozoa were stored at 15-17 degrees C in several defined media with separate combinations of a monosaccharide, glucose and a non-monosaccharide, either citrate or lactate, energy substrates. Our results indicate that the medium containing the highest concentration of glucose together with low lactate levels was the most suitable to maintain sperm quality for 168 h at 15-17 degrees C. This was confirmed after observation of the results of the percentages of viability and altered acrosomes, the osmotic resistance test, the hyperosmotic resistance test and the rhythm of L-lactate production. The survival ability of boar sperm was greater in this experimental medium than in the standard Beltsville Thawing Solution extender, which contains only glucose as an energy substrate, although at a concentration far higher than that of all the tested experimental media. Our results indicate that the exact composition, more than the pure quantity of energy substrates, is a very important modulatory factor which affects survival ability of boar sperm in refrigeration. Thus, the exact combination of several energy substrates would have to be taken into account when optimizing the design of commercial extenders to store boar spermatozoa at 15-17 degrees C.
Zhu, S; Chen, T P; Cen, Z H; Goh, E S M; Yu, S F; Liu, Y C; Liu, Y
2010-10-11
The split of surface plasmon resonance of self-assembled gold nanoparticles on Si substrate is observed from the dielectric functions of the nanoparticles. The split plasmon resonances are modeled with two Lorentz oscillators: one oscillator at ~1 eV models the polarization parallel to the substrate while the other at ~2 eV represents the polarization perpendicular to the substrate. Both parallel and perpendicular resonances are red-shifted when the nanoparticle size increases. The red shifts in both resonances are explained by the image charge effect of the Si substrate.
2018-01-01
Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiOx and HfOx and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiNx and HfNx films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiOx were slightly improved whereas those of SiNx were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed. PMID:29554799
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir
2009-01-01
We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241
Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure
Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar
2017-01-01
This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816
Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.
Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar
2017-01-01
This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.
The effect of Be and Cr electrode deposition rate on the performance of MIS solar cells
NASA Astrophysics Data System (ADS)
Moharram, A. H.; Panayotatos, P.; Yeh, J. L.; Lalevic, B.
1985-07-01
An experimental study has been performed on MIS solar cells with Be, Cr and layered Cr-Be electrodes on single crystal Si, Wacker and Monsanto poly-Si substrates. Electrical characterization in the dark and under illumination was correlated to X-ray and Auger spectroscopy results. It was found that the electrode deposition rate directly affects the oxygen content of the electrodes for all metal-substrate configurations. This oxygen is believed to originate from the deposition ambient as well as from the SiO2 layer. In the case of cells with Cr and layered Cr-Be electrodes oxygen acts to reduce the electrode work function (thus increasing the open-circuit voltage) in direct proportion to the relative content of oxygen to chromium.
Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer
2014-08-01
The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plasmonic Paper as a Novel Chem/Bio Detection Platform
NASA Astrophysics Data System (ADS)
Tian, Limei
The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi-)functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS/LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research.
Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.
Lim, Sukbin; Goldman, Mark S
2014-05-14
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Ershov, Igor V.; Popova, Inna G.; Pham, Khang D.; Nguyen, Chuong V.
2018-05-01
In this paper, we investigate systematically the structural, electronic, magnetic and adsorption properties of Bernal-stacked bilayer graphene on MnO(111) surface terminated by an oxygen atom, as a function of nonstoichiometric composition of the BLG/MnOx(111) interface. For additional functionalization of the BLG/MnOx(111) system, we also studied the adsorption properties of oxygen adsorbed on the BLG/MnOx(111) interface. Our results showed that the BLG is bound to the MnOx(111) substrate by the weak interaction for both spin-up and spin-down. Furthermore, we found that BLG adsorbed on the MnOx(111) substrate with a reduced oxygen symmetry in the interface is accompanied with a downshift of the Fermi level, which identifies the band structure of BLG as a p-type semiconductor. Upon interaction between BLG and MnOx(111) substrate, a forbidden gap of about 350 meV was opened between its bonding and antibonding π bands. A forbidden gap and the local magnetic moments in bilayer graphene can be controlled by changing the oxygen nonstoichometry or by oxygen adsorption. Additionally, magnetism has been predicted in the bilayer graphene adsorbed on the polar MnOx(111) surface with oxygen vacancies in the BLG/MnOx(111) interface, and its nature has also been discussed in this work. These results showed that the adsorption of bilayer graphene on the MnO(111) substrate can be used for developing novel generation of electronic and spintronic devices.
Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers
Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan
2009-01-01
Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225
Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine
2016-10-01
While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker I f current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB +/+ ;LDLR -/- ). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13 C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression. Copyright © 2016 the American Physiological Society.
Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart
Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich
2013-01-01
Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371
NASA Astrophysics Data System (ADS)
Song, Jian; Lou, Huan
2018-05-01
Investigations of the adsorptions of representative gases (NO2, NH3, H2S, SO2, CO, and HCHO) on different Ag-functionalized monolayer MoS2 surfaces were performed by first principles methods. The adsorption configurations, adsorption energies, electronic structure properties, and charge transfer were calculated, and the results show that the adsorption activities to gases of monolayer MoS2 are dramatically enhanced by the Ag-modification. The Ag-modified perfect MoS2 (Ag-P) and MoS2 with S-vacancy (Ag-Vs) substrates exhibit a more superior adsorption activity to NO2 than other gases, which is consistent with the experimental reports. The charge transfer processes of different molecules adsorbed on different surfaces exhibit various characteristics, with potential benefits to gas selectivity. For instance, the NO2 and SO2 obtain more electrons from both Ag-P and Ag-Vs substrates but the NH3 and H2S donate more electrons to materials than others. In addition, the CO and HCHO possess totally opposite charge transfer directs on both substrates, respectively. The BS and PDOS calculations show that semiconductor types of gas/Ag-MoS2 systems are more determined by the metal-functionalization of material, and the directs and numbers of charge transfer process between gases and adsorbents can cause the increase or decline of material resistance theoretically, which is helpful to gas detection and distinction. The further analysis indicates suitable co-operation between the gain-lost electron ability of gas and metallicity of featuring metal might adjust the resistivity of complex and contribute to new thought for metal-functionalization. Our works provide new valuable ideas and theoretical foundation for the potential improvement of MoS2-based gas sensor performances, such as sensitivity and selectivity.
Molecular structures and functional relationships in clostridial neurotoxins.
Swaminathan, Subramanyam
2011-12-01
The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. Journal compilation © 2011 FEBS. No claim to original US government works.
Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria
NASA Astrophysics Data System (ADS)
Kozlowski, J.; Stein, L. Y.
2014-12-01
Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.
Active bialkali photocathodes on free-standing graphene substrates
Yamaguchi, Hisato; Liu, Fangze; DeFazio, Jeffrey; ...
2017-06-01
Here, the hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventionalmore » semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.« less
Active bialkali photocathodes on free-standing graphene substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hisato; Liu, Fangze; DeFazio, Jeffrey
Here, the hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventionalmore » semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.« less
Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv
2018-02-02
Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4 Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.
Bertenshaw, G P; Turk, B E; Hubbard, S J; Matters, G L; Bylander, J E; Crisman, J M; Cantley, L C; Bond, J S
2001-04-20
Meprin A and B are highly regulated, secreted, and cell-surface metalloendopeptidases that are abundantly expressed in the kidney and intestine. Meprin oligomers consist of evolutionarily related alpha and/or beta subunits. The work herein was carried out to identify bioactive peptides and proteins that are susceptible to hydrolysis by mouse meprins and kinetically characterize the hydrolysis. Gastrin-releasing peptide fragment 14-27 and gastrin 17, regulatory molecules of the gastrointestinal tract, were found to be the best peptide substrates for meprin A and B, respectively. Peptide libraries and a variety of naturally occurring peptides revealed that the meprin beta subunit has a clear preference for acidic amino acids in the P1 and P1' sites of substrates. The meprin alpha subunit selected for small (e.g. serine, alanine) or hydrophobic (e.g. phenylalanine) residues in the P1 and P1' sites, and proline was the most preferred amino acid at the P2' position. Thus, although the meprin alpha and beta subunits share 55% amino acid identity within the protease domain and are normally localized at the same tissue cell surfaces, they have very different substrate and peptide bond specificities indicating different functions. Homology models of the mouse meprin alpha and beta protease domains, based on the astacin crystal structure, revealed active site differences that can account for the marked differences in substrate specificity of the two subunits.
NASA Astrophysics Data System (ADS)
Bouazza, Abdelkader; Settaouti, Abderrahmane
2016-07-01
The energy and the number of particles arriving at the substrate during physical vapor deposition (PVD) are in close relation with divers parameters. In this work, we present the influence of the distance between the target and substrate and the gas pressure in the sputtering process of deposited layers of metals (Cu, Al and Ag) and semiconductors (Ge, Te and Si) for substrate diameter of 40 cm and target diameter of 5 cm. The nascent sputter flux, the flux of the atoms and their energy arriving at the substrate have been simulated by Monte Carlo codes. A good agreement between previous works of other groups and our simulations for sputter pressures (0.3-1 Pa) and target-substrate distances (8-20 cm) is obtained.
NASA Astrophysics Data System (ADS)
Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi
2017-12-01
Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.
NASA Astrophysics Data System (ADS)
Zhao, Huaqing
There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in functionally graded materials. This work provides a solid foundation for further applications of the singular integral equation approach to fracture and fatigue problems in advanced composites. The concept of crack bridging is a unifying theory for fracture at various length scales, from atomic cleavage to rupture of concrete structures. However, most of the previous studies are limited to small scale bridging analyses although large scale bridging conditions prevail in engineering materials. In this work, a large scale bridging analysis is included within the framework of singular integral equation approach. This allows us to study fracture, fatigue and toughening mechanisms in advanced materials with crack bridging. As an example, the fatigue crack growth of grain bridging ceramics is studied. With the advent of composite materials technology, more complex material microstructures are being introduced, and more mechanics issues such as inhomogeneity and nonlinearity come into play. Improved mathematical and numerical tools need to be developed to allow theoretical modeling of these materials. This thesis work is an attempt to meet these challenges by making contributions to both micromechanics modeling and applied mathematics. It sets the stage for further investigations of a wide range of problems in the deformation and fracture of advanced engineering materials.
Fernández, Cynthia C; Pensa, Evangelina; Carro, Pilar; Salvarezza, Roberto; Williams, Federico J
2018-05-22
The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).
Ferrocene-functionalized graphene electrode for biosensing applications.
Rabti, Amal; Mayorga-Martinez, Carmen C; Baptista-Pires, Luis; Raouafi, Noureddine; Merkoçi, Arben
2016-07-05
A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry. The XPS and EDX analysis showed the presence of Fe element related to the introduced ferrocene groups, which is confirmed by a clear CV signal at ca. 0.25 V vs. Ag/AgCl (0.1 KCl). Mediated redox catalysis of H2O2 and bio-functionalization with glucose oxidase for glucose detection were achieved by the bioelectrode providing a proof for potential biosensing applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William
Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality andmore » single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.« less
NASA Astrophysics Data System (ADS)
Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.
2017-03-01
The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.
2015-01-01
In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2 × 106 and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications. PMID:25402207
Functional neural substrates of posterior cortical atrophy patients.
Shames, H; Raz, N; Levin, Netta
2015-07-01
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.
Strain effects on the work function of an organic semiconductor
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel
2016-01-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362
Strain effects on the work function of an organic semiconductor
NASA Astrophysics Data System (ADS)
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.
Strain effects on the work function of an organic semiconductor.
Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.
Bao, Zhong-Min; Xu, Rui-Peng; Li, Chi; Xie, Zhong-Zhi; Zhao, Xin-Dong; Zhang, Yi-Bo; Li, Yan-Qing; Tang, Jian-Xin
2016-08-31
Charge transport at organic/inorganic hybrid contacts significantly affects the performance of organic optoelectronic devices because the unfavorable energy level offsets at these interfaces can hinder charge injection or extraction due to large barrier heights. Herein, we report a technologically relevant method to functionalize a traditional hole-transport layer of solution-processed nickel oxide (NiOx) with various interlayers. The photoemission spectroscopy measurements reveal the continuous tuning of the NiOx substrate work function ranging from 2.5 to 6.6 eV, enabling the alignment transition of energy levels between the Schottky-Mott limit and Fermi level pinning at the organic/composite NiOx interface. As a result, switching hole and electron transport for the active organic material on the composite NiOx layer is achieved due to the controlled carrier injection/extraction barriers. The experimental findings indicate that tuning the work function of metal oxides with optimum energy level offsets can facilitate the charge transport at organic/electrode contacts.
Strain effects on the work function of an organic semiconductor
Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...
2016-02-01
Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less
Wu, Baojun; Gaskell, Jill; Held, Benjamin W; Toapanta, Cristina; Vuong, Thu; Ahrendt, Steven; Lipzen, Anna; Zhang, Jiwei; Schilling, Jonathan S; Master, Emma; Grigoriev, Igor V; Blanchette, Robert A; Cullen, Dan; Hibbett, David S
2018-06-08
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at five days) or solid wood wafers (sampled at ten and thirty days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and timepoints. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and timepoints. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (post-transcriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates. Copyright © 2018 American Society for Microbiology.
The Neural Substrates of Cognitive Control Deficits in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Solomon, Marjorie; Ozonoff, Sally J.; Ursu, Stefan; Ravizza, Susan; Cummings, Neil; Ly, Stanford; Carter, Cameron S.
2009-01-01
Executive function deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive function deficits in ASDs, and only one in adolescents. The current study examined cognitive…
Correspondence of the brain's functional architecture during activation and rest.
Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F
2009-08-04
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Hun; Kim, Jae Hyeon; Park, Jeong Young, E-mail: peterlee@skku.edu, E-mail: jeongypark@kaist.ac.kr
2015-06-22
The electrical properties of two-dimensional atomic sheets exhibit remarkable dependences on layer thickness and surface chemistry. Here, we investigated the variation of the work function properties of MoS{sub 2} films prepared with chemical vapor deposition (CVD) on SiO{sub 2} substrates with the number of film layers. Wafer-scale CVD MoS{sub 2} films with 2, 4, and 12 layers were fabricated on SiO{sub 2}, and their properties were evaluated by using Raman and photoluminescence spectroscopies. In accordance with our X-ray photoelectron spectroscopy results, our Kelvin probe force microscopy investigation found that the surface potential of the MoS{sub 2} films increases by ∼0.15 eVmore » when the number of layers is increased from 2 to 12. Photoemission spectroscopy (PES) with in-situ annealing under ultra high vacuum conditions was used to directly demonstrate that this work function shift is associated with the screening effects of oxygen or water molecules adsorbed on the film surface. After annealing, it was found with PES that the surface potential decreases by ∼0.2 eV upon the removal of the adsorbed layers, which confirms that adsorbed species have a role in the variation in the work function.« less
Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.
The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less
Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity
Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.; ...
2017-02-01
The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less
Li, Qiang; Zou, Jie; Tan, Hao; Tan, Wei; Peng, Weihong
2018-01-01
Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum. PMID:29915697
Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade
2014-01-01
Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498
Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade
2013-10-10
Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. Copyright © 2013 Elsevier Inc. All rights reserved.
High-fraction brookite films from amorphous precursors.
Haggerty, James E S; Schelhas, Laura T; Kitchaev, Daniil A; Mangum, John S; Garten, Lauren M; Sun, Wenhao; Stone, Kevin H; Perkins, John D; Toney, Michael F; Ceder, Gerbrand; Ginley, David S; Gorman, Brian P; Tate, Janet
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2 , where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2 , a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.
NASA Astrophysics Data System (ADS)
Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.
2011-09-01
Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Zhang, Wenpeng; Chen, Zilin
2017-01-01
Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.
NASA Astrophysics Data System (ADS)
Cole, Martin A.; Thissen, Helmut; Losic, Dusan; Voelcker, Nicolas H.
2007-04-01
Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.
Xu, Jingjie; Xie, Yan; Lu, Benzhuo; Zhang, Linbo
2016-08-25
The Debye-Hückel limiting law is used to study the binding kinetics of substrate-enzyme system as well as to estimate the reaction rate of a electrostatically steered diffusion-controlled reaction process. It is based on a linearized Poisson-Boltzmann model and known for its accurate predictions in dilute solutions. However, the substrate and product particles are in nonequilibrium states and are possibly charged, and their contributions to the total electrostatic field cannot be explicitly studied in the Poisson-Boltzmann model. Hence the influences of substrate and product on reaction rate coefficient were not known. In this work, we consider all the charged species, including the charged substrate, product, and mobile salt ions in a Poisson-Nernst-Planck model, and then compare the results with previous work. The results indicate that both the charged substrate and product can significantly influence the reaction rate coefficient with different behaviors under different setups of computational conditions. It is interesting to find that when substrate and product are both considered, under an overall neutral boundary condition for all the bulk charged species, the computed reaction rate kinetics recovers a similar Debye-Hückel limiting law again. This phenomenon implies that the charged product counteracts the influence of charged substrate on reaction rate coefficient. Our analysis discloses the fact that the total charge concentration of substrate and product, though in a nonequilibrium state individually, obeys an equilibrium Boltzmann distribution, and therefore contributes as a normal charged ion species to ionic strength. This explains why the Debye-Hückel limiting law still works in a considerable range of conditions even though the effects of charged substrate and product particles are not specifically and explicitly considered in the theory.
Deng, Xu; Petitjean, Marjorie; Teste, Marie-Ange; Kooli, Wafa; Tranier, Samuel; François, Jean Marie; Parrou, Jean-Luc
2014-01-01
The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6) disaccharides isomaltose and palatinose, with Michaëlis–Menten kinetics and inhibition at high substrates concentration. They were also able to hydrolyze trisaccharides bearing an α-(1,6) linkage, but also α-(1,2), α-(1,3) and α-(1,5) disaccharides including sucrose, highlighting their substrate ambiguity. While Ima1p and Ima2p presented almost identical characteristics, our results nevertheless showed many singularities within this protein family. In particular, Ima3p presented lower activities and thermostability than Ima2p despite only three different amino acids between the sequences of these two isoforms. The Ima3p_R279Q variant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240 significantly increased the stability of Ima3p and supported the role of prolines in thermostability. The most distant protein, Ima5p, presented the lowest optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specific amino acids for determining the specificity for α-(1,6) substrates. We finally found a mixed inhibition by maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitive at very low isomaltose concentrations and uncompetitive as the substrate concentration increased. Altogether, this work illustrates that a gene family encoding proteins with strong sequence similarities can lead to enzyme with notable differences in biochemical and enzymological properties. PMID:24649402
Deng, Xu; Petitjean, Marjorie; Teste, Marie-Ange; Kooli, Wafa; Tranier, Samuel; François, Jean Marie; Parrou, Jean-Luc
2014-01-01
The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6) disaccharides isomaltose and palatinose, with Michaëlis-Menten kinetics and inhibition at high substrates concentration. They were also able to hydrolyze trisaccharides bearing an α-(1,6) linkage, but also α-(1,2), α-(1,3) and α-(1,5) disaccharides including sucrose, highlighting their substrate ambiguity. While Ima1p and Ima2p presented almost identical characteristics, our results nevertheless showed many singularities within this protein family. In particular, Ima3p presented lower activities and thermostability than Ima2p despite only three different amino acids between the sequences of these two isoforms. The Ima3p_R279Q variant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240 significantly increased the stability of Ima3p and supported the role of prolines in thermostability. The most distant protein, Ima5p, presented the lowest optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specific amino acids for determining the specificity for α-(1,6) substrates. We finally found a mixed inhibition by maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitive at very low isomaltose concentrations and uncompetitive as the substrate concentration increased. Altogether, this work illustrates that a gene family encoding proteins with strong sequence similarities can lead to enzyme with notable differences in biochemical and enzymological properties.
Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie
2015-05-01
Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.
Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior
2014-01-01
Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation. PMID:25246859
Utilization of agroindustrial residues for lipase production by solid-state fermentation
Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia
2008-01-01
The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Muruganathan; Lokitz, Bradley S.; Messman, Jamie M.
We report a simple, one step process for developing wrinkling patterns in azlactone-based polymer thin films and brushes in 2D and 3D surfaces. The polymer used in this work wrinkles spontaneously upon deposition and solidification on a substrate without applying any external strain to the substrate, with the mode of deposition defining the direction of the wrinkles. Wrinkle formation is shown to occur on a variety of substrates over large areas. We also find that a very thin brush-like layer of an azlactone-containing block copolymer also exhibits wrinkled topology. Given the spontaneity and versatility of wrinkle formation, we further demonstratemore » two proofs-of-concept, i) that these periodic wrinkled structures are not limited to planar surfaces, but are also developed in complex geometries including tubes, cones and other 3D structures; and ii) that this one-step wrinkling process can be used to guide the deposition of metal nanoparticles and quantum dots, creating a periodic, nanopatterned film.« less
Probes of the catalytic site of cysteine dioxygenase.
Chai, Sergio C; Bruyere, John R; Maroney, Michael J
2006-06-09
The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.
NASA Astrophysics Data System (ADS)
Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.
2017-11-01
The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.
Glancing angle deposition of Fe triangular nanoprisms consisting of vertically-layered nanoplates
NASA Astrophysics Data System (ADS)
Li, Jianghao; Li, Liangliang; Ma, Lingwei; Zhang, Zhengjun
2016-10-01
Fe triangular nanoprisms consisting of vertically-layered nanoplates were synthesized on Si substrate by glancing angle deposition (GLAD) with an electron beam evaporation system. It was found that Fe nanoplates with a crystallographic plane index of BCC (110) were stacked vertically to form triangular nanoprisms and the axial direction of the nanoprisms, BCC <001>, was normal to the substrate. The effects of experimental parameters of GLAD on the growth and morphology of Fe nanoprisms were systematically studied. The deposition rate played an important role in the morphology of Fe nanoprisms at the same length, the deposition angle just affected the areal density of nanoprisms, and the rotation speed of substrate had little influence within the parameter range we investigated. In addition, the crystal growth mechanism of Fe nanoprisms was explained with kinetically-controlled growth mechanism and zone model theory. The driving force of crystal growth was critical to the morphology and microstructure of Fe nanoprisms deposited by GLAD. Our work introduced an oriented crystal structure into the nanomaterials deposited by GLAD, which provided a new approach to manipulate the properties and functions of nanomaterials.
Guzmán-Rodríguez, Francisco; Alatorre-Santamaría, Sergio; Gómez-Ruiz, Lorena; Rodríguez-Serrano, Gabriela; García-Garibay, Mariano; Cruz-Guerrero, Alma
2018-05-02
Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Highly efficient TiO2-based microreactor for photocatalytic applications.
Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran
2013-09-25
A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.
Stokes flow inside an evaporating liquid line for any contact angle
NASA Astrophysics Data System (ADS)
Petsi, A. J.; Burganos, V. N.
2008-09-01
Evaporation of droplets or liquid films lying on a substrate induces internal viscous flow, which affects the transport of suspended particles and, thus, the final deposit profile in numerous applications. In this work, the problem of Stokes flow inside a two-dimensional droplet, representing the cross section of an evaporating liquid line lying on a flat surface, is considered. The stream function formulation is adopted, leading to the biharmonic equation in bipolar coordinates. A solution in closed form is obtained for any contact angle in (0,π) and is, thus, valid for both hydrophilic and hydrophobic substrates. The solution can be used with any type of evaporation mechanism, including diffusion, convection, or kinetically controlled modes. Both pinned and depinned contact lines are considered. For the boundary conditions to be compatible at the contact lines, the Navier slip boundary condition is applied on the substrate. Numerical results are presented for kinetically and diffusion controlled evaporation. For pinned contact lines, the flow inside the evaporating liquid line is directed towards the edges, thus, promoting the coffee stain phenomenon. In the case of depinned contact lines and contact angle less than π/2 , the flow is directed towards the center of the droplet, whereas, for strongly hydrophobic substrates it is directed outwards.
Liu, Yiwen; Sun, Jing; Peng, Lai; Wang, Dongbo; Dai, Xiaohu; Ni, Bing-Jie
2016-01-01
Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria–substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm. PMID:27273460
Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L
2016-08-22
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
Incorporation of unnatural sugars for the identification of glycoproteins.
Zaro, Balyn W; Hang, Howard C; Pratt, Matthew R
2013-01-01
Glycosylation is an abundant post-translational modification that alters the fate and function of its substrate proteins. To aid in understanding the significance of protein glycosylation, identification of target proteins is key. As with all proteomics experiments, mass spectrometry has been established as the desired method for substrate identification. However, these approaches require selective enrichment and purification of modified proteins. Chemical reporters in combination with bioorthogonal reactions have emerged as robust tools for identifying post-translational modifications including glycosylation. We provide here a method for the use of bioorthogonal chemical reporters for isolation and identification of glycosylated proteins. More specifically, this protocol is a representative procedure from our own work using an alkyne-bearing O-GlcNAc chemical reporter (GlcNAlk) and a chemically cleavable azido-azo-biotin probe for the identification of O-GlcNAc-modified proteins.
Ochi, Anna; Makabe, Koki; Yamagami, Ryota; Hirata, Akira; Sakaguchi, Reiko; Hou, Ya-Ming; Watanabe, Kazunori; Nureki, Osamu; Kuwajima, Kunihiro; Hori, Hiroyuki
2013-01-01
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination. PMID:23867454
Arends, Jan; Griego, Marcena; Thomanek, Nikolas; Lindemann, Claudia; Kutscher, Blanka; Meyer, Helmut E; Narberhaus, Franz
2018-04-30
Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example the superoxide-stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells
NASA Astrophysics Data System (ADS)
Man, Hamdi
Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of these novel solar cells.
Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W
2014-05-23
Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhang, Jing; Ji, Li; Liu, Weiping
2015-08-17
Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.
NASA Astrophysics Data System (ADS)
Yuan, Bo; He, Zhi-Zhu; Liu, Jing
2018-02-01
Room-temperature liquid metals have many intriguing properties that have not previously been fully understood. Among them, surface tension behaviors of such metals are especially critical in a group of newly emerging areas such as printed electronics, functional materials and soft machines, etc. This study is dedicated to clarifying the wettability of liquid metals on various substrate surfaces with varied roughness immersed in solutions when subject to an electric field. The contact angles of Ga75.5In24.5 in several typical liquids were comprehensively measured and interpreted, and were revealed to be affected by the components and concentration of the environmental solution. Meanwhile, the roughness of the substrates is also revealed to be an important parameter dominating the process. The dynamic wetting behaviors of liquid metal in aqueous environment under an electric field were quantified. The contact angle values of eutectic gallium-indium alloys (eGaIn) on titanium substrates with different roughness would lead to better electrowetting performances on rougher surfaces. In particular, using an electrical field to control the wetting status of liquid metal with the matching substrate have been illustrated, which would offer a practical way to flexibly control liquid metal-based functional devices working in an aqueous environment. Furthermore, Lippmann-Young's equation reveals the relationship between contact angle and applied voltage, explaining the excellent electrowetting property of eGaIn. The power law, R = αt β , was adopted to characterize the two-stage wetting process of eGaIn under different voltages. In the initial process, β ≈ 1/2 represents the complete wetting law, while the later one, β ≈ 1/10, meets with Tanner's law of a drop spontaneously spreading on a smooth surface.
Comparison of the early stages of condensation of Cu and Ag on Mo/100/ with Cu and Ag on W/100/
NASA Technical Reports Server (NTRS)
Soria, F.; Poppa, H.
1980-01-01
The adsorption and condensation of Cu and Ag, up to several monolayers in thickness, onto Mo(100) has been observed at pressures below 2 times 10 to the -10th torr in a study that used combined LEED, Auger, TDS (Thermal Desorption Spectroscopy), and work function measurements in a single experimental setup. The results show that Cu behaves similarly on Mo(100) and W(100) substrates, while some differences are found for Ag adsorption.
The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films
NASA Astrophysics Data System (ADS)
Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam
2018-02-01
Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.
Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation
NASA Astrophysics Data System (ADS)
van der Heide, P. A. W.
2005-02-01
Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.
Direct Desktop Printed-Circuits-on-Paper Flexible Electronics
Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing
2013-01-01
There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.
Autonomous multifunctional nanobrushes-autonomous materials
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.
2007-04-01
In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).
Martin, Teresa A.; Herman, Christine T.; Limpoco, Francis T.; Michael, Madeline C.; Potts, Gregory K.; Bailey, Ryan C.
2014-01-01
Methods for the generation of substrates presenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates. The chemistry of the underlying monolayer was optimized to incorporate poly(ethylene glycol) to enable adhesive cell adhesion onto patterned extracellular matrix proteins. Substrates were characterized with contact angle goniometry, AFM, and immunofluorescence microscopy. Importantly, radioimmunoassays were performed to quantify the site density of immobilized biomolecules on photopatterned substrates. Retention of function of photopatterned proteins was demonstrated both by native ligand recognition and cell adhesion to photopatterned substrates, revealing that substrates generated with this method are suitable for probing specific cell receptor-ligand interactions. This molecularly general photochemical patterning method is an enabling tool that will allow the creation of substrates presenting both biochemical and topographical variation, which is an important feature of many native biointerfaces. PMID:21793535
NASA Astrophysics Data System (ADS)
Mayangsari, Tirta R.; Yusup, Luchana L.; Park, Jae-Min; Blanquet, Elisabeth; Pons, Michel; Jung, Jongwan; Lee, Won-Jun
2017-06-01
We modeled and simulated the surface reaction of silicon precursor on different surfaces by thermodynamic analysis and density functional theory calculation. We considered SiH2Cl2 and argon as the silicon precursor and the carrier gas without etchant gas. First, the equilibrium composition of both gaseous and solid species was analyzed as a function of process temperature. SiCl4 is the dominant gaseous species at below 750 °C, and SiCl2 and HCl are dominant at higher temperatures, and the yield of silicon decreases with increasing temperature over 700 °C due to the etching of silicon by HCl. The yield of silicon for SiO2 substrate is lower than that for silicon substrate, especially at 1000 °C or higher. Zero deposition yield and the etching of SiO2 substrate at higher temperatures leads to selective growth on silicon substrate. Next, the adsorption and the reaction of silicon precursor was simulated on H-terminated silicon (100) substrate and on OH-terminated β-cristobalite substrate. The adsorption and reaction of a SiH2Cl2 molecule are spontaneous for both Si and SiO2 substrates. However, the energy barrier for reaction is very small (6×10-4 eV) for Si substrate, whereas the energy barrier is high (0.33 eV) for SiO2 substrate. This makes the differences in growth rate, which also supports the experimental results in literature.
Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago
Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yong Seob; Kim, Eungkwon; Hong, Byungyou
2013-12-15
Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{submore » 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.« less
Wefers, Daniel; Dong, Jia; Abdel-Hamid, Ahmed M; Paul, Hans Müller; Pereira, Gabriel V; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I; Cann, Isaac
2017-09-15
The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para -nitrophenyl ( p NP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus IMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries. Copyright © 2017 American Society for Microbiology.
Dong, Jia; Abdel-Hamid, Ahmed M.; Paul, Hans Müller; Pereira, Gabriel V.; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I.
2017-01-01
ABSTRACT The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para-nitrophenyl (pNP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus. IMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus. The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries. PMID:28710263
Baller, Erica B.; Wei, Shau-Ming; Kohn, Philip D.; Rubinow, David R.; Alarcón, Gabriela; Schmidt, Peter J.; Berman, Karen F.
2014-01-01
Objective To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. Method PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. Results In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Conclusions Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The concordance of the fMRI and PET data attests to the neurobiological validity of the results. PMID:23361612
Baller, Erica B; Wei, Shau-Ming; Kohn, Philip D; Rubinow, David R; Alarcón, Gabriela; Schmidt, Peter J; Berman, Karen F
2013-03-01
To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The concordance of the fMRI and PET data attests to the neurobiological validity of the results.
Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana
2018-03-14
Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water oligomers on the stepped surfaces.
NASA Astrophysics Data System (ADS)
Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana
2018-03-01
Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water oligomers on the stepped surfaces.
NASA Astrophysics Data System (ADS)
Rahy, Abdelaziz
The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.
Improvement of organic solar cells by flexible substrate and ITO surface treatments
NASA Astrophysics Data System (ADS)
Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.
2010-10-01
In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density ( Jsc) and 92.7% enhancement in conversion efficiency ( η) over the untreated solar cell are obtained.
The ‘Goldilocks’ effect: preservation bias in vertebrate track assemblages
Falkingham, P. L.; Bates, K. T.; Margetts, L.; Manning, P. L.
2011-01-01
Finite-element analysis was used to investigate the extent of bias in the ichnological fossil record attributable to body mass. Virtual tracks were simulated for four dinosaur taxa of different sizes (Struthiomimus, Tyrannosaurus, Brachiosaurus and Edmontosaurus), in a range of substrate conditions. Outlines of autopodia were generated based upon osteology and published soft-tissue reconstructions. Loads were applied vertically to the feet equivalent to the weight of the animal, and distributed accordingly to fore- and hindlimbs where relevant. Ideal, semi-infinite elastic–plastic substrates displayed a ‘Goldilocks’ quality where only a narrow range of loads could produce tracks, given that small animals failed to indent the substrate, and larger animals would be unable to traverse the area without becoming mired. If a firm subsurface layer is assumed, a more complete assemblage is possible, though there is a strong bias towards larger, heavier animals. The depths of fossil tracks within an assemblage may indicate thicknesses of mechanically distinct substrate layers at the time of track formation, even when the lithified strata appear compositionally homogeneous. This work increases the effectiveness of using vertebrate tracks as palaeoenvironmental indicators in terms of inferring substrate conditions at the time of track formation. Additionally, simulated undertracks are examined, and it is shown that complex deformation beneath the foot may not be indicative of limb kinematics as has been previously interpreted, but instead ridges and undulations at the base of a track may be a function of sediment displacement vectors and pedal morphology. PMID:21233145
Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M
2010-11-01
To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus -selected as surrogates of Bacillus anthracis- to a disinfectant, peracetic acid. Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to French government works.
NASA Astrophysics Data System (ADS)
Thomas, Paul M.
Understanding of quantum tunneling phenomenon in semiconductor systems is increasingly important as CMOS replacement technologies are investigated. This work studies a variety of heterojunction materials and types to increase tunnel currents to CMOS competitive levels and to understand how integration onto Si substrates affects performance. Esaki tunnel diodes were grown by Molecular Beam Epitaxy (MBE) on Si substrates via a graded buffer and control Esaki tunnel diodes grown on lattice matched substrates for this work. Peak current density for each diode is extracted and benchmarked to build an empirical data set for predicting diode performance. Additionally, statistics are used as tool to show peak to valley ratio for the III-V on Si sample and the control perform similarly below a threshold area. This work has applications beyond logic, as multijunction solar cell, heterojunction bipolar transistor, and light emitting diode designs all benefit from better tunnel contact design.
Relating Anaerobic Digestion Microbial Community and Process Function.
Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel
2015-01-01
Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.
2012-01-01
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J
2012-02-21
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.
Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering.
Bardhan, Neelkanth M; Kumar, Priyank V; Li, Zeyang; Ploegh, Hidde L; Grossman, Jeffrey C; Belcher, Angela M; Chen, Guan-Yu
2017-02-28
With the global rise in incidence of cancer and infectious diseases, there is a need for the development of techniques to diagnose, treat, and monitor these conditions. The ability to efficiently capture and isolate cells and other biomolecules from peripheral whole blood for downstream analyses is a necessary requirement. Graphene oxide (GO) is an attractive template nanomaterial for such biosensing applications. Favorable properties include its two-dimensional architecture and wide range of functionalization chemistries, offering significant potential to tailor affinity toward aromatic functional groups expressed in biomolecules of interest. However, a limitation of current techniques is that as-synthesized GO nanosheets are used directly in sensing applications, and the benefits of their structural modification on the device performance have remained unexplored. Here, we report a microfluidic-free, sensitive, planar device on treated GO substrates to enable quick and efficient capture of Class-II MHC-positive cells from murine whole blood. We achieve this by using a mild thermal annealing treatment on the GO substrates, which drives a phase transformation through oxygen clustering. Using a combination of experimental observations and MD simulations, we demonstrate that this process leads to improved reactivity and density of functionalization of cell capture agents, resulting in an enhanced cell capture efficiency of 92 ± 7% at room temperature, almost double the efficiency afforded by devices made using as-synthesized GO (54 ± 3%). Our work highlights a scalable, cost-effective, general approach to improve the functionalization of GO, which creates diverse opportunities for various next-generation device applications.
Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.
Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W
2017-12-04
Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting molecules that are traditionally not easily detected with SERS due to the perceived weak molecule-metal interaction of substrates.
Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xuan; Liang, Pingdong; Raba, Daniel Alexander
ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP andmore » potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.« less
The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.
Vainshtein, I; Kovacina, K S; Roth, R A
2001-03-16
The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.
Faraz, Tahsin; Knoops, Harm C M; Verheijen, Marcel A; van Helvoirt, Cristian A A; Karwal, Saurabh; Sharma, Akhil; Beladiya, Vivek; Szeghalmi, Adriana; Hausmann, Dennis M; Henri, Jon; Creatore, Mariadriana; Kessels, Wilhelmus M M
2018-04-18
Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiO x and HfO x and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiN x and HfN x films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiO x were slightly improved whereas those of SiN x were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed.
Laser-launched flyers with organic working fluids
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2003-10-01
The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.
Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids
Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas
2015-01-01
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565
Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids.
Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas
2015-05-01
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution.
Xu, Rong; Zhang, Kai; Liu, Pu; Khan, Aman; Xiong, Jian; Tian, Fake; Li, Xiangkai
2018-01-01
Anaerobic co-digestion generally results in a higher yield of biogas than mono-digestion, hence co-digestion has become a topic of general interest in recent studies of anaerobic digestion. Compared with mono-digestion, co-digestion utilizes multiple substrates. The balance of substrate nutrient in co-digestion comprises better adjustments of C/N ratio, pH, moisture, trace elements, and dilution of toxic substances. All of these changes could result in positive shifts in microbial community structure and function in the digestion processes and consequent augmentation of biogas production. Nevertheless, there have been few reviews on the interaction of nutrient and microbial community in co-digestions. The objective of this review is to investigate recent achievements and perspectives on the interaction of substrate nutrient balance and microbial community structure and function. This may provide valuable information on the optimization of combinations of substrates and prediction of bioreactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teipel, Stefan; Ehlers, Inga; Erbe, Anna; Holzmann, Carsten; Lau, Esther; Hauenstein, Karlheinz; Berger, Christoph
2015-01-01
Working memory impairment is among the earliest signs of cognitive decline in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We aimed to study the functional and structural substrate of working memory impairment in early AD dementia and MCI. We studied a group of 12 MCI and AD subjects compared to 12 age- and gender-matched healthy elderly controls using diffusion tensor imaging (DTI), and functional magnetic resonance imaging (fMRI) during a 2-back versus 1-back letter recognition task. We performed a three-way image fusion analysis with joint independent component analysis of cortical activation during working memory, and DTI derived measures of fractional anisotropy (FA) and the mode of anisotropy. We found significant hypoactivation in posterior brain areas and relative hyperactivation in anterior brain areas during working memory in AD/MCI subjects compared to controls. Corresponding independent components from DTI data revealed reduced FA and reduced mode of anisotropy in intracortical projecting fiber tracts with posterior predominance and increased FA and increased mode along the corticospinal tract in AD/MCI compared to controls. Our findings suggest that impairments of structural fiber tract integrity accompany breakdown of posterior and relatively preserved anterior cortical activation during working memory performance in MCI/AD subjects. Copyright © 2014 by the American Society of Neuroimaging.
Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.
Lazzara, Thomas D; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia
2011-04-01
Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Tang, Jin-Yun; Riley, William J.
2017-09-01
Several land biogeochemical models used for studying carbon-climate feedbacks have begun explicitly representing microbial dynamics. However, to our knowledge, there has been no theoretical work on how to achieve a consistent scaling of the complex biogeochemical reactions from microbial individuals to populations, communities, and interactions with plants and mineral soils. We focus here on developing a mathematical formulation of the substrate-consumer relationships for consumer-mediated redox reactions of the form A + BE→ products, where products could be, e.g., microbial biomass or bioproducts. Under the quasi-steady-state approximation, these substrate-consumer relationships can be formulated as the computationally difficult full equilibrium chemistry problem or approximated analytically with the dual Monod (DM) or synthesizing unit (SU) kinetics. We find that DM kinetics is scaling inconsistently for reaction networks because (1) substrate limitations are not considered, (2) contradictory assumptions are made regarding the substrate processing rate when transitioning from single- to multi-substrate redox reactions, and (3) the product generation rate cannot be scaled from one to multiple substrates. In contrast, SU kinetics consistently scales the product generation rate from one to multiple substrates but predicts unrealistic results as consumer abundances reach large values with respect to their substrates. We attribute this deficit to SU's failure to incorporate substrate limitation in its derivation. To address these issues, we propose SUPECA (SU plus the equilibrium chemistry approximation - ECA) kinetics, which consistently imposes substrate and consumer mass balance constraints. We show that SUPECA kinetics satisfies the partition principle, i.e., scaling invariance across a network of an arbitrary number of reactions (e.g., as in Newton's law of motion and Dalton's law of partial pressures). We tested SUPECA kinetics with the equilibrium chemistry solution for some simple problems and found SUPECA outperformed SU kinetics. As an example application, we show that a steady-state SUPECA-based approach predicted an aerobic soil respiration moisture response function that agreed well with laboratory observations. We conclude that, as an extension to SU and ECA kinetics, SUPECA provides a robust mathematical representation of complex soil substrate-consumer interactions and can be applied to improve Earth system model (ESM) land models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang, E-mail: gux2002@suda.edu.cn
2015-06-12
Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement ofmore » this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.« less
NASA Technical Reports Server (NTRS)
Foote, M. C.; Jones, B. B.; Hunt, B. D.; Barner, J. B.; Vasquez, R. P.; Bajuk, L. J.
1992-01-01
The composition of pulsed-ultraviolet-laser-deposited Y-Ba-Cu-O films was examined as a function of position across the substrate, laser fluence, laser spot size, substrate temperature, target conditioning, oxygen pressure and target-substrate distance. Laser fluence, laser spot size, and substrate temperature were found to have little effect on composition within the range investigated. Ablation from a fresh target surface results in films enriched in copper and barium, both of which decrease in concentration until a steady state condition is achieved. Oxygen pressure and target-substrate distance have a significant effect on film composition. In vacuum, copper and barium are slightly concentrated at the center of deposition. With the introduction of an oxygen background pressure, scattering results in copper and barium depletion in the deposition center, an effect which increases with increasing target-substrate distance. A balancing of these two effects results in stoichiometric deposition.
NASA Astrophysics Data System (ADS)
Wirtz, Denis
2014-03-01
Two-dimensional (2D) in vitro culture systems have for a number of years provided a controlled and versatile environment for mechanistic studies of cell adhesion, polarization, and migration, three interrelated cell functions critical to cancer metastasis. However, the organization and functions of focal adhesion proteins, protrusion machinery, and microtubule-based polarization in cells embedded in physiologically more relevant 3D extracellular matrices is qualitatively different from their organization and functions on conventional 2D planar substrates. This talk will describe the implications of the dependence of focal adhesion protein-based cell migration on micro-environmental dimensionality (1D vs. 2D vs.. 3D), how cell micromechanics plays a critical role in promoting local cell invasion, and associated validation in mouse models. We will discuss the implications of this work in cancer metastasis.
Beig, Avital; Fine-Shamir, Noa; Lindley, David; Miller, Jonathan M; Dahan, Arik
2017-05-01
Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a ) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.
Baldo, Brian A.; Pratt, Wayne E.; Will, Matthew J.; Hanlon, Erin C.; Bakshi, Vaishali P.; Cador, Martine
2013-01-01
Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of “non-homeostatic” feeding. PMID:23466532
Baldo, Brian A; Pratt, Wayne E; Will, Matthew J; Hanlon, Erin C; Bakshi, Vaishali P; Cador, Martine
2013-11-01
Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function
Johnson, Troy A.; Holyoak, Todd
2012-01-01
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that transitions between an open/disorded conformation to a closed/ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies show that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. In order to more fully investigate the roles of the lid domain in PEPCK function we created three mutations that replaced the 11-residue lid domain with one, two or three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity resulting in a decrease in the catalytic parameters by at least 106. Structural characterization of the mutants in complexes representing the catalytic cycle suggest that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all elements required for chemical conversion of substrates to products remaining intact. PMID:23127136
Engineering electrical properties of graphene: chemical approaches
NASA Astrophysics Data System (ADS)
Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee
2015-12-01
To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.
Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.
Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A
2017-10-01
By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.
Wang, Xiaoyang; Barrett, Matthew; Sondek, John; Harden, T. Kendall; Zhang, Qisheng
2013-01-01
The capacity to monitor spatiotemporal activity of phospholipase C (PLC) isozymes with a PLC-selective sensor would dramatically enhance understanding of the physiological function and disease relevance of these signaling proteins. Previous structural and biochemical studies defined critical roles for several of the functional groups of the endogenous substrate of PLC isozymes, phosphatidylinositol 4,5-bisphosphate (PIP2), indicating that these sites cannot be readily modified without compromising interactions with the lipase active site. However, the role of the 6-hydroxy group of PIP2 for interaction and hydrolysis by PLC has not been explored, possibly due to challenges in synthesizing 6-hydroxy derivatives. Here, we describe an efficient route for the synthesis of novel, fluorescent PIP2 derivatives modified at the 6-hydroxy group. Two of these derivatives were used in assays of PLC activity in which the fluorescent PIP2 substrates were separated from their diacylglycerol products and reaction rates quantified by fluorescence. Both PIP2 analogues effectively function as substrates of PLC-δ1, and the KM and Vmax values obtained with one of these are similar to those observed with native PIP2 substrate. These results indicate that the 6-hydroxy group can be modified to develop functional substrates for PLC isozymes, thereby serving as the foundation for further development of PLC-selective sensors. PMID:22703043
Influence of surface topology and electrostatic potential on water/electrode systems
NASA Astrophysics Data System (ADS)
Siepmann, J. Ilja; Sprik, Michiel
1995-01-01
We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).
Architecture of fluid intelligence and working memory revealed by lesion mapping.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Grafman, Jordan
2014-03-01
Although cognitive neuroscience has made valuable progress in understanding the role of the prefrontal cortex in human intelligence, the functional networks that support adaptive behavior and novel problem solving remain to be well characterized. Here, we studied 158 human brain lesion patients to investigate the cognitive and neural foundations of key competencies for fluid intelligence and working memory. We administered a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale (WAIS) and the N-Back task. Latent variable modeling was applied to obtain error-free scores of fluid intelligence and working memory, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. The observed latent variable modeling and lesion results support an integrative framework for understanding the architecture of fluid intelligence and working memory and make specific recommendations for the interpretation and application of the WAIS and N-Back task to the study of fluid intelligence in health and disease.
Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk).
Umaña, Angie C; Iwahori, Satoko; Kalejta, Robert F
2018-01-19
Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.
Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.
Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J
2015-06-24
Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Masks For Deposition Of Aspherical Optical Surfaces
NASA Technical Reports Server (NTRS)
Rogers, John R.; Martin, John D.
1992-01-01
Masks of improved design developed for use in fabrication of aspherical, rotationally symmetrical surfaces of mirrors, lenses, and lens molds by evaporative deposition onto rotating substrates. In deposition chamber, source and mask aligned with axis of rotation of substrate. Mask shadows source of rotating substrate. Azimuthal opening (as function of radius) in mask proportional to desired thickness (as function of radius) to which material deposited on substrate. Combination of improved masks and modern coating chambers provides optical surfaces comparable or superior to those produced by conventional polishing, computer-controlled polishing, replication from polished molds, and diamond turning, at less cost in material, labor, and capital expense.
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-10-19
Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.
Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu
2018-04-18
Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.
High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation
NASA Astrophysics Data System (ADS)
Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang
2015-11-01
Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.
Spatially resolved, substrate-induced rectification in C 60 bilayers on copper
Smerdon, J. A.; Darancet, P.; Guest, J. R.
2017-02-22
Here, we demonstrate rectification ratios ( RR) of ≳1000 at biases of 1.3 V in bilayers of C 60 deposited on copper. Using scanning tunneling spectroscopy and first-principles calculations, we show that the strong coupling between C 60 and the Cu(111) surface leads to the metallization of the bottom C 60 layer, while the molecular orbitals of the top C60 are essentially unaffected. Due to this substrate-induced symmetry breaking and to a tunneling transport mechanism, the system behaves as a hole-blocking layer, with a spatial dependence of the onset voltage on intra-layer coordination. Together with previous observations of strong electron-blockingmore » character of pentacene/C 60 bilayers on Cu(111), this work further demonstrates the potential of strongly hybridized, C 60-coated electrodes to harness the electrical functionality of molecular components.« less
NASA Astrophysics Data System (ADS)
Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming
2017-10-01
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
NASA Astrophysics Data System (ADS)
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Effect of nitrogen-doped carbon dots on the anticorrosion properties of waterborne epoxy coatings
NASA Astrophysics Data System (ADS)
Ren, Siming; Cui, Mingjun; Zhao, Haichao; Wang, Liping
2018-06-01
In this work, nitrogen-doped carbon dots (NCDs) are prepared by solvothermal method and the effect of NCDs on the anticorrosion property of waterborne epoxy (EP) is investigated. Scanning probe microscopy results show that the size of the NCDs is about 4–6 nm. In addition, the anticorrosion property of NCD-incorporated waterborne epoxy coatings is investigated via electrochemical techniques and scanning electron microscopy. Electrochemical results demonstrate that the impedance modulus of 2.0% NCDs/EP is 364 times higher than that of blank EP after 800 h of immersion, indicating significant enhancement in the anticorrosion property of waterborne epoxy coating. The reason is that NCDs with lots of surface functional groups can connect with waterborne epoxy to suppress enlargement of the pores, and reduce the diffusion of oxygen in the coating, thus cutting off the connection between the substrate and oxygen, and delaying corrosion of the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume
2013-12-13
We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr 2+- or Ba 2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartzmore » thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.« less
All-metal superconducting planar microwave resonator
NASA Astrophysics Data System (ADS)
Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team
There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.
Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7.
Hussain, Rawaa H; Zawawi, Mariam; Bayfield, Mark A
2013-10-01
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3'OH-dependent trailer binding/protection and a UUU-3'OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3'OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.
Inducing morphological changes in lipid bilayer membranes with microfabricated substrates
NASA Astrophysics Data System (ADS)
Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick
2016-11-01
Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.
García-Alonso, L; Romani, S; Jiménez, F
2000-12-01
Cell adhesion molecules (CAMs) implement the process of axon guidance by promoting specific selection and attachment to substrates. We show that, in Drosophila, loss-of-function conditions of either the Neuroglian CAM, the FGF receptor coded by the gene heartless, or the EGF receptor coded by DER display a similar phenotype of abnormal substrate selection and axon guidance by peripheral sensory neurons. Moreover, neuroglian loss-of-function phenotype can be suppressed by the expression of gain-of-function conditions of heartless or DER. The results are consistent with a scenario where the activity of these receptor tyrosine kinases is controlled by Neuroglian at choice points where sensory axons select between alternative substrates for extension.
Remote site-selective C-H activation directed by a catalytic bifunctional template
NASA Astrophysics Data System (ADS)
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-03-01
In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.
Remote site-selective C-H activation directed by a catalytic bifunctional template.
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-03-23
In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a 'directing' (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.
The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.
Ahlers, J
1975-01-01
1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector. PMID:995
Probing the Donor and Acceptor Substrate Specificity of the Gamma-Glutamyl Transpeptidase
2012-01-17
glutathione can function as a source of cysteine. Mutant strains of F. tularensis that lack functional GGT have been shown to have impaired intracellular...conservation of structure and function between human and bacterial GGT homologues, significant differences in acceptor substrate and inhibitor preferences are...with the lowest value of MODELER objective function . The three-dimensional (3D) fold of the generated models was verified with PROSA II,40 and
Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion.
Hui, C-Y; Glassmaker, N. J.; Tang, T.; Jagota, A.
2004-01-01
This study addresses the strength and toughness of generic fibrillar structures. We show that the stress sigmac required to pull a fibril out of adhesive contact with a substrate has the form sigma(c) = sigma(0)Phi(chi). In this equation, sigma(0) is the interfacial strength, Phi(chi) is a dimensionless function satisfying 0
Traction force microscopy of engineered cardiac tissues.
Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit
2018-01-01
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
2006-11-01
gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with...resistance and low friction. Ti1-xCx (0≤ x ≤1) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were...indenter tip was used for the FEA model. Each coating sample consists of 1 μm thick coating and 440C stainless steel substrate. The area function for
Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc
2007-04-01
Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.
NASA Astrophysics Data System (ADS)
Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.
2017-11-01
This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.
Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo
2013-06-01
Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.
NASA Astrophysics Data System (ADS)
Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter
2015-03-01
Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).
Helbling, Damian E; Hammes, Frederik; Egli, Thomas; Kohler, Hans-Peter E
2014-02-01
The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter(-1). We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations.
Leong, Meng Fatt; Lu, Hong Fang; Lim, Tze Chiun; Du, Chan; Ma, Nina K L; Wan, Andrew C A
2016-12-01
The use of human induced pluripotent stem cells (hiPSCs) for clinical tissue engineering applications requires expansion and differentiation of the cells using defined, xeno-free substrates. The screening and selection of suitable synthetic substrates however, is tedious, as their performance relies on the inherent material properties. In the present work, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffolds were found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates which were shown to be pluripotent colonies. Immunostaining, PCR analyses, in vitro differentiation and in vivo teratoma formation studies demonstrated that these hiPSC aggregates could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency. Flow cytometry showed that more than 80% of the cell population stained positive for the pluripotent marker OCT4 at P1, P5 and P10. P10 cells could be differentiated to neuronal-like cells and cultured within the ESPS for up to 18months. Our results suggest the usefulness of a generic class of synthetic substrates, exemplified by ESPS, for 'trapped aggregate culture' of hiPSCs. To realize the potential of human induced pluripotent stem cells (hiPSCs) in clinical medicine, robust, xeno-free substrates for expansion and differentiation of iPSCs are required. In the existing literature, synthetic materials have been reported that meet the requirement for non-xenogeneic substrates. However, the self-renewal and differentiation characteristics of hiPSCs are affected differently by the biocompatibility and physico-chemical properties of individual substrates. Although some rules based on chemical structure and substrate rigidity have been developed, most of these efforts are still empirical, and most synthetic substrates must still be rigorously screened for suitability. In this paper, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffold was found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates. In the form of these trapped aggregates, we showed that hiPSCs could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency, following which they could be differentiated to a chosen lineage. We believe that this novel, generic class of synthetic substrates that employs 'trapped aggregate culture' for expansion and differentiation of hiPSCs is an important conceptual advance, and would be of high interest to the readership of Acta Biomaterialia. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Blanden, Melanie J; Suazo, Kiall F; Hildebrandt, Emily R; Hardgrove, Daniel S; Patel, Meet; Saunders, William P; Distefano, Mark D; Schmidt, Walter K; Hougland, James L
2018-02-23
Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid C AAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical C AAX sequence, specifically C( x ) 3 X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C( x ) 3 X sequences. As the search to identify physiologically relevant C( x ) 3 X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gouder, T.; Colmenares, C.
This report summarizes the experimental work carried out at the Lawrence Livermore National Laboratory on the electronic structure and reactivity of uranium thin films on Pd, Pt, Si, graphite, Cu, and Au substrates from 1990 to 1993. The U-Pd system was studied in the most detail because it was the first to be chosen right after the completion of the experimental equipment. We first studied and characterized clean U overlayers and the possible surface reactions between this metal and the substrates studied. We then subjected these systems to reactive conditions such as heating and adsorbing corrosive gases (O{sub 2}, CO,more » CO{sub 2}, and C{sub 2}H{sub 4}). Finally we investigated the diffusion of U metal and some of its compounds into the substrates. A new technique was developed, based on Auger Electron Spectroscopy, to follow in real time the diffusion of U overlayers into the substrate. The temperature of the sample is ramped linearly up to 900{degrees}C while following the Auger peak intensities of the two components for a given system. Diffusion rates are obtained by differentiating the measured intensity curves, then peaks result corresponding to diffusion processes with different activation energies. This technique bears a strong similarity to thermal desorption spectroscopy (TDS), where the sample is heated linearly and the rate of desorption is measured as a function of temperature and heating rate.« less
Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases.
MacDonald, Chris; Winistorfer, Stanley; Pope, Robert M; Wright, Michael E; Piper, Robert C
2017-07-01
The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dubaquié, Y; Looser, R; Fünfschilling, U; Jenö, P; Rospert, S
1998-01-01
The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo. PMID:9774331
Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.
2017-01-01
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308
Defining the human deubiquitinating enzyme interaction landscape.
Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade
2009-07-23
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Silicon carbide ceramic membranes
NASA Astrophysics Data System (ADS)
Suwanmethanond, Varaporn
This dissertation focuses on the preparation of silicon carbide (SiC) ceramic membranes on SiC substrates. An original technique of SiC porous substrate preparation using sintering methods was developed during the work for the completion of the dissertation. The resulting SiC substrates have demonstrated high porosity, high internal surface area, well interconnected surface pore network and, at the same time, good thermal, chemical and mechanical stability. In a further development, sol-gel techniques were used to deposit micro-porous SiC membranes on these SiC porous substrates. The SiC membranes were characterized by a variety of techniques: ideal gas selectivity (He and N2), XRD, BET, SEM, XPS, and AFM. The characterization results confirmed that the asymmetric sol-gel SiC membranes were of high quality, with no cracks or pinholes, and exhibiting high resistance to corrosion and high hydro-thermal stability. In conclusion, the SiC ceramic membrane work was successfully completed. Two publications in international peer reviewed journals resulted out of this work.
NASA Astrophysics Data System (ADS)
Pongpaiboonkul, Suriyong; Kasa, Yumairah; Phokharatkul, Ditsayut; Putasaeng, Bundit; Hodak, Jose H.; Wisitsoraat, Anurat; Hodak, Satreerat K.
2016-11-01
Researchers have paid considerable attention to CaCu3Ti4O12 (CCTO) due to the colossal dielectric constant over a wide range of frequency and temperature. Despite of the growing number of works dealing with CCTO, there have been few studies of the role played by the substrate in inducing structural and dielectric effects of this material. In this work, highly-oriented CCTO thin films have been deposited on LaAlO3(100), NdGaO3(100) and NdGaO3(110) substrates using a sol-gel method. These single crystal substrates were chosen in terms of small lattice mismatch between CCTO and the substrate. The X-ray diffraction patterns showed that the CCTO film layers grow with different orientations depending upon the substrate used. We show that the preferred orientation of CCTO thin films can be manipulated to a high degree by growing it on specific crystal planes of the substrates without the use of buffer layers. Colossal dielectric constants are observed in our films which appear to correlate with the film crystallinity and preferred orientation.
Correspondence of the brain's functional architecture during activation and rest
Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.
2009-01-01
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724
USDA-ARS?s Scientific Manuscript database
Plant plastids and mitochondria have dynamic proteomes. To maintain their protein homeostasis, a proteostasis network containing protein chaperones, peptidases and their substrate recognition factors exists, but many peptidases, their functional connections and substrates are poorly characterized. T...
Organophosphonate biofunctionalization of diamond electrodes.
Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K
2014-08-27
The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.
High-fraction brookite films from amorphous precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating themore » previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.« less
Stretching of Single Polymer Chains Using the Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.
1998-03-01
A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.
Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun
2016-05-25
An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.
What Neural Substrates Trigger the Adept Scientific Pattern Discovery by Biologists?
NASA Astrophysics Data System (ADS)
Lee, Jun-Ki; Kwon, Yong-Ju
2011-04-01
This study investigated the neural correlates of experts and novices during biological object pattern detection using an fMRI approach in order to reveal the neural correlates of a biologist's superior pattern discovery ability. Sixteen healthy male participants (8 biologists and 8 non-biologists) volunteered for the study. Participants were shown fifteen series of organism pictures and asked to detect patterns amid stimulus pictures. Primary findings showed significant activations in the right middle temporal gyrus and inferior parietal lobule amongst participants in the biologist (expert) group. Interestingly, the left superior temporal gyrus was activated in participants from the non-biologist (novice) group. These results suggested that superior pattern discovery ability could be related to a functional facilitation of the parieto-temporal network, which is particularly driven by the right middle temporal gyrus and inferior parietal lobule in addition to the recruitment of additional brain regions. Furthermore, the functional facilitation of the network might actually pertain to high coherent processing skills and visual working memory capacity. Hence, study results suggested that adept scientific thinking ability can be detected by neuronal substrates, which may be used as criteria for developing and evaluating a brain-based science curriculum and test instrument.
Yang, Rong; Lee, Matthew C; Yan, Honggao; Duan, Yong
2005-07-01
Comparison of the crystallographic and NMR structures of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) suggests that the enzyme may undergo significant conformational change upon binding to its first substrate, ATP. Two of the three surface loops (loop 2 and loop 3) accounting for most of the conformational differences appear to be confined by crystal contacts, raising questions about the putative large-scale induced-fit conformational change of HPPK and the functional roles of the conserved side-chain residues on the loops. To investigate the loop dynamics in crystal-free environment, we carried out molecular dynamics and locally enhanced sampling simulations of the apo-enzyme and the HPPK.MgATP complex. Our simulations showed that the crystallographic B-factors underestimated the loop dynamics considerably. We found that the open-conformation of loop 3 in the binary complex is accessible to the apo-enzyme and is the favored conformation in solution phase. These results revise our previous view of HPPK-substrate interactions and the associated functional mechanism of conformational change. The lessons learned here offer valuable structural insights into the workings of HPPK and should be useful for structure-based drug design.
Liddell, Belinda J; Jobson, Laura
2016-01-01
A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.
NASA Astrophysics Data System (ADS)
Wang, Qing; Tian, Yu; Chen, Guangju; Zhao, Jingxiang
2017-03-01
Enhancing the catalytic activity and decreasing the usage of Pt catalysts has been a major target in widening their applications for developing proton-exchange membrane fuel cells. In this work, the adsorption energetics, structural features, and electronic properties of several MPt12 (M = Fe, Co, Ni, Cu, and Pd) nanoparticles (NPs) deposited on N-doped defective graphene were systemically explored by means of comprehensive density functional theory (DFT) computations. The computations revealed that the defective N-doped graphene substrate can provide anchoring site for these Pt-based alloying NPs due to their strong hybridization with the sp2 dangling bonds at the defect sites of substrate. Especially, these deposited MPt12 NPs exhibit reduced magnetic moment and their average d-band centers are shifted away from the Fermi level, as compared with the freestanding NPs, leading to the reduction of the adsorption energies of the O species. Thus, the defective N-doped graphene substrate not only enhances the stability of the deposited MPt12 NPs, but also endows them higher catalytic performance for the oxygen reduction reaction.
Deranged Cardiac Metabolism and the Pathogenesis of Heart Failure
2016-01-01
Activation of the neuro-hormonal system is a pathophysiological consequence of heart failure. Neuro-hormonal activation promotes metabolic changes, such as insulin resistance, and determines an increased use of non-carbohydrate substrates for energy production. Fasting blood ketone bodies as well as fat oxidation are increased in patients with heart failure, yielding a state of metabolic inefficiency. The net result is additional depletion of myocardial adenosine triphosphate, phosphocreatine and creatine kinase levels with further decreased efficiency of mechanical work. In this context, manipulation of cardiac energy metabolism by modification of substrate use by the failing heart has produced positive clinical results. The results of current research support the concept that shifting the energy substrate preference away from fatty acid metabolism and towards glucose metabolism could be an effective adjunctive treatment in patients with heart failure. The additional use of drugs able to partially inhibit fatty acids oxidation in patients with heart failure may therefore yield a significant protective effect for clinical symptoms and cardiac function improvement, and simultaneously ameliorate left ventricular remodelling. Certainly, to clarify the exact therapeutic role of metabolic therapy in heart failure, a large multicentre, randomised controlled trial should be performed. PMID:28785448
Huang, Minxue; Yang, Tzuhsiung; Paretsky, Jonathan D; Berry, John F; Schomaker, Jennifer M
2017-12-06
Nitrene transfer (NT) reactions represent powerful and direct methods to convert C-H bonds into amine groups that are prevalent in many commodity chemicals and pharmaceuticals. The importance of the C-N bond has stimulated the development of numerous transition-metal complexes to effect chemo-, regio-, and diastereoselective NT. An ongoing challenge is to understand how subtle interactions between catalyst and substrate influence the site-selectivity of the C-H amination event. In this work, we explore the underlying reasons why Ag(tpa)OTf (tpa = tris(pyridylmethyl)amine) prefers to activate α-conjugated C-H bonds over 3° alkyl C(sp 3 )-H bonds and apply these insights to reaction optimization and catalyst design. Experimental results suggest possible roles of noncovalent interactions (NCIs) in directing the NT; computational studies support the involvement of π···π and Ag···π interactions between catalyst and substrate, primarily by lowering the energy of the directed transition state and reaction conformers. A simple Hess's law relationship can be employed to predict selectivities for new substrates containing competing NCIs. The insights presented herein are poised to inspire the design of other catalyst-controlled C-H functionalization reactions.
First principles-based moiré model for incommensurate graphene on BN
NASA Astrophysics Data System (ADS)
Spataru, Catalin; Thurmer, Konrad
Various properties of supported graphene films depend strongly on the exact positions of carbon atoms with respect to the underlying substrate. While density functional theory (DFT) can predict atom position in many systems, it cannot be applied straightforwardly to systems that are incommensurate or have large unit cells, such as graphene on a BN surface. We address these limitations by developing a simple moiré model with parameters derived from DFT calculations for systems strained into commensurate structures with manageable unit cell sizes. Our moiré model, which takes into account the flexural rigidity of graphene and includes the influence of the substrate, is able to reproduce the DFT-relaxed carbon positions with an accuracy of <0.01 Å. We then apply this model to the unstrained C/BN system and predict how structure and energy vary with azimuthal orientation of the graphene sheet with respect to the BN substrate. Work supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under Contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarikaya, A.; Ladisch, M.R.
1997-01-01
Inedible plant material, generated in a Controlled Ecological Life Support System (CELSS), should be recycled preferably by bioregenerative methods that utilize enzymes or micro-organisms. This material consists of hemicellulose, cellulose, and lignin with the lignin fraction representing a recalcitrant component that is not readily treated by enzymatic methods. Consequently, the white-rot fungus, Pleurotus ostreatus, is attractive since it effectively degrades lignin and produces edible mushrooms. This work describes an unstructured model for the growth of P. ostreatus in a solid-state fermentation system using lignocellulosic plant materials from Brassica napus (rapeseed) as a substrate at three different particle sizes. A logisticmore » function model based on area was found to fit the surface growth of the mycelium on the solid substrate with respect to time, whereas a model based on diameter, alone, did not fit the data as well. The difference between the two measures of growth was also evident for mycelial growth in a bioreactor designed to facilitate a slow flowrate of air through the 1.5 cm thick mat of lignocellulosic biomass particles. The result is consistent with the concept of competition of the mycelium for the substrate that surrounds it, rather than just substrate that is immediately available to single cells. This approach provides a quantitative measure of P. ostreatus growth on lignocellulosic biomass in a solid-state fermentation system. The experimental data show that the best growth is obtained for the largest particles (1 cm) of the lignocellulosic substrate. 13 refs., 6 figs., 2 tabs.« less
Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1*
Hu, Hao; Luo, Cheng; Zheng, Y. George
2016-01-01
Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups. PMID:27834681
Self-organization of gold nanoparticles on silanated surfaces.
Kyaw, Htet H; Al-Harthi, Salim H; Sellai, Azzouz; Dutta, Joydeep
2015-01-01
The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications.
Rational approaches for engineering novel functionalities in carbon-carbon bond forming enzymes
Baker, Perrin; Seah, Stephen Y. K.
2012-01-01
Enzymes that catalyze carbon-carbon bond formation can be exploited as biocatalyst for synthetic organic chemistry. However, natural enzymes frequently do not possess the required properties or specificities to catalyze industrially useful transformations. This mini-review describes recent work using knowledge-guided site-specific mutagenesis of key active site residues to alter substrate specificity, stereospecificity and reaction specificity of these enzymes. In addition, examples of de novo designed enzymes that catalyze C-C bond reactions not found in nature will be discussed. PMID:24688644
Permanent and Transient Radiation Effects on Thin-Oxide (200-A) MOS Transistors
1976-06-01
n-channel technology using a SiO, gate-oxide thickness ol ’ 200 A and a %hallow phiosphorus diffusion of 0.5 pin on a 0.7-ohm)-cmn 8-doped > Si...substrate. The thickness of the sell-aligned it polysilicon gate was kept at 3500 A. The oxide was grown in dry 0, at a temperature ot 1000C, followed...semiconductor work function difference (equal to 0 V for the polysilicon gates’ studied here). The effect of the ionizing radiation is to introduce
Poudel, Suresh; Giannone, Richard J.; Basen, Mirko; ...
2018-03-23
Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Suresh; Giannone, Richard J.; Basen, Mirko
Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less
Poudel, Suresh; Giannone, Richard J; Basen, Mirko; Nookaew, Intawat; Poole, Farris L; Kelly, Robert M; Adams, Michael W W; Hettich, Robert L
2018-01-01
Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii 's utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.
Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology
NASA Technical Reports Server (NTRS)
Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah
2013-01-01
Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of different conductors may improve electrical pathways through alignment of the conductors and band gap optimization. One feature of this innovation is that flexible conductive traces could be accomplished with a conductive ink having a surface resistivity of less than 10 ohms/square. Another result was that a composite material comprising a mixture of carbon nanotubes and metallic nanoparticles could be applied by inkjet printing to flexible substrates, and the resulting applied material was one to two orders of magnitude more conductive than a material made by printing inks containing carbon nanotubes alone.
NASA Astrophysics Data System (ADS)
Bubnis, Gregory J.
Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.
Dirks-Hofmeister, Mareike E.; Singh, Ratna; Leufken, Christine M.; Inlow, Jennifer K.; Moerschbacher, Bruno M.
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure–function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a “selector” for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates. PMID:24918587
Dirks-Hofmeister, Mareike E; Singh, Ratna; Leufken, Christine M; Inlow, Jennifer K; Moerschbacher, Bruno M
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.
Influence of pine bark particle size and pH on cation exchange capacity
USDA-ARS?s Scientific Manuscript database
Cation exchange capacity (CEC) describes the maximum quantity of cations a soil or substrate can hold while being exchangeable with the soil solution. While CEC has been studied for peat-based substrates, relatively little work has documented factors that affect CEC of pine bark substrates. The ob...
Seasonal variation in functional properties of microbial communities in beech forest soil
Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas
2013-01-01
Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different 13C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological adaptations of microbial communities to altered resource supply. PMID:23645937
NASA Astrophysics Data System (ADS)
Fraga, M. A.; Contin, A.; Rodríguez, L. A. A.; Vieira, J.; Campos, R. A.; Corat, E. J.; Trava Airoldi, V. J.
2016-02-01
Many developments have been made to improve the quality and adherence of CVD diamond films onto WC-Co hard metal tools by the removing the cobalt from the substrate surface through substrate pretreatments. Here we compare the efficiency of three chemical pretreatments of WC-Co substrates for this purpose. First, the work was focused on a detailed study of the composition and structure of as-polished and pretreated substrate surfaces to characterize the effects of the substrate preparation. Considering this objective, a set of WC-9% Co substrates, before and after pretreatment, was analyzed by FEG-SEM, EDS and x-ray diffraction (XRD). The second stage of the work was devoted to the evaluation of the influence of seeding process, using 4 nm diamond nanoparticles, on the morphology and roughness of the pretreated substrates. The last and most important stage was to deposit diamond coatings with different crystallite sizes (nano and micro) by hot-filament CVD to understand fully the mechanism of growth and adhesion of CVD diamond films on pretreated WC-Co substrates. The transition from nano to microcrystalline diamond was achieved by controlling the CH4/H2 gas ratio. The nano and microcrystalline samples were grown under same time at different substrate temperatures 600 °C and 800 °C, respectively. The different substrate temperatures allowed the analysis of the cobalt diffusion from the bulk to the substrate surface during CVD film growth. Furthermore, it was possible to evaluate how the coating adhesion is affected by the diffusion. The diamond coatings were characterized by Raman spectroscopy, XRD, EDS, FEG-SEM, atomic force microscope and 1500 N Rockwell indentation to evaluate the adhesion.
Li, Huei-Jiun; Li, Xiaokai; Liu, Nina; Zhang, Huaning; Truglio, James J.; Mishra, Shambhavi; Kisker, Caroline; Garcia-Diaz, Miguel; Tonge, Peter J.
2014-01-01
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase, is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity. PMID:21830810
Li, Huei-Jiun; Li, Xiaokai; Liu, Nina; Zhang, Huaning; Truglio, James J; Mishra, Shambhavi; Kisker, Caroline; Garcia-Diaz, Miguel; Tonge, Peter J
2011-11-08
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.
Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U
2010-06-21
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Substrate-Directed Catalytic Selective Chemical Reactions.
Sawano, Takahiro; Yamamoto, Hisashi
2018-05-04
The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, S.G.; Converse, A.O.
1997-12-20
In an effort to better understand the role of the substrate in the rapid fall off in the rate of enzymatic hydrolysis of cellulose with conversion, substrate reactivity was measured as a function of conversion. These measurements were made by interrupting the hydrolysis of pretreated wood at various degrees of conversion; and, after boiling and washing, restarting the hydrolysis in fresh butter with fresh enzyme. The comparison of the restart rate per enzyme adsorbed with the initial rate per enzyme adsorbed, both extrapolated back to zero conversion, provides a measurement of the substrate reactivity without the complications of product inhibitionmore » or cellulase inactivation. The results indicate that the substrate reactivity falls only modestly as conversion increases. However, the restart rate is still higher than the rate of the uninterrupted hydrolysis, particularly at high conversion. Hence the authors conclude that the loss of substrate reactivity is not the principal cause for the long residence time required for complete conversion.« less
Functional expression of SGLTs in rat brain.
Yu, Amy S; Hirayama, Bruce A; Timbol, Gerald; Liu, Jie; Basarah, Ernest; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M; Barrio, Jorge R
2010-12-01
This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-D-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.
XRN 5’→3’ exoribonucleases: Structure, mechanisms and functions
Nagarajan, Vinay K.; Jones, Christopher I.; Newbury, Sarah F.; Green, Pamela J.
2013-01-01
The XRN family of 5’→3’ exoribonucleases is critical for ensuring the fidelity of cellular RNA turnover in eukaryotes. Highly conserved across species, the family is typically represented by one cytoplasmic enzyme (XRN1/PACMAN or XRN4) and one or more nuclear enzymes (XRN2/RAT1 and XRN3). Cytoplasmic and/or nuclear XRNs have proven to be essential in all organisms tested, and deficiencies can have severe developmental phenotypes, demonstrating that XRNs are indispensable in fungi, plants and animals. XRNs degrade diverse RNA substrates during general RNA decay and function in specialized processes integral to RNA metabolism, such as nonsense-mediated decay (NMD), gene silencing, rRNA maturation, and transcription termination. Here, we review current knowledge of XRNs, highlighting recent work of high impact and future potential. One example is the breakthrough in our understanding of how XRN1 processively degrades 5’ monophosphorylated RNA, revealed by its crystal structure and mutational analysis. The expanding knowledge of XRN substrates and interacting partners is outlined and the functions of XRNs are interpreted at the organismal level using available mutant phenotypes. Finally, three case studies are discussed in more detail to underscore a few of the most exciting areas of research on XRN function: XRN4 involvement in small RNA-associated processes in plants, the roles of XRN1/PACMAN in Drosophila development, and the function of human XRN2 in nuclear transcriptional quality control. This article is part of a Special Issue entitled: RNA Decay Mechanisms. PMID:23517755
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, Whitney
OLED lighting has immense potential as aesthetically pleasing, energy-efficient general illumination. Unlike other light sources, such as incandescents, fluorescents, and inorganic LEDs, OLEDs naturally emit over a large-area surface. They are glare free, do not need to be shaded, and are cool to the touch, requiring no heatsink. The best efficiencies and lifetimes reported are on par with or better than current forms of illumination. However, the cost for OLED lighting remains high – so much so that these products are not market competitive and there is very low consumer demand. We believe that flexible, plastic-based devices will highlight themore » advantages of aesthetically-pleasing OLED lighting systems while paving the way for lowering both materials and manufacturing costs. These flexible devices require new development in substrate and support technology, which was the focus of the work reported here. The project team, led by Sinovia Technologies, has developed integrated plastic substrates to serve as supports for flexible OLED lighting. The substrates created in this project would enable large-area, flexible devices and are specified to perform three functions. They include a barrier to protect the OLED from moisture and oxygen-related degradation, a smooth, highly conductive transparent electrode to enable large-area device operation, and a light scattering layer to improve emission efficiency. Through the course of this project, integrated substrates were fabricated, characterized, evaluated for manufacturing feasibility and cost, and used in white OLED demonstrations to test their impact on flexible OLED lighting. Our integrated substrates meet or exceed the DOE specifications for barrier performance in water vapor and oxygen transport rates, as well as the transparency and conductivity of the anode film. We find that these integrated substrates can be manufactured in a completely roll-to-roll, high throughput process and have developed and demonstrated manufacturing methods that can produce thousands of feet of material without defects. We have evaluated the materials and manufacturing costs of these films at scale and find that they meet the current and future cost targets for bringing down the cost of OLED lighting while enabling future roll-to-roll manufacturing of the complete device. And finally, we have demonstrated that the inherent light-scattering properties of our films enhance white OLED emission efficiency from 20% to 50% depending on the metric. This work has shown that these substrates can be created, manufactured, and will perform as needed to enable flexible OLED lighting to enter the marketplace.« less
Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc
2012-01-01
Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155
Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan
2015-12-11
Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Feng; Adam, Pierre-Michel; Rogers, David J.; Sandana, Vinod E.; Bove, Philippe; Teherani, Ferechteh H.
2018-03-01
Surface-Enhanced Raman spectroscopy (SERS) is a widely used technique adopted in both academia and industry for the detection of trace quantities of Raman active molecules. This is usually accomplished by functionalizing distributions of plasmonic metal nanoparticles with the analyte molecules. Recently metal-coated nanostructures have been investigated as alternatives to dispersions of metal nanoparticles in order to avoid clustering and homogeneity/reproducibility issues. In this paper, several samples of Au-coated ZnO nanoarrays are adopted as SERS substrates in order to investigate the molecular sensing capacity for methylene blue (MB) molecules. Self-forming ZnO nanoarrays were grown on both c-sapphire and silicon substrates by pulsed laser deposition. The nanoarrays were then coated with 30 nm of gold using thermal evaporation and the SERS signals of MB functionalized samples were obtained with a Raman microspectrometer. The ratio of SERS intensity to that of an MB functionalized glass substrate (ISERS/IRaman) was calculated based on the averaged SERS signals. A relatively good within-wafer homogeneity of the enhancement effect was found with ISERS/IRaman values as high as 64.2 for Au-coated nano ZnO grown on silicon substrates. The experimental results show that the Au-coated ZnO nanoarrays can be excellent SERS substrates for molecular/chemical analyte sensing.
Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1
Gui, Chunshan; Hagenbuch, Bruno
2009-01-01
The liver-specific organic anion transporting polypeptides OATP1B1 and OATP1B3 are highly homologous and share numerous substrates. However, at low concentrations OATP1B1 shows substrate selectivity for estrone-3-sulfate. In this study, we investigated the molecular mechanism for this substrate selectivity of OATP1B1 by constructing OATP1B1/1B3 chimeric transporters and by site-directed mutagenesis. Functional studies of chimeras showed that transmembrane domain 10 is critical for the function of OATP1B1. We further identified four amino acid residues, namely L545, F546, L550, and S554 in TM10, whose simultaneous mutation caused almost complete loss of OATP1B1-mediated estrone-3-sulfate transport. Comparison of the kinetics of estrone-3-sulfate transport confirmed a biphasic pattern for OATP1B1, but showed a monophasic pattern for the quadruple mutant L545S/F546L/L550T/S554T. This mutant also showed reduced transport for other OATP1B1 substrates such as bromosulfophthalein and [d-penicillamine2,5]enkephalin. Helical wheel analysis and molecular modeling suggest that L545 is facing the substrate translocation pathway, whereas F546, L550, and S554 are located inside the protein. These results indicate that L545 might contribute to OATP1B1 function by interacting with substrates, whereas F546, L550, and S554 seem important for protein structure. In conclusion, our results show that TM10 is critical for the function of OATP1B1. PMID:19760661
Leo, Berit; Schweimer, Kristian; Rösch, Paul; Hartl, Maximilian J; Wöhrl, Birgitta M
2012-09-10
The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
Engelkes, Vincent B; Beebe, Jeremy M; Frisbie, C Daniel
2004-11-03
Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).
Hu, Xuefeng; Neoh, Koon-Gee; Shi, Zhilong; Kang, En-Tang; Poh, Chyekhoon; Wang, Wilson
2010-12-01
The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nguyen, Vi N; Park, Annsea; Xu, Anting; Srouji, John R; Brenner, Steven E; Kirsch, Jack F
2016-12-01
The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74-compound library of known Nudix enzyme substrates. We found substrates for four enzymes with k cat /K m values >10,000 M -1 s -1 : Q92EH0_LISIN of Listeria innocua serovar 6a against ADP-ribose, Q5LBB1_BACFN of Bacillus fragilis against 5-Me-CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8-oxo-dATP and 3'-dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty-two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported k cat /K m values exhibited against these canonical substrates are well under 10 5 M -1 s -1 . By contrast, several Nudix enzymes show much larger k cat /K m values (in the range of 10 5 to >10 7 M -1 s -1 ) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810-1822. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Functionalized expanded porphyrins
Sessler, Jonathan L; Pantos, Patricia J
2013-11-12
Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.
NASA Astrophysics Data System (ADS)
Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles
2007-03-01
Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.
Development of the Enzyme-Substrate Interactions Concept Inventory
ERIC Educational Resources Information Center
Bretz, Stacey Lowery; Linenberger, Kimberly J.
2012-01-01
Enzyme function is central to student understanding of multiple topics within the biochemistry curriculum. In particular, students must understand how enzymes and substrates interact with one another. This manuscript describes the development of a 15-item Enzyme-Substrate Interactions Concept Inventory (ESICI) that measures student understanding…
DNA's Encounter with Ultraviolet Light: An Instinct for Self-Preservation?
Barlev, Adam; Sen, Dipankar
2018-02-20
Photochemical modification is the major class of environmental damage suffered by DNA, the genetic material of all free-living organisms. Photolyases are enzymes that carry out direct photochemical repair (photoreactivation) of covalent pyrimidine dimers formed in DNA from exposure to ultraviolet light. The discovery of catalytic RNAs in the 1980s led to the "RNA world hypothesis", which posits that early in evolution RNA or a similar polymer served both genetic and catalytic functions. Intrigued by the RNA world hypothesis, we set out to test whether a catalytic RNA (or a surrogate, a catalytic DNA) with photolyase activity could be contemplated. In vitro selection from a random-sequence DNA pool yielded two DNA enzymes (DNAzymes): Sero1C, which requires serotonin as an obligate cofactor, and UV1C, which is cofactor-independent and optimally uses light of 300-310 nm wavelength to repair cyclobutane thymine dimers within a gapped DNA substrate. Both Sero1C and UV1C show multiple turnover kinetics, and UV1C repairs its substrate with a quantum yield of ∼0.05, on the same order as the quantum yields of certain classes of photolyase enzymes. Intensive study of UV1C has revealed that its catalytic core consists of a guanine quadruplex (G-quadruplex) positioned proximally to the bound substrate's thymine dimer. We hypothesize that electron transfer from photoexcited guanines within UV1C's G-quadruplex is responsible for substrate photoreactivation, analogous to electron transfer to pyrimidine dimers within a DNA substrate from photoexcited flavin cofactors located within natural photolyase enzymes. Though the analogy to evolution is necessarily limited, a comparison of the properties of UV1C and Sero1C, which arose out of the same in vitro selection experiment, reveals that although the two DNAzymes comparably accelerate the rate of thymine dimer repair, Sero1C has a substantially broader substrate repertoire, as it can repair many more kinds of pyrimidine dimers than UV1C. Therefore, the co-opting of an amino acid-like cofactor by a nucleic acid enzyme in this case contributes functional versatility rather than a greater rate enhancement. In recent work on UV1C, we have succeeded in shifting its action spectrum from the UVB into the blue region of the spectrum and determined that although it catalyzes both repair and de novo formation of thymine dimers, UV1C is primarily a catalyst for thymine dimer repair. Our work on photolyase DNAzymes has stimulated broader questions about whether analogous, purely nucleotide-based photoreactivation also occurs in double-helical DNA, the dominant form of DNA in living cells. Recently, a number of different groups have reported that this kind of repair is indeed operational in DNA duplexes, i.e., that there exist nucleotide sequences that actively protect, by way of photoreactivation (rather than by simply preventing their formation), pyrimidine dimers located proximal to them. Nucleotide-based photoreactivation thus appears to be a salient, if unanticipated, property of DNA and RNA. The phenomenon also offers pointers in the direction of how in primordial evolution-in an RNA world-early nucleic acids may have protected themselves from structural and functional damage wrought by ultraviolet light.
Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.
Uto, K; Aoyagi, T; DeForest, C A; Ebara, M
2018-05-01
Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.
Impedance Biosensors and Deep Crater Salivary Gland Scaffolds for Tissue Engineering
NASA Astrophysics Data System (ADS)
Schramm, Robert A.
The salivary gland is a complex, branching organ whose primary biological function is the production of the fluid critical to alimentary function and the lubrication and maintenance of the oral cavity, saliva. The most frequent disruption of the salivary organ system is one in which the rate of supply of saliva into the oral cavity is diminished, and this may vary from a minor reduction, to near cessation. Regenerative medicine is a field which seeks to find ways to overcome the symptoms of organ malfunction or damage by inducing regrowth, repair and replacement of partial or whole organ function. Historically, the only methods available to medical experts were certain chemical drugs and transplantation, each of which suffers from significant risks and drawbacks. Tissue Engineering arose in the past few decades thanks to the seminal work of Robert Langer with the charter mission of finding new biomaterials and techniques to achieve these ends. The original concept of tissue engineering was the cell or tissue scaffold, which is supports the regrowth of cells by making intimate contact with adherent cells, and induces improved regrowth in vitro or in vivo by providing mechanical or chemical signaling cues. Epithelial cell types such as salivary glands have structural functional polarity at the cellular level, an apical side which faces a void, and a basal side which faces the support substrate. While 3D scaffolds such as hydrogels maximize interaction area between cells and substrate, they struggle to develop cohesive tissues beyond the scale of small cellular clusters . 2D scaffolds enforce a defined polarity by allowing cell interaction at only one side of the cell. Langer pioneered the use of polymer nanofibers as the premier synthetic 2D scaffold biomaterial, due to their exceptionally high nano-scale surface area, and collagen-imitating structure. Prior work has established PLGA nanofibers, which allow salivary cells to attach, proliferate, and generate a thicker cobblestone-style cellular monolayer. In addition, providing shallow depressions in the nanofiber scaffold allows the salivary gland cells to experience a biomimetic substrate curvature, which further increases cell height, but not to the level of matching the height along the apico-basal vector of in vivo or 3D gels . This work endeavors to increase the depth of the depressions, in order to allow for an increase in substrate curvature and a maximization of cell height. It was also undertaken to develop an alternative method to grading the effectiveness of our scaffolds compared with one another. Analyzing protein structural localization with immunofluorescence and protein bulk concentration with western blot have some limitations. An electrochemical detection technique was developed to nondestructively assess the performance of scaffolds, specifically in inducing stronger resistance to fluid diffusion across the cell monolayer on a 2D pseudo-planar scaffold. This impedance spectroscopy technique, called trans-epithelial electrical resistance spectroscopy, requires the cells be suspended in media, with opposing electrodes above and below, generating an alternating current which drives free ions in the cell media across the scaffold membrane and cell layer, measuring the resistance that the membrane generates. Ions traverse the cell junctions preferentially, thus reporting on the junction barrier effectiveness. This method can be used to run large parallel experiments with multiple scaffold conditions, permitted that the scaffolds can be mounted within the apparatus. This research was able to eliminate once necessitated glass and polymer scaffold under layers, increasing scaffold perfusivity and allowing for a TEER analysis. Results show that salivary gland cells behave similarly on these thinned PLGA nanofiber scaffolds as on the control membrane.
Direct metal transfer printing on flexible substrate for fabricating optics functional devices
NASA Astrophysics Data System (ADS)
Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi
2015-11-01
New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.
Understanding the Role of O-GlcNAc Modifications in Plant Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Neil, E.
2011-06-16
This project has contributed towards understanding the role of O-GlcNAc (O-linked N-acetylglucosamine) transferases (OGTs) in plants. Through analyses of single and double mutants, we have investigated the unique and overlapping functions of SECRET AGENT (SEC) and SPINDLY (SPY), the arabidopsis OGTs. This work showed that SEC functions as negative regulators of the long-day flowering pathway. SEC also has a positive role in regulation of rosette. An E. coli co-expression system that allows potential substrates to be co-expressed with and O-GlcNAc modified by SEC was developed. We showed that SEC is a bona fide OGT that modifies itself with single O-linkedmore » GlcNAc(s). Using this system, we tested a number of proteins that were hypothesized to be substrates of SEC and identified a number of substrates include GIGANTEA (GI), a component of the long day flowering pathway. The hypothesis that O-GlcNAc modification controls GI activity was tested by first mapping where E. coli-expressed SEC modifies GI and then assessing the activity of a non-modifiable mutant form of GI. The activity of the mutant form of GI was indistinguishable from that of wild type suggesting that either O-GlcNAc does not regulate GI activity or that additional modification sites exist on GI. In collaboration with Dr. Juan Antonio Garcia at Universidad Autónoma de Madrid the role of O-GlcNAc modification of the plum pox virus coat protein (PPV-CP) was investigated. SEC was shown to O-GlcNAc modify PPV-CP and the modification was shown to facilitate the infection process. E. coli-expressed SEC was shown to modify the same PPV-CP sites that are modified in plants. SEC has a large protein interaction domain called the TPR domain that has been hypothesized to have a role in determining the substrate specificity of the enzyme and/or to regulate its activity. A mutational analysis of the TPR domain did not find evidence for a role in substrate specificity but did obtain evidence that the domain regulates enzyme activity.« less
Rethinking chemisorption: New insights into the factors controlling the binding energy
NASA Astrophysics Data System (ADS)
Alcantara Ortigoza, Marisol; Stolbov, Sergey
2015-03-01
Chemisorption of atomic and molecular species on a substrate induces electronic charge redistribution upon which substrate nuclei respond by adjusting their positions. This lattice distortion has been linked to the binding energy EB of the adsorbed species and attached to the so-called surface relaxation energy, Erx. We have found, however, that for transition metals the energy associated with the mere charge redistribution Eelec is much larger than Erx and thus both contributions must be considered [1]. In this work, we quantify the electronic and structural perturbation energy EP brought by various adsorbates on surfaces to understand anomalous adsorbate binding energies, i.e., those in which EP strongly influences the magnitude of EB. For example, for O adsorption on Au(111), while Erx is only 0.25 eV, the overall perturbation energy EP affecting EB(O) is ~ 1 eV [1]. This indicates that EP cannot be ignored but also that local bonds may not be as weak as portrayed by EB, even though EB is significantly reduced. We expose cases in which EP is really dominated by the lattice distortion energy, as well as a rationale for its trends as a function of the substrate and adsorbate. We discuss the implications of the fact that EB is not always predominately controlled by the bond-strength on heterogeneous catalysis, as well as the applications of the same fact. M. Alcántara Ortigoza and S. Stolbov; ``The Perturbation Energy: The missing key to understand gold `nobleness.' '' Submitted in October 2014 This work was supported the NSF under Grant CBET-1249134.
Excitations in confined helium
NASA Astrophysics Data System (ADS)
Apaja, V.; Krotscheck, E.
2003-05-01
We design models for helium in matrices such as aerogel, Vycor, or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle-averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulklike excitations, and, in the case of thick films, ripplon excitations. Involving essentially two-dimensional motion of atoms, the layer modes are sensitive to the scattering angle.
MRI correlates of general intelligence in neurotypical adults.
Malpas, Charles B; Genc, Sila; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia M; O'Brien, Terence J
2016-02-01
There is growing interest in the neurobiological substrate of general intelligence. Psychometric estimates of general intelligence are reduced in a range of neurological disorders, leading to practical application as sensitive, but non-specific, markers of cerebral disorder. This study examined estimates of general intelligence in neurotypical adults using diffusion tensor imaging and resting-state functional connectivity analysis. General intelligence was related to white matter organisation across multiple brain regions, confirming previous work in older healthy adults. We also found that variation in general intelligence was related to a large functional sub-network involving all cortical lobes of the brain. These findings confirm that individual variance in general intelligence is related to diffusely represented brain networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gu, Shuang; Shevchik, Vladimir E; Shaw, Rosie; Pickersgill, Richard W; Garnett, James A
2017-10-01
Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.
Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze
2017-04-05
In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.
Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Jinwoong; Hwang, Hwihyeon; Kim, Min-Jeong
The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. In this paper, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but alsomore » from the behavior observed on typical metals. Finally, the combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.« less
Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate
Hwang, Jinwoong; Hwang, Hwihyeon; Kim, Min-Jeong; ...
2017-08-02
The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. In this paper, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but alsomore » from the behavior observed on typical metals. Finally, the combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.« less
NASA Astrophysics Data System (ADS)
To, Anthony; Downs, Corey; Fu, Elain
2017-05-01
Wax printing has become a common method of fabricating channels in cellulose-based microfluidic devices. However, a limitation of wax printing is that it is restricted to relatively thin, smooth substrates that are compatible with processing by a commercial wax printer. In the current report, we describe a simple patterning method that extends the utility of wax printers for creating hydrophobic barriers on non-standard porous substrates via a process called wax transfer printing. We demonstrate the use of multiple wax transfer cycles to create well-defined, robust, and reproducible barriers in a thick cellulose substrate that is not compatible with feeding through a wax printer. We characterize the method for (i) wax spreading within the substrate as a function of heating time, (ii) the ability to create functional barriers in a substrate, and (iii) reproducibility in line width.
Ohno, Yusuke; Kashio, Atsushi; Ogata, Ren; Ishitomi, Akihiro; Yamazaki, Yuki; Kihara, Akio
2012-01-01
Palmitoylation plays important roles in the regulation of protein localization, stability, and activity. The protein acyltransferases (PATs) have a common DHHC Cys-rich domain. Twenty-three DHHC proteins have been identified in humans. However, it is unclear whether all of these DHHC proteins function as PATs. In addition, their substrate specificities remain largely unknown. Here we develop a useful method to examine substrate specificities of PATs using a yeast expression system with six distinct model substrates. We identify 17 human DHHC proteins as PATs. Moreover, we classify 11 human and 5 yeast DHHC proteins into three classes (I, II, and III), based on the cellular localization of their respective substrates (class I, soluble proteins; class II, integral membrane proteins; class III, lipidated proteins). Our results may provide an important clue for understanding the function of individual DHHC proteins. PMID:23034182
The effects of nanophase ceramic materials on select functions of human mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Dulgar-Tulloch, Aaron Joseph
2005-11-01
Modification of the chemistry and surface topography of nanophase ceramics can provide biomaterial formulations capable of directing the functions of adherent cells. This effect relies on the type, amount, and conformation of adsorbed proteins that mediate the adhesion of mesenchymally-descended lineages. The mechanisms driving this response are not yet well-understood and have not been investigated for human mesenchymal stem cells (HMSCs), a progenitor-lineage critical to orthopaedic biomaterials. The present study addressed these needs by examining the in vitro adhesion, proliferation, and osteogenic differentiation of HMSCs as a function of substrate chemistry and grain size, with particular attention to the protein-mediated mechanisms of cell adhesion. Alumina, titania, and hydroxyapatite substrates were prepared with 1500, 200, 50, and 24 (alumina only) nm grain sizes, and characterized with respect to surface properties, porosity, composition, and phase. Adhesion of HMSCs was dependent upon both chemistry and grain size. Specifically, adhesion on alumina and hydroxyapatite was reduced on 50 and 24 (alumina only) nm surfaces, as compared to 1500 and 200 nm surfaces, while adhesion on titania substrates was independent of grain size. Investigation into the protein-mediated mechanisms of this response identified vitronectin as the dominant adhesive protein, demonstrated random protein distribution across the substrate surface without aggregation or segregation, and confirmed the importance of the type, amount, and conformation of adsorbed proteins in cell adhesion. Minimal cell proliferation was observed on 50 and 24 (alumina only) nm substrates of any chemistry. Furthermore, cell proliferation was up-regulated on 200 nm substrates after 7 days of culture. Osteogenic differentiation was not detected on 50 nm substrates throughout the 28 day culture period. In contrast, osteogenic differentiation was strongly enhanced on 200 nm substrates, occurring approximately 7 days earlier and in greater magnitude than that observed on 1500 nm substrates. In summary, the current study elucidated the chemical and topographical cues necessary to optimize the vitronectin-mediated adhesion, proliferation, and differentiation of human mesenchymal stem cells on ceramic surfaces. These results expand the understanding of surface-mediated cell functions and provide information pertinent to the design of next-generation orthopaedic and tissue engineering biomaterials.
Schad, Daniel J.; Jünger, Elisabeth; Sebold, Miriam; Garbusow, Maria; Bernhardt, Nadine; Javadi, Amir-Homayoun; Zimmermann, Ulrich S.; Smolka, Michael N.; Heinz, Andreas; Rapp, Michael A.; Huys, Quentin J. M.
2014-01-01
Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning. Though both have been shown to control choices, the cognitive abilities associated with these systems are under ongoing investigation. Here we examine the link to cognitive abilities, and find that individual differences in processing speed covary with a shift from model-free to model-based choice control in the presence of above-average working memory function. This suggests shared cognitive and neural processes; provides a bridge between literatures on intelligence and valuation; and may guide the development of process models of different valuation components. Furthermore, it provides a rationale for individual differences in the tendency to deploy valuation systems, which may be important for understanding the manifold neuropsychiatric diseases associated with malfunctions of valuation. PMID:25566131
Biffi, Emilia; Menegon, Andrea; Piraino, Francesco; Pedrocchi, Alessandra; Fiore, Gianfranco B; Rasponi, Marco
2012-01-01
In vitro recording of neuronal electrical activity is a widely used technique to understand brain functions and to study the effect of drugs on the central nervous system. The integration of microfluidic devices with microelectrode arrays (MEAs) enables the recording of networks activity in a controlled microenvironment. In this work, an integrated microfluidic system for neuronal cultures was developed, reversibly coupling a PDMS microfluidic device with a commercial flat MEA through magnetic forces. Neurons from mouse embryos were cultured in a 100 µm channel and their activity was followed up to 18 days in vitro. The maturation of the networks and their morphological and functional characteristics were comparable with those of networks cultured in macro-environments and described in literature. In this work, we successfully demonstrated the ability of long-term culturing of primary neuronal cells in a reversible bonded microfluidic device (based on magnetism) that will be fundamental for neuropharmacological studies. Copyright © 2011 Wiley Periodicals, Inc.
Smart fabric sensors and e-textile technologies: a review
NASA Astrophysics Data System (ADS)
Castano, Lina M.; Flatau, Alison B.
2014-05-01
This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.
Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J
2016-08-24
We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.
Liquid-Vapor Coexistence at a Mesoporous Substrate
NASA Astrophysics Data System (ADS)
Kityk, A. V.; Hofmann, T.; Knorr, K.
2008-01-01
The condensation of hexane vapor onto a mesoporous Si substrate with a pore radius of 3.5 nm has been studied by means of volumetry and ellipsometry. The filling fraction of the pores and the coverage of the substrate have been determined. The coverage of the regime after the completion of capillary condensation has been compared to recent theoretical work.
Blood drop patterns: Formation and applications.
Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei
2016-05-01
The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Self-organization of gold nanoparticles on silanated surfaces
Kyaw, Htet H; Sellai, Azzouz; Dutta, Joydeep
2015-01-01
Summary The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV–visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications. PMID:26734526
Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon.
Rodríguez-Cantó, P J; Martínez-Marco, M; Rodríguez-Fortuño, F J; Tomás-Navarro, B; Ortuño, R; Peransí-Llopis, S; Martínez, A
2011-04-11
In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance in the infrared regime, which results in highly sensitive sensing. Unlike usual experiments which are based on the functionalization of the metal surface, we functionalized here the silicon substrate. This silicon surface was modified chemically by buildup of an organosilane self-assembled monolayer (SAM) containing isocyanate as functional group. These groups allow for an easy surface regeneration by simple heating, thanks to the thermally reversible interaction isocyanate-analyte, which allows the cyclic use of the sensor. The technique showed a high sensitivity to surface binding events in gas and allowed the surface regeneration by heating of the sensor at 150 °C. A relative wavelength shift ∆λ(max)λ(0)=0.027 was obtained when the saturation level was reached. © 2011 Optical Society of America
Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro
2005-07-06
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.
Liddell, Belinda J.; Jobson, Laura
2016-01-01
A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article Cultural variations in individualistic-collectivistic self-representation modulate many of the same neural and psychological processes disrupted in PTSD. These commonly affected processes include fear perception and regulation mechanisms, attentional biases (to threat), emotional and autobiographical memory systems, self-referential processing and attachment systems. A conceptual model is proposed whereby culture is considered integral to the development and maintenance of PTSD and its neural substrates. PMID:27302635
Suginta, Wipa; Sirimontree, Paknisa; Sritho, Natchanok; Ohnuma, Takayuki; Fukamizo, Tamo
2016-12-01
Vibrio harveyi chitinase A (VhChiA) is a GH-18 glycosyl hydrolase with a structure containing three distinct domains: i) the N-terminal chitin-binding domain; ii) the (α/β) 8 TIM barrel catalytic domain; and iii) the α+β insertion domain. In this study, we cloned the gene fragment encoding the chitin-binding domain of VhChiA, termed ChBD Vh ChiA . The recombinant ChBD Vh ChiA was heterologously expressed in E. coli BL21 strain Tuner(DE3)pLacI host cells, and purified to homogeneity. CD measurements suggested that ChBD Vh ChiA contained β-sheets as major structural components and fluorescence spectroscopy showed that the protein domain was folded correctly, and suitable for functional characterization. Chitin binding assays showed that ChBD Vh ChiA bound to both α- and β-chitins, with the greatest affinity for β-colloidal chitin, but barely bound to polymeric chitosan. These results identified the tandem N-acetamido functionality on chitin chains as the specific sites of enzyme-substrate interactions. The binding affinity of the isolated domain was significantly lower than that of intact VhChiA, suggesting that the catalytic domain works synergistically with the chitin-binding domain to guide the polymeric substrate into the substrate binding cleft. These data confirm the physiological role of the chitin-binding domain of the marine bacterial GH-18 chitinase A in chitin-chitinase interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.
Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang
2016-10-01
Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Studying the Interface between Nanomaterials and Biomolecules
NASA Astrophysics Data System (ADS)
Torelli, Marco Diego
As engineered nanomaterials become ubiquitous among society, their inevitable entrance into the environment invites questions as to potential implications. As the field of nanotechnology progresses, responsible development of nanomaterials requires a broad availability of useful tools. To this aim, this work seeks to improve analytical abilities to address fundamental molecular interactions of nanomaterials with biological systems that can be expanded broadly, divided into the following: (1) A model applicable to X-ray photoelectron spectroscopy was developed and validated to correct the over-estimated signal for core:shell nanomaterials that can occur at small particle sizes approaching the electron attenuation length of the material being investigated. (2) To understand the role of underlying substrate in particle interactions, diamond and gold functionalized with a protein resisting molecule (hexaethylene glycol) were compared to test the ability of each to resist adsorption of charged proteins. It was demonstrated that the underlying substrate can have an effect on the ability of to properly resist proteins, with charged proteins adsorbing to gold, believed to be due to the ability of gold to form an image dipole. (3) To advance the use of nanodiamond in biological settings, methods to create robust chemical linkages at single digit sizes were developed. Alkene based oligo(ethylene glycol) molecules were successfully photochemically grafted to fully disaggregated detonation nanodiamond. Because the scalability of such methods currently limits such functionalization broadly, polyelectrolytic wrapping of nanodiamond was developed as a useful and scalable method to produce diamond nanoparticles with varying amine based functionalities. (4) Phage display was adapted as a method to determine chemical functionalities that interact with anatase titanium dioxide below 20 nm. In contrast to finding specific, individual inorganic binding sequences, we lowered the selection stringency to allow for a broader number of peptides to be samples. While no statistical size dependent differences were observed in the amino acid chemistries that interact with anatase TiO2, chemical functionalities and motifs that appear to be important for interaction with nano-anatase were identified. Specifically, positively charged and aromatic motifs working in concert were found to be important.
Effects of topography on the functional development of human neural progenitor cells.
Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L
2010-07-01
We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.
Hudson, Sean A; Mashalidis, Ellene H; Bender, Andreas; McLean, Kirsty J; Munro, Andrew W; Abell, Chris
2014-01-01
We present a novel fragment-based approach that tackles some of the challenges for chemical biology of predicting protein function. The general approach, which we have termed biofragments, comprises two key stages. First, a biologically relevant fragment library (biofragment library) can be designed and constructed from known sets of substrate-like ligands for a protein class of interest. Second, the library can be screened for binding to a novel putative ligand-binding protein from the same or similar class, and the characterization of hits provides insight into the basis of ligand recognition, selectivity, and function at the substrate level. As a proof-of-concept, we applied the biofragments approach to the functionally uncharacterized Mycobacterium tuberculosis (Mtb) cytochrome P450 isoform, CYP126. This led to the development of a tailored CYP biofragment library with notable 3D characteristics and a significantly higher screening hit rate (14 %) than standard drug-like fragment libraries screened previously against Mtb CYP121 and 125 (4 % and 1 %, respectively). Biofragment hits were identified that make both substrate-like type-I and inhibitor-like type-II interactions with CYP126. A chemical-fingerprint-based substrate model was built from the hits and used to search a virtual TB metabolome, which led to the discovery that CYP126 has a strong preference for the recognition of aromatics and substrate-like type-I binding of chlorophenol moieties within the active site near the heme. Future catalytic analyses will be focused on assessing CYP126 for potential substrate oxidative dehalogenation. PMID:24677424
Neal, Sonya; Mak, Raymond; Bennett, Eric J.; Hampton, Randolph
2017-01-01
A surprising feature of endoplasmic reticulum (ER)-associated degradation (ERAD) is the movement, or retrotranslocation, of ubiquitinated substrates from the ER lumen or membrane to the cytosol where they are degraded by the 26S proteasome. Multispanning ER membrane proteins, called ERAD-M substrates, are retrotranslocated to the cytosol as full-length intermediates during ERAD, and we have investigated how they maintain substrate solubility. Using an in vivo assay, we show that retrotranslocated ERAD-M substrates are moved to the cytoplasm as part of the normal ERAD pathway, where they are part of a solely proteinaceous complex. Using proteomics and direct biochemical confirmation, we found that Cdc48 serves as a critical “retrochaperone” for these ERAD-M substrates. Cdc48 binding to retrotranslocated, ubiquitinated ERAD-M substrates is required for their solubility; removal of the polyubiquitin chains or competition for binding by addition of free polyubiquitin liberated Cdc48 from retrotranslocated proteins and rendered them insoluble. All components of the canonical Cdc48 complex Cdc48-Npl4-Ufd1 were present in solubilized ERAD-M substrates. This function of the complex was observed for both HRD and DOA pathway substrates. Thus, in addition to the long known ATP-dependent extraction of ERAD substrates during retrotranslocation, the Cdc48 complex is generally and critically needed for the solubility of retrotranslocated ERAD-M intermediates. PMID:28077573
Neal, Sonya; Mak, Raymond; Bennett, Eric J; Hampton, Randolph
2017-02-24
A surprising feature of endoplasmic reticulum (ER)-associated degradation (ERAD) is the movement, or retrotranslocation, of ubiquitinated substrates from the ER lumen or membrane to the cytosol where they are degraded by the 26S proteasome. Multispanning ER membrane proteins, called ERAD-M substrates, are retrotranslocated to the cytosol as full-length intermediates during ERAD, and we have investigated how they maintain substrate solubility. Using an in vivo assay, we show that retrotranslocated ERAD-M substrates are moved to the cytoplasm as part of the normal ERAD pathway, where they are part of a solely proteinaceous complex. Using proteomics and direct biochemical confirmation, we found that Cdc48 serves as a critical "retrochaperone" for these ERAD-M substrates. Cdc48 binding to retrotranslocated, ubiquitinated ERAD-M substrates is required for their solubility; removal of the polyubiquitin chains or competition for binding by addition of free polyubiquitin liberated Cdc48 from retrotranslocated proteins and rendered them insoluble. All components of the canonical Cdc48 complex Cdc48-Npl4-Ufd1 were present in solubilized ERAD-M substrates. This function of the complex was observed for both HRD and DOA pathway substrates. Thus, in addition to the long known ATP-dependent extraction of ERAD substrates during retrotranslocation, the Cdc48 complex is generally and critically needed for the solubility of retrotranslocated ERAD-M intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7
Hussain, Rawaa H.; Zawawi, Mariam; Bayfield, Mark A.
2013-01-01
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3′OH-dependent trailer binding/protection and a UUU-3′OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3′OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily. PMID:23887937
Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi
2016-01-01
The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.
High quality silicon-based substrates for microwave and millimeter wave passive circuits
NASA Astrophysics Data System (ADS)
Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.
2017-09-01
Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous silicon as new substrate, such as characterization of FinFET components.
Demeritte, Teresa; Kanchanapally, Rajashekhar; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Dubey, Madan; Zakar, Eugene; Ray, Paresh Chandra
2012-11-07
This paper reports for the first time the development of a large-scale SERS substrate from a popcorn-shaped gold nanoparticle-functionalized single walled carbon nanotubes hybrid thin film for the selective and highly sensitive detection of explosive TNT material at a 100 femtomolar (fM) level.
Chen, Aaron; Lieu, Deborah K; Freschauf, Lauren; Lew, Valerie; Sharma, Himanshu; Wang, Jiaxian; Nguyen, Diep; Karakikes, Ioannis; Hajjar, Roger J; Gopinathan, Ajay; Botvinick, Elliot; Fowlkes, Charless C; Li, Ronald A; Khine, Michelle
2011-12-22
A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.