Sample records for substrates high resolution

  1. Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles

    NASA Technical Reports Server (NTRS)

    Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.

    1989-01-01

    The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.

  2. High resolution laser patterning of ITO on PET substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.

    2013-03-01

    Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.

  3. Is substrate composition a suitable predictor for deep-water coral occurrence on fine scales?

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Metaxas, Anna

    2017-06-01

    Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (>80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100 m2) and high at site 2 (63 colonies of P. resedaeformis per 100 m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral species, substrate composition needs to be quantified so that small fractions (<20% contribution of certain substrate class) of suitable substrate are resolved. While the collection and analysis of high-resolution data is costly and spatially limited, the required resolution is unlikely to be achieved in coarse-scale interpolations of substrate data.

  4. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  5. AM OLED using a-Si TFT backplane on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Schmidt, John; Roush, Jerry; Chanley, Charles; Dodd, Sonia R.

    2004-09-01

    Amorphous silicon TFT technology continues to show promise for fabricating large area high resolution flexible AM OLED displays. This paper describes the recent progress in the flexible AM OLED development efforts at Honeywell since our publication in this conference's proceedings in 2003, describing the feasibility of fabricating a 64x64 pixel AM OLED on a flexible plastic substrate. In this paper we describe the design, and fabrication of a 160x160(x3) pixel AM OLED on a flexible plastic substrate with an equivalent 80cgpi resolution. Flexibility characteristics of the fabricated displays are discussed. Further advances and improvements required for extending the size and resolution of flexible AM OLED displays are discussed.

  6. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.

  7. Small feature sizes and high aperture ratio organic light-emitting diodes by using laser-patterned polyimide shadow masks

    NASA Astrophysics Data System (ADS)

    Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany

    2014-02-01

    A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.

  8. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  9. [Oxygen plasma-vulcanized deformable polydimethylsiloxane sheet culture substrates].

    PubMed

    Zhang, Yiyi; Tao, Zulai

    2003-06-01

    A method of preparing deformable polydimethylsiloxane sheet culture substrates by oxygen plasma vulcanization was developed. As compared with the traditional heating vulcanization method, the substrates prepared in this way have hydrophilic surfaces, the adhesion and spreading of cells both occur quickly, and the wrinkling deformation of substrates develops quickly, too. In addition, the changes of wrinkles during treatment of cytochalasin D were observed, and the result shows that this technique has high temporal resolution.

  10. New Insights Into an Old Arrhythmia: High-Resolution Mapping Demonstrates Conduction and Substrate Variability in Right Atrial Macro-Re-Entrant Tachycardia.

    PubMed

    Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Bates, Matthew G; Lipton, Jonathan; Joseph, Stephen; Morton, Joseph; Sparks, Paul; Kistler, Peter; Kalman, Jonathan M

    2017-09-01

    Using high-resolution 3-dimensional (3D) mapping, the aim of this study was to further characterize right atrial macro-re-entrant tachycardias and answer unresolved questions in the understanding of this arrhythmia. Despite advances in understanding of the mechanisms of right atrial macro-re-entrant tachycardias, many questions lack definitive answers. The advent of high-resolution 3D mapping provides an opportunity to gain further insights into the nature of these common circuits. A total of 25 patients with right atrial macro-re-entrant tachycardia were studied. High-resolution 3D mapping (Rhythmia mapping system, Boston Scientific, Natick, Massachusetts) was performed. Regional voltage and conduction velocity were determined. Maps were analyzed to characterize wave front propagation patterns in all atrial regions. The relationship between substrate and conduction was evaluated. A total of 42 right atrial macro-re-entrant circuits were observed. The most common location of the posterior line of block was the posteromedial right atrium (73%). This line of block continued superiorly into the superior vena cava, taking an oblique course to finish on the anterior superior vena cava aspect in 73%. Conduction delay at the crista terminalis was less common (23%). Conduction slowing or block was seen at the limbus of the fossa ovalis (73%) and Eustachian ridge (77%). Highly variable and localized areas of slow conduction were also observed in the inferior septum (45%), superior septum (27%), anterosuperior right atrium (23%), and lateral right atrium (23%). Localized conduction slowing was seen in the cavotricuspid isthmus in 50% of patients, but there was no generalized conduction slowing in this isthmus. The voltage in regions of slow conduction was significantly lower compared with areas of normal conduction velocity (p < 0.001). Conduction channels were observed in 55% of patients. High-resolution 3D mapping has provided new insights into the nature of right atrial macro-re-entrant tachycardias. Variable regions of abnormal atrial substrate were associated with conduction slowing and block. Individual variation in propagation patterns was observed in association with this variable substrate. (Mapping of Atrial Arrhythmias Using High Spatial Resolution Mapping Catheters and the Rhythmia Mapping System; ACTRN12615000544572). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Profilometry of thin films on rough substrates by Raman spectroscopy

    PubMed Central

    Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín

    2016-01-01

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033

  12. Preparation of superhydrophobic and transparent micro-nano hybrid coatings from polymethylhydroxysiloxane and silica ormosil aerogels

    NASA Astrophysics Data System (ADS)

    Nagappan, Saravanan; Park, Jin Joo; Park, Sung Soo; Ha, Chang-Sik

    2014-12-01

    Superhydrophobic and transparent polymethylhydroxysiloxane (PMHOS)/silica ormosil aerogel hybrids were prepared successfully by mixing of PMHOS with various weight percentages of silica ormosil aerogels (as synthesized from methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS) precursors) in separate seal perfume glass vials. The hybrids were spin coated on glass substrate at 1000 rpm for 60 seconds and used for further analysis. The surface morphology and chemical compositions of the hybrids were analyzed by high resolution scanning electron microscopy, high resolution transmission electron microscopy, atomic force spectroscopy, adsorption and desorption isotherm, and X-ray photoelectron spectroscopy. The transparency, thermal decomposition and static contact angle (SCA) of each sample were measured by UV-Visible spectrophotometer, TGA and drop shape analysis system, respectively. The spin coated substrates showed good superhydrophobic properties, thermal stability as well as transparency on the glass substrates.

  13. High-voltage compatible, full-depleted CCD

    DOEpatents

    Holland, Stephen Edward

    2007-09-18

    A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.

  14. Arginine Kinase. Joint Crystallographic & NMR RDC Analyses link Substrate-Associated Motions to Intrinsic Flexibility

    PubMed Central

    Niu, Xiaogang; Brüschweiler-Li, Lei; Davulcu, Omar; Skalicky, Jack J.; Brüschweiler, Rafael; Chapman, Michael S.

    2010-01-01

    The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a “high energy” phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and –bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection. PMID:21075117

  15. Computational imaging of defects in commercial substrates for electronic and photonic devices

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kashiwagi, Ryo; Yamada, Masayoshi

    2012-03-01

    Computational defect imaging has been performed in commercial substrates for electronic and photonic devices by combining the transmission profile acquired with an imaging type of linear polariscope and the computational algorithm to extract a small amount of birefringence. The computational images of phase retardation δ exhibited spatial inhomogeneity of defect-induced birefringence in GaP, LiNbO3, and SiC substrates, which were not detected by conventional 'visual inspection' based on simple optical refraction or transmission because of poor sensitivity. The typical imaging time was less than 30 seconds for 3-inch diameter substrate with the spatial resolution of 200 μm, while that by scanning polariscope was 2 hours to get the same spatial resolution. Since our proposed technique have been achieved high sensitivity, short imaging time, and wide coverage of substrate materials, which are practical advantages over the laboratory-scale apparatus such as X-ray topography and electron microscope, it is useful for nondestructive inspection of various commercial substrates in production of electronic and photonic devices.

  16. Metal Oxide Thin Film Transistors on Paper Substrate: Fabrication, Characterization, and Printing Process

    NASA Astrophysics Data System (ADS)

    Choi, Nack-Bong

    Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution printing plate is investigated and the most favorable condition to transfer ink from a blanket to a cliche is studied. Consequently, a high resolution cliche is demonstrated and the printed patterns of 10mum width and 6mum line spacing are presented. In addition, the top gate a-IGZO TFTs with channel width/length of 12/6mum is successfully demonstrated by printing etch-resists. This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.

  17. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I.; Seibt, M.

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  18. High resolution printing of charge

    DOEpatents

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  19. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.

    PubMed

    Biskupek, Johannes; Kaiser, Ute; Falk, Fritz

    2008-06-01

    In this study, we describe the transport of gold (Au) nanoparticles from the surface into crystalline silicon (Si) covered by silicon oxide (SiO(2)) as revealed by in situ high-resolution transmission electron microscopy. Complete crystalline Au nanoparticles sink through the SiO(2) layer into the Si substrate when high-dose electron irradiation is applied and temperature is raised above 150 degrees C. Above temperatures of 250 degrees C, the Au nanoparticles finally dissolve into fragments accompanied by crystallization of the amorphized Si substrate around these fragments. The transport process is explained by a wetting process followed by Stokes motion. Modelling this process yields boundaries for the interface energies involved.

  20. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution

    PubMed Central

    Zeuthen*, Thomas; Belhage, Bo; Zeuthen, Emil

    2006-01-01

    The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378 ± 20 (n = 18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue α-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86 ± 0.03 (15). For the human SGLT1 the respective numbers were 234 ± 12 (18) and 0.85 ± 0.8 (7). For NIS, 253 ± 16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN−, MW 58), with I− as anion (MW 127) only 162 ± 11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute. PMID:16322051

  1. Scanning Probe Platform | Materials Science | NREL

    Science.gov Websites

    level; this image obtained using a scanning tunneling microscope shows gray and white clusters of produce high-resolution color images or maps like this one obtained using scanning tunneling luminescence gray clusters. Gold substrate: (Left) STM image reveals the terraces of the H2 flamed substrate. (Right

  2. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  3. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    PubMed Central

    Jensen, Mikkel R. B.; Łopacińska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mølhave, Kristian

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412

  4. A quartz-based micro catalytic methane sensor by high resolution screen printing

    NASA Astrophysics Data System (ADS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  5. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    PubMed

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  6. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, R.J.; McElhaney, S.A.; Bates, J.B.

    1994-07-26

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments. 4 figs.

  7. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, Robert J.; McElhaney, Stephanie A.; Bates, John B.

    1994-01-01

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments.

  8. Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

    PubMed Central

    Anisimova, Margarita; Samardak, Aleksei; Ognev, Alexey

    2015-01-01

    Summary The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices. PMID:25977869

  9. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  10. A Microstructural Comparison of the Initial Growth of AIN and GaN Layers on Basal Plane Sapphire and SiC Substrates by Low Pressure Metalorganic Chemical Vapor Depositon

    NASA Technical Reports Server (NTRS)

    George, T.; Pike, W. T.; Khan, M. A.; Kuznia, J. N.; Chang-Chien, P.

    1994-01-01

    The initial growth by low pressure metalorganic chemical vapor deposition and subsequent thermal annealing of AIN and GaN epitaxial layers on SiC and sapphire substrates is examined using high resolution transmission electron microscopy and atomic force microscopy.

  11. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    NASA Astrophysics Data System (ADS)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 µm. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.

  12. Analysis of composition and microstructures of Ge grown on porous silicon using Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle

    2017-12-01

    Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.

  13. Optical data storage and metallization of polymers

    NASA Technical Reports Server (NTRS)

    Roland, C. M.; Sonnenschein, M. F.

    1991-01-01

    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described.

  14. Performance study of double SOI image sensors

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Hara, K.; Ikegami, Y.; Kurachi, I.; Nishimura, R.; Ono, S.; Tauchi, K.; Tsuboyama, T.; Yamada, M.

    2018-02-01

    Double silicon-on-insulator (DSOI) sensors composed of two thin silicon layers and one thick silicon layer have been developed since 2011. The thick substrate consists of high resistivity silicon with p-n junctions while the thin layers are used as SOI-CMOS circuitry and as shielding to reduce the back-gate effect and crosstalk between the sensor and the circuitry. In 2014, a high-resolution integration-type pixel sensor, INTPIX8, was developed based on the DSOI concept. This device is fabricated using a Czochralski p-type (Cz-p) substrate in contrast to a single SOI (SSOI) device having a single thin silicon layer and a Float Zone p-type (FZ-p) substrate. In the present work, X-ray spectra of both DSOI and SSOI sensors were obtained using an Am-241 radiation source at four gain settings. The gain of the DSOI sensor was found to be approximately three times that of the SSOI device because the coupling capacitance is reduced by the DSOI structure. An X-ray imaging demonstration was also performed and high spatial resolution X-ray images were obtained.

  15. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping

    2018-01-01

    This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.

  16. Ultrathin high-resolution flexographic printing using nanoporous stamps

    PubMed Central

    Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H.; Gleason, Karen K.; Hart, A. John

    2016-01-01

    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies. PMID:27957542

  17. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization

    NASA Astrophysics Data System (ADS)

    Ito, Hajime; Kunii, Shun; Sawamura, Masaya

    2010-11-01

    Asymmetric reactions that transform racemic mixtures into enantio-enriched products are in high demand, but classical kinetic resolution produces enantiopure compounds in <50% yield even in an ideal case. Many deracemization processes have thus been developed including dynamic kinetic resolution and dynamic kinetic asymmetric transformation, which can provide enantio-enriched products even after complete conversion of the racemic starting materials. However, these dynamic processes require racemization or symmetrization of the substrates or intermediates. We demonstrate a direct chemical enantio-convergent transformation without a racemization or symmetrization process. Copper(I)-catalysed asymmetric allylic substitution of a racemic allylic ether afforded a single enantiomer of an α-chiral allylboronate with complete conversion and high enantioselectivity (up to 98% enantiomeric excess). One enantiomer of the substrate undergoes an anti-SN2'-type reaction whereas the other enantiomer reacts via a syn-SN2' pathway. The products, which cannot be prepared by dynamic procedures, have been used to construct all-carbon quaternary stereocentres.

  18. Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation

    NASA Astrophysics Data System (ADS)

    Schmidt, Susanne I.; Kreft, Jan-Ulrich; Mackay, Rae; Picioreanu, Cristian; Thullner, Martin

    2018-06-01

    Groundwater microorganisms hardly ever cover the solid matrix uniformly-instead they form micro-scale colonies. To which extent such colony formation limits the bioavailability and biodegradation of a substrate is poorly understood. We used a high-resolution numerical model of a single pore channel inhabited by bacterial colonies to simulate the transport and biodegradation of organic substrates. These high-resolution 2D simulation results were compared to 1D simulations that were based on effective rate laws for bioavailability-limited biodegradation. We (i) quantified the observed bioavailability limitations and (ii) evaluated the applicability of previously established effective rate concepts if microorganisms are heterogeneously distributed. Effective bioavailability reductions of up to more than one order of magnitude were observed, showing that the micro-scale aggregation of bacterial cells into colonies can severely restrict the bioavailability of a substrate and reduce in situ degradation rates. Effective rate laws proved applicable for upscaling when using the introduced effective colony sizes.

  19. Shin-Etsu super-high-flat substrate for FPD panel photomask

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki

    2017-07-01

    Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.

  20. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.

    2011-08-01

    Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.

  1. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  2. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  3. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  4. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Optical and structural properties in type-II InAlAs/AlGaAs quantum dots observed by photoluminescence, X-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ben Daly, A.; Craciun, D.; Laura Ursu, E.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Vasile, B. S.; Craciun, V.

    2017-10-01

    We present the effects of AlGaAs alloy composition on InAlAs quantum dots (QDs) optical and structural properties. Photoluminescence (PL) analysis of samples having a variety of aluminium composition values covering type-II transitions clearly in QDs showed the presence of two transitions X-Sh and X-Ph. High-resolution X-ray diffraction (HRXRD) investigations showed that the layers grew epitaxially on the GaAs substrate, with no relaxation regardless the Al content of AlGaAs layer. From the reciprocal space map (RSM) investigation around (004) and (115) diffraction peaks, it was shown that the InAlAs layer is fully strained, the in-plane lattice parameters (a and b, a = b) being identical to those of GaAs substrate, while the c lattice parameter was dependent on the In and Al concentrations, being larger than that of the substrate. High-resolution transmission electronic microscopy (HRTEM) investigations confirmed that films grew epitaxially on the GaAs substrate with no visible dislocations or other major defects within the InAlAs/GaAlAs QDs structure.

  6. High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Wei, Ming; Lin, Yuan; Jia, Quanxi; Zhi, Dan; Dho, Joonghoe; Blamire, Mark G.; MacManus-Driscoll, Judith L.

    2005-02-01

    High-resolution x-ray diffraction and transmission electron microscopy (TEM) have been used to study BiFeO3 thin films grown on the bare and SrRuO3 buffered (001) SrTiO3 substrates. Reciprocal space mapping (RSM) around (002) and (103) reflections revealed that BFO films with a thickness of about 200 nm were almost fully relaxed and had a rhombohedral structure. Cross-sectional, high-resolution TEM showed that the films started to relax at a very early stage of growth, which was consistent with the RSM results. A thin intermediate layer of about 2 nm was observed at the interface, which had a smaller lattice than the overgrown film. Twist distortions about the c axis to release the shear strain introduced by the growth of rhombic (001) BiFeO3 on cubic (001) SrTiO3 were also observed. The results indicate that a strained, coherent BiFeO3 film on (001) SrTiO3 is very difficult to maintain and (111) STO substrates are preferable.

  7. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  8. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  9. Structural and physical properties of InAlAs quantum dots grown on GaAs

    NASA Astrophysics Data System (ADS)

    Vasile, B. S.; Daly, A. Ben; Craciun, D.; Alexandrou, I.; Lazar, S.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Craciun, V.

    2018-04-01

    Quantum dots (QDs), which have particular physical properties due to the three dimensions confinement effect, could be used in many advanced optoelectronic applications. We investigated the properties of InAlAs/AlGaAs QDs grown by molecular beam epitaxy on GaAs/Al0.5Ga0.5As layers. The optical properties of QDs were studied by low-temperature photoluminescence (PL). Two bandgap transitions corresponding to the X-Sh and X-Ph energy structure were observed. The QDs structure was investigated using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM). HRXRD investigations showed that the layers grew epitaxially on the substrate, with no relaxation. HRTEM investigations confirmed the epitaxial nature of the grown structures. In addition, it was revealed that the In atoms aggregated in some prismatic regions, forming areas of high In concentration, that were still in perfect registry with the substrate.

  10. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  11. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

    PubMed

    Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong

    2018-04-19

    A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.

  12. Burial and exhumation of temperate bedrock reefs as elucidated by repetitive high-resolution sea floor sonar surveys: Spatial patterns and impacts to species' richness and diversity

    USGS Publications Warehouse

    Storlazzi, Curt D.; Fregoso, Theresa A.; Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Finlayson, David P.

    2013-01-01

    To understand how chronic sediment burial and scour contribute to variation in the structure of algal and invertebrate communities on temperate bedrock reefs, the dynamics of the substrate and communities were monitored at locations that experience sand inundation and adjacent areas that do not. Co-located benthic scuba-transect surveys and high-resolution swath-sonar surveys were completed on bedrock reefs on the inner shelf of northern Monterey Bay, CA, in early winter 2009, spring 2010, and summer 2010. Analysis of the sonar surveys demonstrates that during the 8 months over which the surveys were conducted, 19.6% of the study area was buried by sand while erosion resulted in the exposure of bedrock over 13.8% of the study area; the remainder underwent no change between the surveys. Substrate classifications from the benthic transect surveys correlated with classifications generated from the sonar surveys, demonstrating the capacity of high-resolution sonar surveys to detect burial of bedrock reefs by sediment. On bedrock habitat that underwent burial and exhumation, species' diversity and richness of rock-associated sessile and mobile organisms were 50–66% lower as compared to adjacent stable bedrock habitat. While intermediate levels of disturbance can increase the diversity and richness of communities, these findings demonstrate that burial and exhumation of bedrock habitat are sources of severe disturbance. We suggest that substrate dynamics must be considered when developing predictions of benthic community distributions based on sea floor imagery. These results highlight the need for predictive models of substrate dynamics and for a better understanding of how burial and exhumation shape benthic communities.

  13. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.

    PubMed

    An, Byeong Wan; Kim, Kukjoo; Lee, Heejoo; Kim, So-Yun; Shim, Yulhui; Lee, Dae-Young; Song, Jun Yeob; Park, Jang-Ung

    2015-08-05

    Electrohydrodynamic-inkjet-printed high-resolution complex 3D structures with multiple functional inks are demonstrated. Printed 3D structures can have a variety of fine patterns, such as vertical or helix-shaped pillars and straight or rounded walls, with high aspect ratios (greater than ≈50) and narrow diameters (≈0.7 μm). Furthermore, the formation of freestanding, bridge-like Ag wire structures on plastic substrates suggests substantial potentials as high-precision, flexible 3D interconnects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fabrication of Ultrasensitive TES Bolometric Detectors for HIRMES

    NASA Astrophysics Data System (ADS)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; Wollack, Edward

    2018-04-01

    The high-resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R 100,000) instrument operating in the 25-122 μm spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy in 2019. Central to HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8 × 16 detector high-resolution array and a 64 × 16 detector low-resolution array. Both types of detectors consist of Mo/Au TES fabricated on leg-isolated Si membranes. Whereas the high-resolution detectors, with a noise equivalent power (NEP) 1.5 × 10-18 W/rt (Hz), are fabricated on 0.45 μm Si substrates, the low-resolution detectors, with NEP 1.0 × 10-17 W/rt (Hz), are fabricated on 1.40 μm Si. Here, we discuss the similarities and differences in the fabrication methodologies used to realize the two types of detectors.

  15. Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; hide

    2017-01-01

    The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.

  16. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllys, M., E-mail: markko.myllys@jyu.fi; Häkkänen, H.; Korppi-Tommola, J.

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can bemore » concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.« less

  17. Development of Plastic Substrate Technology for Active Matrix Liquid Crystal Displays Final Report CRADA No. TC-761-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, P.; Kamath, H.

    Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.

  18. High-resolution electron microscope observation of voids in amorphous Ge.

    NASA Technical Reports Server (NTRS)

    Donovan, T. M.; Heinemann, K.

    1971-01-01

    Electron micrographs have been obtained which clearly show the existence of a void network in amorphous Ge films formed at substrate temperatures of 25 and 150 C, and the absence of a void network in films formed at higher substrate temperatures of 200 and 250 C. These results correlate quite well with density measurements and predictions of void densities by indirect methods.

  19. Monolithic echo-less photoconductive switches as a high-resolution detector for terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Maussang, K.; Palomo, J.; Manceau, J.-M.; Colombelli, R.; Sagnes, I.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Mangeney, J.; Tignon, J.; Dhillon, S. S.

    2017-04-01

    Interdigitated photoconductive (iPC) switches are powerful and convenient devices for time-resolved spectroscopy, with the ability to operate both as sources and detectors of terahertz (THz) frequency pulses. However, reflection of the emitted or detected radiation within the device substrate itself can lead to echoes that inherently limit the spectroscopic resolution achievable for their use in time-domain spectroscopy (TDS) systems. In this work, we demonstrate a design of low-temperature-grown-GaAs (LT-GaAs) iPC switches for THz pulse detection that suppresses such unwanted echoes. This is realized through the growth of a buried multilayer LT-GaAs structure that retains its ultrafast properties, which, after wafer bonding to a metal-coated host substrate, results in an iPC switch with a metal plane buried at a subwavelength depth below the LT-GaAs surface. Using this device as a detector, and coupling it to an echo-less iPC source, enables echo-free THz-TDS and high-resolution spectroscopy, with a resolution limited only by the temporal length of the measurement governed by the mechanical delay line used. As a proof-of-principle, the 212-221 and the 101-212 rotational lines of water vapor have been spectrally resolved, demonstrating a spectral resolution below 10 GHz.

  20. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  1. Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, J. W., E-mail: James.Pomeroy@Bristol.ac.uk; Kuball, M.

    2015-10-14

    Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm atmore » a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture.« less

  2. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    NASA Astrophysics Data System (ADS)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  3. Graphene as discharge layer for electron beam lithography on insulating substrate

    NASA Astrophysics Data System (ADS)

    Liu, Junku; Li, Qunqing; Ren, Mengxin; Zhang, Lihui; Chen, Mo; Fan, Shoushan

    2013-09-01

    Charging of insulating substrates is a common problem during Electron Beam lithography (EBL), which deflects the beam and distorts the pattern. A homogeneous, electrically conductive, and transparent graphene layer is used as a discharge layer for EBL processes on insulating substrates. The EBL resolution is improved compared with the metal discharge layer. Dense arrays of holes with diameters of 50 nm and gratings with line/space of 50/30 nm are obtained on quartz substrate. The pattern placement errors and proximity effect are suppressed over a large area and high quality complex nanostructures are fabricated using graphene as a conductive layer.

  4. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  5. Active pixel sensor array as a detector for electron microscopy.

    PubMed

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  6. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya

    2015-03-02

    A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.

  7. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  8. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  9. Direct write with microelectronic circuit fabrication

    DOEpatents

    Drummond, T.; Ginley, D.

    1988-05-31

    In a process for deposition of material onto a substrate, for example, the deposition of metals for dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit. 3 figs.

  10. Direct write with microelectronic circuit fabrication

    DOEpatents

    Drummond, Timothy; Ginley, David

    1992-01-01

    In a process for deposition of material onto a substrate, for example, the deposition of metals or dielectrics onto a semiconductor laser, the material is deposited by providing a colloidal suspension of the material and directly writing the suspension onto the substrate surface by ink jet printing techniques. This procedure minimizes the handling requirements of the substrate during the deposition process and also minimizes the exchange of energy between the material to be deposited and the substrate at the interface. The deposited material is then resolved into a desired pattern, preferably by subjecting the deposit to a laser annealing step. The laser annealing step provides high resolution of the resultant pattern while minimizing the overall thermal load of the substrate and permitting precise control of interface chemistry and interdiffusion between the substrate and the deposit.

  11. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  12. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    PubMed

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Efficient chemoenzymatic dynamic kinetic resolution of 1-heteroaryl ethanols.

    PubMed

    Vallin, Karl S A; Wensbo Posaric, David; Hamersak, Zdenko; Svensson, Mats A; Minidis, Alexander B E

    2009-12-18

    The scope and limitation of the combined ruthenium-lipase induced dynamic kinetic resolution (DKR) through O-acetylation of racemic heteroaromatic secondary alcohols, i.e., 1-heteroaryl substituted ethanols, was investigated. After initial screening of reaction conditions, Candida antarctica lipase B (Novozyme 435, N435) together with 4-chloro-phenylacetate as acetyl-donor for kinetic resolution (KR), in conjunction with the ruthenium-based Shvo catalyst for substrate racemization in toluene at 80 degrees C, enabled DKR with high yields and stereoselectivity of various 1-heteroaryl ethanols, such as oxadiazoles, isoxazoles, 1H-pyrazole, or 1H-imidazole. In addition, DFT calculations based on a simplified catalyst complex model for the catalytic (de)hydrogenation step are in agreement with the previously reported outer sphere mechanism. These results support the further understanding of the mechanistic aspects behind the difference in reactivity of 1-heteroaryl substituted ethanols in comparison to reference substrates, as often referred to in the literature.

  14. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  15. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    PubMed

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  16. An alternative method of fabricating sub-micron resolution masks using excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Hayden, C. J.; Eijkel, J. C. T.; Dalton, C.

    2004-06-01

    In the work presented here, an excimer laser micromachining system has been used successfully to fabricate high-resolution projection and contact masks. The contact masks were subsequently used to produce chrome-gold circular ac electro-osmotic pump (cACEOP) microelectrode arrays on glass substrates, using a conventional contact photolithography process. The contact masks were produced rapidly (~15 min each) and were found to be accurate to sub-micron resolution, demonstrating an alternative route for mask fabrication. Laser machined masks were also used in a laser-projection system, demonstrating that such fabrication techniques are also suited to projection lithography. The work addresses a need for quick reproduction of high-resolution contact masks, given their rapid degradation when compared to non-contact masks.

  17. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  18. High resolution reversible color images on photonic crystal substrates.

    PubMed

    Kang, Pilgyu; Ogunbo, Samuel O; Erickson, David

    2011-08-16

    When light is incident on a crystalline structure with appropriate periodicity, some colors will be preferentially reflected (Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic crystals: molding the flow of light; Princeton University Press: Princeton, NJ, 1995; p ix, 137 pp). These photonic crystals and the structural color they generate represent an interesting method for creating reflective displays and drawing devices, since they can achieve a continuous color response and do not require back lighting (Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143-149; Graham-Rowe, D. Tunable structural colour. Nat. Photonics 2009, 3, 551-553.; Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468-472; Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels. Adv. Mater.2009, 21, 3078). Here we demonstrate a technique for creating erasable, high-resolution, color images using otherwise transparent inks on self-assembled photonic crystal substrates (Fudouzi, H.; Xia, Y. N. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, 9653-9660). Using inkjet printing, we show the ability to infuse fine droplets of silicone oils into the crystal, locally swelling it and changing the reflected color (Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123-2126). Multicolor images with resolutions as high as 200 μm are obtained from oils of different molecular weights with the lighter oils being able to penetrate deeper, yielding larger red shifts. Erasing of images is done simply by adding a low vapor pressure oil which dissolves the image, returning the substrate to its original state.

  19. Microstructural study of Mg-doped p-type GaN: Correlation between high-resolution electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.

    1997-12-01

    A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.

  20. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.

    The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  1. Cushing's syndrome mutant PKA L205R exhibits altered substrate specificity

    DOE PAGES

    Lubner, Joshua M.; Dodge-Kafka, Kimberly L.; Carlson, Cathrine R.; ...

    2017-02-01

    The PKA L205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKA WT and PKA L205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKA L205R loss-of-function signaling. Through these results, wemore » suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.« less

  2. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1988-06-01

    ABSTRACT (ContMut on reverse,*i nauar and .dnr,A, A. W, -,,,I !Cu single crystals have been grown and prepared for use as a lattice matched substrate. A...literature survey of potential substrates which are both lattice and energy matched with diamond to promote two-dimensional growth has also been...first reported high resolution lattice imaging of CVD diamond. Diamond power MESFET devices have been theoretically evaluated and found to be capable

  3. High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; Alger, Jeffry R.; Shulman, Robert G.

    The resolution and specificity of 1H NMR in studies of yeast cellular metabolism were increased by feeding a 13C-labeled substrate and observing 1H difference spectra in the presence and absence of 13C decoupling fields. [2- 13C]Acetate was utilized as a respiratory substrate in an aerobic suspension of Saccharomyces cerevisiae. The broad cellular background proton resonances are removed by the technique, leaving only signals from the protons of the substrate, or its metabolites, that are coupled to 13C. Spectra of the yeast suspension after acetate feeding show the disappearance of label from the acetate pool and the subsequent appearance of 13C in glutamate C 3 and C 4 and in aspartate C 3. These results are in accord with the known fluxes of metabolites. Selective single-frequency 13C decoupling was used to provide assignments for the difference signals. The limitations on single-frequency decoupling coming from finite decoupling fields are investigated. The technique shows a potential for application in a wide variety of systems where the resolution of the 13C spectrum may be combined with the sensitivity for proton detection to observe metabolites that have been previously unobservable.

  4. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and opticalmore » characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.« less

  5. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  6. Mask-free, vacuum-free fabrication of high-conductivity metallic nanowire by spatially shaped ultrafast laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Li, Xiaowei; Qu, Lianti; Lu, Yongfeng; Jiang, Lan

    2017-03-01

    Metal nanowire fabrication has drawn tremendous attention in recent years due to its wide application in electronics, optoelectronics, and plasmonics. However, conventional laser fabrication technologies are limited by diffraction limit thus the fabrication resolution cannot meet the increasingly high demand of modern devices. Herein we report on a novel method for high-resolution high-quality metal nanowire fabrication by using Hermite-Gaussian beam to ablate metal thin film. The nanowire is formed due to the intensity valley in the center of the laser beam while the surrounding film is ablated. Arbitrary nanowire can be generated on the substrate by dynamically adjusting the orientation of the intensity valley. This method shows obvious advantages compared to conventional methods. First, the minimum nanowire has a width of 60 nm (≍1/13 of the laser wavelength), which is much smaller than the diffraction limit. The high resolution is achieved by combining the ultrashort nature of the femtosecond laser and the low thermal conductivity of the thin film. In addition, the fabricated nanowires have good inside qualities. No inner nanopores and particle intervals are generated inside the nanowire, thus endowing the nanowire with good electronic characteristics: the conductivity of the nanowires is as high as 1.2×107 S/m (≍1/4 of buck material), and the maximum current density is up to 1.66×108 A/m2. Last, the nanowire has a good adhesion to the substrates, which can withstand ultrasonic bath for a long time. These advantages make our method a good approach for high-resolution high-quality nanowire fabrication as a complementary method to conventional lithography methods.

  7. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.

  8. Degeneracy Lifting of Adsorbate Orbitals Imaged by High-Resolution Momentum Microscopy

    NASA Astrophysics Data System (ADS)

    Graus, Martin; Metzger, Christian; Grimm, Manuel; Feyer, Vitaliy; Puschnig, Peter; Schöll, Achim; Reinert, Friedrich

    2018-06-01

    On the topical example of the symmetry splitting of degenerate orbitals due to adsorption we drive the technique of orbital imaging by momentum microscopy (k-PEEM) ahead, demonstrating the potential of the method when performed with high accuracy in terms of experimental quality, energy resolution and data evaluation. Upon adsorption on the twofold symmetric substrate Ag(110), the symmetry of Iron-phthalocyanine reduces from fourfold two twofold, leading to distinct binding energies of the two e1g orbitals which constitute the twofold degenerate lowest unoccupied molecular orbital of the gas-phase molecule. In this combined experimental and theoretical study, we show that by k-PEEM with high energy resolution the individual orbitals can be identified and distinguished by mapping in momentum space.

  9. DARPA/ISTO Rapid VLSI Implementation

    DTIC Science & Technology

    1991-12-01

    temperature tigation. Motorola MCI00E111, very fast 1:9 clock buffers. were procured to drive high - speed waveforrms onto the substrate clock distribution...The hot image is normalized to a rootn- temperature image, which removes all optical anomalies and leaves a high -resolution thermal image. 69 j APT...9 High -density DRAM ..................... 9 Aquarius MI Packaging Study ........................ ....... 10 NUT Alewife

  10. Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics.

    PubMed

    Yi, K J; He, X N; Zhou, Y S; Xiong, W; Lu, Y F

    2008-07-01

    Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.

  11. A novel platform for in situ investigation of cells and tissues under mechanical strain

    PubMed Central

    Ahmed, Wylie W.; Kural, Mehmet H.; Saif, Taher A.

    2010-01-01

    The mechanical micro-environment influences cellular responses such as migration, proliferation, differentiation, and apoptosis. Cells are subjected to mechanical stretching in vivo, e.g., epithelial cells during embryogenesis. Current methodologies do not allow high resolution in situ observation of cells and tissues under applied strain, which may reveal intracellular dynamics and the origin of cell mechanosensitivity. We have developed a novel polydimethylsiloxane (PDMS) substrate capable of applying tensile and compressive strain (up to 45%) to cells and tissues while allowing in situ observation with high resolution optics. The strain field of the substrate was characterized experimentally using digital image correlation (DIC) and the deformation was modeled with finite element method (FEM) using a Mooney-Rivlin hyperelastic constitutive relation. The substrate strain was found to be uniform for greater than 95% of the substrate area. As a demonstration of our system, we applied mechanical strain to single fibroblasts transfected with GFP-Actin and whole transgenic Drosophila embryos expressing GFP in all neurons during live imaging. We report three observations of biological responses due to applied strain: (1) dynamic rotation of intact actin stress fibers in fibroblasts; (2) lamellipodia activity and actin polymerization in fibroblasts; (3) active axonal contraction in Drosophila embryo motor neurons. Our novel platform may serve as an important tool in studying the mechanoresponse of cells and tissues including whole embryos. PMID:20188869

  12. Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high resolution patterning using intense pulsed light treatment

    NASA Astrophysics Data System (ADS)

    Gokhale, Pritesh; Mitra, Dana; Sowade, Enrico; Yoti Mitra, Kalyan; Leonel Gomes, Henrique; Ramon, Eloi; Al-Hamry, Ammar; Kanoun, Olfa; Baumann, Reinhard R.

    2017-12-01

    During the last years, intense pulsed light (IPL) processing has been employed and studied intensively for the drying and sintering of metal nanoparticle layers deposited by means of printing methods on flexible polymer substrates. IPL was found to be a very fast and substrate-gentle approach qualified for the field of flexible and large-area printed electronics, i.e. manufactured via roll-to-roll processing. In this contribution, IPL is used for the fine-patterning of printed silver nanoparticle layers. The patterning is obtained by induced and controlled crack formation in the thin silver layer due to the intense exposure of IPL. The crack formation is controlled by selection of the substrate material, the fine-tuning of the morphology of the silver layer and an application of a dielectric layer on top of the silver layer that acts as a stress concentrator. Careful optimization of the IPL parameters allowed to adjust the lateral width of the crack. This novel approach turned out to be a fast and reproducible high-resolution patterning process for multiple applications, e.g. to pattern the source-drain electrodes for all-inkjet-printed thin-film transistors.

  13. Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.

    2011-05-01

    Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427), . we developed a new thin film single crystal scintillator for high resolution X-ray imaging based on a layer of modified LSO (Lu2SiO5) grown by liquid phase epitaxy (LPE) on a dedicated substrate. In this work we present the characterisation of the scintillating LSO films in terms of optical and scintillation properties as well as spatial resolution performances. The obtained results are discussed and compared with the performances of the thin scintillating films commonly used in synchrotron-based micro-imaging applications.

  14. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Páez, Gonzalo E.; Wolan, Dennis W.

    2012-09-05

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50}more » values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.« less

  15. Mechanically adjustable single-molecule transistors and stencil mask nanofabrication of high-resolution scanning probes

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre

    This dissertation presents the development of two original experimental techniques to probe nanoscale objects. The first one studies electronic transport in single organic molecule transistors in which the source-drain electrode spacing is mechanically adjustable. The second involves the fabrication of high-resolution scanning probe microscopy sensors using a stencil mask lithography technique. We describe the fabrication of transistors in which a single organic molecule can be incorporated. The source and drain leads of these transistors are freely suspended above a flexible substrate, and their spacing can be adjusted by bending the substrate. We detail the technology developed to carry out measurements on these samples. We study electronic transport in single C60 molecules at low temperature. We observe Coulomb blockaded transport and can resolve the discrete energy spectrum of the molecule. We are able to mechanically tune the spacing between the electrodes (over a range of 5 A) to modulate the lead-molecule coupling, and can electrostatically tune the energy levels on the molecule by up to 160 meV using a gate electrode. Initial progress in studying different transport regimes in other molecules is also discussed. We present a lithographic process that allows the deposition of metal nanostructures with a resolution down to 10 nm directly onto atomic force microscope (AFM) tips. We show that multiple layers of lithography can be deposited and aligned. We fabricate high-resolution magnetic force microscopy (MFM) probes using this method and discuss progress to fabricate other scanning probe microscopy (SPM) sensors.

  16. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  17. Evaluation of glued-diaphragm fibre optic pressure sensors in a shock tube

    NASA Astrophysics Data System (ADS)

    Sharifian, S. Ahmad; Buttsworth, David R.

    2007-02-01

    Glued-diaphragm fibre optic pressure sensors that utilize standard telecommunications components which are based on Fabry-Perot interferometry are appealing in a number of respects. Principally, they have high spatial and temporal resolution and are low in cost. These features potentially make them well suited to operation in extreme environments produced in short-duration high-enthalpy wind tunnel facilities where spatial and temporal resolution are essential, but attrition rates for sensors are typically very high. The sensors we consider utilize a zirconia ferrule substrate and a thin copper foil which are bonded together using an adhesive. The sensors show a fast response and can measure fluctuations with a frequency up to 250 kHz. The sensors also have a high spatial resolution on the order of 0.1 mm. However, with the interrogation and calibration processes adopted in this work, apparent errors of up to 30% of the maximum pressure have been observed. Such errors are primarily caused by mechanical hysteresis and adhesive viscoelasticity. If a dynamic calibration is adopted, the maximum measurement error can be limited to about 10% of the maximum pressure. However, a better approach is to eliminate the adhesive from the construction process or design the diaphragm and substrate in a way that does not require the adhesive to carry a significant fraction of the mechanical loading.

  18. Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2018-01-01

    Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.

  19. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution.

    PubMed Central

    Qian, M.; Haser, R.; Payan, F.

    1995-01-01

    The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA. PMID:7613472

  20. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  1. High-resolution α-amylase assay combined with high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy for expedited identification of α-amylase inhibitors: proof of concept and α-amylase inhibitor in cinnamon.

    PubMed

    Okutan, Leyla; Kongstad, Kenneth T; Jäger, Anna K; Staerk, Dan

    2014-11-26

    Type 2 diabetes affects millions of people worldwide, and new improved drugs or functional foods containing selective α-amylase inhibitors are needed for improved management of blood glucose. In this article the development of a microplate-based high-resolution α-amylase inhibition assay with direct photometric measurement of α-amylase activity is described. The inhibition assay is based on porcine pancreatic α-amylase with 2-chloro-4-nitrophenyl-α-D-maltotriose as substrate, which this gives a stable, sensitive, and cheap inhibition assay as requested for high-resolution purposes. In combination with HPLC-HRMS-SPE-NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds-of which three are known α-amylase inhibitors-showed that the high-resolution α-amylase inhibition profiles allowed detection of sub-microgram amounts of the α-amylase inhibitors. Furthermore, the high-resolution α-amylase inhibition assay/HPLC-HRMS-SPE-NMR platform allowed identification of cinnamaldehyde as the α-amylase inhibitor in cinnamon (Cinnamomum verum Presl.).

  2. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method.

    PubMed

    Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  3. Structural basis for the substrate selectivity of a HAD phosphatase from Thermococcus onnurineus NA1.

    PubMed

    Ngo, Tri Duc; Van Le, Binh; Subramani, Vinod Kumar; Thi Nguyen, Chi My; Lee, Hyun Sook; Cho, Yona; Kim, Kyeong Kyu; Hwang, Hye-Yeon

    2015-05-22

    Proteins in the haloalkaloic acid dehalogenase (HAD) superfamily, which is one of the largest enzyme families, is generally composed of a catalytic core domain and a cap domain. Although proteins in this family show broad substrate specificities, the mechanisms of their substrate recognition are not well understood. In this study, we identified a new substrate binding motif of HAD proteins from structural and functional analyses, and propose that this motif might be crucial for interacting with hydrophobic rings of substrates. The crystal structure of TON_0338, one of the 17 putative HAD proteins identified in a hyperthermophilic archaeon, Thermococcus onnurineus NA1, was determined as an apo-form at 2.0 Å resolution. In addition, we determined the crystal structure TON_0338 in complex with Mg(2+) or N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at 1.7 Å resolution. Examination of the apo-form and CHES-bound structures revealed that CHES is sandwiched between Trp58 and Trp61, suggesting that this Trp sandwich might function as a substrate recognition motif. In the phosphatase assay, TON_0338 was shown to have high activity for flavin mononucleotide (FMN), and the docking analysis suggested that the flavin of FMN may interact with Trp58 and Trp61 in a way similar to that observed in the crystal structure. Moreover, the replacement of these tryptophan residues significantly reduced the phosphatase activity for FMN. Our results suggest that WxxW may function as a substrate binding motif in HAD proteins, and expand the diversity of their substrate recognition mode. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  5. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.

    PubMed

    Lockery, S R; Lawton, K J; Doll, J C; Faumont, S; Coulthard, S M; Thiele, T R; Chronis, N; McCormick, K E; Goodman, M B; Pruitt, B L

    2008-06-01

    With a nervous system of only 302 neurons, the free-living nematode Caenorhabditis elegans is a powerful experimental organism for neurobiology. However, the laboratory substrate commonly used in C. elegans research, a planar agarose surface, fails to reflect the complexity of this organism's natural environment, complicates stimulus delivery, and is incompatible with high-resolution optophysiology experiments. Here we present a new class of microfluidic devices for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and channels that allow the animals to crawl as they would on agarose. One such device mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second device consists of sinusoidal channels that can be used to regulate the waveform and trajectory of crawling worms. Both devices are thin and transparent, rendering them compatible with high-resolution microscope objectives for neuronal imaging and optical recording. Together, the new devices are likely to accelerate studies of the neuronal basis of behavior in C. elegans.

  6. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    DOE PAGES

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou; ...

    2017-03-18

    Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less

  7. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou

    Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less

  8. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  9. Curvature and bow of bulk GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foronda, Humberto M.; Young, Erin C.; Robertson, Christian A.

    2016-07-21

    We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substratesmore » as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.« less

  10. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.

    PubMed

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gapsys, Vytautas; Ucurum, Zöhre; de Groot, Bert L; Fotiadis, Dimitrios

    2016-09-13

    Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli.

  11. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting

    2009-01-01

    Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.

  12. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    PubMed

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  13. Kinetic resolution of sec-alcohols catalysed by Candida antarctica lipase B displaying Pichia pastoris whole-cell biocatalyst.

    PubMed

    Zhang, Kun; Pan, Zhiyou; Diao, Zhoujian; Liang, Shuli; Han, Shuangyan; Zheng, Suiping; Lin, Ying

    2018-03-01

    Kinetic resolution of sec-alcohols is a green process with biocatalyst. Candida antarctica lipase B (CALB) displayed on Pichia pastoris cell-surface (Pp-CALB) was characterized in kinetic resolution of sec-alcohols with different structures. The reaction parameters including acyl donors, molar ratio of substrates, solvents and temperatures were examined with 2-octanol as model substrate. 47.4% molar conversion of 2-octanol and 99.7% ee p were obtained after a 5h reaction with Pp-CALB, and 90% of its original activity still remained after being reused for 10 cycles. Pp-CALB was then used to several sec-alcohols and it showed great enzymatic activity and enantioselectivity to all tested sec-alcohols, more than 93.1% of ee p . The enantioselective characteristics of Pp-CALB catalysed sec-alcohols with different structures were compared with Novozyme 435 which was almost the same. Solvent free system as one way of green chemistry was applied to Pp-CALB and Pp-CALB showed great catalytic activity and enantioselectivity. Pp-CALB was potential biocatalyst of high enzymatic activity and enantioselectivity using in resolution of sec-alcohols. Copyright © 2017. Published by Elsevier Inc.

  14. Mechanistic Basis for High Stereoselectivity and Broad Substrate Scope in the (salen)Co(III)-Catalyzed Hydrolytic Kinetic Resolution

    PubMed Central

    Ford, David D.; Nielsen, Lars P. C.; Zuend, Stephan J.; Jacobsen, Eric N.

    2013-01-01

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic, rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR. PMID:24041239

  15. Mechanistic basis for high stereoselectivity and broad substrate scope in the (salen)Co(III)-catalyzed hydrolytic kinetic resolution.

    PubMed

    Ford, David D; Nielsen, Lars P C; Zuend, Stephan J; Musgrave, Charles B; Jacobsen, Eric N

    2013-10-16

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR.

  16. Room-temperature enantioselective C-H iodination via kinetic resolution.

    PubMed

    Chu, Ling; Xiao, Kai-Jiong; Yu, Jin-Quan

    2014-10-24

    Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Copyright © 2014, American Association for the Advancement of Science.

  17. The high-resolution structure of dihydrodipicolinate synthase from Escherichia coli bound to its first substrate, pyruvate

    PubMed Central

    Devenish, Sean R. A.; Gerrard, Juliet A.; Jameson, Geoffrey B.; Dobson, Renwick C. J.

    2008-01-01

    Dihydrodipicolinate synthase (DHDPS) mediates the key first reaction common to the biosynthesis of (S)-lysine and meso-diaminopimelate, molecules which play a crucial cross-linking role in bacterial cell walls. An effective inhibitor of DHDPS would represent a useful antibacterial agent; despite extensive effort, a suitable inhibitor has yet to be found. In an attempt to examine the specificity of the active site of DHDPS, the enzyme was cocrystallized with the substrate analogue oxaloacetate. The resulting crystals diffracted to 2.0 Å resolution, but solution of the protein structure revealed that pyruvate was bound in the active site rather than oxaloacetic acid. Kinetic analysis confirmed that the decarboxy­lation of oxaloacetate was not catalysed by DHDPS and was instead a slow spontaneous chemical process. PMID:19052357

  18. High resolution masks for ion milling pores through substrates of biological interest

    NASA Technical Reports Server (NTRS)

    Donovan, S. S.

    1978-01-01

    The feasibility was investigated of electrochemically oxidizing vapor deposited aluminum coatings to produce porous aluminum oxide coatings with submicron pore diameters and with straight channels normal to the substrate surface. Porous aluminum oxide coatings were produced from vapor deposited aluminum coatings on thin stainless steel (304), copper, Teflon (FEP) and Kapton substrates and also on pure aluminum substrates. Scanning electron microscope examination indicated that porous oxide coatings can be produced with straight channels, appropriate pore diameters and none or minimal intervening residual aluminum. The oxide coatings on the copper and Kapton substrates had the straightest channels and in general were superior to those fabricated on the other substrate materials. For oxide coatings fabricated at 600 V and 300 V, pore diameters were 0.4-0.6, and 0.3 micron with center-to-center spacing of 0.7-0.8, and 0.4 micron, respectively. Estimated direct labor and materials costs to prepare an oxide mask is anticipated to be about $4-$6 per square foot.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosserman, Mary A.; Downey, Theresa; Noinaj, Nicholas

    Baeyer–Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C–C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed usmore » to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.« less

  20. Grain size mapping in shallow rivers using spectral information: a lab spectroradiometry perspective

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2017-10-01

    Every individual attribute of a riverine environment defines the overall spectral signature to be observed by an optical sensor. The spectral characteristic of riverbed is influenced not only by the type but also the roughness of substrates. Motivated by this assumption, potential of optical imagery for mapping grain size of shallow rivers (< 1 m deep) is examined in this research. The previous studies concerned with grain size mapping are all built upon the texture analysis of exposed bed material using very high resolution (i.e. cm resolution) imagery. However, the application of texturebased techniques is limited to very low altitude sensors (e.g. UAVs) to ensure the sufficient spatial resolution. Moreover, these techniques are applicable only in the presence of exposed substrates along the river channel. To address these drawbacks, this study examines the effectiveness of spectral information to make distinction among grain sizes for submerged substrates. Spectroscopic experiments are performed in controlled condition of a hydraulic lab. The spectra are collected over a water flume in a range of water depths and bottoms with several grain sizes. A spectral convolution is performed to match the spectra to WorldView-2 spectral bands. The material type of substrates is considered the same for all the experiments with only variable roughness/size of grains. The spectra observed over dry beds revealed that the brightness/reflectance increases with the grain size across all the spectral bands. Based on this finding, the above-water spectra over a river channel are simulated considering different grain sizes in the bottom. A water column correction method is then used to retrieve the bottom reflectances. Then the inferred bottom reflectances are clustered to segregate among grain sizes. The results indicate high potential of the spectral approach for clustering grain sizes (overall accuracy of 92%) which opens up some horizons for mapping this valuable attribute of rivers using remotely sensed data.

  1. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previouslymore » only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.« less

  2. High resolution track etch autoradiography

    DOEpatents

    Solares, G.; Zamenhof, R.G.

    1994-12-27

    A detector assembly is disclosed for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns. 13 figures.

  3. Composite patterning devices for soft lithography

    DOEpatents

    Rogers, John A.; Menard, Etienne

    2007-03-27

    The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.

  4. Aligned carbon nanotubes patterned photolithographically by silver

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming; Mau, Albert H. W.

    2003-02-01

    Selective growth of aligned carbon nanotubes (CNTs) by pyrolysis of iron (II) phthalocyanine (FePc) on quartz substrate patterned photolithographically by metallic silver has been demonstrated. Micro/nanopattern of aligned CNTs can be achieved by using a photomask with features on a microscale. With convenient use of simple high-contract black and white films as a photomask, aligned nanotubes patterned with 20 μm resolution in large scale can be fabricated. This practical fabrication of aligned CNTs on patterned conducting substrate could be applied to various device applications of CNTs.

  5. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  6. High resolution track etch autoradiography

    DOEpatents

    Solares, Guido; Zamenhof, Robert G.

    1994-01-01

    A detector assembly for use in obtaining alpha-track autoradiographs, the detector assembly including a substantially boron-free substrate; a detector layer deposited on the substantially boron-free substrate, the detector layer being capable of recording alpha particle tracks and exhibiting evidence of the alpha tracks in response to being exposed to an etchant, the detector layer being less than about 2 microns thick; and a protective layer deposited on the detector layer, the protective layer being resistant to the etchant and having a thickness of about 0.5 to 1 microns.

  7. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    NASA Astrophysics Data System (ADS)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel substrate in the Middlebury River, which in turn can be used to help identify local reaches that are most vulnerable to channel adjustment during large flood events.

  8. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM volume data at different levels of resolution can yield comprehensive information, including statistics, morphology and organization of cells and tissue. We predict, that hierarchical imaging will be a first step in tackling the big data issue inevitably connected with volume EM.

  9. Nitrogen-Noble Gas Static Mass Sepectrometry of Genesis Collector Materials

    NASA Astrophysics Data System (ADS)

    Marty, B.; Burnard, P.; Zimmermann, L.; Robert, P.

    2005-03-01

    Gases (N, Ne, Ar) are extracted from Au-coated sapphire and diamond-like carbon collectors using an F2 excimer laser, without blank contributions the substrate. N is purified using a low blank CuO/Cu cycle prior to analysis by high resolution multicollector mass spectrometer.

  10. Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Xu, Chen

    With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.

  11. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.

    PubMed

    Hu, Xiao-Qian; Guo, Peng-Chao; Ma, Jin-Di; Li, Wei-Fang

    2013-11-01

    The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,β-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Å resolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/β)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.

  12. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.

    PubMed

    Bertrand, Thomas; Jolivalt, Claude; Briozzo, Pierre; Caminade, Eliane; Joly, Nathalie; Madzak, Catherine; Mougin, Christian

    2002-06-11

    Laccases are multicopper oxidases that catalyze the oxidation of a wide range of phenols or arylamines, and their use in industrial oxidative processes is increasing. We purified from the white rot fungus Trametes versicolor a laccase that exists as five different isozymes, depending on glycosylation. The 2.4 A resolution structure of the most abundant isozyme of the glycosylated enzyme was solved. The four copper atoms are present, and it is the first crystal structure of a laccase in its active form. The crystallized enzyme binds 2,5-xylidine, which was used as a laccase inducer in the fungus culture. This arylamine is a very weak reducing substrate of the enzyme. The cavity enclosing 2,5-xylidine is rather wide, allowing the accommodation of substrates of various sizes. Several amino acid residues make hydrophobic interactions with the aromatic ring of the ligand. In addition, two charged or polar residues interact with its amino group. The first one is an histidine that also coordinates the copper that functions as the primary electron acceptor. The second is an aspartate conserved among fungal laccases. The purified enzyme can oxidize various hydroxylated compounds of the phenylurea family of herbicides that we synthesized. These phenolic substrates have better affinities at pH 5 than at pH 3, which could be related to the 2,5-xylidine binding by the aspartate. This is the first high-resolution structure of a multicopper oxidase complexed to a reducing substrate. It provides a model for engineering laccases that are either more efficient or with a wider substrate specificity.

  13. Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution.

    PubMed

    Eibinger, Manuel; Zahel, Thomas; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2016-01-01

    Enzymatic hydrolysis of cellulose involves the spatiotemporally correlated action of distinct polysaccharide chain cleaving activities confined to the surface of an insoluble substrate. Because cellulases differ in preference for attacking crystalline compared to amorphous cellulose, the spatial distribution of structural order across the cellulose surface imposes additional constraints on the dynamic interplay between the enzymes. Reconstruction of total system behavior from single-molecule activity parameters is a longstanding key goal in the field. We have developed a stochastic, cellular automata-based modeling approach to describe degradation of cellulosic material by a cellulase system at single-molecule resolution. Substrate morphology was modeled to represent the amorphous and crystalline phases as well as the different spatial orientations of the polysaccharide chains. The enzyme system model consisted of an internally chain-cleaving endoglucanase (EG) as well as two processively acting, reducing and non-reducing chain end-cleaving cellobiohydrolases (CBHs). Substrate preference (amorphous: EG, CBH II; crystalline: CBH I) and characteristic frequencies for chain cleavage, processive movement, and dissociation were assigned from biochemical data. Once adsorbed, enzymes were allowed to reach surface-exposed substrate sites through "random-walk" lateral diffusion or processive motion. Simulations revealed that slow dissociation of processive enzymes at obstacles obstructing further movement resulted in local jamming of the cellulases, with consequent delay in the degradation of the surface area affected. Exploiting validation against evidence from atomic force microscopy imaging as a unique opportunity opened up by the modeling approach, we show that spatiotemporal characteristics of cellulose surface degradation by the system of synergizing cellulases were reproduced quantitatively at the nanometer resolution of the experimental data. This in turn gave useful prediction of the soluble sugar release rate. Salient dynamic features of cellulose surface degradation by different cellulases acting in synergy were reproduced in simulations in good agreement with evidence from high-resolution visualization experiments. Due to the single-molecule resolution of the modeling approach, the utility of the presented model lies not only in predicting system behavior but also in elucidating inherently complex (e.g., stochastic) phenomena involved in enzymatic cellulose degradation. Thus, it creates synergy with experiment to advance the mechanistic understanding for improved application.

  14. Characterization of a novel deep-sea microbial esterase EstC10 and its use in the generation of ( R)-methyl2-chloropropionate

    NASA Astrophysics Data System (ADS)

    Gong, Yanhui; Ma, Sanmei; Wang, Yongfei; Xu, Yongkai; Sun, Aijun; Zhang, Yun; Hu, Yunfeng

    2018-03-01

    A novel esterase EstC10 from Bacillus sp. CX01 isolated from the deep sea of the Western Pacific Ocean and the functionalities of EstC10 was characterized. At present, the reports about the kinetic resolution of racemic methyl 2-chloropropionate were quite rare. So we developed deep-sea microbial esterase EstC10 as a novel biocatalyst in the kinetic resolution of racemic methyl 2-chloropropionate and generate ( R)-methyl 2-chloropropionate with high enantiomeric excess (>99%) after the optimization of process parameters such as pH, temperature, organic co-solvents, surfactants, substrate concentration and reaction time. Notably, the optimal substrate concentration (80 mmol/L) of esterase EstC10 was higher than the kinetic resolution of another esterase, Est12-7 (50 mmol/L). The novel microbial esterase EstC10 identified from the deep sea was a promising green biocatalyst in the generation of ( R)-methyl 2-chloropropionate as well of many other valuable chiral chemicals in industry.

  15. Ultra-High-Speed DNA Fragment Separations Using Microfabricated Capillary Array Electrophoresis Chips

    NASA Astrophysics Data System (ADS)

    Woolley, Adam T.; Mathies, Richard A.

    1994-11-01

    Capillary electrophoresis arrays have been fabricated on planar glass substrates by photolithographic masking and chemical etching techniques. The photolithographically defined channel patterns were etched in a glass substrate, and then capillaries were formed by thermally bonding the etched substrate to a second glass slide. High-resolution electrophoretic separations of φX174 Hae III DNA restriction fragments have been performed with these chips using a hydroxyethyl cellulose sieving matrix in the channels. DNA fragments were fluorescently labeled with dye in the running buffer and detected with a laser-excited, confocal fluorescence system. The effects of variations in the electric field, procedures for injection, and sizes of separation and injection channels (ranging from 30 to 120 μm) have been explored. By use of channels with an effective length of only 3.5 cm, separations of φX174 Hae III DNA fragments from ≈70 to 1000 bp are complete in only 120 sec. We have also demonstrated high-speed sizing of PCR-amplified HLA-DQα alleles. This work establishes methods for high-speed, high-throughput DNA separations on capillary array electrophoresis chips.

  16. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  17. Bed stability in unconfined gravel bed mountain streams: With implications for salmon spawning viability in future climates

    Treesearch

    Jim McKean; Daniele Tonina

    2013-01-01

    Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning...

  18. High-speed MCP anodes for high time resolution low-energy charged particle spectrometers

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Krieger, Amanda

    2017-02-01

    The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1 × 107/s/360°, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 × 106/s/360°. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 × 108/s/360°. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed.

  19. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    NASA Astrophysics Data System (ADS)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  20. Reduced Sampling Size with Nanopipette for Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    PubMed Central

    Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated. PMID:28101441

  1. Bragg projection ptychography on niobium phase domains

    NASA Astrophysics Data System (ADS)

    Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian

    2017-07-01

    Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.

  2. An easy and fast adenosine 5'-diphosphate quantification procedure based on hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry for determination of the in vitro adenosine 5'-triphosphatase activity of the human breast cancer resistance protein ABCG2.

    PubMed

    Wagmann, Lea; Maurer, Hans H; Meyer, Markus R

    2017-10-27

    Interactions with the human breast cancer resistance protein (hBCRP) significantly influence the pharmacokinetic properties of a drug and can even lead to drug-drug interactions. As efflux pump from the ABC superfamily, hBCRP utilized energy gained by adenosine 5'-triphosphate (ATP) hydrolysis for the transmembrane movement of its substrates, while adenosine 5'-diphosphate (ADP) and inorganic phosphate were released. The ADP liberation can be used to detect interactions with the hBCRP ATPase. An ADP quantification method based on hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution tandem mass spectrometry (HR-MS/MS) was developed and successfully validated in accordance to the criteria of the guideline on bioanalytical method validation by the European Medicines Agency. ATP and adenosine 5'-monophosphate were qualitatively included to prevent interferences. Furthermore, a setup consisting of six sample sets was evolved that allowed detection of hBCRP substrate or inhibitor properties of the test compound. The hBCRP substrate sulfasalazine and the hBCRP inhibitor orthovanadate were used as controls. To prove the applicability of the procedure, the effect of amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir on the hBCRP ATPase activity was tested. Nelfinavir, ritonavir, and saquinavir were identified as hBCRP ATPase inhibitors and none of the five HIV protease inhibitors turned out to be an hBCRP substrate. These findings were in line with a pervious publication. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies.

    PubMed

    Rimsa, Vadim; Eadsforth, Thomas C; Joosten, Robbie P; Hunter, William N

    2014-02-01

    A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model-map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1' recognition subsite that suggests specificity towards an acidic substrate.

  4. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate.

    PubMed

    Muhammed, Mufasila M; Alwadai, Norah; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S

    2017-10-04

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga 2 O 3 ) substrate, obtained using a straightforward growth process that does not require a high-cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multiquantum well (MQW) grown on the masked β-Ga 2 O 3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ∼86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  5. Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder.

    PubMed

    Frandsen, Kristian E H; Poulsen, Jens Christian Navarro; Tovborg, Morten; Johansen, Katja S; Lo Leggio, Leila

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.

  6. Lasing and Longitudinal Cavity Modes in Photo-Pumped Deep Ultraviolet AlGaN Heterostructures

    DTIC Science & Technology

    2013-04-29

    of the structures were intentionally doped. The AlGaN composition was determined by triple -axis high-resolution X-ray diffraction measurements. Cross...threshold can be achieved on single crystal AlN substrates. This achievement serves as a starting point towards realizing electrically pumped sub-300 nm UV

  7. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

    PubMed Central

    Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-01-01

    Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678

  8. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    PubMed

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  9. Isolating GaSb membranes grown metamorphically on GaAs substrates using highly selective substrate removal etch processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrova, Olga; Balakrishnan, Ganesh

    2017-02-24

    The etch rates of NH 4OH:H 2O 2 and C 6H 8O 7:H 2O 2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH 4OH:H 2O 2 solution has a greater etch rate differential for the GaSb/GaAs material system than C 6H 8O 7:H 2O 2 solution. The selectivity of NH 4OH:H 2O 2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11471 ± 1691 whereas that of C 6H 8O 7:H 2O 2 has been measured upmore » to 143 ± 2. The etch contrast has been verified by isolating 2 μm thick GaSb epi-layers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high-resolution X-Ray diffraction (HR-XRD) and atomic force microscopy (AFM).« less

  10. Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC

    NASA Astrophysics Data System (ADS)

    Volkova, Anna; Ivantsov, Vladimir; Leung, Larry

    2011-01-01

    The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.

  11. Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts.

    PubMed

    Tomlins, Peter H; Smith, Graham N; Woolliams, Peter D; Rasakanthan, Janarthanan; Sugden, Kate

    2011-04-25

    Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.

  12. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verardi, Raffaello; Kim, Jin-Sik; Ghirlando, Rodolfo

    DHHC enzymes catalyze palmitoylation, a major post-translational modification that regulates a number of key cellular processes. There are up to 24 DHHCs in mammals and hundreds of substrate proteins that get palmitoylated. However, how DHHC enzymes engage with their substrates is still poorly understood. There is currently no structural information about the interaction between any DHHC enzyme and protein substrates. In this study we have investigated the structural and thermodynamic bases of interaction between the ankyrin repeat domain of human DHHC17 (ANK17) and Snap25b. We solved a high-resolution crystal structure of the complex between ANK17 and a peptide fragment ofmore » Snap25b. Through structure-guided mutagenesis, we discovered key residues in DHHC17 that are critically important for interaction with Snap25b. We further extended our finding by showing that the same residues are also crucial for the interaction of DHHC17 with Huntingtin, one of its most physiologically relevant substrates.« less

  13. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B., E-mail: galiev-galib@mail.ru; Grekhov, M. M.; Kitaeva, G. Kh.

    2017-03-15

    The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds thatmore » from similar layers formed on the (100) InP substrates by a factor of 3–5.« less

  14. Structural Determinants of Substrate Recognition in the HAD Superfamily Member D-glycero-D-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.; Wang, L; Huang, H

    2010-01-01

    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB subfamily, was selected for structure-function analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 {angstrom} resolution), in a complex with Mg{supmore » 2+} and orthophosphate (1.8 {angstrom} resolution), and in a complex with Mg{sup 2+} and D-glycero-D-manno-heptose 1{beta},7-bisphosphate (2.2 {angstrom} resolution) were determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to Mg{sup 2+} and orthophosphate (1.7 {angstrom} resolution). The structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within the HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.« less

  15. High-resolution inkjet printing of all-polymer transistor circuits.

    PubMed

    Sirringhaus, H; Kawase, T; Friend, R H; Shimoda, T; Inbasekaran, M; Wu, W; Woo, E P

    2000-12-15

    Direct printing of functional electronic materials may provide a new route to low-cost fabrication of integrated circuits. However, to be useful it must allow continuous manufacturing of all circuit components by successive solution deposition and printing steps in the same environment. We demonstrate direct inkjet printing of complete transistor circuits, including via-hole interconnections based on solution-processed polymer conductors, insulators, and self-organizing semiconductors. We show that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers. High mobilities of 0.02 square centimeters per volt second and on-off current switching ratios of 10(5) were achieved.

  16. Analysis of substrate and plant spectral features of semi-arid shrub communities in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.; Woodward, R. A.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were analyzed to deduce plant density and species composition in three semi-arid shrub-dominated communities of Owens Valley, CA, occurring on either a sand, granite alluvium, or basalt substrate. The high-spectral resolution AIS data were related to spectra obtained with field portable spectrometers, which in turn were related to plant and soil characteristics of the communities. Many of the dominant species have unique spectral features which permit their identification in AIS pixel images. The canopy-induced shadow may be a major factor influencing substrate spectral properties during fall and winter, because of low sun angles. Moreover, changes in spectral signatures following dormancy and leaf senescence tend to decrease contrasts between the plant community and the geologic substrate, also suggesting that fall and winter are a difficult time of year for spectral analyses.

  17. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  18. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE PAGES

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    2016-12-22

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  19. Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper

    NASA Astrophysics Data System (ADS)

    Marsden, A. J.; Phillips, M.; Wilson, N. R.

    2013-06-01

    At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.

  20. High kappa Dielectrics on InGaAs and GaN: Growth, Interfacial Structural Studies, and Surface Fermi Level Unpinning

    DTIC Science & Technology

    2010-12-24

    nano-thick Al2O3, HfO2, and Ga2O3 (Gd2O3)/ InGaAs (and GaN) using high-resolution x-ray reflectivity using in-situ/ex-situ high-resolution synchrotron...aligned inversion-channel In0.75Ga0.25As MOSFETs using MBE- grown Al2O3/ Ga2O3 (Gd2O3) Chips integrating high κ’s/InGaAs and /Ge onto Si substrates have...using molecular beam epitaxy (MBE)-Al2O3/ Ga2O3 (Gd2O3) [GGO] and atomic layer deposited (ALD)-Al2O3, with gate lengths (LG) of 1 μm and 0.4 μm

  1. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  2. Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate

    NASA Astrophysics Data System (ADS)

    Datta, Bianca C.; Savidis, Nickolaos; Moebius, Michael; Jolly, Sundeep; Mazur, Eric; Bove, V. Michael

    2017-02-01

    Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.

  3. High Count-Rate Study of Two TES X-Ray Microcalorimeters With Different Transition Temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; hide

    2017-01-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures T(sub c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T(sub c)(sup s) had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.eV at 6 keV from lower and higher T(sub c) devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the socalled event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96 Percent throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T(sub c) (faster) device, and 5.8 eV FWHM with 97 Percent throughput with the lower T(sub c) (slower) device at 722 Hz.

  4. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    NASA Astrophysics Data System (ADS)

    Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie

    2015-07-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.

  5. Visualizing cellulase activity.

    PubMed

    Bubner, Patricia; Plank, Harald; Nidetzky, Bernd

    2013-06-01

    Commercial exploitation of lignocellulose for biotechnological production of fuels and commodity chemicals requires efficient-usually enzymatic-saccharification of the highly recalcitrant insoluble substrate. A key characteristic of cellulose conversion is that the actual hydrolysis of the polysaccharide chains is intrinsically entangled with physical disruption of substrate morphology and structure. This "substrate deconstruction" by cellulase activity is a slow, yet markedly dynamic process that occurs at different length scales from and above the nanometer range. Little is currently known about the role of progressive substrate deconstruction on hydrolysis efficiency. Application of advanced visualization techniques to the characterization of enzymatic degradation of different celluloses has provided important new insights, at the requisite nano-scale resolution and down to the level of single enzyme molecules, into cellulase activity on the cellulose surface. Using true in situ imaging, dynamic features of enzyme action and substrate deconstruction were portrayed at different morphological levels of the cellulose, thus providing new suggestions and interpretations of rate-determining factors. Here, we review the milestones achieved through visualization, the methods which significantly promoted the field, compare suitable (model) substrates, and identify limiting factors, challenges and future tasks. Copyright © 2013 Wiley Periodicals, Inc.

  6. Crystal structure of substrate free form of glycerol dehydratase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan

    2010-03-08

    Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate withmore » the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.« less

  7. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-02-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules.

  8. Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility.

    PubMed

    Kulik, Natallia; Slámová, Kristýna; Ettrich, Rüdiger; Křen, Vladimír

    2015-01-28

    β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.

  9. Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction.

    PubMed

    Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa

    2015-03-01

    Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

  10. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  11. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  12. Dielectric response and structure of in-plane tensile strained BaTiO3 thin films grown on the LaNiO3 buffered Si substrate

    NASA Astrophysics Data System (ADS)

    Qiao, Liang; Bi, Xiaofang

    2008-02-01

    Highly (001)-textured BaTiO3 films were grown epitaxially on the LaNiO3 buffered Si substrate. A strong in-plane tensile strain has been revealed by using x-ray diffraction and high resolution transmission electron microscopy. The BaTiO3 film has exhibited a small remnant polarization, indicating the presence of ca1/ca2/ca1/ca2 polydomain state in the film. Temperature dependent dielectric permittivity has demonstrated that two phase transitions occurred at respective temperatures of 170 and 30°C. The result was discussed in detail based on the misfit strain-temperature phase diagrams theory.

  13. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  14. Characterization of 3C-SiC Films Grown on 4H- and 6H-SiC Substrate Mesas During Step-Free Surface Heteroepitaxy

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powel J. Anthony; Spry, David J.; Trunek, Andrew J.; Huang, Xianrong; Vetter, William M.; Dudley, Michael; Skowronski, Marek; Liu, Jinqiang

    2002-01-01

    This paper reports detailed structural characterization of 3C-SiC heteroepitaxial films grown on 4H- and 6H-SiC mesa surfaces. 3C-SiC heterofilms grown by the "step-free surface heteroepitaxy" process, free of double-positioning boundary (DPB) and stacking-fault (SF) defects, were compared to less-optimized 3C-SiC heterofilms using High Resolution X-ray Diffraction (HRXRD), High Resolution Cross-sectional Transmission Electron Microscopy (HRXTEM), molten potassium hydroxide (KOH) etching, and dry thermal oxidation. The results suggest that step free surface heteroepitaxy enables remarkably benign partial lattice mismatch strain relief during heterofilm growth.

  15. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs.

    PubMed

    Tirella, Annalisa; Ahluwalia, Arti

    2012-01-01

    Biomolecules and living cells can be printed in high-resolution patterns to fabricate living constructs for tissue engineering. To evaluate the impact of processing cells with rapid prototyping (RP) methods, we modeled the printing phase of two RP systems that use biomaterial inks containing living cells: a high-resolution inkjet system (BioJet) and a lower-resolution nozzle-based contact printing system (PAM(2)). In the first fabrication method, we reasoned that cell damage occurs principally during drop collision on the printing surface, in the second we hypothesize that shear stresses act on cells during extrusion (within the printing nozzle). The two cases were modeled changing the printing conditions: biomaterial substrate stiffness and volumetric flow rate, respectively, in BioJet and PAM(2). Results show that during inkjet printing impact energies of about 10(-8) J are transmitted to cells, whereas extrusion energies of the order of 10(-11) J are exerted in direct printing. Viability tests of printed cells can be related to those numerical simulations, suggesting a threshold energy of 10(-9) J to avoid permanent cell damage. To obtain well-defined living constructs, a combination of these methods is proposed for the fabrication of scaffolds with controlled 3D architecture and spatial distribution of biomolecules and cells. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  16. Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium.

    PubMed

    Gao, Wenyuan; Fan, Haiyang; Chen, Lifeng; Wang, Hualei; Wei, Dongzhi

    2016-07-01

    To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.

  17. P(VDF/TrFE) morphologies and crystalline lamellae orientations dependence on substrates characterized by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Lakbita, Imane; El-Hami, Khalil

    2018-02-01

    Ultra-thin films of the polyvinylidene fluoride and trifluoroethylene (P(VDF/TrFE)) copolymer were elaborated on various different substrates by the spin coating method. The purpose of this paper is to study the P(VDF/TrFE) morphologies and crystalline lamellae orientation dependence on substrates. We chose the potassium chloride (KCl), Sodium Chloride (NaCl) and Potassium Bromide (KBr) with the [110] direction and the highly ordered pyrolytic graphite (HOPG) substrates because they present different crystallographic structures. The atomic force microscopy is used for imaging P(VDF/TrFE) morphologies with nanometer resolution and determining the surface roughness. The analysis of the AFM topography images revealed that the P(VDF/TrFE) film has, almost, the same texture on KCl, NaCl or on KBr substrates and their crystalline lamellae had grown in two preferred orientations. Unlike the HOPG substrate, their crystalline lamellae were entangled, randomly oriented and positioned adjacent to each other. The growth texture of the P(VDF/TrFE) copolymer showed experimentally a strong dependence on substrate types. Since the P(VDF/TrFE) is ferroelectric, piezoelectric and pyroelectric, this finding may lead to potential applications.

  18. Fabrication of Si3N4 thin films on phynox alloy substrates for electronic applications

    NASA Astrophysics Data System (ADS)

    Shankernath, V.; Naidu, K. Lakshun; Krishna, M. Ghanashyam; Padmanabhan, K. A.

    2018-04-01

    Thin films of Si3N4 are deposited on Phynox alloy substrates using radio frequency magnetron sputtering. The thickness of the films was varied between 80-150 nm by increasing the duration of deposition from 1 to 3 h at a fixed power density and working pressure. X-ray diffraction patterns reveal that the Si3N4 films had crystallized inspite of the substrates not being heated during deposition. This was confirmed using selected area electron diffraction and high resolution transmission electron microscopy also. It is postulated that a low lattice misfit between Si3N4 and Phynox provides energetically favourable conditions for ambient temperature crystallization. The hardness of the films is of the order of 6 to 9 GPa.

  19. Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs

    We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.

  20. Glancing angle deposition of sculptured thin metal films at room temperature

    NASA Astrophysics Data System (ADS)

    Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.

    2017-09-01

    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.

  1. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.

    PubMed

    Tirella, Annalisa; Vozzi, Federico; De Maria, Carmelo; Vozzi, Giovanni; Sandri, Tazio; Sassano, Duccio; Cognolato, Livio; Ahluwalia, Arti

    2011-07-01

    The adaptation of inkjet printing technology for the realisation of controlled micro- and nano-scaled biological structures is of great potential in tissue and biomaterial engineering. In this paper we present the Olivetti BioJet system and its applications in tissue engineering and cell printing. BioJet, which employs a thermal inkjet cartridge, was used to print biomolecules and living cells. It is well known that high stresses and forces are developed during the inkjet printing process. When printing living particles (i.e., cell suspensions) the mechanical loading profile can dramatically damage the processed cells. Therefore computational models were developed to predict the velocity profile and the mechanical load acting on a droplet during the printing process. The model was used to investigate the role of the stiffness of the deposition substrate during droplet impact and compared with experimental investigations on cell viability after printing on different materials. The computational model and the experimental results confirm that impact forces are highly dependent on the deposition substrate and that soft and viscous surfaces can reduce the forces acting on the droplet, preventing cell damage. These results have high relevance for cell bioprinting; substrates should be designed to have a good compromise between substrate stiffness to conserve spatial patterning without droplet coalescence but soft enough to absorb the kinetic energy of droplets in order to maintain cell viability. Copyright © 2011. Published by Elsevier B.V.

  2. High-Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.

    2010-11-11

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. Themore » structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.« less

  3. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  4. Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan

    2017-12-01

    Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.

  5. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  6. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  7. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of themore » observed device performance enhancements.« less

  8. Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.

    PubMed

    Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C

    2017-07-01

    An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high-resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.

    PubMed

    Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I

    2005-04-01

    This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.

  10. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  11. Controllable dimension of ZnO nanowalls on GaN/c-Al2O3 substrate by vapor phase epitaxy method.

    PubMed

    Song, W Y; Shin, T I; Kang, S M; Kim, S W; Yang, J H; Park, M H; Yang, C W; Yoon, D H

    2008-09-01

    Vertically well-aligned ZnO nanowalls were successfully synthesized at 950-1050 degrees C. Ar gas was introduced into the furnace at a flow rate of 2000-2500 sccm. An Au thin film with a thickness of 3 nm was used as a catalyst. The ZnO nanowalls were successfully grown on the substrate and most of them had nearly the same thickness and were oriented perpendicular to the substrate. The morphology and chemical composition of the ZnO nanowalls were examined as a function of the growth conditions examined. It was found that the grown ZnO nanowalls have a single-crystalline hexagonal structure and preferred c-axis growth orientation based on the X-ray diffraction and high-resolution transmission electron microscope measurements. The room temperature photoluminescence showed a strong free-exciton emission band with negligible deep level emission, indicating the high optical property of our ZnO nanowall samples.

  12. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    PubMed

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  13. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  14. Formation routes and structural details of the CaF1 layer on Si(111) from high-resolution noncontact atomic force microscopy data

    NASA Astrophysics Data System (ADS)

    Rahe, Philipp; Smith, Emily F.; Wollschläger, Joachim; Moriarty, Philip J.

    2018-03-01

    We investigate the CaF1/Si (111 ) interface using a combination of high-resolution scanning tunneling and noncontact atomic force microscopy operated at cryogenic temperature as well as x-ray photoelectron spectroscopy. Submonolayer CaF1 films grown at substrate temperatures between 550 and 600 ∘C on Si (111 ) surfaces reveal the existence of two island types that are distinguished by their edge topology, nucleation position, measured height, and inner defect structure. Our data suggest a growth model where the two island types are the result of two reaction pathways during CaF1 interface formation. A key difference between these two pathways is identified to arise from the excess species during the growth process, which can be either fluorine or silicon. Structural details as a result of this difference are identified by means of high-resolution noncontact atomic force microscopy and add insights into the growth mode of this heteroepitaxial insulator-on-semiconductor system.

  15. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less

  16. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  17. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  18. Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  19. Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  20. Remarkably High Mobility Thin-Film Transistor on Flexible Substrate by Novel Passivation Material.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2017-04-25

    High mobility thin-film transistor (TFT) is crucial for future high resolution and fast response flexible display. Remarkably high performance TFT, made at room temperature on flexible substrate, is achieved with record high field-effect mobility (μ FE ) of 345 cm 2 /Vs, small sub-threshold slope (SS) of 103 mV/dec, high on-current/off-current (I ON /I OFF ) of 7 × 10 6 , and a low drain-voltage (V D ) of 2 V for low power operation. The achieved mobility is the best reported data among flexible electronic devices, which is reached by novel HfLaO passivation material on nano-crystalline zinc-oxide (ZnO) TFT to improve both I ON and I OFF . From X-ray photoelectron spectroscopy (XPS) analysis, the non-passivated device has high OH-bonding intensity in nano-crystalline ZnO, which damage the crystallinity, create charged scattering centers, and form potential barriers to degrade mobility.

  1. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    PubMed

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  2. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  3. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  4. Fracture behavior of W based materials. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, J.E.

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ``heavy alloy`` and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed inmore » two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general.« less

  5. Nanostructured carbon films with oriented graphitic planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, E. H. T.; Kalish, R.; Kulik, J.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less

  6. Modeling of Multi-Kilovolt X-ray Driven Ablation and Closure of Pinholes during Point-Projection Backlit Imaging

    NASA Astrophysics Data System (ADS)

    Bullock, A. B.; Landen, O. L.; Bradley, D. K.

    2000-10-01

    Pinhole-assisted point-projection backlighting of large samples with few µm pinholes can result in pinhole closure due to x-ray driven ablation of the high Z pinhole substrate, thereby potentially limiting the usefulness of this imaging method. The results of a previous study[1] using streaked 1-D backlit imaging of 25 mm W wires at the OMEGA laser are compared to simulations produced by HYADES, a 1-D Lagrangian hydrodynamics code. Interestingly, the observed image resolution stays fixed while the pinhole transmission drops within 1-2 ns, suggesting rapid filling by a long scale-length of low density substrate material. These results will be compared to time-dependent HYADES predictions of pinhole closure timescales and resolution. 1 A.B. bullock, D.K. Bradley, and O.L. Landen, to be published in RSI (2001). *This work was performed under the auspices of the U.S. Department of Energy by University of California/Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  7. A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index

    NASA Astrophysics Data System (ADS)

    Xu-Feng, Li; Wei, Peng; Ya-Li, Zhao; Qiao, Wang; Ji-Lin, Wei

    2016-03-01

    In this paper, a subwavelength metal-grating assisted sensor of Kretschmann style that is capable of detecting the sample with a refractive index higher than that of the substrate is proposed. The sensor configuration is similar to the traditional Kretschmann structure, but the metal film is pattered into a grating. As a TM-polarized laser beam impinges from the substrate, a resonant dip point in reflectance curve is produced at a certain incident angle. Our studies indicate that the sensing sensitivity and resolution are affected by the grating’s gap and period, and after these parameters have been optimized, a sensing sensitivity of 51.484°/RIU is obtained with a slightly changing resolution. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137005 and 61178067), the Science Foundation of Shanxi Province, China (Grant No. 2013021004-3/2014021021-1), the Pre-studied Project on Weapon Equipment, China (Grant No. 201262401090404), and the Specialized Research Foundation for Doctor of School, China (Grant No. 20122027).

  8. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.

    PubMed

    Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P

    2016-04-21

    Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.

  9. LaF3 insulators for MIS structures

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.; Seiber, B. A.

    1979-01-01

    Thin films of LaF3 deposited on Si or GaAs substrates have been observed to form blocking contacts with very high capacitances. This results in comparatively hysteresis-free and sharp C-V (capacitance-voltage) characteristics for MIS structures. Such structures have been used to study the interface states of GaAs with increased resolution and to construct improved photocapacitive infrared detectors.

  10. Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Le, Dianna M.

    2007-06-01

    Surface-enhanced-Raman-spectroscopy (SERS) can be made an attractive approach for the identification of Raman-active compounds and biological materials (i.e., toxins, viruses, or intact bacterial cells or spores) through development of reproducible, spatially uniform SERS-active substrates. Recently, reproducible (from substrate to substrate), spatially homogeneous (over large areas) SERS-active substrates have been commercialized and are now available in the marketplace. Scanning electron microscopy and high-resolution, tapping-mode atomic force microscopy have been used to analyze these novel plasmonic surfaces for topographical consistency. Additionally, we have assessed, by wavelength-tunable microreflectance spectrometry, the spatial distribution of the localized surface plasmon resonance (LSPR) across a single substrate surface as well as the LSPR λMAX variance from substrate to substrate. These analyses reveal that these surfaces are topologically uniform with small LSPR variance from substrate to substrate. Further, we have utilized these patterned surfaces to acquire SERS spectral signatures of four intact, genetically distinct Bacillus spore species cultivated under identical growth conditions. Salient spectral signature features make it possible to discriminate among these genetically distinct spores. Additionally, partial least squares, a multivariate calibration method, has been used to develop personal-computer-borne algorithms useful for classification of unknown spore samples based solely on SERS spectral signatures. To our knowledge, this is the first report detailing application of these commercially available SERS-active substrates to identification of intact Bacillus spores.

  11. Dynamic kinetic asymmetric cross-benzoin additions of β-stereogenic α-keto esters.

    PubMed

    Goodman, C Guy; Johnson, Jeffrey S

    2014-10-22

    The dynamic kinetic resolution of β-halo α-keto esters via an asymmetric cross-benzoin reaction is described. A chiral N-heterocyclic carbene catalyzes the umpolung addition of aldehydes to racemic α-keto esters. The resulting fully substituted β-halo glycolic ester products are obtained with high levels of enantio- and diastereocontrol. The high chemoselectivity observed is a result of greater electrophilicity of the α-keto ester toward the Breslow intermediate. The reaction products are shown to undergo highly diastereoselective substrate-controlled reduction to give highly functionalized stereotriads.

  12. Dynamic Kinetic Asymmetric Cross-Benzoin Additions of β-Stereogenic α-Keto Esters

    PubMed Central

    2015-01-01

    The dynamic kinetic resolution of β-halo α-keto esters via an asymmetric cross-benzoin reaction is described. A chiral N-heterocyclic carbene catalyzes the umpolung addition of aldehydes to racemic α-keto esters. The resulting fully substituted β-halo glycolic ester products are obtained with high levels of enantio- and diastereocontrol. The high chemoselectivity observed is a result of greater electrophilicity of the α-keto ester toward the Breslow intermediate. The reaction products are shown to undergo highly diastereoselective substrate-controlled reduction to give highly functionalized stereotriads. PMID:25299730

  13. Bed texture mapping in large rivers using recreational-grade sidescan sonar

    USGS Publications Warehouse

    Hamill, Daniel; Wheaton, Joseph M.; Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.

    2017-01-01

    The size-distribution and spatial organization of bed sediment, or bed ‘texture’, is a fundamental attribute of natural channels and is one important component of the physical habitat of aquatic ecosystems. ‘Recreational-grade’ sidescan sonar systems now offer the possibility of imaging, and subsequently quantifying bed texture at high resolution with minimal cost, or logistical effort. We are investigating the possibility of using sidescan sonar sensors on commercially available ‘fishfinders’ for within-channel bed-sediment characterization of mixed sand-gravel riverbeds in a debris-fan dominated canyon river. We analyzed repeat substrate mapping of data collected before and after the November 2014 High Flow Experiment on the Colorado River in lower Marble Canyon, Arizona. The mapping analysis resulted in sufficient spatial coverage (e.g. reach) and resolutions (e.g. centrimetric) to inform studies of the effects of changing bed substrates on salmonid spawning on large rivers. From this preliminary study, we argue that the approach could become a tractable and cost-effective tool for aquatic scientists to rapidly obtain bed texture maps without specialized knowledge of hydroacoustics. Bed texture maps can be used as a physical input for models relating ecosystem responses to hydrologic management.

  14. Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.

    PubMed

    Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward

    2012-06-21

    We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.

  15. Crystal defects in solar cells produced by the method of thermomigration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozovskii, V. N.; Lomov, A. A.; Lunin, L. S.

    2017-03-15

    The results of studying the crystal structure of regions in silicon, recrystallized during the course of thermomigration of the liquid Si–Al zone in the volume of the silicon substrate, are reported (similar regions doped with an acceptor impurity are used to obtain high-voltage solar cells). X-ray methods (including measurements of both diffraction-reflection curves and topograms) and also high-resolution electron microscopy indicate that single-crystal regions in the form of a series of thin strips or rectangular grids are formed as a result of the thermomigration of liquid zones. Dislocation half-loops are detected in the surface layers of the front and backmore » surfaces of the substrate. (311)-type defects are observed in the recrystallized regions.« less

  16. STM studies of GeSi thin layers epitaxially grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  17. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin D.; Chabak, Kelson D.; Vasilyev, Vladimir; Look, David C.; Boeckl, John J.; Brown, Jeff L.; Tetlak, Stephen E.; Green, Andrew J.; Moser, Neil A.; Crespo, Antonio; Thomson, Darren B.; Fitch, Robert C.; McCandless, Jonathan P.; Jessen, Gregg H.

    2017-07-01

    Si-doped Ga2O3 thin films were fabricated by pulsed laser deposition on semi-insulating (010) β-Ga2O3 and (0001) Al2O3 substrates. Films deposited on β-Ga2O3 showed single crystal, homoepitaxial growth as determined by high resolution transmission electron microscopy and x-ray diffraction. Corresponding films deposited on Al2O3 were mostly single phase, polycrystalline β-Ga2O3 with a preferred (20 1 ¯ ) orientation. An average conductivity of 732 S cm-1 with a mobility of 26.5 cm2 V-1 s-1 and a carrier concentration of 1.74 × 1020 cm-3 was achieved for films deposited at 550 °C on β-Ga2O3 substrates as determined by Hall-Effect measurements. Two orders of magnitude improvement in conductivity were measured using native substrates versus Al2O3. A high activation efficiency was obtained in the as-deposited condition. The high carrier concentration Ga2O3 thin films achieved by pulsed laser deposition enable application as a low resistance ohmic contact layer in β-Ga2O3 devices.

  18. Transfer printing of thermoreversible ion gels for flexible electronics.

    PubMed

    Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel

    2013-10-09

    Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 μm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.

  19. Structural characterization and gas reactions of small metal particles by high-resolution TEM and TED

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.

  20. Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1979-01-01

    The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.

  1. Integration of myocardial scar identified by preoperative delayed contrast-enhanced MRI into a high-resolution mapping system for planning and guidance of VT ablation procedures

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.

    2017-03-01

    Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.

  2. X-ray Photoelectron Spectroscopy as a tool to investigate silane-based coatings for the protection of outdoor bronze: The role of alloying elements

    NASA Astrophysics Data System (ADS)

    Masi, G.; Balbo, A.; Esvan, J.; Monticelli, C.; Avila, J.; Robbiola, L.; Bernardi, E.; Bignozzi, M. C.; Asensio, M. C.; Martini, C.; Chiavari, C.

    2018-03-01

    Application of a protective coating is the most widely used conservation treatment for outdoor bronzes (cast Cu-Sn-Zn-Pb-Sb alloys). However, improving coating protectiveness requires detailed knowledge of the coating/substrate chemical bonding. This is particularly the case for 3-mercapto-propyl-trimethoxy-silane (PropS-SH) applied on bronze, exhibiting a good protective behaviour in outdoor simulated conditions. The present work deals with X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (FEG-SEM + FIB (Focused Ion Beam)) characterization of a thin PropS-SH film on bronze. In particular, in order to better understand the influence of alloying elements on coating performance, PropS-SH was studied first on pure Cu and Sn substrates then on bronzes with increasing alloy additions: Cu8Sn as well as a quinary Cu-Sn-Zn-Pb-Sb bronze. Moreover, considering the real application of this coating on historical bronze substrates, previously artificially aged ("patinated") bronze samples were prepared and a comparison between bare and "patinated" quinary bronzes was performed. In the case of coated quinary bronze, the free surface of samples was analysed by High Resolution Photoelectron Spectroscopy using Synchrotron Radiation (HR-SRPES) at ANTARES (Synchrotron SOLEIL), which offers a higher energy and lateral resolution. By compiling complementary spectroscopic and imaging information, a deeper insight into the interactions between the protective coating and the bronze substrate was achieved.

  3. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin; Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holesmore » resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.« less

  4. Research with Large Area Imaging X-Ray Telescope Sounding Rocket Program

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1999-01-01

    We are engaged in a program to develop focussing hard X-ray telescopes in a double conical or Wolter 1 geometry that function up to 100 keV by employing small graze angles and multilayer coatings. Directly polished substrates are not an option because they are too thick to be nested efficiently. The only alternative is to fabricate the very thin substrates by replication. Our objective is the production of integral cylindrical substrates because they should result in better angular resolution than segmented foil geometries. In addition, integral cylinders would be more resistant to possible stress from deep multilayer coatings than segmented ones. Both electroforming of nickel (method of SkX, JET-X, and XMM) and epoxy replication are under consideration. Both processes can utilize the same types of mandrels and separation agents- While electroforming can produce substrates that are thin, the high density of the nickel may result in high weight optics for some missions. For convenience, experimentation with replication and coating is being carried out initially on flats. Our replication studies include trials with gold and carbon separation agents. This paper reports on our efforts with epoxy replicated optics.

  5. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1993-12-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. Concentrtion was on epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer involves creating a nonuniform substrate surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate temperature. Growth is investigated with the use of a patterned spacer (either a Ga or Si substrate) placed in-between the substrate and its heater. The temperature distribution on such wafers is used to guide our experiments. A reflectivity measurement apparatus that is capable of mapping a 2 in. wafer with a 100 microns diameter resolution was built for diagnosing our wafers. In this first six-month report, our calculations, the various experimental results, and a discussion on future directions are presented.

  6. Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor

    NASA Astrophysics Data System (ADS)

    Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan

    2018-05-01

    Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.

  7. Structural characteristics of a non-polar ZnS layer on a ZnO buffer layer formed on a sapphire substrate by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui

    2018-06-01

    ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.

  8. Creation of economical and robust large area MCPs by ALD method for photodetectors

    NASA Astrophysics Data System (ADS)

    Mane, Anil U.; Elam, Jeffrey W.; Wagner, Robert G.; Siegmund, Oswald H. W.; Minot, Michael J.

    2016-09-01

    We report a cost-effective and production achievable path to fabricate robust large-area microchannel plates (MCPs), which offers the new prospect for larger area MCP-based detector technologies. We used atomic Layer Deposition (ALD), a thin film growth technique, to independently adjust the desired electrical resistance and secondary electron emission (SEE) properties of low cost borosilicate glass micro-capillary arrays (MCAs). These capabilities allow a separation of the substrate material properties from the signal amplification properties. This methodology enables the functionalization of microporous, highly insulating MCA substrates to produce sturdy, large format MCPs with unique properties such as high gain (<107/MCP pair), low background noise, 10ps time resolution, sub-micron spatial resolution and excellent stability after only a short (2-3days) scrubbing time. The ALD self-limiting growth mechanism allows atomic level control over the thickness and composition of resistive and secondary electron emission (SEE) layers that can be deposited conformally on high aspect ratio ( 100) capillary glass arrays. We have developed several robust and consistent production doable ALD processes for the resistive coatings and SEE layers to give us precise control over the MCP parameters. Further, the adjustment of MCPs resistance by tailoring the ALD material composition permits the use of these MCPs at high or low temperature detector applications. Here we discuss ALD method for MCP functionalization and a variety of MCP testing results.

  9. Towards a neural circuit model of verbal humor processing: an fMRI study of the neural substrates of incongruity detection and resolution.

    PubMed

    Chan, Yu-Chen; Chou, Tai-Li; Chen, Hsueh-Chih; Yeh, Yu-Chu; Lavallee, Joseph P; Liang, Keng-Chen; Chang, Kuo-En

    2013-02-01

    The present study builds on our previous study within the framework of Wyer and Collin's comprehension-elaboration theory of humor processing. In this study, an attempt is made to segregate the neural substrates of incongruity detection and incongruity resolution during the comprehension of verbal jokes. Although a number of fMRI studies have investigated the incongruity-resolution process, the differential neurological substrates of comprehension are still not fully understood. The present study utilized an event-related fMRI design incorporating three conditions (unfunny, nonsensical and funny) to examine distinct brain regions associated with the detection and resolution of incongruities. Stimuli in the unfunny condition contained no incongruities; stimuli in the nonsensical condition contained irresolvable incongruities; and stimuli in the funny condition contained resolvable incongruities. The results showed that the detection of incongruities was associated with greater activation in the right middle temporal gyrus and right medial frontal gyrus, and the resolution of incongruities with greater activation in the left superior frontal gyrus and left inferior parietal lobule. Further analysis based on participants' rating scores provided converging results. Our findings suggest a three-stage neural circuit model of verbal humor processing: incongruity detection and incongruity resolution during humor comprehension and inducement of the feeling of amusement during humor elaboration. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.

  11. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.

    PubMed

    Kreituss, Imants; Bode, Jeffrey W

    2016-12-20

    The preparation of enantioenriched chiral compounds by kinetic resolution dates back to the laboratories of Louis Pasteur in the middle of the 19th century. Unlike asymmetric synthesis, this process can always deliver enantiopure material (ee > 99%) if the reactions are allowed to proceed to sufficient conversion and the selectivity of the process is not unity (s > 1). One of the most appealing and practical variants is acylative kinetic resolution, which affords easily separable reaction products, and several highly efficient enzymatic and small molecule catalysts are available. Unfortunately, this method is applicable to limited substrate classes such as alcohols and primary benzylamines. This Account focuses on our work in catalytic acylative kinetic resolution of saturated N-heterocycles, a class of molecules that has been notoriously difficult to access via asymmetric synthesis. We document the development of hydroxamic acids as suitable catalysts for enantioselective acylation of amines through relay catalysis. Alongside catalyst optimization and reaction development, we present mechanistic studies and theoretical calculation accounting for the origins of selectivity and revealing the concerted nature of many amide-bond forming reactions. Immobilization of the hydroxamic acid to form a polymer supported reagent allows simplification of the experimental setup, improvement in product purification, and extension of the substrate scope. The kinetic resolutions are operationally straight forward: reactions proceed at room temperature and open to air conditions, without generation of difficult-to-remove side products. This was utilized to achieve decagram scale resolution of antimalarial drug mefloquine to prepare more than 50 g of (+)-erythro-meflqouine (er > 99:1) from the racemate. The immobilized quasienantiomeric acyl hydroxamic acid reagents were also exploited for a rare practical implementation of parallel kinetic resolution that affords both enantiomers of the amine products in high enantiopurity. The success of this process relied on identification of two cleavable acyl groups alongside implementation of flow-chemistry techniques to ensure reusability of the resolving agents. The work discussed in this Account has laid foundations for new catalyst design as well as development of desymmetrization and dynamic kinetic resolution processes. In the meantime, as all the requisite reagents are commercially available, we hope that hydroxamic acid promoted acylative kinetic resolution will become a method of choice for preparation of saturated N-heterocycles in enantiopure form.

  12. Effect of substrate roughness on D spacing supports theoretical resolution of vapor pressure paradox.

    PubMed Central

    Tristram-Nagle, S; Petrache, H I; Suter, R M; Nagle, J F

    1998-01-01

    The lamellar D spacing has been measured for oriented stacks of lecithin bilayers prepared on a variety of solid substrates and hydrated from the vapor. We find that, when the bilayers are in the L(alpha) phase near 100% relative humidity, the D spacing is consistently larger when the substrate is rougher than when it is smooth. The differences become smaller as the relative humidity is decreased to 80% and negligible differences are seen in the L(beta') phase. Our interpretation is that rough substrates frustrate the bilayer stack energetically, thereby increasing the fluctuations, the fluctuational repulsive forces, and the water spacing compared with stacks on smooth surfaces. This interpretation is consistent with and provides experimental support for a recently proposed theoretical resolution of the vapor pressure paradox. PMID:9512038

  13. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  14. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  15. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic solvents.

    PubMed

    Ng, I-Son; Tsai, Shau-Wei

    2005-01-05

    For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate. (c) 2004 Wiley Periodicals, Inc.

  16. Mass spectrometric imaging and laser desorption ionization (LDI) with ice as a matrix using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Berry, Jamal Ihsan

    The desorption of biomolecules from frozen aqueous solutions on metal substrates with femtosecond laser pulses is presented for the first time. Unlike previous studies using nanosecond pulses, this approach produces high quality mass spectra of biomolecules repeatedly and reproducibly. This novel technique allows analysis of biomolecules directly from their native frozen environments. The motivation for this technique stems from molecular dynamics computer simulations comparing nanosecond and picosecond heating of water overlayers frozen on Au substrates which demonstrate large water cluster formation and ejection upon substrate heating within ultrashort timescales. As the frozen aqueous matrix and analyte molecules are transparent at the wavelengths used, the laser energy is primarily absorbed by the substrate, causing rapid heating and explosive boiling of the ice overlayer, followed by the ejection of ice clusters and the entrained analyte molecule. Spectral characteristics at a relatively high fluence of 10 J/cm 2 reveal the presence of large molecular weight metal clusters when a gold substrate is employed, with smaller cluster species observed from frozen aqueous solutions on Ag, Cu, and Pb substrates. The presence of the metal clusters is indicative of an evaporative cooling mechanism which stabiles cluster ion formation and the ejection of biomolecules from frozen aqueous solutions. Solvation is necessary as the presence of metal clusters and biomolecular ion signals are not observed from bare metal substrates in absence of the frozen overlayer. The potential for mass spectrometric imaging with femtosecond LDI of frozen samples is also presented. The initial results for the characterization of peptides and peptoids linked to combinatorial beads frozen in ice and the assay of frozen brain tissue from the serotonin transporter gene knockout mouse via LDI imaging are discussed. Images of very good quality and resolution are obtained with 400 nm, 200 fs pulses at a fluence of 1.25 J/cm2 . An attractive feature of this technique is that images are acquired within minutes for large sample areas. Additionally, the images obtained with femtosecond laser desorption are high in lateral resolution with the laser capable of being focused to a spot size of 30 mum. Femtosecond laser desorption from ice is unique in that unlike matrix assisted laser desorption ionization mass spectrometry, it does not employ an organic UV absorbing matrix to desorb molecular ions. Instead, the laser energy is absorbed by the metal substrate causing explosive boiling and ejection of the frozen overlayer. This approach is significant in that femtosecond laser desorption possess the potential of analyzing and assaying biomolecules directly from their frozen native environments. This technique was developed to compliment existing ToF-SIMS imaging capability for analysis of tissue and cells, as well as other biological systems of interest.

  17. Electron beam controlled covalent attachment of small organic molecules to graphene

    NASA Astrophysics Data System (ADS)

    Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena

    2016-01-01

    The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. Electronic supplementary information (ESI) available: A table showing the calculated binding energies and magnetic moments for all studied molecular radicals; details of samples preparation and characterization; time series of TEM images showing transformations of a C24Cl12 molecule on graphene under electron irradiation. See DOI: 10.1039/c5nr07539d

  18. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  19. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis.

    PubMed

    Yamashita, A; Kato, H; Wakatsuki, S; Tomizaki, T; Nakatsu, T; Nakajima, K; Hashimoto, T; Yamada, Y; Oda, J

    1999-06-15

    Tropinone reductase-II (TR-II) catalyzes the NADPH-dependent reduction of the carbonyl group of tropinone to a beta-hydroxyl group. The crystal structure of TR-II complexed with NADP+ and pseudotropine (psi-tropine) has been determined at 1.9 A resolution. A seven-residue peptide near the active site, disordered in the unliganded structure, is fixed in the ternary complex by participation of the cofactor and substrate binding. The psi-tropine molecule is bound in an orientation which satisfies the product configuration and the stereochemical arrangement toward the cofactor. The substrate binding site displays a complementarity to the bound substrate (psi-tropine) in its correct orientation. In addition, electrostatic interactions between the substrate and Glu156 seem to specify the binding position and orientation of the substrate. A comparison between the active sites in TR-II and TR-I shows that they provide different van der Waals surfaces and electrostatic features. These differences likely contribute to the correct binding mode of the substrates, which are in opposite orientations in TR-II and TR-I, and to different reaction stereospecificities. The active site structure in the TR-II ternary complex also suggests that the arrangement of the substrate, cofactor, and catalytic residues is stereoelectronically favorable for the reaction.

  20. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    PubMed

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  1. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities.

    PubMed

    Neumann, Piotr; Tittmann, Kai

    2014-12-01

    Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  3. Silicon thin-film transistor backplanes on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  4. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  5. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.

    PubMed

    Breyer, Tobias; Wanke, Isabel; Maderwald, Stefan; Woermann, Friedrich G; Kraff, Oliver; Theysohn, Jens M; Ebner, Alois; Forsting, Michael; Ladd, Mark E; Schlamann, Marc

    2010-04-01

    Focal epilepsies potentially can be cured by neurosurgery; other treatment options usually remain symptomatic. High-resolution magnetic resonance (MR) imaging is the central imaging strategy in the evaluation of focal epilepsy. The most common substrate of temporal epilepsies is hippocampal sclerosis (HS), which cannot always be sufficiently characterized with current MR field strengths. Therefore, the purpose of our study was to demonstrate the feasibility of high-resolution MR imaging at 7 Tesla in patients with focal epilepsy resulting from a HS and to improve image resolution at 7 Tesla in patients with HS. Six patients with known HS were investigated with T1-, T2-, T2(*)-, and fluid-attenuated inversion recovery-weighted sequences at 7 Tesla with an eight-channel transmit-receive head coil. Total imaging time did not exceed 90 minutes per patient. High-resolution imaging at 7 Tesla is feasible and reveals high resolution of intrahippocampal structures in vivo. HS was confirmed in all patients. The maximum non-interpolated in-plane resolution reached 0.2 x 0.2 mm(2) in T2(*)-weighted images. The increased susceptibility effects at 7 Tesla revealed identification of intrahippocampal structures in more detail than at 1.5 Tesla, but otherwise led to stronger artifacts. Imaging revealed regional differences in hippocampal atrophy between patients. The scan volume was limited because of specific absorption rate restrictions, scanning time was reasonable. High-resolution imaging at 7 Tesla is promising in presurgical epilepsy imaging. "New" contrasts may further improve detection of even very small intrahippocampal structural changes. Therefore, further investigations will be necessary to demonstrate the potential benefit for presurgical selection of patients with various lesion patterns in mesial temporal epilepsies resulting from a unilateral HS. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  6. Print-to-pattern dry film photoresist lithography

    NASA Astrophysics Data System (ADS)

    Garland, Shaun P.; Murphy, Terrence M., Jr.; Pan, Tingrui

    2014-05-01

    Here we present facile microfabrication processes, referred to as print-to-pattern dry film photoresist (DFP) lithography, that utilize the combined advantages of wax printing and DFP to produce micropatterned substrates with high resolution over a large surface area in a non-cleanroom setting. The print-to-pattern methods can be performed in an out-of-cleanroom environment making microfabrication much more accessible to minimally equipped laboratories. Two different approaches employing either wax photomasks or wax etchmasks from a solid ink desktop printer have been demonstrated that allow the DFP to be processed in a negative tone or positive tone fashion, respectively, with resolutions of 100 µm. The effect of wax melting on resolution and as a bonding material was also characterized. In addition, solid ink printers have the capacity to pattern large areas with high resolution, which was demonstrated by stacking DFP layers in a 50 mm × 50 mm woven pattern with 1 mm features. By using an office printer to generate the masking patterns, the mask designs can be easily altered in a graphic user interface to enable rapid prototyping.

  7. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  8. III-V compound semiconductor material characterization of microstructures and nanostructures on various optoelectronic devices with analytical transmission electron microscopy and high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Analytical Transmission Electron Microscopy (TEM) and High Resolution Electron Microscopy have been carried out to characterize microstructures and nanostructures in various III-V compound semiconductor devices by metalorganic chemical vapor deposition (MOCVD). The low-defect GaN nonplanar templates by lateral epitaxial overgrowth (LEO) has a trapezoidal cross-section with smooth (0001) and {112¯2} facets. Penetration of threading dislocations (TDs) beyond mask windows is observed in ordinary LEO substrates. In two-step LEO substrates, where TDs are engineered to bend 90° in the TD bending layer after the first LEO step, only perfect a-type dislocations with Burgers vector b = 1/3 <112¯0> are generated in the upper Post-bending layer with a density of ˜8 x 107cm-2. The demonstrated 3-dimensional dislocation spatial distribution in the LEO nonplanar substrate substantiates the dislocation reaction mechanism. Al0.07GaN/GaN superlattice can further decrease dislocations. InGaN QW thickness enhancement on top of GaN nonplanar templates has been verified to influence the optoelectronic properties significantly. Dense arrays of hexagonally ordered MOCVD-grown (In)(Ga)As nano-QDs by block copolymer nanolithography & selective area growth (SAG), approximately 20nm in diameter and 40nm apart with a density of 1011/cm 2, are perfect crystals by TEM. V-shaped defects and worse InAs growth uniformity have been observed in multiple layers of vertically coupled self-assembled InAs nanostructure arrays on strain-modulated GaAs substrates. TEM shows a smooth coalesced GaN surface with a thickness as thin as ˜200nm after Nano-LEO and a defect reduction of 70%-75%. The (In)GaAs 20 nm twist bonded compliant substrates have almost no compliant effect and higher dislocation density, but the 10nm compliant substrates are on the contrary. A 60nm oxygen-infiltrated crystallized transition layer is observed between the amorphous oxidized layer and the crystallized unoxidized aperture in Al xGa1-xAs wet lateral oxidation, potentially influencing the current confinement characteristic of the sub-micron oxide aperture. Almost no dislocation is aroused by the wet lateral oxidation of In0.52Al 0.48As in the InP microresonator waveguides. XTEM was performed to compare InP SAG regions with 10˜50mum masks, which shows the performance deterioration of laser threshold current densities in the case of 50mum mask results from high density of dislocations induced from the highly strained QW structures caused by the high enhancements.

  9. Recent advances in biotechnological applications of alcohol dehydrogenases.

    PubMed

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  10. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; ...

    2015-11-05

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  11. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Han, Seunghoon

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  12. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  13. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  14. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-06-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  15. Laser interferometry for the determination of thickness distributions of low absorbing films and their spatial and thickness resolutions.

    PubMed

    Mishima, T; Kao, K C

    1982-03-15

    New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.

  16. Characterization of (Ba(0.5)Sr(0.5)) TiO3 Thin Films for Ku-Band Phase Shifters

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Fredrick W.; Romanofsky, Robert R.; Miranda, Felix A.; Warner, Joseph D.; Canedy, Chadwick L.; Ramesh, Rammamoorthy

    1999-01-01

    The microstructural properties of (Ba(0.5)Sr(0.5)TiO3) (BSTO) thin films (300, 700, and 1400 nm thick) deposited on LaAlO3 (LAO) substrates were characterized using high-resolution x-ray diffractometry. Film crystallinity was the parameter that most directly influenced tunability, and we observed that a) the crystalline quality was highest in the thinnest film and progressively degraded with increasing film thickness; and b) strain at the film/substrate interface was completely relieved via dislocation formation. Paraelectric films such as BSTO offer an attractive means of incorporating low-cost phase shifter circuitry into beam-steerable reflectarray antennas.

  17. Removal of GaAs growth substrates from II-VI semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.

    2014-04-01

    We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.

  18. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  19. microclim: Global estimates of hourly microclimate based on long-term monthly climate averages

    PubMed Central

    Kearney, Michael R; Isaac, Andrew P; Porter, Warren P

    2014-01-01

    The mechanistic links between climate and the environmental sensitivities of organisms occur through the microclimatic conditions that organisms experience. Here we present a dataset of gridded hourly estimates of typical microclimatic conditions (air temperature, wind speed, relative humidity, solar radiation, sky radiation and substrate temperatures from the surface to 1 m depth) at high resolution (~15 km) for the globe. The estimates are for the middle day of each month, based on long-term average macroclimates, and include six shade levels and three generic substrates (soil, rock and sand) per pixel. These data are suitable for deriving biophysical estimates of the heat, water and activity budgets of terrestrial organisms. PMID:25977764

  20. Microclim: Global estimates of hourly microclimate based on long-term monthly climate averages.

    PubMed

    Kearney, Michael R; Isaac, Andrew P; Porter, Warren P

    2014-01-01

    The mechanistic links between climate and the environmental sensitivities of organisms occur through the microclimatic conditions that organisms experience. Here we present a dataset of gridded hourly estimates of typical microclimatic conditions (air temperature, wind speed, relative humidity, solar radiation, sky radiation and substrate temperatures from the surface to 1 m depth) at high resolution (~15 km) for the globe. The estimates are for the middle day of each month, based on long-term average macroclimates, and include six shade levels and three generic substrates (soil, rock and sand) per pixel. These data are suitable for deriving biophysical estimates of the heat, water and activity budgets of terrestrial organisms.

  1. High-density patterned media fabrication using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ye, Zhengmao; Ramos, Rick; Brooks, Cynthia; Simpson, Logan; Fretwell, John; Carden, Scott; Hellebrekers, Paul; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2011-04-01

    The Jet and Flash Imprint Lithography (J-FIL®) process uses drop dispensing of UV curable resists for high resolution patterning. Several applications, including patterned media, are better, and more economically served by a full substrate patterning process since the alignment requirements are minimal. Patterned media is particularly challenging because of the aggressive feature sizes necessary to achieve storage densities required for manufacturing beyond the current technology of perpendicular recording. In this paper, the key process steps for the application of J-FIL to pattern media fabrication are reviewed with special attention to substrate cleaning, vapor adhesion of the adhesion layer and imprint performance at >300 disk per hour. Also discussed are recent results for imprinting discrete track patterns at half pitches of 24nm and bit patterned media patterns at densities of 1 Tb/in2.

  2. Preliminary Analysis of AIS Spectral Data Acquired from Semi-arid Shrub Communities in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Ustin, S. L.; Rock, B. N.

    1985-01-01

    Spectral characteristics of semic-arid plant communities using 128 channel airborne imaging spectrometer (AIS) data acquired on October 30, 1984. Both field and AIS spectra of vegetation were relatively featureless and differed from substrate spectra primarily in albedo. Unvegetated sand dunes were examined to assess spectral variation resulting from topographic irregularity. Although shrub cover as low as 10% could be detected on relatively flat surfaces, such differences were obscured in more heterogeneous terrain. Sagebrush-covered fans which had been scarred by fire were studied to determine the effect of changes in plant density on reflectance. Despite noise in the atmospherically corrected spectra, these provide better resolution of differences in plant density than spectra which are solar-corrected only. A high negative correlation was found between reflectance and plant cover in areas which had uniform substrates and vegetation types. A lower correlation was found where vegetation and substrates were more diverse.

  3. Cathodoluminescent characteristics and light technical parameters of thin-film screens based on oxides and oxysulfides of rare-earth elements

    NASA Astrophysics Data System (ADS)

    Bondar, Vyacheslav D.; Grytsiv, Myroslav; Groodzinsky, Arkady; Vasyliv, Mykhailo

    1995-11-01

    Results on creation of thin-film single-crystal high-resolution screens with energy control of luminescence color are presented. In order to create phosphor films ion-plasma technology for deposition of yttrium and lanthanum oxides and oxysulfides activated by rare earth elements has been developed. The screen consists of phosphor film on phosphor substrate with different colors of luminescence (e.g. Y2O3-Eu film with red color on Y3Al5O12- Tb, Ce substrate with green color of luminescence). Electron irradiation causes luminescence with color that depends on energy of the electron beam. The physical reason for color change is that electron beam energy defines electron penetration depth. If the energy is weak, only the film is excited. More powerful beam penetrates into the substrate and thus changes the color of luminescence.

  4. Microstructures and Microhardness Properties of CMSX-4® Additively Fabricated Through Scanning Laser Epitaxy (SLE)

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Holenarasipura Raghu, Shashank; Das, Suman

    2017-12-01

    Epitaxial CMSX-4® deposition is achieved on CMSX-4® substrates through the scanning laser epitaxy (SLE) process. A thorough analysis is performed using various advanced material characterization techniques, namely high-resolution optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and Vickers microhardness measurements, to characterize and compare the quality of the SLE-fabricated CMSX-4® deposits to the CMSX-4® substrates. The results show that the CMSX-4® deposits have smaller primary dendritic arm spacing, finer γ/ γ' size, weaker elemental segregation, and higher microhardness compared to the investment cast CMSX-4® substrates. The results presented here demonstrate that CMSX-4® is an attractive material for laser-based AM processing and, therefore, can be used in the fabrication of gas turbine hot-section components through AM processing.

  5. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.

    PubMed

    Wu, Fei; Minteer, Shelley

    2015-02-02

    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Transaminases for the synthesis of enantiopure beta-amino acids

    PubMed Central

    2012-01-01

    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122

  7. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site.

  8. Conformational Flexibility of Metazoan Fatty Acid Synthase Enables Catalysis

    PubMed Central

    Brignole, Edward J.; Smith, Stuart; Asturias, Francisco J.

    2008-01-01

    The metazoan cytosolic fatty acid synthase (FAS) contains all of the enzymes required for de novo fatty acid biosynthesis covalently linked around two reaction chambers. While the 3D architecture of FAS has been mostly defined, it is unclear how reaction intermediates can transfer between distant catalytic domains. Using single-particle electron microscopy we have identified a near continuum of conformations consistent with remarkable flexibility of FAS. The distribution of conformations was influenced by the presence of substrates and altered by different catalytic mutations suggesting a direct correlation between conformation and specific enzymatic activities. 3D reconstructions were interpreted by docking high-resolution structures of individual domains and illustrate that the substrate loading and condensation domains dramatically swing and swivel to access substrates within either reaction chamber. Concomitant rearrangement of the β-carbon processing domains synchronizes acyl-chain reduction in one chamber with acyl-chain elongation in the other. PMID:19151726

  9. Characterization of High Ge Content SiGe Heterostructures and Graded Alloy Layers Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Heyd, A. R.; Alterovitz, S. A.; Croke, E. T.

    1995-01-01

    Si(x)Ge(1-x)heterostructures on Si substrates have been widely studied due to the maturity of Si technology. However, work on Si(x)Ge)1-x) heterostructures on Ge substrates has not received much attention. A Si(x)Ge(1-x) layer on a Si substrate is under compressive strain while Si(x)Ge(1-x) on Ge is under tensile strain; thus the critical points will behave differently. In order to accurately characterize high Ge content Si(x)Ge(1-x) layers the energy shift algorithm used to calculate alloy compositions, has been modified. These results have been used along with variable angle spectroscopic ellipsometry (VASE) measurements to characterize Si(x)Ge(1-x)/Ge superlattices grown on Ge substrates. The results agree closely with high resolution x-ray diffraction measurements made on the same samples. The modified energy shift algorithm also allows the VASE analysis to be upgraded in order to characterize linearly graded layers. In this work VASE has been used to characterize graded Si(x)Ge(1-x) layers in terms of the total thickness, and the start and end alloy composition. Results are presented for a 1 micrometer Si(x)Ge(1-x) layer linearly graded in the range 0.5 less than or equal to x less than or equal to 1.0.

  10. Impact of huge tsunami in March 2011 on seaweed bed distributions in Shizugawa Bay, Sanriku Coast, revealed by remote sensing

    NASA Astrophysics Data System (ADS)

    Sakamoto, Shingo X.; Sasa, Shuji; Sawayama, Shuhei; Tsujimoto, Ryo; Terauchi, Genki; Yagi, Hiroshi; Komatsu, Teruhisa

    2012-10-01

    Seaweed beds are very important for abalones and sea urchins as a habitat. In Sanriku Coast, these animals are target species of coastal fisheries. The huge tsunami hit Sanriku Coast facing Pacific Ocean on 11 March 2011. It is needed for fishermen to know present situation of seaweed beds and understand damages of the huge tsunami on natural environments to recover coastal fisheries. We selected Shizugawa Bay as a study site because abalone catch of Shizugawa Bay occupied the first position in Sanriku Coast. To evaluate impact of tsunami on seaweed beds, we compared high spatial resolution satellite image of Shizugawa Bay before the tsunami with that after the tsunami by remote sensing with ground surveys to know impact of the tsunami on seaweed beds. We used two multi-band imageries of commercial high-resolution satellite, Geoeye-1, which were taken on 4 November 2009 before the tsunami and on 22 February 2012 after the tsunami. Although divers observed the tsunami damaged a very small part of Eisenia bicyclis distributions on rock substrates at the bay head, it was not observed clearly by satellite image analysis. On the other hand, we found increase in seaweed beds after the tsunami from the image analysis. The tsunami broke concrete breakwaters, entrained a large amount of rocks and pebble from land to the sea, and disseminated them in the bay. Thus, hard substrates suitable for attachment of seaweeds were increased. Ground surveys revealed that seaweeds consisting of E. bicyclis, Sargassum and Laminaria species grew on these hard substrates on the sandy bottom.

  11. Cross Section High Resolution Imaging of Polymer-Based Materials

    NASA Astrophysics Data System (ADS)

    Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.

    This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.

  12. Epitaxial Fe(1-x)Gax/GaAs structures via electrochemistry for spintronics applications

    NASA Astrophysics Data System (ADS)

    Reddy, K. Sai Madhukar; Maqableh, Mazin M.; Stadler, Bethanie J. H.

    2012-04-01

    In this study, thin films of Fe83Ga17 (a giant magnetostrictive alloy) were grown on single-crystalline n-GaAs (001) and polycrystalline brass substrates via electrochemical synthesis from ferrous and gallium sulfate electrolytes. Extensive structural characterization using microdiffraction, high-resolution ω - 2θ, and rocking-curve analysis revealed that the films grown on GaAs(001) are highly textured with ⟨001⟩ orientation along the substrate normal, and the texture improved further upon annealing at 300 °C for 2 h in N2 environment. On the contrary, films grown on brass substrates exhibited ⟨011⟩ preferred orientation. Rocking-curve analysis done on Fe83Ga17/GaAs structures further confirmed that the ⟨001⟩ texture in the Fe83Ga17 thin film is a result of epitaxial nucleation and growth. The non-linear current-voltage plot obtained for the Fe-Ga/GaAs Schottky contacts was characteristic of tunneling injection, and showed improved behavior with annealing. Thus, this study demonstrates the feasibility of fabricating spintronic devices that incorporate highly magnetostrictive Fe(1-x)Gax thin films grown epitaxially via electrochemistry.

  13. Pilot Production of Large Area Microchannel Plates and Picosecond Photodetectors

    NASA Astrophysics Data System (ADS)

    Minot, M.; Adams, B.; Abiles, M.; Bond, J.; Craven, C.; Cremer, T.; Foley, M.; Lyashenko, A.; Popecki, M.; Stochaj, M.; Worstell, W.; Elam, J.; Mane, A.; Siegmund, O.; Ertley, C.

    2016-09-01

    Pilot production performance is reported for large area atomic layer deposition (ALD) coated microchannel plates (ALD-GCA-MCPs) and for Large Area Picosecond Photodetectors (LAPPD™) which incorporate them. "Hollowcore" glass capillary array (GCA) substrates are coated with ALD resistive and emissive layers to form the ALDGCA- MCPs, an approach that facilitates independent selection of glass substrates that are mechanically stronger and that have lower levels of radioactive alkali elements compared to conventional MCP lead glass, reducing background noise[1,2,3,4]. ALD-GCA-MCPs have competitive gain ( 104 each or 107 for a chevron pair ), enhanced lifetime and gain stability (7 C cm-2 of charge extraction), reduced background levels (0.028 events cm-2 sec-1) and low gamma-ray detection efficiency. They can be fabricated in large area (20cm X 20 cm) planar and curved formats suitable for use in high radiation environment applications, including astronomy, space instrumentation, and remote night time sensing. The LAPPD™ photodetector incorporates these ALD-GCA-MCPs in an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode, amplified with a stacked chevron pair of ALD-GCA-MCPs. Signals are collected on RF strip-line anodes integrated into to the bottom plates which exit the detector via pin-free hermetic seals under the side walls [5]. Tests show that LAPPDTMs have electron gains greater than 107, submillimeter spatial resolution for large (multiphoton) pulses and several mm for single photons, time resolution less than 50 picoseconds for single photons, predicted resolution less than 5 picoseconds for large pulses, high stability versus charge extraction[6], and good uniformity for applications including astrophysics, neutron detection, high energy physics Cherenkov light detection, and quantum-optical photon-correlation experiments.

  14. High-Throughput Printing Process for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  15. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    NASA Astrophysics Data System (ADS)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-01

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  16. Influence of Substrate Bonding and Surface Morphology on Dynamic Organic Layer Growth: Perylenetetracarboxylic Dianhydride on Au(111).

    PubMed

    Schmidt, Thomas; Marchetto, Helder; Groh, Ullrich; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard

    2018-05-15

    We investigated the dynamics of the initial growth of the first epitaxial layers of perylenetetracarboxylic dianhydride (PTCDA) on the Au(111) surface with high lateral resolution using the aberration-corrected spectro-microscope SMART. With this instrument, we could simultaneously study the different adsorption behaviors and layer growth on various surface areas consisting of either a distribution of flat (111) terraces, separated by single atomic steps ("ideal surface"), or on areas with a high density of step bunches and defects ("realistic surface"). The combined use of photoemission electron microscopy, low-energy electron microscopy, and μ-spot X-ray absorption provided a wealth of new information, showing that the growth of the archetype molecule PTCDA not only has similarities but also has significant differences when comparing Au(111) and Ag(111) substrate surfaces. For instance, under otherwise identical preparation conditions, we observed different growth mechanisms on different surface regions, depending on the density of step bunches. In addition, we studied the spatially resolved desorption behavior which also depends on the substrate morphology.

  17. Confocal filtering in cathodoluminescence microscopy of nanostructures

    NASA Astrophysics Data System (ADS)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  18. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  19. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less

  20. Effect of substrate temperature and V/III flux ratio on In incorporation for InGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.

    1999-10-01

    Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.

  1. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D.; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S.; Stone, Howard A.; Bassler, Bonnie L.

    2016-01-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214

  2. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    PubMed

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Assessment of Shallow-Water Habitat Availability in Modified Dike Structures, Lower Missouri River, 2004

    USGS Publications Warehouse

    Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.

    2004-01-01

    This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.

  4. Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte.

    PubMed

    Malik, Akhtar Hussain; Kalita, Anamika; Iyer, Parameswar Krishnan

    2017-10-25

    The development of highly efficient latent fingerprint (LFP) technology remains extremely vital for forensic and criminal investigations. In this contribution, a straightforward, rapid, and cost-effective method has been established for the quick development of well-preserved latent fingerprint on multiple substrates, including plastic, glass, aluminum foil, metallic surfaces, and so forth, without any additional treatment, based on aggregation-induced enhanced emission-active conjugated polyelectrolyte (CPE) 3,3'-((2-(4-(1,2-diphenyl-2-(p-tolyl)vinyl)phenyl)-7-(7-methylbenzo[c][1,2,5]thiadiazol-4-yl)-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium) bromide, revealing clearly the third-level details (ridges, bifurcations, and pores) with high selectivity, high contrast, and no background interference even by blood stains, confirming the ability of the proposed technique for LFP detection with high resolution. The LFP development process was accomplished simply by immersing fingerprint-loaded substrate into the CPE solution for ∼1 min, followed by shaking off the residual polymer solution and then air drying. The CPE was readily transferred to the LFPs because of the strong electrostatic and hydrophobic interaction between the CPE molecules and the fingerprint components revealing distinct fluorescent images on various smooth nonporous surfaces.

  5. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Chian Kwok, Yien; Nguyen, Nam-Trung

    2006-08-01

    A new method for thermally bonding poly(methyl methacrylate) (PMMA) substrates has been demonstrated. PMMA substrates are first engraved by CO2-laser micromachining to form microchannels. Both channel width and depth can be adjusted by varying the laser power and scanning speed. Channel depths from 50 µm to 1500 µm and widths from 150 µm to 400 µm are attained. CO2 laser is also used for drilling and dicing of the PMMA parts. Considering the thermal properties of PMMA, a novel thermal bonding process with high temperature and low bonding pressure has been developed for assembling PMMA sheets. A high bonding strength of 2.15 MPa is achieved. Subsequent inspection of the cross sections of several microdevices reveals that the dimensions of the channels are well preserved during the bonding process. Electroosmotic mobility of the ablated channel is measured to be 2.47 × 10-4 cm2 V-1 s-1. The functionality of these thermally bonded microfluidic substrates is demonstrated by performing rapid and high-resolution electrophoretic separations of mixture of fluorescein and carboxyfluorescein as well as double-stranded DNA ladders (ΦX174-Hae III dsDNA digest). The performance of the CO2 laser ablated and thermally bonded PMMA devices compares favorably with those fabricated by other professional means.

  6. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less

  7. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    DOE PAGES

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; ...

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less

  8. A three-dimensional metal grid mesh as a practical alternative to ITO

    NASA Astrophysics Data System (ADS)

    Jang, Sungwoo; Jung, Woo-Bin; Kim, Choelgyu; Won, Phillip; Lee, Sang-Gil; Cho, Kyeong Min; Jin, Ming Liang; An, Cheng Jin; Jeon, Hwan-Jin; Ko, Seung Hwan; Kim, Taek-Soo; Jung, Hee-Tae

    2016-07-01

    The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics.The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03060b

  9. Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase.

    PubMed

    Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2017-06-01

    A stable NADP + -dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso -diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP + and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P) + -dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs. Copyright © 2017 American Society for Microbiology.

  10. Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase

    PubMed Central

    Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa

    2017-01-01

    ABSTRACT A stable NADP+-dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso-diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP+ and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P)+-dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs. PMID:28363957

  11. Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications

    PubMed Central

    Gerardo, Carlos D.; Cretu, Edmond; Rohling, Robert

    2017-01-01

    This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω/☐. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 μm. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors’ knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates. PMID:28629134

  12. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chiral alkoxyamines as precatalysts: catalyst structure, active species, and substrate scope.

    PubMed

    Murakami, Keiichi; Sasano, Yusuke; Tomizawa, Masaki; Shibuya, Masatoshi; Kwon, Eunsang; Iwabuchi, Yoshiharu

    2014-12-17

    The development and characterization of enantioselective organocatalytic oxidative kinetic resolution (OKR) of racemic secondary alcohols using chiral alkoxyamines as precatalysts are described. A number of chiral alkoxyamines have been synthesized, and their structure-enantioselectivity correlation study in OKR has led us to identify a promising precatalyst, namely, 7-benzyl-3-n-butyl-4-oxa-5-azahomoadamantane, which affords various chiral aliphatic secondary alcohols (ee up to >99%, k(rel) up to 296). In a mechanistic study, chlorine-containing oxoammonium species were identified as the active species generated in situ from the alkoxyamine precatalyst, and it was revealed that the chlorine atom is crucial for high reactivity and enantioselectivity. The present OKR is the first successful example applicable to various unactivated aliphatic secondary alcohols, including heterocyclic alcohols with high enantioselectivity, the synthetic application of which is demonstrated by the synthesis of a bioactive compound.

  13. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide.

    PubMed

    Miao, Chengxia; Li, Xiao-Xi; Lee, Yong-Min; Xia, Chungu; Wang, Yong; Nam, Wonwoo; Sun, Wei

    2017-11-01

    The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn-oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R - and S -enantiomers by a chiral high-valent manganese-oxo complex, supporting the experimental result from the OKR of secondary alcohols.

  14. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  15. Recent advances in flexible low power cholesteric LCDs

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  16. Characterization of crystal structure features of a SIMOX substrate

    NASA Astrophysics Data System (ADS)

    Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.

    2015-12-01

    The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.

  17. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.

    We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracoldmore » gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.« less

  18. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  19. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki

    2006-02-01

    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB hasmore » been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.« less

  20. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r-strategists.

    PubMed

    Rogge, Andreas; Vogts, Angela; Voss, Maren; Jürgens, Klaus; Jost, Günter; Labrenz, Matthias

    2017-06-01

    Chemolithoautotrophic sulfur-oxidizing and denitrifying Gamma- (particularly the SUP05 cluster) and Epsilonproteobacteria (predominantly Sulfurimonas subgroup GD17) are assumed to compete for substrates (electron donors and acceptors) in marine pelagic redox gradients. To elucidate their ecological niche separation we performed 34 S 0 , 15 NO3- and H 13 CO3- stable-isotope incubations with water samples from Baltic Sea suboxic, chemocline and sulfidic zones followed by combined phylogenetic staining and high-resolution secondary ion mass spectrometry of single cells. SUP05 cells were small-sized (0.06-0.09 µm 3 ) and most abundant in low-sulfidic to suboxic zones, whereas Sulfurimonas GD17 cells were significantly larger (0.26-0.61 µm 3 ) and most abundant at the chemocline and below. Together, SUP05 and GD17 cells accumulated up to 48% of the labelled substrates but calculation of cell volume-specific rates revealed that GD17 cells incorporated labelled substrates significantly faster throughout the redox zone, thereby potentially outcompeting SUP05 especially at high substrate concentrations. Thus, in synopsis with earlier described features of SUP05/GD17 we conclude that their spatially overlapping association in stratified sulfidic zones is facilitated by their different lifestyles: whereas SUP05 cells are streamlined, non-motile K-strategists adapted to low substrate concentrations, GD17 cells are motile r-strategists well adapted to fluctuating substrate and redox conditions. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Intramolecular bonds resolved on a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Jarvis, Samuel P.; Rahe, Philipp; Champness, Neil R.; Kantorovich, Lev; Moriarty, Philip

    2014-10-01

    Noncontact atomic force microscopy (NC-AFM) is now routinely capable of obtaining submolecular resolution, readily resolving the carbon backbone structure of planar organic molecules adsorbed on metal substrates. Here we show that the same resolution may also be obtained for molecules adsorbed on a reactive semiconducting substrate. Surprisingly, this resolution is routinely obtained without the need for deliberate tip functionalization. Intriguingly, we observe two chemically distinct apex types capable of submolecular imaging. We characterize our tip apices by "inverse imaging" of the silicon adatoms of the Si (111)-7×7 surface and support our findings with detailed density functional theory (DFT) calculations. We also show that intramolecular resolution on individual molecules may be readily obtained at 78 K, rather than solely at 5 K as previously demonstrated. Our results suggest a wide range of tips may be capable of producing intramolecular contrast for molecules adsorbed on semiconductor surfaces, leading to a much broader applicability for submolecular imaging protocols.

  2. Enhanced Structural and Luminescent Properties of Carbon-Assisted ZnO Nanorod Arrays on (100) Si Substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.

    2018-02-01

    We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.

  3. Structure of the substrate-binding b′ domain of the Protein disulfide isomerase-like protein of the testis

    PubMed Central

    Bastos-Aristizabal, Sara; Kozlov, Guennadi; Gehring, Kalle

    2014-01-01

    Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unknown. Here, we report the high-resolution crystal structure of the b′ domain of human PDILT. The structure reveals a conserved hydrophobic pocket, which is likely a principal substrate-binding site in PDILT. In the crystal, this pocket is occupied by side chains of tyrosine and tryptophan residues from another PDILT molecule, suggesting a preference for binding exposed aromatic residues in protein substrates. The lack of interaction of the b′ domain with the P-domains of calreticulin-3 and calmegin hints at a novel way of interaction between testis-specific lectin chaperones and PDILT. Further studies of this recently discovered PDI member would help to understand the important role that PDILT plays in the differentiation and maturation of spermatozoids. PMID:24662985

  4. In-situ TEM investigations of graphic-epitaxy and small particles

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted; the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence.

  5. Film growth kinetics and electric field patterning during electrospray deposition of block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum

    The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.

  6. Advanced fabrication of single-crystalline silver nanopillar on SiO{sub 2} substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Tomohiro, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp; Industrial Technology Center of Wakayama Prefecture, Ogura 60, Wakayama 649-6261; Tanaka, Yasuhiro

    2016-01-25

    Nanoscale crystallographic textures have received very little attention in research on surface plasmons using metallic nanostructures. A single-crystalline metallic nanostructure with a controlled crystallographic texture is expected to reduce optical losses. We elucidated the grain growth mechanism in silver thin films deposited on a highly transparent SiO{sub 2} substrate by electron backscatter diffraction methods with nanoscale resolution. At higher substrate temperatures, the grain growth was facilitated but the preferred orientation was not achieved. Moreover, we fabricated a single-crystalline silver nanopillar in a (111)-oriented large growing grain, which was controlled by varying the substrate temperature during film deposition by focused ion-beammore » milling. Furthermore, the light intensity of the scattering spectrum was measured for a single-crystalline silver nanopillar (undersurface diameter: 200 nm) for which surface plasmon resonance was observed. The single-crystalline silver nanopillar exhibits a stronger and sharper spectrum than the polycrystalline silver nanopillar. These results can be applied to the direct fabrication of a single-crystalline silver nanopillar using only physical processing.« less

  7. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  8. Climate insensitivity of treeline in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Macias Fauria, M.

    2011-12-01

    Successful modelling efforts demonstrate that tree presence over a ~ 200 km2 alpine/subalpine area in the Front Ranges of the Canadian Rocky Mountains results from a multi-scale spatiotemporal process competition involving not only growing season temperatures but also topographical shelter, water availability, and substrate stability and availability. The study area was selected to represent the diversity of substrates and geomorphologic processes found in the Canadian Rockies, and ranges in elevation from 1400 to > 2800 meters above sea level. Tree presence was mapped at 10m resolution using a combination of remote sensing imagery (taken in 2008) and intensive ground truthing, and modelled with an ensemble of state-of-the-art environmental envelope models. Explanatory variables chosen represented not only temperature and moisture availability (computed over 1971-2000 climate normals), but also substrate diversity, slope angle and type, geomorphologic features, modelled regolith depth, and concavity/convexity of the terrain. Such variables were meant to serve as proxies for known convergent and divergent processes that occur on steep landscapes and that have profound influence on tree establishment and survival. Model performance was very high and revealed substrate and geomorphology to be the most important explanatory variables for tree presence in the area. Available high-resolution imagery for 1954 enabled the mapping of tree presence over most of the study area and the identification of changes in the distribution of trees over the last nearly six decades. Overall, the only major observed changes were related to post-fire stand recovery, and areas with treeline advance were insignificant at the landscape scale. Tree suitable sites were projected onto high resolution grids of late 21st century climatic conditions predicted by regional climate models driven by atmosphere-ocean general circulation models. Emissions scenario was A2 (as defined in the Special Report on Emissions Scenarios used by the Intergovernmental Panel on Climate Change), at the higher end of emissions scenarios, and thus at the higher end of forecasted temperature increases. Projected changes in tree site availability were minimal at the landscape scale, as the presence of trees in the uppermost part of these forests largely depends on the existence of suitable sites largely linked to topography. Such places are the result of geomorphologic processes acting on a framework set by the structural geology of the region, and thus the appearance of new sites suitable for tree growth does not depend on short (i.e. yearly to decadal) time scales but on longer ones (i.e. centuries to millennia). This work has the strength of studying treeline over a whole area, thus avoiding potential biases in the regional representativity of local study sites, and warns against careless upscaling of site-based studies. Moreover, we suggest that the term 'treeline' is weak at a high-resolution landscape scale in our study area (i.e. young glaciated terrain) because the distribution of trees over the landscape is spatially irregular and most of the processes enabling or preventing tree presence occur over its whole elevational range.

  9. Methodology to set up nozzle-to-substrate gap for high resolution electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Park, Ji-Woon; Nasrabadi, Ali Mohamadi; Hwang, Jungho

    2016-09-01

    Several efforts have been made for the prediction of jet diameter in electrohydrodynamic jet printing; however, not much attention has been paid to the jet length, which is the distance from the cone apex to the location where the jet is unstable and is broken into atomized droplets. In this study, we measured both the cone length and the jet length using a high-speed camera, and measured the line pattern width with an optical microscope to investigate the effects of cone length and jet length on the pattern quality. Measurements were carried out with variations in nozzle diameter, flow rate, and applied voltage. The pattern width was theoretically predicted for the case when the nozzle-to-substrate distance was more than the cone length, and smaller than the summation of the cone and jet lengths (which is the case when there is no jet breakup).

  10. Fused silica GRISMs manufactured by hydrophilic direct bonding at moderate heating

    NASA Astrophysics Data System (ADS)

    Kalkowski, G.; Grabowski, K.; Harnisch, G.; Flügel-Paul, T.; Zeitner, U.; Risse, S.

    2017-12-01

    For high-resolution spectroscopy in space, GRISM elements—obtained by patterning gratings onto a prism surface—find increasing applications. We report on GRISM manufacturing by joining the individual functional elements—prisms and gratings—to suitable components by the technology of hydrophilic direct bonding. Fused silica was used as a substrate material and binary gratings were fabricated by standard e-beam lithography and dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment on dedicated bonding gear matched to the substrate geometry. Materials adapted bonds of high transmission, stiffness, and strength were obtained after heat treatment at temperatures of about 200 °C in vacuum. Examples for bonding uncoated as well as coated grating surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used in space or other heavy duty applications.

  11. A self-assembled synthesis of carbon nanotubes for interconnects.

    PubMed

    Chen, Zexiang; Cao, Guichuan; Lin, Zulun; Koehler, Irmgard; Bachmann, Peter K

    2006-02-28

    We report a novel approach to grow highly oriented, freestanding and structured carbon nanotubes (CNTs) between two substrates, using microwave plasma chemical vapour deposition. Sandwiched, multi-layered catalyst structures are employed to generate such structures. The as-grown CNTs adhere well to both the substrate and the top contact, and provide a low-resistance electric contact between the two. High-resolution scanning electron microscope (SEM) images show that the CNTs grow perpendicular to these surfaces. This presents a simple way to grow CNTs in different, predetermined directions in a single growth step. The overall resistance of a CNT bundle and two CNT-terminal contacts is measured to be about 14.7 k Ω. The corresponding conductance is close to the quantum limit conductance G(0). This illustrates that our new approach is promising for the direct assembly of CNT-based interconnects in integrated circuits (ICs) or other micro-electronic devices.

  12. Electrodeposition in capillaries: bottom-up micro- and nanopatterning of functional materials on conductive substrates.

    PubMed

    George, Antony; Maijenburg, A Wouter; Maas, Michiel G; Blank, Dave H A; Ten Elshof, Johan E

    2011-09-01

    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to 200-290 nm. The pattern was defined by an oxygen plasma-treated patterned PDMS mold in conformal contact with a conducting substrate and immersed in an electrolyte solution, so that the solid phases were deposited from the solution in the channels of the patterned mold. It is important that the distance between the entrance of the channels, and the location where deposition is needed, is kept limited. The as-formed patterns were characterized by high resolution scanning electron microscope, energy-dispersive X-ray analysis, atomic force microscopy, and X-ray diffraction.

  13. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    NASA Astrophysics Data System (ADS)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  14. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  15. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  16. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO:Ru hybrid structure.

    PubMed

    Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh

    2014-06-01

    A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.

  17. Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface

    NASA Astrophysics Data System (ADS)

    Bai, Y. J.; Liu, W. Z.; Chen, A.; Shi, L.; Liu, X. H.; Zi, J.

    2018-05-01

    It is well known that surface-plasmon enhanced photo-electrochemical effect or photo-thermal effect of metallic particles on a semiconductor substrate or in a suspension may result in color changes. Such character could be potentially applicable to colorimetric sensors, optical filters, and data storage devices. However, usually the response time for color changes is too long to be practically applied. In this letter, we found that the response rate of color changes could be controlled by the annealing condition of the semiconductor substrate, and changes larger than 10% in spectra were observed after only 1-min exposure to light. Furthermore, such fast response was applied to realize wavelength-dependent "write" and "read" applications with high spatial resolution.

  18. The influence of coadsorbed sodium atoms on the chemisorption of benzoic acid on Si(100)-2×1

    NASA Astrophysics Data System (ADS)

    Bitzer, T.; Richardson, N. V.

    1999-06-01

    The adsorption of benzoic acid on Na-Si(100)-2×1 ( ΘNa=0.5) at room temperature leads to benzoate in a bidentate coordination. High-resolution electron energy loss spectroscopy spectra show an intense ν s(OCO) stretching vibration, which is characteristic for benzoate aligned perpendicular to the substrate surface. In contrast, we observe monodentate benzoate species following the exposure of Si(100)-2×1 to benzoic acid at room temperature. On both surfaces, the dissociated hydrogen atom bonds to one of the silicon surface atoms. Removal of benzoate from Na-Si(100)-2×1 is observed after heating the silicon substrate to 300°C for 1 min.

  19. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution

    NASA Astrophysics Data System (ADS)

    Derby, Brian

    2010-08-01

    Inkjet printing is viewed as a versatile manufacturing tool for applications in materials fabrication in addition to its traditional role in graphics output and marking. The unifying feature in all these applications is the dispensing and precise positioning of very small volumes of fluid (1-100 picoliters) on a substrate before transformation to a solid. The application of inkjet printing to the fabrication of structures for structural or functional materials applications requires an understanding as to how the physical processes that operate during inkjet printing interact with the properties of the fluid precursors used. Here we review the current state of understanding of the mechanisms of drop formation and how this defines the fluid properties that are required for a given liquid to be printable. The interactions between individual drops and the substrate as well as between adjacent drops are important in defining the resolution and accuracy of printed objects. Pattern resolution is limited by the extent to which a liquid drop spreads on a substrate and how spreading changes with the overlap of adjacent drops to form continuous features. There are clearly defined upper and lower bounds to the width of a printed continuous line, which can be defined in terms of materials and process variables. Finer-resolution features can be achieved through appropriate patterning and structuring of the substrate prior to printing, which is essential if polymeric semiconducting devices are to be fabricated. Low advancing and receding contact angles promote printed line stability but are also more prone to solute segregation or “coffee staining” on drying.

  20. Resolution performance of a 0.60-NA, 364-nm laser direct writer

    NASA Astrophysics Data System (ADS)

    Allen, Paul C.; Buck, Peter D.

    1990-06-01

    ATEQ has developed a high resolution laser scanning printing engine based on the 8 beam architecture of the CORE- 2000. This printing engine has been incorporated into two systems: the CORE-2500 for the production of advanced masks and reticles and a prototype system for direct write on wafers. The laser direct writer incorporates a through-the-lens alignment system and a rotary chuck for theta alignment. Its resolution performance is delivered by a 0. 60 NA laser scan lens and a novel air-jet focus system. The short focal length high resolution lens also reduces beam position errors thereby improving overall pattern accuracy. In order to take advantage of the high NA optics a high performance focus servo was developed capable of dynamic focus with a maximum error of 0. 15 tm. The focus system uses a hot wire anemometer to measure air flow through an orifice abutting the wafer providing a direct measurement to the top surface of resist independent of substrate properties. Lens specifications are presented and compared with the previous design. Bench data of spot size vs. entrance pupil filling show spot size performance down to 0. 35 m FWHM. The lens has a linearity specification of 0. 05 m system measurements of lens linearity indicate system performance substantially below this. The aerial image of the scanned beams is measured using resist as a threshold detector. An effective spot size is

  1. Atomic-scale imaging of DNA using scanning tunnelling microscopy.

    PubMed

    Driscoll, R J; Youngquist, M G; Baldeschwieler, J D

    1990-07-19

    The scanning tunnelling microscope (STM) has been used to visualize DNA under water, under oil and in air. Images of single-stranded DNA have shown that submolecular resolution is possible. Here we describe atomic-resolution imaging of duplex DNA. Topographic STM images of uncoated duplex DNA on a graphite substrate obtained in ultra-high vacuum are presented that show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles show excellent correlation with atomic contours of the van der Waals surface of A-form DNA derived from X-ray crystallography. A comparison of variations in the barrier to quantum mechanical tunnelling (barrier-height) with atomic-scale topography shows correlation over the phosphate-sugar backbone but anticorrelation over the base pairs. This relationship may be due to the different chemical characteristics of parts of the molecule. Further investigation of this phenomenon should lead to a better understanding of the physics of imaging adsorbates with the STM and may prove useful in sequencing DNA. The improved resolution compared with previously published STM images of DNA may be attributable to ultra-high vacuum, high data-pixel density, slow scan rate, a fortuitously clean and sharp tip and/or a relatively dilute and extremely clean sample solution. This work demonstrates the potential of the STM for characterization of large biomolecular structures, but additional development will be required to make such high resolution imaging of DNA and other large molecules routine.

  2. Bioinspired enantioselective synthesis of crinine-type alkaloids via iridium-catalyzed asymmetric hydrogenation of enones† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02112g Click here for additional data file.

    PubMed Central

    Zuo, Xiao-Dong; Guo, Shu-Min; Yang, Rui

    2017-01-01

    A bioinspired enantioselective synthesis of crinine-type alkaloids has been developed by iridium-catalyzed asymmetric hydrogenation of racemic cycloenones. The method features a biomimetic stereodivergent resolution of the substrates bearing a remote arylated quaternary stereocenter. Using this protocol, 24 crinine-type alkaloids and 8 analogues were synthesized in a concise and rapid way with high yield and high enantioselectivity. PMID:28989653

  3. Domain ordering of strained 5 ML SrTiO3 films on Si(001)

    NASA Astrophysics Data System (ADS)

    Ryan, P.; Wermeille, D.; Kim, J. W.; Woicik, J. C.; Hellberg, C. S.; Li, H.

    2007-05-01

    High resolution x-ray diffraction data indicate ordered square shaped coherent domains, ˜1200Å in length, coexisting with longer, ˜9500Å correlated regions in highly strained 5 ML SrTiO3 films grown on Si(001). These long range film structures are due to the Si substrate terraces defined by the surface step morphology. The silicon surface "step pattern" is comprised of an "intrinsic" terrace length from strain relaxation and a longer "extrinsic" interstep distance due to the surface miscut.

  4. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  5. Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface.

    PubMed

    Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V

    2010-05-17

    The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.

  6. Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.

    PubMed

    Schlisske, Stefan; Held, Martin; Rödlmeier, Tobias; Menghi, Silvia; Fuchs, Kathleen; Ruscello, Marta; Morfa, Anthony J; Lemmer, Uli; Hernandez-Sosa, Gerardo

    2018-05-29

    Digital printing enables solution processing of functional materials and opens a new route to fabricate low-cost electronic devices. One crucial parameter that affects the wettability of inks for all printing techniques is the surface free energy (SFE) of the substrate. Siloxanes, with their huge variety of side chains and their ability to form self-assembled monolayers, offer exhaustive control of the substrate SFE from hydrophilic to hydrophobic. Thus, siloxane treatment is a suitable approach to adjust the substrate conditions to the desired ink, instead of optimizing the ink to an arbitrary substrate. In this work, the influence of different fluorinated and nonfluorinated siloxanes on the SFE of different substrates, such as polymers, glasses, and metals, are examined. By mixing several siloxanes, we demonstrate the fine tuning of the surface energy. The polar and dispersive components of the SFE are determined by the Owens-Wendt-Rabel-Kaelble (OWRK) method. Furthermore, the impact of the siloxanes and therefore the SFE on the pinning of droplets and wet films are assessed via dynamic contact angle measurements. SFE-optimized substrates enable tailoring the resolution of inkjet printed silver structures. A nanoparticulate silver ink was used for printing single drops, lines, and source-drain electrodes for transistors. These were examined in terms of diameter, edge quality, and functionality. We show that by adjusting the SFE of an arbitrary substrate, the printed resolution is substantially increased by minimizing the printed drop size by up to 70%.

  7. Single crystalline CH 3NH 3PbI 3 self-grown on FTO/TiO 2 substrate for high efficiency perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jinjin; Kong, Guoli; Chen, Shulin

    In this work, we developed an innovative approach to self-grow single crystalline CH 3NH 3PbI 3 directly on polycrystalline FTO/TiO 2 substrate, with which n-i-p type of perovskite solar cells were fabricated. The single crystalline nature of CH 3NH 3PbI 3 has been confirmed by X-ray diffraction and high resolution transmission electron microscopy, and it is observed that they possess smaller optic band gap and longer carrier life time. Highly efficient charge extractions occur at the interface between electron collecting TiO 2 and photo-harvesting CH 3NH 3PbI 3, resulting in a maximum short-circuit current density of 24.40 mA/cm 2. Themore » champion cell possesses a photovoltaic conversion efficiency of 8.78%, and there are still substantial room for further improvement, making it promising for the perovskite solar cell applications.« less

  8. Homogeneous AlGaN/GaN superlattices grown on free-standing (1100) GaN substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jiayi; Malis, Oana; Physics Department, Purdue University, West Lafayette, Indiana 47907

    Two-dimensional and homogeneous growth of m-plane AlGaN by plasma-assisted molecular beam epitaxy has been realized on free-standing (1100) GaN substrates by implementing high metal-to-nitrogen (III/N) flux ratio. AlN island nucleation, often reported for m-plane AlGaN under nitrogen-rich growth conditions, is suppressed at high III/N flux ratio, highlighting the important role of growth kinetics for adatom incorporation. The homogeneity and microstructure of m-plane AlGaN/GaN superlattices are assessed via a combination of scanning transmission electron microscopy and high resolution transmission electron microscopy (TEM). The predominant defects identified in dark field TEM characterization are short basal plane stacking faults (SFs) bounded by eithermore » Frank-Shockley or Frank partial dislocations. In particular, the linear density of SFs is approximately 5 × 10{sup −5} cm{sup −1}, and the length of SFs is less than 15 nm.« less

  9. Piezo-thermal Probe Array for High Throughput Applications

    PubMed Central

    Gaitas, Angelo; French, Paddy

    2012-01-01

    Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature. PMID:23641125

  10. Single crystalline CH 3NH 3PbI 3 self-grown on FTO/TiO 2 substrate for high efficiency perovskite solar cells

    DOE PAGES

    Zhao, Jinjin; Kong, Guoli; Chen, Shulin; ...

    2017-08-21

    In this work, we developed an innovative approach to self-grow single crystalline CH 3NH 3PbI 3 directly on polycrystalline FTO/TiO 2 substrate, with which n-i-p type of perovskite solar cells were fabricated. The single crystalline nature of CH 3NH 3PbI 3 has been confirmed by X-ray diffraction and high resolution transmission electron microscopy, and it is observed that they possess smaller optic band gap and longer carrier life time. Highly efficient charge extractions occur at the interface between electron collecting TiO 2 and photo-harvesting CH 3NH 3PbI 3, resulting in a maximum short-circuit current density of 24.40 mA/cm 2. Themore » champion cell possesses a photovoltaic conversion efficiency of 8.78%, and there are still substantial room for further improvement, making it promising for the perovskite solar cell applications.« less

  11. SVGA and XGA LCOS microdisplays for HMD applications

    NASA Astrophysics Data System (ADS)

    Bolotski, Michael; Alvelda, Phillip

    1999-07-01

    MicroDisplay liquid crystal on silicon (LCOS) display devices are based on a combination of technologies combined with the extreme integration capability of conventionally fabricated CMOS substrates. Two recent SVGA (800 X 600) pixel resolution designs were demonstrated based on 10 micron and 12.5-micron pixel pitch architectures. The resulting microdisplays measure approximately 10 mm and 12 mm in diagonal respectively. Further, an XGA (1024 X 768) resolution display fabricated with a 12.5-micron pixel pitch with a 16-mm diagonal was also demonstrated. Both the larger SVGA and the XGA design were based on the same 12.5-micron pixel-pitch design, demonstrating a quickly scalable design architecture for rapid prototyping life-cycles. All three microdisplay designs described above function in grayscale and high-performance Field-Sequential-Color (FSC) operating modes. The fast liquid crystal operating modes and new scalable high- performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable commercial and defense applications including ultra-portable helmet, eyeglass, and heat-mounted systems. The entire suite of The MicroDisplay Corporation's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASIC) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. For helmet and head-mounted displays this can include capabilities such as the incorporation of customized symbology and information storage directly on the display substrate. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  12. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

  13. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Habib, Anowarul; Melandsø, Frank

    2017-07-01

    High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.

  14. Seismo-acoustic imaging of marine hard substrate habitats: a case study from the German Bight (SE North Sea)

    NASA Astrophysics Data System (ADS)

    Papenmeier, Svenja; Hass, H. Christian

    2016-04-01

    The detection of hard substrate habitats in sublittoral environments is a considerable challenge in spite of modern high resolution hydroacoustic techniques. In offshore areas those habitats are mainly represented by either cobbles and boulders (stones) often located in wide areas of soft sediments or by glacial relict sediments (heterogeneous mixture of medium sand to gravel size with cobbles and boulders). Sediment classification and object detection is commonly done on the basis of hydroacoustic backscatter intensities recorded with e.g. sidescan sonar (SSS) and multibeam echo sounder (MBES). Single objects lying on the sediment such as stones can generally be recognized by the acoustic shadow behind the object. However, objects close to the sonar's nadir may remain undetected because their shadows are below the data resolution. Further limitation in the detection of objects is caused by sessile communities that thrive on the objects. The bio-cover tends to absorb most of the acoustic signal. Automated identification based on the backscatter signal is often not satisfactory, especially when stones are present in a setting with glacial deposits. Areas characterized by glacial relict sediments are hardly differentiable in their backscatter characteristics from rippled coarse sand and fine gravel (rippled coarse sediments) without an intensive ground-truthing program. From the ecological point of view the relict and rippled coarse sediments are completely different habitats and need to be distinguished. The case study represents a seismo-acoustic approach in which SSS and nonlinear sediment echo sounder (SES) data are combined to enable a reliable and reproducible differentiation between relict sediments (with stones and coarse gravels) and rippled coarse sediments. Elevated objects produce hyperbola signatures at the sediment surface in the echo data which can be used to complement the SSS data. The nonlinear acoustic propagation of the SES sound pulses produces a comparably small foot print which results in high spatial resolution (decimeter in the xyz directions) and hence allows a more precise demarcation of hard substrate areas. Data for this study were recorded in the "Sylt Outer Reef" (German Bight, North Sea) in May 2013 and March 2015. The investigated area is characterized by heterogeneously distributed moraine deposits and rippled coarse sediments partly draped with Holocene fine sands. The relict sediments and the rippled coarse sediments indicate both high backscatter intensities but can be distinguished by means of the hyperbola locations. The northeast of the study area is dominated by rippled coarse sediments (without hyperbolas) and the southwestern part by relict sediments with a high amount of stones represented by hyperbolas which is also proven by extensive ground-truthing (grab sampling and high quality underwater videos). An automated procedure to identify and export the hyperbola positions makes the demarcation of hard substrate grounds (here: relict sediments) reproducible, faster and less complex in comparison to the visual-manual identification on the basis of sidescan sonar data.

  15. High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner*

    PubMed Central

    Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.

    2015-01-01

    Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898

  16. Acetal-based three-component CARs: a versatile concept to tailor optical properties of resists

    NASA Astrophysics Data System (ADS)

    Padmanaban, Munirathna; Kinoshita, Yoshiaki; Kawasaki, N.; Okazaki, Hiroshi; Funato, Satoru; Pawlowski, Georg

    1996-06-01

    Cost and yield effective IC fabrication requires the use of a large variety of substrates with distinct reflectivity, which may cause problems during the lithographic process either due to reflective notching and standing wave formation on highly reflective substrates, or trapezoidal resist patterns and deterioration of resolution, when a substrate with low reflectivity is employed. Reflectivity problems become more evident, when i-line radiation is replaced by DUV illumination tools. In addition, the non-bleaching nature of state-of-the-art chemically amplified resists further aggravates the reflectivity issues. It is therefore generally accepted that substrate reflectivity and resist transparency have to be closely matched to gain maximized lithographic performance, i.e., dissolution characteristics, resolution, depth-of-focus and exposure latitude. We have reported previously that poly-N,O-acetals act as effective dissolution inhibitors/promoters for PHS-based chemically amplified DUV resist materials. Alkylsubstituted poly(benzaldehyde-N,O-acetal)s are basically transparent in the 248 nm wavelength region, and therefore do not contribute to resist absorption. On the other hand, poly(naphthaldehyde-N,O-acetal)s are quite strong absorbants in the deep UV region. It was found that certain benz- and naphthaldehyde poly-N,O-acetal derivatives exhibit essentially identical inhibition and dissolution properties combined with similar cleavage kinetics. By both, physical mixing or co-condensation, of these materials, it is possible to adjust the optical resist absorption to precalculated values between approx. 0.30 - 0.80 micrometer MIN1 solely by poly-N,O-acetal selection without deterioration of other important resist properties. Basic chemistry, physico-chemical and optical properties of the resists are discussed in detail. Lithographic results including SEMs prove the versatility and efficiency of this approach.

  17. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Faghihi, S.; Li, D.; Szpunar, J. A.

    2010-12-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ~ 10 µm and ~ 50 µm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  18. Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication

    PubMed Central

    Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.

    2009-01-01

    Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595

  19. Observations and initial modeling of lava-SO2 interactions at Prometheus, Io

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Keszthelyi, L. P.; McEwen, A. S.

    2001-12-01

    We present observations and initial modeling of the lava-SO2 interactions at the flow fronts in the Prometheus region of Io. Recent high-resolution observations of Prometheus reveal a compound flow field with many active flow lobes. Many of the flow lobes are associated with bright streaks of what is interpreted to be volatilized and recondensed SO2 radiating away from the hot lava. Lower-resolution color data show diffuse blue to violet areas, also near the active flow front, perhaps from active venting of SO2. Not clearly visible in any of the images is a single source vent for the active plume. While the size of the proposed vent is probably near the limit of the resolution, we expected to see radial or concentric albedo patterns or other evidence for gas and entrained particles above the flow field. The lack of an obvious plume vent, earlier suggestions that the Prometheus-type plumes may originate from the advancing flow lobes, and the high-resolution images showing evidence for large-scale volatilization of the SO2-rich substrate at Prometheus encouraged us to develop a model to quantify the heat transfer between a basaltic lava flow and a substrate of SO2 snow. We calculate that the vaporization rate of SO2 snow is 2.5×10-6ms-1 per unit area. Using an estimated 5 m2s-1 lava coverage rate (from change detection images), we show that the gas production rate of SO2 at the flow fronts is enough to produce a resurfacing rate of ~0.24 cm yr-1 at the annulus of Prometheus. This is much less than other estimates of resurfacing by the Prometheus plume. While not easily explaining the main Prometheus plume, our model readily accounts for the bright streaks.

  20. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate.

    PubMed

    San Martín, Alejandro; Ceballo, Sebastián; Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L Felipe

    2014-01-01

    Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.

  1. Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate

    PubMed Central

    Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L. Felipe

    2014-01-01

    Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function. PMID:24465702

  2. A Novel Instrument and Methodology for the In-Situ Measurement of the Stress in Thin Films

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Omokanwaye, Mayowa O.; Ramsey, Brian D.

    2014-01-01

    We introduce a novel methodology for the in-situ measurement of mechanical stress during thin film growth utilizing a highly sensitive non-contact variation of the classic spherometer. By exploiting the known spherical deformation of the substrate the value of the stress induced curvature is inferred by measurement of only one point on the substrate's surface-the sagittal. From the known curvature the stress can be calculated using the well-known Stoney equation. Based on this methodology, a stress sensor has been designed which is simple, highly sensitive, compact, and low cost. As a result of its compact nature, the sensor can be mounted in any orientation to accommodate a given deposition geometry without the need for extensive modification to an already existing deposition system. The technique employs the use of a double side polished substrate that offers good specular reflectivity and is isotropic in its mechanical properties, such as <111> oriented crystalline silicon or amorphous soda lime glass, for example. The measurement of the displacement of the uncoated side during deposition is performed with a high resolution (i.e. 5nm), commercially available, inexpensive, fiber optic sensor which can be used in both high vacuum and high temperature environments (i.e. 10(exp-7) Torr and 480oC, respectively). A key attribute of this instrument lies in its potential to achieve sensitivity that rivals other measurement techniques such as the micro cantilever method but, due to the comparatively larger substrate area, offers a more robust and practical alternative for subsequent measurement of additional characteristics of the film that can might be correlated to film stress. We present measurement results of nickel films deposited by magnetron sputtering which show good qualitative agreement to the know behavior of polycrystalline films previously reported by Hoffman.

  3. Crystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31.

    PubMed

    Lahoda, Maryna; Mesters, Jeroen R; Stsiapanava, Alena; Chaloupkova, Radka; Kuty, Michal; Damborsky, Jiri; Kuta Smatanova, Ivana

    2014-02-01

    Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increased catalytic activity towards TCP. Here, the 1.31 Å resolution crystal structure of substrate-free DhaA31, the 1.26 Å resolution structure of DhaA31 in complex with TCP and the 1.95 Å resolution structure of wild-type DhaA are reported. Crystals of the enzyme-substrate complex were successfully obtained by adding volatile TCP to the reservoir after crystallization at pH 6.5 and room temperature. Comparison of the substrate-free structure with that of the DhaA31 enzyme-substrate complex reveals that the nucleophilic Asp106 changes its conformation from an inactive to an active state during the catalytic cycle. The positions of three chloride ions found inside the active site of the enzyme indicate a possible pathway for halide release from the active site through the main tunnel. Comparison of the DhaA31 variant with wild-type DhaA revealed that the introduced substitutions reduce the volume and the solvent-accessibility of the active-site pocket.

  4. SU-F-T-559: High-Resolution Scintillating Fiber Array for In-Vivo Real-Time SRS and SBRT Patient QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knewtson, T; Pokhrel, S; University of Tennessee Health Science Center, Memphis, TN

    2016-06-15

    Purpose: A high-resolution scintillating fiber detector was built for in-vivo real-time patient specific quality assurance (QA). The detector is designed for stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) to monitor treatment delivery and detect real-time deviations from planned dose to increase patient safety and treatment accuracy. Methods: The detector consists of two high-density scintillating fiber arrays layered to form an X-Y grid which can be attached to the accessory tray of a medical linac for SBRT and cone SRS treatment QA. Fiber arrays consist of 128 scintillating fibers embedded within a precision-machined, high-transmission polymer substrate with 0.8mm pitch. Themore » fibers are coupled on both ends to high-sensitivity photodetectors and the output is recorded through a high-speed analog-to-digital converter to capture the linac pulse sequence as treatment delivery progresses. The detector has a software controlled 360 degree rotational system to capture angular beam projections for high-resolution beam profile reconstruction. Results: The detector was validated using SRS cone sizes from 6mm to 34mm and MLC defined field sizes from 5×5mm2 to 100×100mm2. The detector output response is linear with dose and is dose rate independent. Each field can be reconstructed accurately with a spatial resolution of 0.8mm and the current beam output is displayed every 50msec. Dosimetric errors of 1% with respect to the treatment plan can be identified and clinically significant deviations from the expected treatment can be displayed in real-time to alert the therapists. Conclusion: The high resolution detector is capable of reconstructing beam profiles in real-time with submillimeter resolution and 1% dose resolution. This system has the ability to project in-vivo both spatial and dosimetric errors during SBRT and SRS treatments when only a non-clinically significant fraction of the intended dose was delivered. The device has the potential to establish new standards for in-vivo patient specific QA.« less

  5. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE PAGES

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; ...

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP + from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm 3 crystal with the quasi-Laue technique, andmore » the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pK a of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  6. Single-Cell Functional Analysis of Stem-Cell Derived Cardiomyocytes on Micropatterned Flexible Substrates.

    PubMed

    Kijlstra, Jan David; Hu, Dongjian; van der Meer, Peter; Domian, Ibrahim J

    2017-11-15

    Human pluripotent stem-cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and electrical activity, calcium cycling, and force generation, is therefore of paramount importance. hPSC-CMs cultured on stiff substrates like glass or polystyrene do not have the ability to shorten during contraction, making them less suitable for the study of hPSC-CM contractile function. Other approaches require highly specialized hardware and are difficult to reproduce. Here we describe a protocol for the preparation of hPSC-CMs on soft substrates that enable shortening, and subsequently the simultaneous quantitative analysis of their contractile and electrical activity, calcium cycling, and force generation at single-cell resolution. This protocol requires only affordable and readily available materials and works with standard imaging hardware. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.

    PubMed

    Irani, Seema; Naowarojna, Nathchar; Tang, Yang; Kathuria, Karan R; Wang, Shu; Dhembi, Anxhela; Lee, Norman; Yan, Wupeng; Lyu, Huijue; Costello, Catherine E; Liu, Pinghua; Zhang, Yan Jessie

    2018-05-17

    Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...

    2017-01-23

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  9. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  10. Lysine-Tryptophan-Crosslinked Peptides Produced by Radical SAM Enzymes in Pathogenic Streptococci.

    PubMed

    Schramma, Kelsey R; Seyedsayamdost, Mohammad R

    2017-04-21

    Macrocycles represent a common structural framework in many naturally occurring peptides. Several strategies exist for macrocyclization, and the enzymes that incorporate them are of great interest, as they enhance our repertoire for creating complex molecules. We recently discovered a new peptide cyclization reaction involving a crosslink between the side chains of lysine and tryptophan that is installed by a radical SAM enzyme. Herein, we characterize relatives of this metalloenzyme from the pathogens Streptococcus agalactiae and Streptococcus suis. Our results show that the corresponding enzymes, which we call AgaB and SuiB, contain multiple [4Fe-4S] clusters and catalyze Lys-Trp crosslink formation in their respective substrates. Subsequent high-resolution-MS and 2D-NMR analyses located the site of macrocyclization. Moreover, we report that AgaB can accept modified substrates containing natural or unnatural amino acids. Aside from providing insights into the mechanism of this unusual modification, the substrate promiscuity of AgaB may be exploited to create diverse macrocyclic peptides.

  11. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG.

    PubMed

    Wenig, Katja; Chatwell, Lorenz; von Pawel-Rammingen, Ulrich; Björck, Lars; Huber, Robert; Sondermann, Peter

    2004-12-14

    Pathogenic bacteria have developed complex and diverse virulence mechanisms that weaken or disable the host immune defense system. IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a secreted cysteine endopeptidase from the human pathogen S. pyogenes with an extraordinarily high degree of substrate specificity, catalyzing a single proteolytic cleavage at the lower hinge of human IgG. This proteolytic degradation promotes inhibition of opsonophagocytosis and interferes with the killing of group A Streptococcus. We have determined the crystal structure of the catalytically inactive mutant IdeS-C94S by x-ray crystallography at 1.9-A resolution. Despite negligible sequence homology to known proteinases, the core of the structure resembles the canonical papain fold although with major insertions and a distinct substrate-binding site. Therefore IdeS belongs to a unique family within the CA clan of cysteine proteinases. Based on analogy with inhibitor complexes of papain-like proteinases, we propose a model for substrate binding by IdeS.

  12. Discovery and characterization of a marine bacterial SAM-dependent chlorinase

    PubMed Central

    Eustáquio, Alessandra S; Pojer, Florence; Noel, Joseph P; Moore, Bradley S

    2009-01-01

    Halogen atom incorporation into a scaffold of bioactive compounds often amplifies biological activity, as is the case for the anticancer agent salinosporamide A (1), a chlorinated natural product from the marine bacterium Salinispora tropica. Significant effort in understanding enzymatic chlorination shows that oxidative routes predominate to form reactive electrophilic or radical chlorine species. Here we report the genetic, biochemical and structural characterization of the chlorinase SalL, which halogenates S-adenosyl-l-methionine (2) with chloride to generate 5′-chloro-5′-deoxyadenosine (3) and l-methionine (4) in a rarely observed nucleophilic substitution strategy analogous to that of Streptomyces cattleya fluorinase. Further metabolic tailoring produces a halogenated polyketide synthase substrate specific for salinosporamide A biosynthesis. SalL also accepts bromide and iodide as substrates, but not fluoride. High-resolution crystal structures of SalL and active site mutants complexed with substrates and products support the SN2 nucleophilic substitution mechanism and further illuminate halide specificity in this newly discovered halogenase family. PMID:18059261

  13. Chemical-free n-type and p-type multilayer-graphene transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com; Eisaman, M. D.; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping.more » When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.« less

  14. Thin glass substrates for mobile applications

    NASA Astrophysics Data System (ADS)

    Mauch, Reiner H.; Wegener, Holger; Kruse, Anke; Hildebrand, Norbert

    2000-10-01

    Flat panel displays play an important role as the visual interface for today's electronic devices (Notebook computers, PDA's, pagers, mobile phones, etc.). Liquid Crystal Display's are dominating the market. While for higher resolution displays active matrix displays like Thin Film Transistor LCD's are used, portable devices are mainly using Super Twisted Nematic (STN) displays. Based on the application, STN displays for mobile applications require thinner glass substrates with improved surface quality at a lower cost. The requirements and trends for STN glass substrates are identified and discussed. Different glass manufacturing processes are used today for the manufacture of these substrates. Advantages and disadvantages of the different glass substrate types are presented and discussed.

  15. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates

    NASA Astrophysics Data System (ADS)

    Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei

    2018-05-01

    Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.

  16. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates.

    PubMed

    Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei

    2018-05-25

    Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.

  17. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    PubMed

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-09

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

  18. Large area nanoimprint by substrate conformal imprint lithography (SCIL)

    NASA Astrophysics Data System (ADS)

    Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert

    2017-06-01

    Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.

  19. Confocal filtering in cathodoluminescence microscopy of nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effectivemore » for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.« less

  20. Large-scale fabrication of polymer/Ag core-shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

    NASA Astrophysics Data System (ADS)

    Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua

    2014-06-01

    We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

  1. Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries.

    PubMed

    Ziolkowski, Pawel; Wambach, Matthias; Ludwig, Alfred; Mueller, Eckhard

    2018-01-08

    In view of the variety and complexity of thermoelectric (TE) material systems, combinatorial approaches to materials development come to the fore for identifying new promising compounds. The success of this approach is related to the availability and reliability of high-throughput characterization methods for identifying interrelations between materials structures and properties within the composition spread libraries. A meaningful characterization starts with determination of the Seebeck coefficient as a major feature of TE materials. Its measurement, and hence the accuracy and detectability of promising material compositions, may be strongly affected by thermal and electrical measurement conditions. This work illustrates the interrelated effects of the substrate material, the layer thickness, and spatial property distributions of thin film composition spread libraries, which are studied experimentally by local thermopower scans by means of the Potential and Seebeck Microprobe (PSM). The study is complemented by numerical evaluation. Material libraries of the half-Heusler compound system Ti-Ni-Sn were deposited on selected substrates (Si, AlN, Al 2 O 3 ) by magnetron sputtering. Assuming homogeneous properties of a film, significant decrease of the detected thermopower S m can be expected on substrates with higher thermal conductivity, yielding an underestimation of materials thermopower between 15% and 50%, according to FEM (finite element methods) simulations. Thermally poor conducting substrates provide a better accuracy with thermopower underestimates lower than 8%, but suffer from a lower spatial resolution. According to FEM simulations, local scanning of sharp thermopower peaks on lowly conductive substrates is linked to an additional deviation of the measured thermopower of up to 70% compared to homogeneous films, which is 66% higher than for corresponding cases on substrates with higher thermal conductivity of this study.

  2. A laser induced local transfer for patterning of RGB-OLED-displays

    NASA Astrophysics Data System (ADS)

    Kroeger, Michael; Hueske, Marc; Dobbertin, Thomas; Meyer, Jens; Krautwald, Henning; Riedl, Thomas; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2005-07-01

    RGB-OLED-displays can be realized by at least three different approaches: Color from white, color from blue or patterning of red, green and blue OLEDs, which is favorable for reasons of higher efficiency and lower costs. Common patterning techniques like photolithography cannot be applied due to the degradation of the OLEDs after the exposure to solvents. Shadow masking which is currently widely applied is not applicable for bigger substrate sizes of future mass production tools. Therefore a novel approach for patterning of organic semiconductors will be demonstrated. The laser induced local transfer (LILT) of organic small molecule materials allows for mass production of high resolution RGB-OLED-displays. An infrared absorbing target is coated with the desired emitting material, which is placed in a short distance in front of an OLED substrate. A scanner deflects and focuses an infrared laser beam onto the target. By adjusting scanning speed and laser power accurately the target locally heats up to a temperature where the organic material sublimes and will be deposited on the opposite OLED substrate. By repeating this for red, green and blue emitting materials a RGB-OLED-display can be realized. For process evaluation and development a LILT-module has been built, incorporating two custom vacuum chambers, several lift and transfer stages, a high-speed high-precision scanner and an infrared continuous-wave laser (cw). This module is designed to be part of a future inline deposition system for full-color OLED displays. In the first experiments it could be observed, that the pattern resolution is strongly dependent on the scanning speed, exhibiting minimum feature sizes of 40μm. It can be deducted that this is due to the laser's beam profile (TEM00), which allows for the smallest focus possible, but may not allow for rugged process conditions suitable for production. Rectangular steep-edged beam profiles may overcome this problem.

  3. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.

    2016-08-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.

  4. High definition TV projection via single crystal faceplate technology

    NASA Astrophysics Data System (ADS)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.

  5. High-resolution forest carbon stocks and emissions in the Amazon.

    PubMed

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  6. Analysis and amelioration about the cross-sensitivity of a high resolution MOEMS accelerometer based on diffraction grating

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan

    2016-10-01

    Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.

  7. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less

  8. Gravure printing of graphene for large-area flexible electronics.

    PubMed

    Secor, Ethan B; Lim, Sooman; Zhang, Heng; Frisbie, C Daniel; Francis, Lorraine F; Hersam, Mark C

    2014-07-09

    Gravure printing of graphene is demonstrated for the rapid production of conductive patterns on flexible substrates. Development of suitable inks and printing parameters enables the fabrication of patterns with a resolution down to 30 μm. A mild annealing step yields conductive lines with high reliability and uniformity, providing an efficient method for the integration of graphene into large-area printed and flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473.

    PubMed

    MacDonald, Logan C; Berger, Bryan W

    2014-06-27

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia

    PubMed Central

    Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    Objective To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Methods and Design Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20–22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Results Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Conclusions Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols. PMID:26401848

  11. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.

    PubMed

    Hals, Ingrid K; Bruerberg, Simon Gustafson; Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols.

  12. The Formation, Transport Properties and Microstructure of 45 Degrees (001) Tilt Grain Boundaries in Yttrium BARIUM(2) COPPER(3) OXYGEN(7-X) Thin Films

    NASA Astrophysics Data System (ADS)

    Vuchic, Boris Vukan

    1995-01-01

    Most high angle grain boundaries in high-T _{c} superconductors exhibit weak link behavior. The Josephson-like properties of these grain boundaries can be used for many device applications such as superconducting quantum interference devices (SQUIDs). The structure-property relationship of different types of 45 ^circ (001) YBa_2 Cu_3O_{7-x} thin film grain boundary junctions are examined to study their weak link nature. A technique, termed sputter-induced epitaxy, is developed to form 45^circ (001) tilt grain boundaries in YBa_2Cu _3O_{7-x} thin films on (100) MgO substrates. A low voltage ion bombardment pre-growth substrate treatment is used to modify the epitaxial orientation relationship between the thin film and the substrate in selected regions. By modifying the orientation of the thin film, grain boundary junctions can be placed in any configuration on the substrate. A variety of pre-growth sputtering conditions in conjunction with atomic force microscopy and Rutherford backscatter spectrometry are used to determine the role of the ions in modifying the substrate surface. Sputter-induced epitaxy is extended to a multilayer MgO/LaAlO_3 substrate, allowing integration of the sputter -induced epitaxy junctions into multilayer structures. The low temperature transport properties of the sputter-induced epitaxy junctions and a set of bi-epitaxial grain boundaries are studied. Individual grain boundaries are isolated and characterized for resistance vs. temperature, current vs. voltage as a function of temperature and magnetic field behavior. Resistive and superconducting grain boundaries are compared. Microstructural analysis is performed using scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy (HREM). Marked differences are observed in the microstructure of resistive and superconducting grain boundaries. HREM studies suggest the importance of the local atomic scale structure of the grain boundary in transport properties. A phenomenological grain boundary model is proposed to describe the structure -property relationship of the boundaries.

  13. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution.

    PubMed

    Varrot, A; Hastrup, S; Schülein, M; Davies, G J

    1999-01-15

    The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.

  14. Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    PubMed Central

    Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668

  15. Entirely relaxed lattice-mismatched GaSb/GaAs/Si(001) heterostructure grown via metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Lee, Ching Ting; Chang, Edward Yi

    2018-05-01

    A GaSb epilayer is grown on a GaAs/Si(001) epitaxial substrate via metalorganic chemical vapor deposition. High-resolution transmission electron microscopy micrographs and high-resolution X-ray reciprocal space mapping indicate an entirely relaxed interfacial misfit (IMF) array GaSb epilayer. The valence-band offset and conduction-band offset of the Al2O3/GaSb/GaAs/Si structure are estimated to be 2.39 and 3.65 eV, respectively. The fabricated Al2O3/p-GaSb/GaAs/Si MOS capacitors exhibited good capacitance–voltage characteristics with a small accumulation frequency dispersion of approximately 1.05% per decade. These results imply that the GaSb epilayer grown on the GaAs/Si platform in the IMF mode can be used for future complementary metal–oxide semiconductor applications.

  16. CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping.

    PubMed

    Bao, Rongrong; Wang, Chunfeng; Dong, Lin; Shen, Changyu; Zhao, Kun; Pan, Caofeng

    2016-04-21

    As widely applied in light-emitting diodes and optical devices, CdS has attracted the attention of many researchers due to its nonlinear properties and piezo-electronic effect. Here, we demonstrate a LED array composed of PSS and CdS nanorods and research the piezo-photonic effect of the array device. The emission intensity of the device depends on the electron-hole recombination at the interface of the p-n junction which can be adjusted using the piezo-phototronic effect and can be used to map the pressure applied on the surface of the device with spatial resolution as high as 1.5 μm. A flexible LED device array has been prepared using a CdS nanorod array on a Au/Cr/kapton substrate. This device may be used in the field of strain mapping using its high pressure spatial-resolution and flexibility.

  17. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals.

    PubMed

    Wu, Yimin A; Kirkland, Angus I; Schäffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moiré patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  18. Laser ablation surface-enhanced Raman microspectroscopy.

    PubMed

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  19. In situ x-ray surface diffraction chamber for pulsed laser ablation film growth studies

    NASA Astrophysics Data System (ADS)

    Tischler, J. Z.; Eres, G.; Lowndes, D. H.; Larson, B. C.; Yoon, M.; Chiang, T.-C.; Zschack, Paul

    2000-06-01

    Pulsed laser deposition is highly successful for growing complex films such as oxides for substrate buffer layers and HiTc oxide superconductors. A surface diffraction chamber has been constructed to study fundamental aspects of non-equilibrium film growth using pulsed laser deposition. Due to the pulsed nature of the ablating laser, the deposited atoms arrive on the substrate in short sub-millisecond pulses. Thus monitoring the surface x-ray diffraction following individual laser pulses (with resolution down to ˜1 ms) provides direct information on surface kinetics and the aggregation process during film growth. The chamber design, based upon a 2+2 surface diffraction geometry with the modifications necessary for laser ablation, is discussed, and initial measurements on homo-epitaxial growth of SrTiO3 are presented.

  20. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals.

    PubMed

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P

    2013-12-01

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  1. Magnetic imaging of cyanide-bridged co-ordination nanoparticles grafted on FIB-patterned Si substrates.

    PubMed

    Ghirri, Alberto; Candini, Andrea; Evangelisti, Marco; Gazzadi, Gian Carlo; Volatron, Florence; Fleury, Benoit; Catala, Laure; David, Christophe; Mallah, Talal; Affronte, Marco

    2008-12-01

    Prussian blue CsNiCr nanoparticles are used to decorate selected portions of a Si substrate. For successful grafting to take place, the Si surface needs first to be chemically functionalized. Low-dose focused ion beam patterning on uniformly functionalized surfaces selects those portions that will not participate in the grafting process. Step-by-step control is assured by atomic force and high-resolution scanning electron microscopy, revealing a submonolayer distribution of the grafted nanoparticles. By novel scanning Hall-probe microscopy, an in-depth investigation of the magnetic response of the nanoparticles to varying temperature and applied magnetic field is provided. The magnetic images acquired suggest that low-temperature canted ferromagnetism is found in the grafted nanoparticles, similar to what is observed in the equivalent bulk material.

  2. Characterization of Plasma Synthesized Vertical Carbon Nanofibers for Nanoelectronics Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jaesung; Feng, Philip X.-L.; Kaul, Anupama B.

    2013-01-01

    We report on the material characterization of carbon nanofibers (CNFs) which are assembled into a three-dimensional (3D) configuration for making new nanoelectromechanical systems (NEMS). High-resolution scanning electron microscopy (SEM) and x-ray electron dispersive spectroscopy (XEDS) are employed to decipher the morphology and chemical compositions of the CNFs at various locations along individual CNFs grown on silicon (Si) and refractory nitride (NbTiN) substrates, respectively. The measured characteristics suggest interesting properties of the CNF bodies and their capping catalyst nanoparticles, and growth mechanisms on the two substrates. Laser irradiation on the CNFs seems to cause thermal oxidation and melting of catalyst nanoparticles. The structural morphology and chemical compositions of the CNFs revealed in this study should aid in the applications of the CNFs to nanoelectronics and NEMS.

  3. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  4. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus

    2004-07-01

    The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.

  5. SOI-silicon as structural layer for NEMS applications

    NASA Astrophysics Data System (ADS)

    Villarroya, Maria; Figueras, Eduard; Perez-Murano, Francesc; Campabadal, Francesca; Esteve, Jaume; Barniol, Nuria

    2003-04-01

    The objective of this paper is to present the compatibilization between a standard CMOS on bulk silicon process and the fabrication of nanoelectromechanical systems using Silicon On Insulator (SOI) wafers as substrate. This compatibilization is required as first step to fabricate a very high sensitive mass sensor based on a resonant cantilever with nanometer dimensions using the crystal silicon COI layer as the structural layer. The cantilever is driven electrostatically to its resonance frequency by an electrode placed parallel to the cantilever. A capacitive readout is performed. To achieve very high resolution, very small dimensions of the cantilever (nanometer range) are needed. For this reason, the control and excitation circuitry has to be integrated on the same substrate than the cantilever. Prior to the development of this sensor, it is necessary to develop a substrate able to be used first to integrate a standard CMOS circuit and afterwards to fabricate the nano-resonator. Starting from a SOI wafer and using very simple processes, the SOI silicon layer is removed, except from the areas in which nano-structures will be fabricated; obtaining a silicon substrate with islands with a SOI structure. The CMOS circuitry will be integrated on the bulk silicon region, while the remainder SOI region will be used for the nanoresonator. The silicon oxide of this SOI region is used as insulator; and as sacrificial layer, etched to release the cantilever from the substrate. To assure the cover of the different CMOS layers over the step of the islands, it is essential to avoid very sharp steps.

  6. High performance wire grid polarizers using jet and flashTM imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Sean; Yang, Jack; Miller, Mike; Ganapathisubramanian, Maha; Menezes, Marlon; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-03-01

    The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area roll to roll (R2R) manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we have developed a roll based J-FIL process and applied it to technology demonstrator tool, the LithoFlex 100, to fabricate large area flexible bilayer wire grid polarizers (WGP) and high performance WGPs on rigid glass substrates. Extinction ratios of better than 10000 were obtained for the glass-based WGPs. Two simulation packages were also employed to understand the effects of pitch, aluminum thickness and pattern defectivity on the optical performance of the WGP devices. It was determined that the WGPs can be influenced by both clear and opaque defects in the gratings, however the defect densities are relaxed relative to the requirements of a high density semiconductor device.

  7. Conformal Robotic Stereolithography

    PubMed Central

    Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna

    2016-01-01

    Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062

  8. Nanoscale patterning of a self-assembled monolayer by modification of the molecule-substrate bond.

    PubMed

    Shen, Cai; Buck, Manfred

    2014-01-01

    The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM-substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S-Au and S-Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.

  9. Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates

    PubMed Central

    Kang, Hong-Jun; Vassilopoulos, Athanassios

    2016-01-01

    Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context. PMID:26966987

  10. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misaghi, S.; Galardy, P.J.; Meester, W.J.

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structuremore » confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.« less

  11. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications

    PubMed Central

    Iliuk, Anton B.; Arrington, Justine V.; Tao, Weiguo Andy

    2014-01-01

    Phosphoproteomics is the systematic study of one of the most common protein modifications in high throughput with the aim of providing detailed information of the control, response, and communication of biological systems in health and disease. Advances in analytical technologies and strategies, in particular the contributions of high-resolution mass spectrometers, efficient enrichments of phosphopeptides, and fast data acquisition and annotation, have catalyzed dramatic expansion of signaling landscapes in multiple systems during the past decade. While phosphoproteomics is an essential inquiry to map high-resolution signaling networks and to find relevant events among the apparently ubiquitous and widespread modifications of proteome, it presents tremendous challenges in separation sciences to translate it from discovery to clinical practice. In this mini-review, we summarize the analytical tools currently utilized for phosphoproteomic analysis (with focus on MS), progresses made on deciphering clinically relevant kinase-substrate networks, MS uses for biomarker discovery and validation, and the potential of phosphoproteomics for disease diagnostics and personalized medicine. PMID:24890697

  12. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  13. The neutron structure of urate oxidase resolves a long-standing mechanistic conundrum and reveals unexpected changes in protonation.

    PubMed

    Oksanen, Esko; Blakeley, Matthew P; El-Hajji, Mohamed; Ryde, Ulf; Budayova-Spano, Monika

    2014-01-01

    Urate oxidase transforms uric acid to 5-hydroxyisourate without the help of cofactors, but the catalytic mechanism has remained enigmatic, as the protonation state of the substrate could not be reliably deduced. We have determined the neutron structure of urate oxidase, providing unique information on the proton positions. A neutron crystal structure inhibited by a chloride anion at 2.3 Å resolution shows that the substrate is in fact 8-hydroxyxanthine, the enol tautomer of urate. We have also determined the neutron structure of the complex with the inhibitor 8-azaxanthine at 1.9 Å resolution, showing the protonation states of the K10-T57-H256 catalytic triad. Together with X-ray data and quantum chemical calculations, these structures allow us to identify the site of the initial substrate protonation and elucidate why the enzyme is inhibited by a chloride anion.

  14. Holo Structure and Steady State Kinetics of the Thiazolinyl Imine Reductases for Siderophore Biosynthesis

    PubMed Central

    Meneely, Kathleen M.; Ronnebaum, Trey A.; Riley, Andrew P.; Prisinzano, Thomas E.; Lamb, Audrey L.

    2016-01-01

    Thiazolinyl imine reductases catalyze the NADPH-dependent reduction of a thiazoline to a thiazolidine, a required step in the formation of the siderophores yersiniabactin (Yersinia spp.) and pyochelin (Pseudomonas aeruginosa). These stand-alone nonribosomal peptide tailoring domains are structural homologues of sugar oxidoreductases. Two closed structures of the thiazolinyl imine reductase from Yersinia enterocolitica (Irp3) are presented here: an NADP+-bound structure to 1.45 Å resolution and a holo structure to 1.28 Å resolution with NADP+ and a substrate analogue bound. Michaelis—Menten kinetics were measured using the same substrate analogue and the homologue from P. aeruginosa, PchG. The data presented here support the hypothesis that tyrosine 128 is the likely general acid residue for catalysis and also highlight the phosphopantetheine tunnel for tethering of the substrate to the nonribosomal peptide synthetase module during assembly line biosynthesis of the siderophore. PMID:27601130

  15. Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods.

    PubMed

    Hilton, David J

    2012-12-31

    We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.

  16. Probabilistic thermal-shock strength testing using infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.

    1999-12-01

    A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.

  17. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non-planar scenarios.

  18. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations.

    PubMed

    Lee, H-P; Perozek, J; Rosario, L D; Bayram, C

    2016-11-21

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13  cm -2 ) on Si(111) substrates.

  19. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    PubMed Central

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-01-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222

  20. Improved reliability from a plasma-assisted metal-insulator-metal capacitor comprising a high-k HfO2 film on a flexible polyimide substrate.

    PubMed

    Meena, Jagan Singh; Chu, Min-Ching; Kuo, Shiao-Wei; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-03-20

    We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal (MIM) capacitor comprising a 10 nm-thick high-k thin dielectric HfO(2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfO(2) film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the film surface. After oxygen (O(2)) plasma pretreatment and subsequent annealing at 250 degrees C, the film on the PI substrate exhibited a low leakage current density of 3.64 x 10(-9) A cm(-2) at 5 V and a maximum capacitance density of 10.35 fF microm(-2) at 1 MHz. The as-deposited sol-gel film was completely oxidized when employing O(2) plasma at a relatively low temperature (ca. 250 degrees C), thereby enhancing the electrical performance. We employed X-ray photoelectron spectroscopy (XPS) at both high and low resolution to examine the chemical composition of the film subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy, revealed that O(2) plasma treatment was the most effective process for the complete oxidation of hafnium atoms at low temperature. A study of the insulator properties indicated the excellent bendability of our MIM capacitor; the flexible PI substrate could be bent up to 10(5) times and folded to near 360 degrees without any deterioration in its electrical performance.

  1. Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Puretzky, Alexander A.; Geohegan, David B.; Pannala, Sreekanth; Rouleau, Christopher M.; Regmi, Murari; Thonnard, Norbert; Eres, Gyula

    2013-06-01

    The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures.The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures. Electronic supplementary information (ESI) available: A movie of graphene growth after exposure to a single C2H2 pulse, modeling of gas dynamics, Raman map and spectra of graphene transferred to a SiO2/Si substrate, time-resolved reflectivity upon exposure to a pure Ar pulse, Raman map of I(2D)/I(G) ratios for 800 °C and 20% C2H2 concentration, comparison of Raman spectra of a single layer suspended graphene at 532 nm and 404.5 nm, processing of reflectivity curves for comparison with growth kinetics based on Raman measurements. See DOI: 10.1039/c3nr01436c

  2. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to 13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  3. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  4. Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films

    NASA Astrophysics Data System (ADS)

    Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.

    2015-09-01

    We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.

  5. Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.

    PubMed

    Gallais, Laurent; Monneret, Serge

    2016-07-15

    We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.

  6. Bioprinting Living Biofilms through Optogenetic Manipulation.

    PubMed

    Huang, Yajia; Xia, Aiguo; Yang, Guang; Jin, Fan

    2018-04-18

    In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.

  7. Correlations between the interfacial chemistry and current-voltage behavior of n-GaAs/liquid junctions

    NASA Technical Reports Server (NTRS)

    Tufts, Bruce J.; Casagrande, Louis G.; Lewis, Nathan S.; Grunthaner, Frank J.

    1990-01-01

    Correlations between the surface chemistry of etched, (100) oriented n-GaAs electrodes and their subsequent photoelectrochemical behavior have been probed by high-resolution X-ray photoelectron spectroscopy. GaAs photoanodes were chemically treated to prepare either an oxide-free near stoichiometric surface, a surface enriched in zero-valent arsenic or a substrate-oxide terminated surface. The current-voltage (I-V) behavior of each surface type was subsequently monitored in contact with several electrolytes.

  8. Leakage radiation interference microscopy.

    PubMed

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  9. Microstructural study of the polymorphic transformation in pentacene thin films.

    PubMed

    Murakami, Yosuke; Tomiya, Shigetaka; Koshitani, Naoki; Kudo, Yoshihiro; Satori, Kotaro; Itabashi, Masao; Kobayashi, Norihito; Nomoto, Kazumasa

    2009-10-02

    We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.

  10. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    PubMed

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  11. The X-Ray Surveyor Mission: A Concept Study

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; hide

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  12. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.

    PubMed

    Arendse, C J; Malgas, G F; Scriba, M R; Cummings, F R; Knoesen, D

    2007-10-01

    Hot-filament chemical vapor deposition has developed into an attractive method for the synthesis of various carbon nanostructures, including carbon nanotubes. This is primarily due to its versatility, low cost, repeatability, up-scalability, and ease of production. The resulting nano-material synthesized by this technique is dependent on the deposition conditions which can be easily controlled. In this paper we report on the effect of the deposition pressure on the structural properties and morphology of carbon nanotubes synthesized by hot-filament chemical vapor deposition, using Raman spectroscopy and high-resolution scanning electron microscopy, respectively. A 10 nm-thick Ni layer, deposited on a SiO2/Si substrate, was used as catalyst for carbon nanotube growth. Multi-walled carbon nanotubes with diameters ranging from 20-100 nm were synthesized at 500 degrees C with high structural perfection at deposition pressures between 150 and 200 Torr. Raman spectroscopy measurements confirm that the carbon nanotube deposit is homogeneous across the entire substrate area.

  13. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water

    NASA Astrophysics Data System (ADS)

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M.; Gnecco, Enrico

    2014-06-01

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

  14. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.

    PubMed

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico

    2014-07-21

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

  15. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging.

    PubMed

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-07-29

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.

  16. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging

    PubMed Central

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-01-01

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237

  17. Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector.

    PubMed

    Wu, Jyh Ming; Chen, Yi-Ru; Lin, Yu-Hung

    2011-03-01

    We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy (FESEM) image reveals a high aspect ratio of the ZnO nanowires, which are grown on a substrate with a diameter of ∼50-100 nm, and a length of up to several hundred microns. High resolution transmission electron microscopy (HRTEM) images reveal that the nanowires consist of many single crystalline ZnO nanoparticles that grow along the c axis, which suggests an oriented attachment process. A potential application for flexible UV photodetectors was investigated using a UV lamp (λ=365 nm, I=2.34 mW cm(-2)). A significant ratio of photocurrent to dark current--around 11,300%--was achieved.

  18. Strain field mapping of dislocations in a Ge/Si heterostructure.

    PubMed

    Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen

    2013-01-01

    Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.

  19. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

    PubMed

    Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J

    2005-08-15

    Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.

  20. Stochastic steps in secondary active sugar transport

    PubMed Central

    Adelman, Joshua L.; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D. F.; Choe, Seungho; Abramson, Jeff; Rosenberg, John M.; Wright, Ernest M.; Grabe, Michael

    2016-01-01

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state. PMID:27325773

  1. Two-Dimensional Micropatterns of Self-Assembled Poly(N-isopropylacrylamide) Microgels for Patterned Adhesion and Temperature-Responsive Detachment of Fibroblasts

    PubMed Central

    Tsai, Hsin-Yi; Vats, Kanika; Yates, Matthew Z.; Benoit, Danielle S. W.

    2013-01-01

    Thermoresponsive poly(N-isopropyl acrylamide) (PNIPAM) microgels were patterned on polystyrene substrates via dip coating, creating cytocompatible substrates that provided spatial control over cell adhesion. This simple dip coating method, which exploits variable substrate withdrawal speeds form particle suspension formed stripes of densely-packed PNIPAM microgels, while spacings between the stripes contained sparsely-distributed PNIPAM microgels. The assembly of three different PNIPAM microgel patterns, namely patterns composed of 50 μm stripes/50 μm spacings, 50 μm stripes/100 μm spacings, and 100 μm stripes/100 μm spacings was verified using high-resolution optical micrographs and ImageJ analysis. PNIPAM microgels existed as monolayers within stripes and spacings, as revealed by atomic force microscopy (AFM). Upon cell seeding on PNIPAM micropatterned substrates, NIH3T3 fibroblast cells preferentially adhered within spacings to form cell patterns. Three days after cell seeding, cells proliferated to form confluent cell layers. The thermoresponsiveness of the underlying PNIPAM microgels was then utilized to recover fibroblast cell sheets from substrates simply by lowering the temperature, without disrupting the underlying PNIPAM microgel patterns. Harvested cell sheets similar to these have been used for multiple tissue engineering applications. Also, this simple, low cost, template-free dip coating technique can be utilized to micropattern multifunctional PNIPAM microgels, generating complex stimuli-responsive substrates to study cell-material interactions and allow drug delivery to cells in a spatially and temporally-controlled manners. PMID:23968193

  2. Stochastic steps in secondary active sugar transport.

    PubMed

    Adelman, Joshua L; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D F; Choe, Seungho; Abramson, Jeff; Rosenberg, John M; Wright, Ernest M; Grabe, Michael

    2016-07-05

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.

  3. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  4. Metallic Nanohole Arrays on Fluoropolymer Substrates as Small Label-Free Real-Time Bioprobes

    PubMed Central

    Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.

    2009-01-01

    We describe a nanoplasmonic probing platform that exploits small-dimension (≤ 20 μm2) ordered arrays of subwavelength holes for multiplexed, high spatial resolution, and real-time analysis on biorecognition events. Nanohole arrays are perforated on a super smooth gold surface (roughness RMS < 2.7 Å) attached on a fluoropolymer (FEP) substrate fabricated by a replica technique. The smooth surface of gold provides a superb environment for fabricating nanometer features and uniform immobilization of biomolecules. The refractive index matching between FEP and biological solutions contributes to ∼ 20% improvement on the sensing performance. Spectral studies on a series of small-dimension nanohole arrays from 1 μm2 to 20 μm2 indicate that the plasmonic sensing sensitivity improves as the gold-solution contact area increases. Our results also demonstrate that nanohole arrays with dimension as small as 1 μm2 can be used to effectively detect biomolecular binding events and analyze the binding kinetics. The future scientific opportunities opened by this nanohole platform include highly multiplexed analysis of ligand interactions with membrane proteins on high quality supported lipid bilayers. PMID:18710296

  5. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  6. Polytype Stability and Microstructural Characterization of Silicon Carbide Epitaxial Films Grown on [ {11}overline{{2}} {0} ]- and [0001]-Oriented Silicon Carbide Substrates

    NASA Astrophysics Data System (ADS)

    Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.

    2007-04-01

    The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.

  7. Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Atul; Academy of Scientific and Innovative Research; Chockalingam, S.

    2016-02-15

    Highlights: • Flowered-like bunched MWCNTs have been synthesized by MW PECVD technique. • Effect of substrate bias on the properties of MWCNT has been studied. • Minimum E{sub T} = 1.9 V/μm with β = 4770 has been obtained in the film deposited at −350 V. - Abstract: This paper reports the effect of substrate bias on the multiwalled carbon nanotube (MWCNT) deposited on nickel foil by microwave plasma enhanced chemical vapor deposition technique. The MWCNTs have been characterized by the scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, field emission and current–voltage characteristic of themore » heterojunction diode. The SEM images exhibit unique hierarchical flowered-like bunched and conformally coated MWCNTs. Substrate bias induced ion bombardment helps in the enhancement of hydrocarbon dissociation and is responsible for flowered-like MWCNTs growth. The HRTEM micrographs show the base growth mechanism for MWCNTs. The value of turn on field for emission decreases from 5.5 to 1.9 V/μm and field enhancement factor increases from 927 to 4770, respectively, with the increase of substrate bias. The diode ideality factor of CNT/ n-Si heterojunction is evaluated as 2.4 and the on/off current ratio is found to be 7 at ±2 V, respectively.« less

  8. Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts.

    PubMed

    Duicu, Oana M; Privistirescu, Andreea; Wolf, Adrian; Petruş, Alexandra; Dănilă, Maria D; Raţiu, Corina D; Muntean, Danina M; Sturza, Adrian

    2017-11-01

    Diabetic cardiomyopathy has been systematically associated with compromised mitochondrial energetics and increased generation of reactive oxygen species (ROS) that underlie its progression to heart failure. Methylene blue is a redox drug with reported protective effects mainly on brain mitochondria. The purpose of the present study was to characterize the effects of acute administration of methylene blue on mitochondrial respiration, H 2 O 2 production, and calcium sensitivity in rat heart mitochondria isolated from healthy and 2 months (streptozotocin-induced) diabetic rats. Mitochondrial respiratory function was assessed by high-resolution respirometry. H 2 O 2 production and calcium retention capacity were measured spectrofluorimetrically. The addition of methylene blue (0.1 μmol·L -1 ) elicited an increase in oxygen consumption of mitochondria energized with complex I and II substrates in both normal and diseased mitochondria. Interestingly, methylene blue elicited a significant increase in H 2 O 2 release in the presence of complex I substrates (glutamate and malate), but had an opposite effect in mitochondria energized with complex II substrate (succinate). No changes in the calcium retention capacity of healthy or diabetic mitochondria were found in the presence of methylene blue. In conclusion, in cardiac mitochondria isolated from diabetic and nondiabetic rat hearts, methylene blue improved respiratory function and elicited a dichotomic, substrate-dependent effect on ROS production.

  9. Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru

    2016-08-15

    Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less

  10. Optimizing atomic force microscopy for characterization of diamond-protein interfaces

    NASA Astrophysics Data System (ADS)

    Rezek, Bohuslav; Ukraintsev, Egor; Kromka, Alexander

    2011-12-01

    Atomic force microscopy (AFM) in contact mode and tapping mode is employed for high resolution studies of soft organic molecules (fetal bovine serum proteins) on hard inorganic diamond substrates in solution and air. Various effects in morphology and phase measurements related to the cantilever spring constant, amplitude of tip oscillations, surface approach, tip shape and condition are demonstrated and discussed based on the proposed schematic models. We show that both diamond and proteins can be mechanically modified by Si AFM cantilever. We propose how to choose suitable cantilever type, optimize scanning parameters, recognize and minimize various artifacts, and obtain reliable AFM data both in solution and in air to reveal microscopic characteristics of protein-diamond interfaces. We also suggest that monocrystalline diamond is well defined substrate that can be applicable for fundamental studies of molecules on surfaces in general.

  11. Internal Dynamics of Water Attached to a Photoacidic Substrate: High Resolution Electronic Spectroscopy of β-NAPHTHOL-WATER in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Young, Justin W.; Pratt, David W.

    2010-06-01

    An understanding of the structure and internal dynamics of water attached to the photoacid β-naphthol is attainable through rotationally resolved electronic spectroscopy. Here, we present rotational constants for the 1:1 acid-base cluster in both S0 and S1, which provide the location of water within the cluster, as well as the barrier height to internal rotation of water in each electronic state. The barrier height decreases slightly upon excitation, from 206 wn in S0, to 182 wn in S1. There is also little evidence of a large change in water location, orientation, or overall hydrogen bond length upon irradiation with UV light. Thus, a single water molecule has relatively little affect on the substrate photo-acidity measured in the liquid phase.

  12. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices

    NASA Astrophysics Data System (ADS)

    Bao, Xingzhen; Liang, Jingqiu; Liang, Zhongzhu; Wang, Weibiao; Tian, Chao; Qin, Yuxin; Lü, Jinguang

    2016-04-01

    An integrated high-resolution (individual pixel size 80 μm×80 μm) solid-state self-emissive active matrix programmed with 320×240 micro-light-emitting-diode arrays structure was designed and fabricated on an AlGaInP semiconductor chip using micro electro-mechanical systems, microstructure and semiconductor fabricating techniques. Row pixels share a p-electrode and line pixels share an n-electrode. We experimentally investigated GaAs substrate thickness affects the electrical and optical characteristics of the pixels. For a 150-μm-thick GaAs substrate, the single pixel output power was 167.4 μW at 5 mA, and increased to 326.4 μW when current increase to 10 mA. The device investigated potentially plays an important role in many fields.

  13. Resolving Single Molecule Lysozyme Dynamics with a Carbon Nanotube Electronic Circuit

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Moody, Issa S.; Perez, Israel; Sheps, Tatyana; Weiss, Gregory A.; Collins, Philip G.

    2011-03-01

    High resolution, real-time monitoring of a single lysozyme molecule is demonstrated by fabricating nanoscale electronic devices based on single-walled carbon nanotubes (SWCNT). In this sensor platform, a biomolecule of interest is attached to a single SWCNT device. The electrical conductance transduces chemical events with single molecule sensitivity and 10 microsecond resolution. In this work, enzymatic turnover by lysozyme is investigated, because the mechanistic details for its processivity and dynamics remain incompletely understood. Stochastically distributed binding events between a lysozyme and its binding substrate, peptidoglycan, are monitored via the sensor conductance. Furthermore, the magnitude and repetition rate of these events varies with pH and the presence of inhibitors or denaturation agents. Changes in the conductance signal are analyzed in terms of lysozyme's internal hinge motion, binding events, and enzymatic processing.

  14. Virtual electrodes for high-density electrode arrays

    DOEpatents

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  15. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  16. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  17. Structural and Geomorphic Controls in Altitudinal Treeline: a Case Study in the Front Ranges of the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Macias Fauria, M.; Johnson, E. A.

    2009-12-01

    Altitudinal treelines occur on mountain slopes. The geological history of mountain systems sets both the distribution of slope angles, aspects and lengths, and the physical characteristics of the bedrock and regolith on which trees have to establish and grow. We show that altitudinal treeline is largely controlled at an ecosystem level by structural and slope (i.e. gravitational) geomorphic processes operating at a range of temporal and spatial scales, which have direct influence on the hydrological properties of the substrate (affecting the trees’ water and energy budget), as well as on substrate stability, both of which affect recruitment and growth of trees. The study was conducted over a relatively large area of > 200 km2 in the Front Ranges of the Canadian Rocky Mountains, selected to contain the regional diversity of slopes and substrates, which is the result of hundreds of millions of years of sea deposition, subsequent mountain building, and deep erosion by glaciations. Very high-resolution remote sensing data (LiDAR), aerial orthophotos taken at several times since the late 1940s, and ground truthing were employed to classify the terrain into process-based geomorphic units. High resolution, landscape-scale treeline studies are able avoid potential biases in site selection (i.e. selection of sites that are not representative of the overall regional treeline), and consequently capture the coupling between trees and the environment at an ecosystem (regional) level. Moreover, explicitly accounting for slope and substrate-related processes occurring in the studied mountain region is paramount in order to understand the dynamics of trees at their altitudinal distribution limit. Presence of trees in each unit was found to be controlled by a set of parameters relevant to both hydrological and slope processes, such as contributing area, slope angle, regolith transmissivity, and aspect. Our results show no treeline advance over the last 60 years in the region, as most of the area is controlled by geological processes and not by physiological temperature thresholds. Temperature could potentially affect presence of trees at high elevations through its effects on the physical properties of the slopes on which trees grow. However, this effect is at a much longer timescale than those implied in current studies of treeline response to global warming. Finally, continuous recruitment of trees following lightning-caused wildfires during the first half of the 20th century has resulted in increased high altitude forest stand density.

  18. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  19. Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments

    PubMed Central

    McElfresh, Cameron; Wong, Lily R.

    2015-01-01

    Agar, a seaweed extract, has been the standard support matrix for microbial experiments for over a century. Recent developments in high-throughput genetic screens have created a need to reevaluate the suitability of agar for use as colony support, as modern robotic printing systems now routinely spot thousands of colonies within the area of a single microtiter plate. Identifying optimal biophysical, biochemical, and biological properties of the gel support matrix in these extreme experimental conditions is instrumental to achieving the best possible reproducibility and sensitivity. Here we systematically evaluate a range of gelling agents by using the yeast Saccharomyces cerevisiae as a model microbe. We find that carrageenan and Phytagel have superior optical clarity and reduced autofluorescence, crucial for high-resolution imaging and fluorescent reporter screens. Nutrient choice and use of refined Noble agar or pure agarose reduce the effective dose of numerous selective drugs by >50%, potentially enabling large cost savings in genetic screens. Using thousands of mutant yeast strains to compare colony growth between substrates, we found no evidence of significant growth or nutrient biases between gel substrates, indicating that researchers could freely pick and choose the optimal gel for their respective application and experimental condition. PMID:26070672

  20. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less

  1. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  2. Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments.

    PubMed

    Jaeger, Philipp A; McElfresh, Cameron; Wong, Lily R; Ideker, Trey

    2015-08-15

    Agar, a seaweed extract, has been the standard support matrix for microbial experiments for over a century. Recent developments in high-throughput genetic screens have created a need to reevaluate the suitability of agar for use as colony support, as modern robotic printing systems now routinely spot thousands of colonies within the area of a single microtiter plate. Identifying optimal biophysical, biochemical, and biological properties of the gel support matrix in these extreme experimental conditions is instrumental to achieving the best possible reproducibility and sensitivity. Here we systematically evaluate a range of gelling agents by using the yeast Saccharomyces cerevisiae as a model microbe. We find that carrageenan and Phytagel have superior optical clarity and reduced autofluorescence, crucial for high-resolution imaging and fluorescent reporter screens. Nutrient choice and use of refined Noble agar or pure agarose reduce the effective dose of numerous selective drugs by >50%, potentially enabling large cost savings in genetic screens. Using thousands of mutant yeast strains to compare colony growth between substrates, we found no evidence of significant growth or nutrient biases between gel substrates, indicating that researchers could freely pick and choose the optimal gel for their respective application and experimental condition. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Nanoscale platinum printing on insulating substrates.

    PubMed

    O'Connell, C D; Higgins, M J; Sullivan, R P; Jamali, S S; Moulton, S E; Wallace, G G

    2013-12-20

    The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).

  4. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  5. Micro-differential scanning calorimeter for liquid biological samples

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael S.; ...

    2016-10-20

    Here, we developed an ultrasensitive micro-DSC (differential scanning calorimeter) for liquid protein sample characterization. Our design integrated vanadium oxide thermistors and flexible polymer substrates with microfluidics chambers to achieve a high sensitivity (6 V/W), low thermal conductivity (0.7 mW/K), high power resolutions (40 nW), and well-defined liquid volume (1 μl) calorimeter sensor in a compact and cost-effective way. Furthermore, we demonstrated the performance of the sensor with lysozyme unfolding. The measured transition temperature and enthalpy change were in accordance with the previous literature data. This micro-DSC could potentially raise the prospect of high-throughput biochemical measurement by parallel operation with miniaturizedmore » sample consumption.« less

  6. Texture as a basis for acoustic classification of substrate in the nearshore region

    NASA Astrophysics Data System (ADS)

    Dennison, A.; Wattrus, N. J.

    2016-12-01

    Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.

  7. Nanoscale Electrostructural Characterization of Compositionally Graded Al(x)Ga(1-x)N Heterostructures on GaN/Sapphire (0001) Substrate.

    PubMed

    Kuchuk, Andrian V; Lytvyn, Petro M; Li, Chen; Stanchu, Hryhorii V; Mazur, Yuriy I; Ware, Morgan E; Benamara, Mourad; Ratajczak, Renata; Dorogan, Vitaliy; Kladko, Vasyl P; Belyaev, Alexander E; Salamo, Gregory G

    2015-10-21

    We report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface. Moreover, we found a lateral modulation of charge carriers on the surface which were directly correlated with these steps. Finally, using nanoscale probes of the charge density in cross sections of the samples, we have directly measured, semiquantitatively, both n- and p-type polarization doping resulting from the gradient concentration of the AlxGa1-xN layers.

  8. Phonon dynamics of graphene on metals

    NASA Astrophysics Data System (ADS)

    Taleb, Amjad Al; Farías, Daniel

    2016-03-01

    The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.

  9. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    NASA Astrophysics Data System (ADS)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan

    2016-12-01

    A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  10. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  11. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  12. Formation of silver nanoparticle at phospholipid template using Langmuir-Blodgett technique and its Surface-enhanced Raman Spectroscopy application

    NASA Astrophysics Data System (ADS)

    Mahato, M.; Sarkar, R.; Pal, P.; Talapatra, G. B.

    2015-10-01

    The biosynthesis of metal nanoparticle and their suitable assembly has recently gained tremendous interest for its application in biomedical arena such as substrates for surface-enhanced Raman scattering and others. In this article, an easy, low-cost, fast, bio-friendly and toxic-reducing agent free protocol has been described for the preparation of silver nanoparticle film using biocompatible 1,2-dipalmitoyl-sn-glycero-3-phosphocholine phospholipid Langmuir monolayer template. Interactions, docking and attachment of silver ions to the above-mentioned phospholipid monolayer have been studied by surface pressure-area isotherm and compressibility analysis at the air-water interface. We have deposited the Langmuir-Blodgett monolayer/multilayer containing silver nanoparticle onto glass/SiO2/quartz substrates. The formation of phospholipid-silver nanoparticle complex in Langmuir-Blodgett film has been characterized by field emission-scanning electron microscopy and high-resolution tunneling electron microscopy images. We have applied this deposited film as a substrate for surface-enhanced Raman scattering application using rhodamine 123 to understand the existence of the surface plasmon activity of silver nanoparticle.

  13. Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation

    NASA Astrophysics Data System (ADS)

    Pietrzak, Katarzyna; Strojny-Nędza, Agata; Olesińska, Wiesława; Bańkowska, Anna; Gładki, Andrzej

    2017-11-01

    On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form.

  14. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography.

    PubMed

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S D; Flewitt, Andrew J; Wilkinson, Timothy D

    2016-12-02

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm -2 , 1 nAs -1 ) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ∼33 nm with 80 nm spacing; for isolated structures, ∼45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ∼0.25 cm 2 .

  15. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.

    2016-08-15

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO{sub 3} thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO{sub 3} and iso-polarity LaAlO{sub 3} substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO{sub 3} (111) substrate was more suitable than Nb-doped SrTiO{sub 3}. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentionsmore » need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO{sub 3} based superlattices.« less

  16. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography

    NASA Astrophysics Data System (ADS)

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S. D.; Flewitt, Andrew J.; Wilkinson, Timothy D.

    2016-12-01

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm-2, 1 nAs-1) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ˜33 nm with 80 nm spacing; for isolated structures, ˜45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ˜0.25 cm2.

  17. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No

    2016-05-01

    Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.

  18. Purification and high-resolution top-down mass spectrometric characterization of human salivary α-amylase.

    PubMed

    Peng, Ying; Chen, Xin; Sato, Takuya; Rankin, Scott A; Tsuji, Ryohei F; Ge, Ying

    2012-04-03

    Human salivary α-amylase (HSAMY) is a major component of salivary secretions, possessing multiple important biological functions. Here we have established three methods to purify HSAMY in human saliva for comprehensive characterization of HSAMY by high-resolution top-down mass spectrometry (MS). Among the three purification methods, the affinity method based on the enzyme-substrate specific interaction between amylase and glycogen is preferred, providing the highest purity HSAMY with high reproducibility. Subsequently, we employed Fourier transform ion cyclotron resonance MS to analyze the purified HSAMY. The predominant form of α-amylase purified from saliva of various races and genders is nonglycosylated with the same molecular weight of 55,881.2, which is 1885.8 lower than the calculated value based on the DNA-predicted sequence. High-resolution MS revealed the truncation of the first 15 N-terminal amino acids (-1858.96) and the subsequent formation of pyroglutamic acid at the new N-terminus Gln (-17.03). More importantly, five disulfide bonds in HSAMY were identified (-10.08) and effectively localized by tandem MS in conjunction with complete and partial reduction by tris (2-carboxyethyl) phosphine. Overall, this study demonstrates that top-down MS combined with affinity purification and partial reduction is a powerful method for rapid purification and complete characterization of large proteins with complex and overlapping disulfide bond patterns.

  19. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels, with 50-GHz bandwidth, were designed, each using multiple transmission line media such as microstrip, coplanar waveguide, and quasi-lumped components on 0.45- m thick silicon. In the design process, modeling issues had to be overcome. Due to the extremely high frequencies, very thin Si substrate, and the superconducting metal layers, most commercially available software fails in various ways. These issues were mitigated by using alternative software that was capable of handling them at the expense of greater simulation time. The design of on-chip components for the filter characterization, such as a broadband antenna, Wilkinson power dividers, attenuators, detectors, and transitions has been completed.

  20. Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.

    NASA Astrophysics Data System (ADS)

    Shindler, Joseph Daniel

    X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.

  1. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes withmore » intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.« less

  2. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Costanzo,L.; Drury, J.; Penning, T.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We havemore » determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.« less

  3. Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase.

    PubMed

    Coelho, Catarina; Foti, Alessandro; Hartmann, Tobias; Santos-Silva, Teresa; Leimkühler, Silke; Romão, Maria João

    2015-10-01

    Aldehyde oxidase (AOX) is a xanthine oxidase (XO)-related enzyme with emerging importance due to its role in the metabolism of drugs and xenobiotics. We report the first crystal structures of human AOX1, substrate free (2.6-Å resolution) and in complex with the substrate phthalazine and the inhibitor thioridazine (2.7-Å resolution). Analysis of the protein active site combined with steady-state kinetic studies highlight the unique features, including binding and substrate orientation at the active site, that characterize human AOX1 as an important drug-metabolizing enzyme. Structural analysis of the complex with the noncompetitive inhibitor thioridazine revealed a new, unexpected and fully occupied inhibitor-binding site that is structurally conserved among mammalian AOXs and XO. The new structural insights into the catalytic and inhibition mechanisms of human AOX that we now report will be of great value for the rational analysis of clinical drug interactions involving inhibition of AOX1 and for the prediction and design of AOX-stable putative drugs.

  4. Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis.

    PubMed

    Bauer, Jacob; Ondrovičová, Gabriela; Najmanová, Lucie; Pevala, Vladimír; Kameník, Zdeněk; Koštan, Július; Janata, Jiří; Kutejová, Eva

    2014-04-01

    The S-adenosyl-L-methionine (SAM)-dependent methyltransferase CcbJ from Streptomyces caelestis catalyzes one of the final steps in the biosynthesis of the antibiotic celesticetin, methylation of the N atom of its proline moiety, which greatly enhances the activity of the antibiotic. Since several celesticetin variants exist, this enzyme may be able to act on a variety of substrates. The structures of CcbJ determined by MAD phasing at 3.0 Å resolution, its native form at 2.7 Å resolution and its complex with S-adenosyl-L-homocysteine (SAH) at 2.9 Å resolution are reported here. Based on these structures, three point mutants, Y9F, Y17F and F117G, were prepared in order to study its behaviour as well as docking simulations of both CcbJ-SAM-substrate and CcbJ-SAH-product complexes. The structures show that CcbJ is a class I SAM-dependent methyltransferase with a wide active site, thereby suggesting that it may accommodate a number of different substrates. The mutation results show that the Y9F and F117G mutants are almost non-functional, while the Y17F mutant has almost half of the wild-type activity. In combination with the docking studies, these results suggest that Tyr9 and Phe117 are likely to help to position the substrate for the methyl-transfer reaction and that Tyr9 may also facilitate the reaction by removing an H(+) ion. Tyr17, on the other hand, seems to operate by helping to stabilize the SAM cofactor.

  5. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    PubMed

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO 2 -II generated from MCR-ALS analysis, a Raman spectrum for pure TiO 2 -II was estimated to further facilitate its identification.

  6. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englhard, M.; Klemp, C.; Behringer, M.

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-raymore » diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.« less

  7. Biosynthesis of pteridines. Reaction mechanism of GTP cyclohydrolase I.

    PubMed

    Rebelo, Jorge; Auerbach, Günter; Bader, Gerd; Bracher, Andreas; Nar, Herbert; Hösl, Cornelia; Schramek, Nicholas; Kaiser, Johannes; Bacher, Adelbert; Huber, Robert; Fischer, Markus

    2003-02-14

    GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.

  8. Vacuum scanning capillary photoemission microscopy.

    PubMed

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  10. Roll-to-roll nanopatterning using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Sean; Ganapathisubramanian, Maha; Miller, Mike; Yang, Jack; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.

    2012-03-01

    The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area R2R manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we address the key challenges for roll based nanopatterning by introducing a novel concept: Ink Jet based Roll-to-Roll Nanopatterning. To address this challenge, we have introduced a J-FIL based demonstrator product, the LithoFlex 100. Topics that are discussed in the paper include tool design and process performance. In addition, we have used the LithoFlex 100 to fabricate high performance wire grid polarizers on flexible polycarbonate (PC) films. Transmission of better than 80% and extinction ratios on the order of 4500 have been achieved.

  11. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeledmore » DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.« less

  12. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    NASA Astrophysics Data System (ADS)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  13. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food

    PubMed Central

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a combination of engineered KlacPNP and other enzymes involved in purine degradation could effectively lower the purine content in foods and beverages. PMID:27768715

  14. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    PubMed Central

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-01-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates. PMID:27713545

  15. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    NASA Astrophysics Data System (ADS)

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-10-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

  16. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; ...

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposuremore » process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.« less

  17. Microstructure and tribological properties of TiAg intermetallic compound coating

    NASA Astrophysics Data System (ADS)

    Guo, Chun; Chen, Jianmin; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Zhou, Huidi

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  18. Fine-mapping inflammatory bowel disease loci to single variant resolution

    PubMed Central

    Huang, Hailiang; Fang, Ming; Jostins, Luke; Mirkov, Maša Umićević; Boucher, Gabrielle; Anderson, Carl A; Andersen, Vibeke; Cleynen, Isabelle; Cortes, Adrian; Crins, François; D'Amato, Mauro; Deffontaine, Valérie; Dimitrieva, Julia; Docampo, Elisa; Elansary, Mahmoud; Farh, Kyle Kai-How; Franke, Andre; Gori, Ann-Stephan; Goyette, Philippe; Halfvarson, Jonas; Haritunians, Talin; Knight, Jo; Lawrance, Ian C; Lees, Charlie W; Louis, Edouard; Mariman, Rob; Meuwissen, Theo; Mni, Myriam; Momozawa, Yukihide; Parkes, Miles; Spain, Sarah L; Théâtre, Emilie; Trynka, Gosia; Satsangi, Jack; van Sommeren, Suzanne; Vermeire, Severine; Xavier, Ramnik J; Weersma, Rinse K; Duerr, Richard H; Mathew, Christopher G; Rioux, John D; McGovern, Dermot PB; Cho, Judy H; Georges, Michel; Daly, Mark J; Barrett, Jeffrey C

    2017-01-01

    Summary The inflammatory bowel diseases (IBD) are chronic gastrointestinal inflammatory disorders that affect millions worldwide. Genome-wide association studies have identified 200 IBD-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 IBD loci using high-density genotyping in 67,852 individuals. We pinpointed 18 associations to a single causal variant with >95% certainty, and an additional 27 associations to a single variant with >50% certainty. These 45 variants are significantly enriched for protein-coding changes (n=13), direct disruption of transcription factor binding sites (n=3) and tissue specific epigenetic marks (n=10), with the latter category showing enrichment in specific immune cells among associations stronger in CD and in gut mucosa among associations stronger in UC. The results of this study suggest that high-resolution fine-mapping in large samples can convert many GWAS discoveries into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms. PMID:28658209

  19. Proline adsorption on TiO 2(1 1 0) single crystal surface: A study by high resolution photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fleming, G. J.; Adib, K.; Rodriguez, J. A.; Barteau, M. A.; Idriss, H.

    2007-12-01

    The surface chemistry and binding of DL-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO 2(1 1 0) single crystal surfaces. TiO 2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that DL-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO 2 surface. On TiO 2(1 1 0) surfaces reduced by Ar + sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  20. A Sensitive Method for Examining Whole Cell Biochemical Composition in Single Cells of Filamentous Fungi using Synchrotron FTIR Spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantin,J.; Gough, K.; Julian, R.

    2008-01-01

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids atmore » about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.« less

  1. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    PubMed

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  2. The Belle-II Depfet Pixel Detector at the Superkekb Flavour Factory

    NASA Astrophysics Data System (ADS)

    Heindl, Stefan

    2012-08-01

    The ongoing upgrade of the asymmetric electron positron collider KEKB also requires extensive detector upgrades to cope with the new design luminosity of 8 · 1035 cm-2 · s-1 · Of critical importance is the new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution, crucial for time dependent CP violation measurements. This new detector will consist of two layers of DEPFET pixel seii8ors very close to the interaction point. These sensors combine both particle detection and amplification of the signal by embedding a field effect transistor into a 75 μm thick fully depleted silicon substrate, providing very high signal to noise ratios and excellent spatial resolution. Using this technology satisfies the given requirements of extremely low material and high radiation tolerance at the new Belle II experiment. The power dissipation due to continuous readout at high rate and spatial constraints also give strict requirements for the mechanical support and cooling of the new detector. We will discuss the overall concept of the pixel vertex tracker, its expected performance and the challenging mechanical integration.

  3. Correlation of Critical Temperatures and Electrical Properties in Titanium Films

    NASA Astrophysics Data System (ADS)

    Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.

    Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

  4. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.

    2013-07-01

    We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.

  5. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    PubMed

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  6. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  7. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  8. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA

    PubMed Central

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-01-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402

  9. Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules

    PubMed Central

    2015-01-01

    The development and study of a benchtop, high-throughput, and inexpensive fabrication strategy to obtain hierarchical patterns of biomolecules with sub-50 nm resolution is presented. A diblock copolymer of polystyrene-b-poly(ethylene oxide), PS-b-PEO, is synthesized with biotin capping the PEO block and 4-bromostyrene copolymerized within the polystyrene block at 5 wt %. These two handles allow thin films of the block copolymer to be postfunctionalized with biotinylated biomolecules of interest and to obtain micropatterns of nanoscale-ordered films via photolithography. The design of this single polymer further allows access to two distinct superficial nanopatterns (lines and dots), where the PEO cylinders are oriented parallel or perpendicular to the substrate. Moreover, we present a strategy to obtain hierarchical mixed morphologies: a thin-film coating of cylinders both parallel and perpendicular to the substrate can be obtained by tuning the solvent annealing and irradiation conditions. PMID:25363506

  10. Growth, characterization and device development in monocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Davis, R. F.; Glass, J. T.; Nemanich, R. J.; Bozeman, S. P.; Sowers, A. T.

    1995-06-01

    Experimental and theoretical studies concerned with interface interactions of diamond with Si, Ni, and Ni3Si substrates have been conducted. Oriented diamond films deposited on (100) Si were characterized by polar Raman, polar x-ray diffraction (XRD), and cross-sectional high resolution transmission electron microscopy (HRTEM). These sutides showed that the diamond(100)/Si(100) interface adopted the 3:2-match arrangement rather than a 45 deg rotation. Extended Hueckel tight-binding (EHTB) electronic structure calculations for a model system revealed that the interface interaction favors the 3:2-match arrangement. Growth on polycrystalline Ni3Si resulted in oriented diamond particles; under the same growth conditions, graphite was formed on the nickel substrate. Our EHTB electronic structure calculations showed that the (111) and (100) surfaces of Ni3Si have a strong preference for diamond nucleation over graphite nucleation, but this was not the case for the (111) and (100) surfaces of Ni.

  11. Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO

    NASA Astrophysics Data System (ADS)

    Pantzas, K.; Rogers, D. J.; Bove, P.; Sandana, V. E.; Teherani, F. H.; El Gmili, Y.; Molinari, M.; Patriarche, G.; Largeau, L.; Mauguin, O.; Suresh, S.; Voss, P. L.; Razeghi, M.; Ougazzaden, A.

    2016-02-01

    p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5 at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscoy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process.

  12. Metalorganic chemical vapor deposition growth of InAs/GaSb type II superlattices with controllable AsxSb1-x interfaces

    PubMed Central

    2012-01-01

    InAs/GaSb type II superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition (MOCVD). A plane of mixed As and Sb atoms connecting the InAs and GaSb layers was introduced to compensate the tensile strain created by the InAs layer in the SL. Characterizations of the samples by atomic force microscopy and high-resolution X-ray diffraction demonstrate flat surface morphology and good crystalline quality. The lattice mismatch of approximately 0.18% between the SL and GaSb substrate is small compared to the MOCVD-grown supperlattice samples reported to date in the literature. Considerable optical absorption in 2- to 8-μm infrared region has been realized. PACS: 78.67.Pt; 81.15.Gh; 63.22.Np; 81.05.Ea PMID:22373387

  13. Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Wang, C. L.; Huang, Y. R.; Chen, T. J.; Wang, M. J.

    2017-11-01

    Superconducting δ-NbN ultrathin film has become a key element in extremely sensitive detector applications in recent decades because of its excellent electronic properties. We have realized the epitaxial growth of ultrathin δ-NbN films on (100)-oriented 3C-SiC/Si substrates by dc reactive magnetron sputtering at 760 °C with a deposition rate of 0.054 nm s-1. High-resolution transmission electron microscope images confirm the excellent epitaxy of these films. Even with a thickness of 1.3 nm (˜3 unit cells), the δ-NbN film shows a superconducting transition above 8 K. Furthermore, our ultrathin δ-NbN films demonstrate a long Ginzburg-Landau superconducting coherent length ({ξ }{{G}{{L}}}(0)> 5 {{nm}}) with a critical current density of about 2.2 MA cm-2, and good stability in an ambient environment.

  14. Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules

    DOE PAGES

    Tran, Helen; Ronaldson, Kacey; Bailey, Nevette A.; ...

    2014-11-04

    We present the development and study of a benchtop, high-throughput, and inexpensive fabrication strategy to obtain hierarchical patterns of biomolecules with sub-50 nm resolution. A diblock copolymer of polystyrene-b-poly(ethylene oxide), PS-b-PEO, is synthesized with biotin capping the PEO block and 4-bromostyrene copolymerized within the polystyrene block at 5 wt %. These two handles allow thin films of the block copolymer to be postfunctionalized with biotinylated biomolecules of interest and to obtain micropatterns of nanoscale-ordered films via photolithography. The design of this single polymer further allows access to two distinct superficial nanopatterns (lines and dots), where the PEO cylinders are orientedmore » parallel or perpendicular to the substrate. Moreover, we present a strategy to obtain hierarchical mixed morphologies: a thin-film coating of cylinders both parallel and perpendicular to the substrate can be obtained by tuning the solvent annealing and irradiation conditions.« less

  15. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells

    PubMed Central

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2016-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021

  16. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  17. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρ{sub c}) is 1.97 × 10{sup −3} Ω·cm{sup 2}, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA,more » which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.« less

  18. Crystallographic Snapshots of the Complete Catalytic Cycle of the Unregulated Aspartate Transcarbamoylase from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Harris; G Cockrell; D Puleo

    2011-12-31

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered releasemore » of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.« less

  19. Hydrothermal epitaxy and resultant properties of EuTiO3 films on SrTiO3(001) substrate

    PubMed Central

    2014-01-01

    We report a novel epitaxial growth of EuTiO3 films on SrTiO3(001) substrate by hydrothermal method. The morphological, structural, chemical, and magnetic properties of these epitaxial EuTiO3 films were examined by scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffractometry, X-ray photoelectron spectroscopy, and superconducting quantum interference device magnetometry, respectively. As-grown EuTiO3 films with a perovskite structure were found to show an out-of-plane lattice shrinkage and room-temperature ferromagnetism, possibly resulting from an existence of Eu3+. Postannealing at 1,000°C could reduce the amount of Eu3+, relax the out-of-plane lattice shrinkage, and impact the magnetic properties of the films. PACS 81.10.Aj; 81.15.-z; 61.05.-a PMID:24948889

  20. Understanding and improving the low optical emission of InGaAs quantum wells grown on oxidized patterned (001) silicon substrate

    NASA Astrophysics Data System (ADS)

    Roque, J.; Haas, B.; David, S.; Rochat, N.; Bernier, N.; Rouvière, J. L.; Salem, B.; Gergaud, P.; Moeyaert, J.; Martin, M.; Bertin, F.; Baron, T.

    2018-05-01

    In 0.3 Ga 0.7 As quantum wells (QW) embedded in AlGaAs barriers and grown on oxidized patterned (001) silicon substrates by metalorganic chemical vapor deposition using the aspect ratio trapping method are studied. An appropriate method combining cathodoluminescence and high resolution scanning transmission electron microscopy characterization is performed to spatially correlate the optical and structural properties of the QW. A triple period (TP) ordering along the ⟨111⟩ direction induced by the temperature decrease during the growth to favor indium incorporation and aligned along the oxidized patterns is observed in the QW. Local ordering affects the band gap and contributes to the decrease of the optical emission efficiency. Using thermal annealing, we were able to remove the TP ordering and improve the QW optical emission by two orders of magnitude.

Top