Science.gov

Sample records for subsurface disposal area

  1. INEEL Subsurface Disposal Area CERCLA-based Decision Analysis for Technology Screening and Remedial Alternative Evaluation

    SciTech Connect

    Parnell, G. S.; Kloeber, Jr. J.; Westphal, D; Fung, V.; Richardson, John Grant

    2000-03-01

    A CERCLA-based decision analysis methodology for alternative evaluation and technology screening has been developed for application at the Idaho National Engineering and Environmental Laboratory WAG 7 OU13/14 Subsurface Disposal Area (SDA). Quantitative value functions derived from CERCLA balancing criteria in cooperation with State and Federal regulators are presented. A weighted criteria hierarchy is also summarized that relates individual value function numerical values to an overall score for a specific technology alternative.

  2. Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area

    SciTech Connect

    Slate, Lawrence J; Taylor, Joseph Todd

    2000-08-01

    A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

  3. Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area

    SciTech Connect

    Slate, L.J.; Taylor, J.T.

    2000-08-31

    A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

  4. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3.

  5. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively.

  6. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    SciTech Connect

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-12-31

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army`s Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization.

  7. Conceptual Uncertainty and Parameter Sensitivity in Subsurface Pathway Flow and Transport Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    NASA Astrophysics Data System (ADS)

    Magnuson, S. O.

    2002-05-01

    As part of an ongoing CERCLA evaluation, the migration of contaminants through the hydrologically complex subsurface at the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area (SDA) were modeled. The 180-meter thick vadose zone beneath the SDA is primarily composed of extrusive basalt flows that are extensively fractured. These flows are interrupted by thin, mostly continuous sedimentary interbeds that were deposited through aeolian and fluvial processes during periods of volcanic quiescence. The subsurface pathway modeling for the CERCLA assessment has been conducted in phases utilizing the results of characterization activities. The most recent model for the SDA used an equivalent porous continuum approach in a three-dimensional domain to represent movement of water and contaminants in the subsurface. Given the complexity of the subsurface at this site, the simulation results were acknowledged to be uncertain. This presentation will provide an overview of the current modeling effort for the SDA and how conceptual uncertainty was addressed by modeling different scenarios. These scenarios included assignment of infiltration boundary conditions, the effect of superimposing gaps in the interbeds, including the effect within the vadose zone from Big Lost River water discharged to the spreading areas approximately 1 km away, and a simplistic approximation to represent facilitated transport. Parametric sensitivity simulations were used to determine possible effects from assigned transport parameters such as partition coefficients and solubility limits that can vary widely with presumed geochemical conditions. Comparisons of simulated transport results to measured field concentrations in both the vadose zone and in the underlying Snake River Plain aquifer were made to determine the representativeness of the model results. Results of the SDA subsurface transport modeling have been used in part to guide additional field characterization

  8. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  9. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    SciTech Connect

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  10. A simulation study of infiltration into surficial sediments at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    SciTech Connect

    Martian, P.; Magnuson, S.O.

    1994-04-01

    Soil moisture monitoring data in the surficial sediments at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory were used to calibrate two numerical infiltration models. The calibration was performed with the ultimate goal of providing a reliable estimate of hydraulic properties and infiltration amounts to be used in other modeling efforts. Two neutron probe access tubes and a tensiometer nest were monitored from 1986 to 1990 and again during 1993. The field measurements of moisture content and matrix potential inside the SDA were used as calibration data for the two locations. The two locations showed vastly different behavior, which was well captured in the models. The average root mean square error between simulated and measured moisture contents over the simulation period was 0.03 and 0.06 for the two locations. The hydraulic parameters resulting from the calibration compared favorably with laboratory and field scale estimates. The simulation results also provided the opportunity to partially explain infiltration and redistribution processes occurring at the SDA. The underlying fractured basalt appears to behave similar to a capillary barrier. This behavior inhibits moisture movement into the underlying basalts until moisture contents in the overlying silts approach saturation. As a result, a large proportion of recharge occurring at the SDA may be due to spring snowmelt, when the surficial sediments become nearly saturated. The results also indicated that a unit gradient boundary condition (free drainage due to gravity) at the bottom of the silts is not appropriate because of the very low relative hydraulic conductivity of the basalts. Finally, the amount of water moving into the SDA subsurface from spring snowmelt appears larger than cumulative snowfall, indicating that snow drifting due to local topography as well as current snow management practices may have a substantial influence on local infiltration.

  11. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely

  12. Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Magnuson, S.O.; Sondrup, A.J.

    1998-07-01

    This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study.

  13. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 2

    SciTech Connect

    1995-05-01

    This is the second volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.

  14. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area. Volume 3, Application of technical issues to the TRU-contaminated pits and trenches

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3.

  15. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area. Volume 2, Application of technical issues to the Acid Pit

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively.

  16. Diaper area and disposable diapers.

    PubMed

    Erasala, G N; Romain, C; Merlay, I

    2011-01-01

    Since the 1960s, cloth diapers have been replaced by disposable diapers. The evolution of healthier skin in the diaper area has been demonstrated in parallel to that of disposable diapers. The improvements of disposable diapers--fit, dryness, comfort--have been based on the understanding of factors playing a role in the development of diaper dermatitis.

  17. In-Situ Grouting Treatability Study for the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area-Transuranic Pits and Trenches

    SciTech Connect

    Loomis, G. G.; Jessmore, J. J.; Sehn, A. L.; Miller, C. M.

    2002-02-27

    At the Idaho National Engineering and Environmental Laboratory (INEEL), a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) treatability study is being performed to examine the technology of in situ grouting for final in situ disposal of buried mixed transuranic (TRU) waste. At the INEEL, there is over 56,000 cubic meters of waste commingled with a similar amount of soil in a shallow (3-5 m) land burial referred to as Waste Area Group 7-13/14. Since this buried waste has been declared on the National Priorities List under CERCLA, it is being managed as a superfund site. Under CERCLA, options for this waste include capping and continued monitoring, retrieval and ex situ management of the retrieved waste, in situ stabilization by vitrification or grouting, in situ thermal dissorption, or some combination of these options. In situ grouting involves injecting grout at high pressures (400 bars) directly into the waste to create a solid monolith. The in situ grouting process is expected to both stabilize the waste against subsidence and provide containment against migration of waste to the Snake River Plain Aquifer lying 150-200 m below the waste. The treatability study involves bench testing, implementability testing, and field testing. The bench testing was designed to pick three grouts from six candidate grouts for the implementability field testing in full scale which were designed to down-select from those three grouts to one grout for use in a full-scale field demonstration of the technology in a simulated test pit. During the bench testing, grouts were evaluated for durability using American Nuclear Society 16.1 Leach Protocol as well as evaluating the effect on physical parameters such as hydraulic conductivity and compressive strength due to the presence of interferences such as soil, organic sludge, and nitrate salts. During full-scale implementability testing, three grouts were evaluated for groutability and monolith formation

  18. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  19. Geophysics with applications to subsurface waste disposal: Case history

    SciTech Connect

    Lee, K.H.

    2001-08-09

    Recent development in geophysical methods allows us to accurately map the distribution of seismic velocity, density and electrical conductivity beneath the surface and between boreholes. These physical properties are dependent on porosity, fluid saturation, fluid conductivity, pressure, temperature, clay content, and in some circumstances, permeability. Hydrological parameters may be measured or inferred from drill hole experiments or directly from core samples. The point measurements in a drill hole are then interpolated to the interwell volume using either statistical properties of the local geology or reasonable estimates of the geological structure and lithology. More direct evidence is obtained from well tests, and interference tests between multiple wells, but these are ill posed inverse problems when it comes to defining the properties of the entire interwell volume. Furthermore such tests are impossible in the vadose zone. The interpolation of well data is often inaccurate or misleading and the central problem for all these studies is the lack of these fundamental parameters throughout the subsurface volume of interest.

  20. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use.

  1. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  2. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Waste Disposal Facility

    SciTech Connect

    Ansley, Shannon Leigh

    2002-02-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  3. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs.

  4. 200 Area treated effluent disposal facility operational test report

    SciTech Connect

    Crane, A.F.

    1995-03-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met.

  5. Subsurface Contamination Focus Area technical requirements. Volume 1: Requirements summary

    SciTech Connect

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This document summarizes functions and requirements for remediation of source term and plume sites identified by the Subsurface Contamination Focus Area. Included are detailed requirements and supporting information for source term and plume containment, stabilization, retrieval, and selective retrieval remedial activities. This information will be useful both to the decision-makers within the Subsurface Contamination Focus Area (SCFA) and to the technology providers who are developing and demonstrating technologies and systems. Requirements are often expressed as graphs or charts, which reflect the site-specific nature of the functions that must be performed. Many of the tradeoff studies associated with cost savings are identified in the text.

  6. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  7. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    SciTech Connect

    CAMPBELL, L.R.

    1999-01-15

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  8. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    SciTech Connect

    Not Available

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The 300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations.

  9. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    SciTech Connect

    Cook, J.R.

    2000-03-13

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  10. Geology of the Williston basin, North Dakota, Montana, and South Dakota, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Sandberg, C.A.

    1962-01-01

    The southern Williston basin, which underlies about 110,000 square miles #n North Dakota, South Dakota, and eastern Montana, is part of a large structural and sedimentary basin. Its surface is a flat to gently rolling plain, standing about 1,500 to 3,500 feet above sea level and locally studded by a few high buttes. The sedimentary sequence that fills the basin has a maximum thickness of about 16,700 feet and rests on Precambrian metamorphic rocks at depths of 500 to 13,900 feet below sea level. It contains rocks of every geologic system, from Cambrian to Quaternary. Rocks of Middle Cambrian through Middle Ordovician age are largely shale and sandstone, as much as 1,200 feet thick; rocks of Late Ordovician through Pennsylvanian age are largely limestone and dolomite, as much as 7,500 feet thick; and rocks of Permian through Tertiary age are predominantly shale and siltstone, as much as 8,000 feet thick. Pleistocene glacial drift mantles the northern and eastern parts of the area. Rocks of the Williston basin are gently folded and regional dips are 1? or less from the margins to the basin center. Dips on the flanks of the major anticlinal folds, the Nesson and cedar Creek anticlines and the Poplar and Bowdoin domes, generally are about 1? to 3? except on the steep west limb of the Cedar Creek anticline. The basin was shaped by Laramide orogeny during latest Cretaceous and early Tertiary time. Most of the present structural features, however, were initiated during the Precambrian and reactivated by several subsequent orogenies, of which the latest was the Laramide. The most important mineral resource of the area is oil, which is produced predominantly from the Paleozoic carbonate sequence and largely on three of the major anticlinal folds, and lignite, which is present near the surface in Paleocene rocks. The subsurface disposal of radioactive wastes at some places in the Williston basin appears to be geographically and geologically feasible. Many sites, at which

  11. Impact of a real-time controlled wastewater subsurface drip disposal system on the selected chemical properties of a vertisol.

    PubMed

    Hea, Jiajie; Dougherty, Mark; Arriaga, Francisco J; AbdelGadir, Abdelaziz H

    2013-01-01

    The operation of onsite septic effluent disposal without considering seasonal moisture changes in drain field conditions can be a major cause of the failure of conventional septic systems. This study addressed this issue from a soil hydraulic perspective by using real-time drain field soil moisture levels to limit septic effluent disposal in a vertisol via subsurface drip irrigation. A prototype system was field-tested in a Houston clay soil and results describe the subsequent impact on selected soil chemical properties. After one year of hydraulic dosing with a synthetic wastewater, soil total carbon and nitrogen concentrations increased, but no increase in soil total phosphorus concentration was observed. Soil NO3-N leaching potential was noted, but soil NH4-N concentrations decreased, which could be ascribed to NH4-N nitrification, fixation within clay sheets and NH3 volatilization. Soil K+, Mg2+ and Na+ concentrations increased in soil layers above the drip lines, but decreased in soil layers below drip lines. Soil electrical conductivity accordingly increased in soil layers above drip lines, but the range was significantly lower than the threshold for soil salinity. Although the moisture-controlled effluent disposal strategy successfully avoided hydraulic dosing during unfavourable wet drain field conditions and prevented accumulation of soil salts in the soil profile beneath the drip lines, soil salts tended to accumulate in top soil layers. These adverse effects warrant system corrections before large-scale implementation of subsurface drip irrigation of effluent in similar vertisols.

  12. Application of integrated methods in mapping waste disposal areas

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Papadopoulos, Nikos; Papadopoulos, Ilias; Kouli, Maria; Vallianatos, Filippos; Sarris, Apostolos; Manios, Thrassyvoulos

    2007-11-01

    An integrated suite of environmental methods was used to characterize the hydrogeological, geological and tectonic regime of the largest waste disposal landfill of Crete Island, the Fodele municipal solid waste site (MSW), to determine the geometry of the landfill (depth and spatial extent of electrically conductive anomalies), to define the anisotropy caused by bedrock fabric fractures and to locate potential zones of electrically conductive contamination. A combination of geophysical methods and chemical analysis was implemented for the characterization and management of the landfill. Five different types of geophysical surveys were performed: (1) 2D electrical resistance tomography (ERT), (2) electromagnetic measurements using very low frequencies (VLF), (3) electromagnetic conductivity (EM31), (4) seismic refraction measurements (SR), and (5) ambient noise measurements (HVSR). The above geophysical methods were used with the aim of studying the subsurface properties of the landfill and to define the exact geometrical characteristics of the site under investigation.

  13. 40 CFR 230.80 - Advanced identification of disposal areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN...) Consistent with these Guidelines, EPA and the permitting authority, on their own initiative or at the...

  14. 40 CFR 230.80 - Advanced identification of disposal areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN...) Consistent with these Guidelines, EPA and the permitting authority, on their own initiative or at the...

  15. 40 CFR 230.80 - Advanced identification of disposal areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN...) Consistent with these Guidelines, EPA and the permitting authority, on their own initiative or at the...

  16. 40 CFR 230.80 - Advanced identification of disposal areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN...) Consistent with these Guidelines, EPA and the permitting authority, on their own initiative or at the...

  17. 40 CFR 230.80 - Advanced identification of disposal areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN...) Consistent with these Guidelines, EPA and the permitting authority, on their own initiative or at the...

  18. Low-level waste disposal in highly populated areas

    SciTech Connect

    Kowalski, E.; McCombie, C.; Issler, H.

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  19. (Preparation of a document on the subsurface disposal of liquid hazardous waste): Foreign trip report, April 22--29, 1989

    SciTech Connect

    Stow, S.H.

    1989-05-09

    This report describes progress made by the International Commission on the Hydrology of Hazardous Waste in preparing a report on the subsurface disposal of liquid hazardous waste and on the development of new initiatives for the commission. Also contained in the trip report are summaries of discussions held with RIVM staff regarding environmental issues in The Netherlands, which is experiencing a series of environmental pressures due to its high population, large numbers of animals, and low elevation. Details of discussions related to waste management (hazardous and radioactive), groundwater pollution and monitoring, air quality, and global change are included.

  20. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    SciTech Connect

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  1. Radionuclide concentrations in vegetation at radioactive-waste disposal Area G during the 1994 growing season

    SciTech Connect

    Fresquez, P.R.; Biggs, J.B.; Bennett, K.D.

    1995-07-01

    Overstory (pinon pine) and understory (grass and forb) vegetation samples were collected within and around selected points at Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-for the analysis of tritium ({sup 3}H), strontium ({sup 90}Sr), plutonium ({sup 238} Pu and {sup 239}Pu), cesium ({sup 137}Cs), americium ({sup 241}Am), and total uranium. In general, most vegetation samples collected within and around Area G contained radionuclide levels in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 5,800 pCi/mL in overstory vegetation collected outside the fence just west of the tritium shafts; this suggests that tritium is migrating from this waste repository through subsurface pathways. Also, understory vegetation collected north of the transuranic (TRU) pads (outside the fence of Area G) contained the highest values of {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, {sup 137}Cs, and {sup 241}Am, and may be a result of surface holding, storage, or disposal activities.

  2. Subsurface contamination focus area technical requirements. Volume II

    SciTech Connect

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This is our vision, a vision that replaces the ad hoc or {open_quotes}delphi{close_quotes} method which is to get a group of {open_quotes}experts{close_quotes} together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm.

  3. Land suitability for waste disposal in metropolitan areas.

    PubMed

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process.

  4. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  5. The geology and hydrogeology of Bear Creek Valley Waste Disposal Areas A and B

    SciTech Connect

    1984-05-01

    A study was undertaken of the Oil Landfarm and Burial Grounds A and B, which are three disposal sites within the Bear Creek Waste Disposal Area. The area is located west of the Y-12 plant, about 3 miles southwest of Oak Ridge, Tennessee. The purpose of this interim report is to present data collected at the Burial Grounds A and B, and to provide the results of hydrogeologic analyses. The Oil Landfarm geologic and hydrogeologic data and analyses have been submitted in a January 1984 interim report. The overall objectives of the study were to characterize the types and extent of wastes present and to define the occurrence and movement of ground water beneath the sites. The intention of this work is to provide criteria on which a design for containing the waste can be developed. Specific activities performed by Bechtel included: drilling for subsurface geologic data; installing monitoring wells; measuring permeability and ground-water flow directions; and collecting soil, sediment, surface- and ground-water, and liquid-waste samples for chemical analysis. Results are presented on the geology and ground waters.

  6. 36 CFR 228.44 - Disposal on existing Federal leased areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Disposal on existing Federal leased areas. 228.44 Section 228.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials § 228.44 Disposal on existing Federal leased areas....

  7. 36 CFR 228.44 - Disposal on existing Federal leased areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Disposal on existing Federal leased areas. 228.44 Section 228.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials § 228.44 Disposal on existing Federal leased areas....

  8. 36 CFR 228.44 - Disposal on existing Federal leased areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Disposal on existing Federal leased areas. 228.44 Section 228.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials § 228.44 Disposal on existing Federal leased areas....

  9. 36 CFR 228.44 - Disposal on existing Federal leased areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Disposal on existing Federal leased areas. 228.44 Section 228.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials § 228.44 Disposal on existing Federal leased areas....

  10. 36 CFR 228.44 - Disposal on existing Federal leased areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Disposal on existing Federal leased areas. 228.44 Section 228.44 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials § 228.44 Disposal on existing Federal leased areas....

  11. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    USGS Publications Warehouse

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  12. Reducing biosolids disposal costs using land application in forested areas

    SciTech Connect

    Huffines, R.L.

    1995-11-01

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

  13. Craney Island Disposal Area. Site Operations and Monitoring Report, 1980-1987

    DTIC Science & Technology

    1990-07-01

    STCFITE nmpyv FMISCELLANEOUS PAPER EL-90-10 * * *CRANEY ISLAND DISPOSAL AREA SITE OPERATIONS AND MONITORING REPORT, 1980-1987 N by Michael R. Palermo...PROJECT TASK IWORK UNIT Norfolk, Virginia 23510-1096 ELEMENT NO. NO. NO. rCCESSION NO. 11. TITLE (dude Security Classifcation) Craney Island Disposal Area...block number) FIELD GROUP SUB-GROUP See reverse. 19. ABSTRACT (Continue on reverse if necessary and identify b block number) The Craney Island disposal

  14. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and...

  15. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and...

  16. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and...

  17. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and...

  18. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and...

  19. Using lunar sounder imagery to distinguish surface from subsurface reflectors in lunar highlands areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Carter, James L.

    1993-01-01

    We have developed a method using the Apollo 17 Lunar Sounder imagery data which appears capable of filtering out off-nadir surface noise from highland area profiles, so that subsurface features may now be detected in highland areas as well as mare areas. Previously, this had been impossible because the rough topography in the highland areas created noise in the profiles which could not be distinguished from subsurface echoes. The new method is an image processing procedure involving the computerized selection of pixels which represent intermediate echo intensity values, then manually removing those pixels from the profile. Using this technique, a subsurface feature with a horizontal extent of about 150 km, at a calculated depth of approximately 3 km, has been detected beneath the crater Riccioli in the highlands near Oceanus Procellarum. This result shows that the ALSE data contain much useful information that remains to be extracted and used.

  20. Geologic summary of the Appalachian Basin, with reference to the subsurface disposal of radioactive waste solutions

    USGS Publications Warehouse

    Colton, G.W.

    1962-01-01

    The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where

  1. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    SciTech Connect

    J. K. Ferenbaugh; P. R. Fresquez; M. H. Ebinger; G. J. Gonzales; P. A. Jordan

    1999-09-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of {sup 3}H, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239}Pu, {sup 241}Am, and {sup 137}Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans

  2. Ecological characteristics of small mammals on a radioactive waste disposal area in southeastern Idaho

    SciTech Connect

    Groves, C.R.; Keller, B.L.

    1983-01-01

    Species composition, diversity, biomass and densities of small mammal populations were examined in crested wheatgrass (Agropyron cristatum) and Russian thistle (Salsola kali) habitats on a solid radioactive waste disposal area and in native sagebrush (Artemisia tridentala) habitat surrounding the disposal area. The 15-month live-trapping study resulted in the marketing of 2384 individuals representing 10 species of small mammals. The deer mouse (Peromyscus maniculatus) was the most common rodent in both disposal area habitats and the adjacent sagebrush habitat; Ord's kangaroo rat (Dipodomys ordii) was also an abundant rodent in all vegetation types. The montane vole (Microtus montanus) was common only in crested wheatgrass stands on the disposal area. Although the adjacent native sagebrush habitat had the highest species diversity and the Russian thistle habitat on the disposal area had the lowest, the total rodent density was not significantly different among the three vegetation types. Crested wheatgrass within the disposal area contained the largest rodent biomass throughout the study, in part due to an increasing M. montanus population. The peak small mammal biomass of 5000 g/ha in creasted wheatgrass and sagebrush habitats was considerably higher than previously reported for similar habitats. Differences in diversity and biomass between the disposal area and surrounding native habitat are most likely related to differences in soil compaction and vegetation between these two areas.

  3. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    SciTech Connect

    Ulmer, F.J.

    1995-02-06

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments.

  4. Radionuclide concentrations in/on vegetation at radioactive-waste disposal Area G during the 1995 growing season. Progress report

    SciTech Connect

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1996-03-01

    Overstory (pinon pine) and understory (grass and forb) vegetation were collected within and around selected points at Area G--a low- level radioactive solid-waste disposal facility at Los Alamos National Laboratory--for the analysis of tritium ({sup 3}H), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), cesium ({sup 137}Cs), and total uranium. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in/on vegetation were determined. In general, most (unwashed) vegetation collected within and around Area G contained {sup 3}H, uranium, {sup 238}Pu, and {sup 239}Pu in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 7300 pCi mL{sup -1} in understory vegetation collected from the west side of the transuranic (TRU) pads. The south and west ends of the tritium shaft field also contained elevated levels of {sup 3}H in overstory, and especially in understory vegetation, as compared to background; this suggests that {sup 3}H may be migrating from this waste repository through surface and subsurface pathways. Also, understory vegetation collected north of the TRU pads (adjacent to the fence line of Area G) contained the highest values of {sup 238}Pu and {sup 239}Pu as compared to background, and may be a result of surface holding, storage, and/or disposal activities.

  5. Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination

    SciTech Connect

    Wright, J. A. Jr.; Corey, J. C.

    2002-02-27

    The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and

  6. Z-Area saltstone disposal facility groundwater monitoring report. First and second quarters 1997

    SciTech Connect

    1997-07-01

    This report presents the results of groundwater sampling during the first and second quarters of 1997 in the Z-Area Saltstone Disposal Facility. This report presents only the data for sampling during the first half of 1997 as required by industrial Solid Waste Permit No. 025500-1603. For a detailed discussion of groundwater monitoring in the Z-Area Saltstone Disposal Facility, consult the 1996 Z-Area Saltstone Disposal Annual Report. Appendix A presents the proposed South Carolina Department of Health and Environmental Control Proposed Groundwater Monitoring Standards. Flagging criteria are described in Appendix B. In May 1997 SCDHEC granted approval for seven hydrocone sampling.

  7. Recovery and disposal of discarded tires in the Taiwan area.

    PubMed

    Hwang, J S; Roam, G D

    1994-12-01

    Urbanization and industrialization has resulted in a vast amount of artificial water containers in Taiwan, especially discarded automobile tires. 3.5 million automobile tires and several million motorcycle tires are discarded annually. The discarded tires contaminate the environment and also become a substantial number of breeding sites for the dengue vector mosquitoes. In order to establish a sound system for the recovery and disposal of discarded tires and to control dengue fever through source reduction, it has been emphasized that users must pay for their waste. It is necessary to recover and properly dispose of these discarded tired. The commercial firms which sell or manufacture tires are therefore advised to cooperate with the Environmental Protection Administration of the Executive Yuan, R.O.C. and follow the "Regulations of Recovery and Disposal of Discarded Tires". They are requested to establish foundations for the recovery of discarded tires. Those who are willing to join should prepay a deposit or related charge by the size of tire, which is imported or locally manufactured. The foundation utilizes the deposits for the recovery and disposal of discarded tires. From 1991 to 1993 the commercial tire firms had already achieved the 80% recovery rates declared by the authorities concerned. Some of the tires, after having been recovered, were recycled in the original form and the rest were cut into small pieces for recycling after physical treatment. It should be mentioned that the Department of Environmental Protection of Kaohsiung City has collected 80 thousand discarded automobile tires to be used as ocean jetty.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Robert

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  9. A new approach for subsurface space mapping of urban area using RS and GIS

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Xie, Bin; Zhang, Hankui

    2008-10-01

    The high resolution images are taken as the information source to attempt the inversion detection of the spatial resources use in the investigation area. Through visual interpretation of geometry shape of the remote sensing data, inquiry of historical archives of city planning department and in situ investigation, confirmation, analysis of each region, the distinction pattern of relations between the structure height, the structure style and the depth of the foundation ditch is established. Afterwards, the spatial distribution of the construction in Hangzhou urban area is interpreted. On the basis of the foundation pattern used by the construction and correlating distinction pattern, the used subsurface space structure is determined with the help of GIS spatial statistical analysis technology. The result can provide macroscopic information for investigating usable subsurface space resources. It also can assist the engineering geology and hydrology geology data to establish full and accurate analysis of subsurface space use, which provide the policy-making suggestion for the cultural relics preservation and the important project using subsurface space such as the subway construction.

  10. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  11. Protocol for the E-Area Low Level Waste Facility Disposal Limits Database

    SciTech Connect

    Swingle, R

    2006-01-31

    A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclide disposal limits.

  12. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    SciTech Connect

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  13. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  14. Impacts of shaking Bengkulus seismicity to subsurface Wellbore in the XX area

    NASA Astrophysics Data System (ADS)

    Rusli, Saifatur; Pratama, M. Ardian; Mardiyan, Hilman; Mirza, Finisha, Brian

    2016-05-01

    Bengkulu earthquake was happened on Wednesday, May 5th 2010 at 23:29:03 WIB (UTC-7) with magnitude 6.5 Richter scale. The Epicentrum was very close to Mentawai Fault System located on latitude 4.063°S and longitude 101.085°E with depth subsurface 27 kms. It was occurred the result of the Indian Ocean Plate-Australia's activity with low angled-subducted beneath the island of Sumatra. Shaking Bengkulus seismicity impacted subsurface in the XX Area which situated on South Palembang Sub-Basin part of South Sumatra Basin (SSB) about 200 kms far away from the epicentrum. Due to XX Area has some producing wells so that the seismicity activities as hypothetically impacts to Subsurface Wellbore which has caused some wells casing problems in the same depth. The wells casing problem shown after conducted routine sand bailer by Sand Line Unit, it was a downhole device used to remove debris sands or similar small particles around the fishingnecks of downhole tools or equipment in the wellbore, and then Sand Bailer tools got scratch at one side body. Similarly, Sand Bailer tools couldnt lowered until Total Depth and got samples sands slightly. At the end, it has impacted to well performance to produce oil in the XX Area.

  15. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    SciTech Connect

    French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  16. Health Promotion Intervention for Hygienic Disposal of Children's Faeces in a Rural Area of Nigeria

    ERIC Educational Resources Information Center

    Jinadu, M. K.; Adegbenro, C. A.; Esmai, A. O.; Ojo, A. A.; Oyeleye, B. A.

    2007-01-01

    Objective: Community-based health promotion intervention for improving unhygienic disposal of children's faeces was conducted in a rural area of Nigeria. Setting: The study was conducted in Ife South Local Government area of Osun State, Nigeria. Design: The study was conducted in 10 randomly selected rural villages: five control and five active.…

  17. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier

  18. Historical Perspective on Subsurface Contaminants Focus Area (SCFA) Success: Counting the Things That Really Count

    SciTech Connect

    Wright, J. A. Jr.; Middleman, L. I.

    2002-02-27

    The Subsurface Contaminants Focus Area, (SCFA) is committed to, and has been accountable for, identifying and providing solutions for the most pressing subsurface contamination problems in the DOE Complex. The SCFA program is a DOE end user focused and problem driven organization that provides the best technical solutions for the highest priority problems. This paper will discuss in some detail specific examples of the most successful, innovative technical solutions and the DOE sites where they were deployed or demonstrated. These solutions exhibited outstanding performance in FY 2000/2001 and appear poised to achieve significant success in saving end users money and time. They also provide a reduction in risk to the environment, workers, and the public while expediting environmental clean up of the sites.

  19. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer

    Cable, William; Romanovsky, Vladimir

    2014-03-31

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  20. Potential areas for the near surface disposal of radioactive waste in Pahang

    NASA Astrophysics Data System (ADS)

    Harun, Nazran; Yaacob, Wan Zuhairi Wan; Simon, Norbert

    2016-11-01

    Radioactive material has been used in Malaysia since the 1960's. The low level radioactive wastes are generated every year and stored in Nuclear Malaysia. The storage capacities are expected to reach its maximum capacity by the year 2025. Disposal of the radioactive waste is considered as one of the best options for future radioactive and nuclear material generated in Malaysia, hence the necessary site selection. The selection process used the IAEA document as the main reference, supported by site selection procedure applied by various countries. ArcGIS software was used to simulate the selection of the near surface radioactive waste disposal. This paper suggested the best four potential areas for the near surface radioactive waste disposal in Pahang state, Malaysia, the Sg. Lembing, Gambang, Felda Lepar Utara and Cheneh areas. These areas are located within 100 km from the potential radioactive waste producer (Lynas).

  1. Recommended Parameter Values for INEEL Subsurface Disposal Area Source Release Modeling

    SciTech Connect

    Riley, Robert G.; Lopresti, Charles A.

    2004-06-23

    The purpose of this report is to summarize 1) associated information and values for key release model parameters (i.e., best estimate, minimum and maximum) obtained where possible from published experimental data, 2) a structure for selection of sensitivity tests cases that can be used to identify test cases, and 3) recommended test cases for selected contaminants of potential concern to assess remedy effectiveness against a no-treatment base case.

  2. Z-Area Saltstone Disposal Facility groundwater monitoring report. 1996 annual report

    SciTech Connect

    1996-12-01

    The Z-Area Saltstone Disposal Facility is located in the Separations Area, north of H and S Areas, at the Savannah River Site (SRS). The facility permanently disposes of low-level radioactive waste. The facility blends low-level radioactive salt solution with cement, slag, and flyash to form a nonhazardous cementitious waste that is pumped to aboveground disposal vaults. Z Area began these operations in June 1990. Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). During second quarter 1996, lead was reported above the SCDHEC-proposed groundwater monitoring standard in one well. No other constituents were reported above SCDHEC-proposed groundwater monitoring standards for final Primary Drinking Water Standards during first, second, or third quarters 1996. Antimony was detected above SRS flagging criteria during third quarter 1996. In the past, tritium has been detected sporadically in the ZBG wells at levels similar to those detected before Z Area began radioactive operations.

  3. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many

  4. Effect of Selected Modeling Assumptions on Subsurface Radionuclide Transport Projections for the Potential Environmental Management Disposal Facility at Oak Ridge, Tennessee

    SciTech Connect

    Painter, Scott L.

    2016-06-28

    The Department of Energy’s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-life was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to either provide a reasonably good approximation to the peak concentration or was significantly conservative (pessimistic) for all parameter combinations considered.

  5. Application of carbon dioxide (CO{sub 2}) for controlling subsurface fire area: Indian context

    SciTech Connect

    Mohalik, N.K.; Singh, V.K.; Singh, R.V.K.

    2009-07-15

    In bord and pillar method of mining, the panels are sealed off after depillaring. Depending upon the site specific condition, 40 to 45 % coal are left in depillared panel as stook, loose coal left in goaf, hard coal on floor and roof of the panel. The left out coals in goaf area start oxidation, and this leads to spontaneous heating in side sealed off area. For assessment of fire in underground coal mines, thermo-compositional monitoring plays an important role. This paper presents scientific relevance and selective criteria for use of inert gas for control of subsurface fire. Finally the paper discusses spontaneous heating problem in sealed off area and application of inertisation technology by using CO, to prevent and control sealed off fire at Haripur Colliery, Kenda Area, ECL, India.

  6. 300 Area Treated Effluent Disposal Facility computer software release cover sheet and revision record

    SciTech Connect

    McCarthy, R.J.

    1994-11-28

    This supporting document contains the computer software release cover sheet and revision records for the 300 Area Treated Effluent Disposal Facility (TEDF). The previous revision was controlled by CH2M Hill which developed the software. A 7-page listing of the contents of directory C:{backslash}TEDF is contained in this report.

  7. Radiological performance assessment for the E-Area Vaults Disposal Facility

    SciTech Connect

    Cook, J.R.

    2000-04-11

    This report is the first revision to ``Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0.

  8. Radiological performance assessment for the E-Area Vaults Disposal Facility

    SciTech Connect

    Cook, J.R.; Hunt, P.D.

    1994-04-15

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

  9. Evaluation of wetting area and water distribution on different soils in subsurface drip irrigation emitters

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Sohrabi, T.; Mirzaei, F.; Rodríguez-Sinobas, L.

    2012-04-01

    Growing pressure on the world's available water resources has led to an increase in the efficiency and productivity of water-use of irrigation systems in arid and semi-arid regions with water scarcity. In this context, sub-surface drip irrigation, where emitters discharge water underneath the soil surface, might help by saving water since soil evaporation, surface runoff, and deep percolation are greatly reduced or eliminated. In this paper, the wetting area and water distribution on light, medium and heavy texture homogeneous soils in subsurface drip irrigation emitters were evaluated. Experimental tests were carried out in a plexiglass lysimeter container with transparent walls. Emitters were buried at 15, 30 and 45 cm depths and discharge rates of 2 and 4 L/h were applied. Observations of wetting bulbs dimensions showed that water moved more laterally than downwards for higher emitter discharges. However, small emitter discharges enhanced water to move downwards. Likewise, higher emitter discharges also favored water to move upwards toward the soil surface. Water redistribution was affected by emitter depth. For the same emitter discharge, the deepest depth showed less water redistributed in the down vertical and horizontal directions but the contrary was observed for shallow depths. This could be explained considering the dry soil area above the emitter that is larger in the deepest emitters. Observations on wetting bulb dimensions and water distributions could aim at the selection of proper design variables (emitter depth), and/or operation variables (inlet head and irrigation time) in the studied soils under different scenarios of cropping patterns. Key Words: subsurface drip irrigation, wetting bulb, soil water distribution, water redistribution, optimum management

  10. 2D resistivity method in delineating subsurface problems in urban area

    NASA Astrophysics Data System (ADS)

    Nordiana, M. M.; Saad, Rosli; Teh Saufia, A. H. A.; Azwin, I. N.; Ali, Nisa'; Hidayah, Noer El

    2013-05-01

    2D resistivity is carried out to detect spread saturated zone and subsurface problems cause by the presence of underground river, which resulted from selected urban area at Selangor, Malaysia. Six 2D resistivity survey lines with minimum 5 m electrode spacing were executed using Pole-dipole array. Borehole was carried out at multiple locations in the study area. Subsequently, the borehole was used to verify the 2D resistivity results. Interpretation of 2D resistivity data showed a low resistivity value (< 40 ohm-m), which appears to be a zone that is fully saturated with sandy silt and this could be an influence factor the increasing water level because sandy silt is highly permeable in nature. The borehole, support the results of 2D resistivity method relating a saturated zone in the survey area. There is a good correlation between the 2D resistivity investigations and the results of borehole records.

  11. Quantitative risk assessment of the New York State operated West Valley Radioactive Waste Disposal Area.

    PubMed

    Garrick, B John; Stetkar, John W; Bembia, Paul J

    2010-08-01

    This article is based on a quantitative risk assessment (QRA) that was performed on a radioactive waste disposal area within the Western New York Nuclear Service Center in western New York State. The QRA results were instrumental in the decision by the New York State Energy Research and Development Authority to support a strategy of in-place management of the disposal area for another decade. The QRA methodology adopted for this first of a kind application was a scenario-based approach in the framework of the triplet definition of risk (scenarios, likelihoods, consequences). The measure of risk is the frequency of occurrence of different levels of radiation dose to humans at prescribed locations. The risk from each scenario is determined by (1) the frequency of disruptive events or natural processes that cause a release of radioactive materials from the disposal area; (2) the physical form, quantity, and radionuclide content of the material that is released during each scenario; (3) distribution, dilution, and deposition of the released materials throughout the environment surrounding the disposal area; and (4) public exposure to the distributed material and the accumulated radiation dose from that exposure. The risks of the individual scenarios are assembled into a representation of the risk from the disposal area. In addition to quantifying the total risk to the public, the analysis ranks the importance of each contributing scenario, which facilitates taking corrective actions and implementing effective risk management. Perhaps most importantly, quantification of the uncertainties is an intrinsic part of the risk results. This approach to safety analysis has demonstrated many advantages of applying QRA principles to assessing the risk of facilities involving hazardous materials.

  12. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    SciTech Connect

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  13. Dissecting the variable source area concept - Subsurface flow pathways and water mixing processes in a hillslope

    NASA Astrophysics Data System (ADS)

    Dahlke, Helen E.; Easton, Zachary M.; Lyon, Steve W.; Todd Walter, M.; Destouni, Georgia; Steenhuis, Tammo S.

    2012-02-01

    SummaryThis study uses an instrumented (trenched) 0.5 ha hillslope in the southern tier of New York State, USA, to provide new data and insights on how variable source areas and associated flow pathways form and combine to connect rainfall with downstream water flows across a hillslope. Measurements of water fluxes in the trench, upslope water table dynamics, surface and bedrock topography, and isotopic and geochemical tracers have been combined for a four-dimensional (space-time) characterization of subsurface storm flow responses. During events with dry antecedent conditions infiltrating rainwater was found to percolate through a prevailing fragipan layer to deeper soil layers, with much (33-71%) of the total discharge of the hillslope originating from deeper water flow below the fragipan. During storm events with wet antecedent conditions and large rainfall amounts, shallow lateral flow of event and pre-event water above the fragipan occurred and was one magnitude greater than the deeper water flow contribution. Spatial surface and subsurface water quality observations indicate that water from a distance of up to 56 m contributed runoff from the hillslope during storm events. In addition, mobilization of total dissolved phosphorus (TDP) with subsurface flow played a greater role than with overland or near-surface flow. During all events TDP loads were highest in the total discharge during peak flows (8-11.5 kg ha -1 d -1), except during the largest storm event, when TDP concentrations were highly diluted. These results have implications for strategies to protect streams and other downstream water recipients from waterborne nutrient and pollutant loading.

  14. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    SciTech Connect

    Kirwan-Taylor, H.; McCabe, G.H.; Lesperance, A.; Kauffman, J.; Serie, P.; Dressen, L.

    1996-09-01

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.

  15. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  16. Investigation of radionuclide release from Solid Waste Disposal Area 3, Oak Ridge National Laboratory

    SciTech Connect

    Stueber, A.M.; Webster, D.A.; Munro, I.L.; Farrow, N.D.; Scott, T.G.

    1981-08-01

    Radionuclide release from Solid Waste Disposal Area (SWDA) 3 has been studied through the analysis of surface and ground waters from the local drainage areas. SWDA 3 is located in the Northwest Tributary drainage basin, a part of the White Oak Creek drainage; /sup 90/Sr is the only radionuclide being discharged in solution in the main stream. Water-level measurements in wells around SWDA 3 suggest the presence of a ground-water divide beneath the southwestern end of the disposal area. Ground water below this area may be moving southwestward toward the Raccoon Creek drainage system. Strontium-90 activity has been detected in this watershed, discharging from a seep adjacent to a Raccoon Creek tributary stream about 640 m southwest of SWDA 3. It appears that /sup 90/Sr is moving through ground-water flow to the northeast and to the southwest of SWDA 3 and that this direction of movement is related to bedrock structure. The trend of a line connecting the two seeps passes through the disposal area and is parallel to bedrock strike. Information from core-hole logs and televiewer logs suggests that /sup 90/Sr in ground water may be moving through solution channels near the contact between units F and G of the Chickamauga Limestone. The apparent extent of migration of /sup 90/Sr in bedrock has implications regarding potential underground radionuclide movement in Melton Valley.

  17. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  18. Subsurface structural mapping of Gebel El-Zeit area, Gulf of Suez, Egypt using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; Salem, Ahmed; Ushijima, Keisuke

    2005-08-01

    The Gebel El-Zeit area is located on the western coast of the Gulf of Suez, Egypt. The areas in/and around the Gulf of Suez are generally important due to their hydrocarbon resources. In this study, we have applied gradient interpretation techniques (Euler deconvolution and analytic signal) to the aeromagnetic data of the Gebel El-Zeit area. The main objective of this study is to identify and delineate the possible subsurface structure of the area that may assist in locating new hydrocarbon prospects. Results of Euler method suggested that, on the eastern and western parts of the area, the basement could be observed on the ground (~50 m over the ground) and became more deeper on the central part to reach depth of 5 km (from the ground level). Results from the analytic signal method indicated that, the depth to the basement has an average value of 156 m on the eastern side and 758 m on the western side. Generally, the area is characterized by a graben structure bounded by major faults striking in the NW-SE direction.

  19. Geophysical imaging of subsurface structures in volcanic area by seismic attenuation profiling

    NASA Astrophysics Data System (ADS)

    Tsuru, Tetsuro; No, Tetsuo; Fujie, Gou

    2017-01-01

    Geophysical imaging by using attenuation property of multichannel seismic reflection data was tested to map spatial variation of physical properties of rocks in a volcanic area. The study area is located around Miyakejima volcanic island, where an intensive earthquake swarm was observed associated with 2000 Miyakejima eruption. Seismic reflection survey was conducted five months after the swarm initiation in order to clarify crustal structure around the hypocenters of the swarm activity. However, the resulting seismic reflection profiles were unable to provide significant information of deep structures around the hypocenters. The authors newly applied a seismic attribute method that focused seismic attenuation instead of reflectivity to the volcanic area, and designed this paper to assess the applicability of this method to subsurface structural studies in poorly reflective volcanic areas. Resulting seismic attenuation profiles successfully figured out attenuation structures around the Miyakejima volcanic island. Interestingly, a remarkable high-attenuation zone was detected between Miyakejima and Kozushima islands, being well correlated with the hypocenter distribution of the earthquake swarm in 2000. The high-attenuation zone is interpreted as a fractured area that was developed by magma activity responsible for the earthquake swarms that have been repeatedly occurring there. The present study can be one example showing the applicability of seismic attenuation profiling in a volcanic area. [Figure not available: see fulltext. Caption: .

  20. Closure of the Oak Ridge National Laboratory Hydrofracture Facility: An opportunity to study the fate of radioactive wastes disposed of by subsurface injection

    SciTech Connect

    Haase, C.S.; Von Damm, K.L.; Stow, S.H.

    1987-01-01

    At Oak Ridge National Laboratory, subsurface injection has been used to dispose of liquid low-level nuclear waste for the past two decades. The process consists of mixing the liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of approximately 300 m (1000 ft). The slurry spreads from the well along hydraulic fractures and sets to form irregularly shaped grout sheets of up to 200 m (650 ft) in radius. Closure-related site characterization provides a unique opportunity to study the fate of the injected wastes. A series of monitoring wells are in place to measure groundwater chemistries within the injection strata and within overlying and underlying confining units. Initial results indicate that contaminated groundwater surrounds the grout sheets in the injection zone, extending at least as far as 300 m (1000 ft) from the injection well; contaminated groundwater is largely and perhaps exclusively confined to the host formation; and of the /sup 90/Sr and /sup 137/Cs radionuclides disposed of, only /sup 90/Sr is present in the contaminated groundwater. The illite-rich mineralogy of the injection formation strongly absorbs /sup 137/Cs and greatly retards its migration. Movement of /sup 90/Sr is not as greatly retarded by the injection formation. Geochemical modeling is being used to identify and to evaluate hydrogeological controls on /sup 90/Sr behavior. Preliminary results suggest that the groundwaters within the injection formation are saturated with Sr from natural sources, and that /sup 90/Sr mobility may be lessened by precipitation/dissolution reactions associated with such a saturated condition. 27 refs., 4 figs., 2 tabs.

  1. 200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan

    SciTech Connect

    BROWN, M.J.

    2000-05-18

    This Sampling and Analysis Plan (SAP) has been developed to comply with effluent monitoring requirements at the 200 Area Treated Effluent Disposal Facility (TEDF), as stated in Washington State Waste Discharge Permit No. ST 4502 (Ecology 2000). This permit, issued by the Washington State Department of Ecology (Ecology) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216, is an April 2000 renewal of the original permit issued on April 1995.

  2. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    SciTech Connect

    Roach, J.L. Jr.

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997.

  3. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    Chou, Charissa J.; Johnson, Vernon G.

    2000-03-08

    This report updates the original effluent variability study for the 200 Area Treated Effluent Disposal Facility (TEDF) and provides supporting justification for modifying the effluent monitoring portion of the discharge permit. Four years of monitoring data were evaluated and used to statistically justify changes in permit effluent monitoring conditions. As a result, the TEDF effluent composition and variability of the effluent waste stream are now well defined.

  4. Visual probes and methods for placing visual probes into subsurface areas

    DOEpatents

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.

    2004-11-23

    Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.

  5. Corrective Action Investigation Plan for Corrective Action Unit 447: Project Shoal Area, Nevada Subsurface Site

    SciTech Connect

    DOE /NV

    1998-11-01

    This Corrective Action Investigation Plan (CAIP) describes the US Department of Energy's (DOE's) continued environmental investigation of the subsurface Project Shoal Area (PSA) Corrective Action Unit (CAU) 447. The PSA is located in the Sand Springs Mountains in Churchill County, Nevada, about 48 kilometers (km) (30 miles [mi]) southeast of Fallon, Nevada. Project Shoal was part of the Vela Uniform Program which was conducted to improve the US' ability to detect, identify, and locate underground nuclear detonations. The test consisted of detonating a 12-kiloton nuclear device deep underground in granitic rock to determine whether seismic waves produced by an underground nuclear test could be differentiated from seismic waves produced by a naturally occurring earthquake. The test was a joint effort conducted by the US Atomic Energy Commission (AEC) and the US Department of Defense (DoD) in October 1963 (AEC, 1964).

  6. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  7. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system.

    PubMed

    Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  8. Some Ecological Mechanisms to Generate Habitability in Planetary Subsurface Areas by Chemolithotrophic Communities: The Ro Tinto Subsurface Ecosystem as a Model System

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  9. Z-Area Saltstone Disposal Facility groundwater monitoring report. Second quarter 1995

    SciTech Connect

    1995-09-01

    The three monitoring wells at the Z-Area Saltstone Disposal Facility, ZBG 1, 1A, and 2, are sampled quarterly as part of the Savannah River Site Groundwater Monitoring Program and to comply with conditions of the facility`s Industrial Waste Permit IWP-217, issued by the South Carolina Department of Health and Environmental Control (SCDHEC). During second quarter 1995, samples from wells ZBG 1 and 2 were analyzed for selected inorganic constituents, volatile organic compounds, selected radionuclides, and other constituents. Well ZBG 1A was dry and could not be sampled. Dichloromethane, a common laboratory contaminant, was detected above final Primary Drinking Water Standards (PDWS) in well ZBG 1 and was detected in this well`s associated method blank during second quarter 1995. No other constituents exceeded final PDWS, SCDHEC proposed groundwater monitoring standards, or Savannah River Site flagging criteria in the ZBG wells during second quarter 1995. In previous quarters, wells ZBG 1 and 2 contained slightly elevated levels of tritium, similar to the tritium levels detected before Z Area began radioactive operations. The Z-Area Saltstone Disposal Facility blends low-level salt solutions with cement, slag, and flyash to form a nonhazardous cementitious waste that is pumped to aboveground disposal vaults.

  10. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  11. Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas.

    PubMed

    Xu, Jianling; Wang, Hanxi; Liu, Yuanyuan; Ma, Mengchao; Zhang, Tian; Zheng, Xiaoxue; Zong, Meihan

    2016-02-01

    More attention is being devoted to heavy metal pollution because heavy metals can concentrate in higher animals through the food chain, harm human health and threaten the stability of the ecological environment. In this study, the effects of heavy metals (Cu, Cr, Zn, Pb, Cd, Ni and Hg) emanating from oil waste disposal on surrounding soil in Jilin Province, China, were investigated. A potential ecological risk index was used to evaluate the damage of heavy metals and concluded that the degree of potential ecological damage of heavy metals can be ranked as follows: Hg > Cd > Pb > Cu > Ni > Cr > Zn. The average value of the potential ecological harm index (Ri) is 71.93, thereby indicating light pollution. In addition, this study researched the spatial distribution of soil heavy metals by means of ArcGIS (geographic information system) spatial analysis software. The results showed that the potential ecological risk index (R) of the large value was close to the distance from the oil waste disposal area; it is relatively between the degree of heavy metals in soil and the distance from the waste disposal area.

  12. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  13. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    SciTech Connect

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  14. Fluid Management Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 1

    SciTech Connect

    Findlay, Rick

    2006-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, south of Highway 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.

  15. Closure Report for Corrective Action Unit 399: Area 18 Disposal Site

    SciTech Connect

    Navarro Nevada Environmental Services

    2010-08-10

    The closure report for CAU 399 is just a one page summary listing the coordinates of the disposal site which were given at the time (1995) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the disposal site with the coordinates listed showing the use restricted area.

  16. Evaluation of dredged material proposed for ocean disposal from Hackensack River Project Area, New York

    SciTech Connect

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.

  17. Evaluation of dredged material proposed for ocean disposal from Arthur Kill Project Area, New York

    SciTech Connect

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of Arthur Kill Federal Project was to reperform toxicity testing on proposed dredged material following current ammonia reduction protocols. Arthur Kill was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were recollected from the Arthur Kill Project areas in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Arthur Kill project areas consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Arthur Kill project area. Three composite sediments, representing each reach of the area proposed for dredging, was used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all Arthur Kill composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. M. bahia did not show statistically significant acute toxicity or a greater than 10% increase in mortality over reference sediment in static tests. 5 refs., 2 figs., 2 tabs.

  18. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    SciTech Connect

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  19. Hydraulic Isolation of Waste Disposal Areas at Oak Ridge National Laboratory

    SciTech Connect

    Cater, F.; Cange, J.B.; Lambert, R.K.; Spurling, R.; Julius, J.F.K.; Skinner, R.

    2008-07-01

    The Melton Valley watershed at Oak Ridge National Laboratory (ORNL) is the location of several large waste disposal areas that received waste from more than 50 years of operation, production, and research activities at ORNL and the U.S. Atomic Energy Commission's Southern Regional Burial Ground for wastes from more than 50 other facilities. The major burial grounds in the valley are Solid Waste Storage Areas (SWSAs) 4, 5, and 6, where wastes were buried in more than 850 unlined trenches and more than 1500 unlined auger holes. The area includes 3 seepage pits and 3 gravel-filled trenches used by ORNL for the disposal of liquid low level wastes. The burial grounds contained several hundred thousand cubic yards of waste, and the combined inventory of the burial grounds and liquid disposal sites was well over 1 million curies. The Record of Decision for Interim Actions for the Melton Valley Watershed at ORNL selected hydraulic isolation of major waste sources as the primary mechanism for remediation of the watershed. Isolation was to be accomplished mainly through the construction of multi-layer caps over the burial grounds, seepage pits, and trenches. Groundwater diversion and collection systems were installed along the up-gradient and down-gradient edges, respectively, of selected caps to enhance the performance of the isolation system. The waste areas were covered with both Resource Conservation and Recovery Act (RCRA)-type and isolation multi-layer caps. A total of 13 multi-layer caps covering 58.7 hectares (ha) (plan view) were constructed in Melton Valley between 2003 and 2006. The project encountered considerable challenges, not the least of which was its scale, involving simultaneous construction activities at widely scattered sites across the 430-ha watershed. Detailed planning and coordination enabled year-round fieldwork, an essential requirement necessary to retain a skilled, experienced workforce and meet the contract milestone for completion. Other

  20. Evaluation of dredged material proposed for ocean disposal from Bronx River Project Area, New York

    SciTech Connect

    Gruendell, B.D.; Gardiner, W.W.; Antrim, L.D.; Pinza, M.R.; Barrows, E.S.; Borde, A.B.

    1996-12-01

    The objective of the Bronx River project was to evaluate proposed dredged material from the Bronx River project area in Bronx, New York, to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Bronx River was one of five waterways that the US Army Corps of Engineers-New York District (USAGE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and to evaluate for dredging and disposal. Sediment samples were submitted for physical and chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests, and bioaccumulation studies. Fifteen individual sediment core samples collected from the Bronx River project area were analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample, representing the entire reach of the area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which was prepared from the suspended-particulate phase (SPP) of the Bronx River sediment composite, were analyzed for metals, pesticides, and PCBS.

  1. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    SciTech Connect

    Findlay, Rick

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  2. Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas

    PubMed Central

    Tóth, Tibor; Balog, Kitti; Szabó, András; Pásztor, László; Jobbágy, Esteban G.; Nosetto, Marcelo D.; Gribovszki, Zoltán

    2013-01-01

    In flat sedimentary plains in areas with a sub-humid climate, tree planting on grasslands and arable lands creates strong hydrological shifts. As a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases. Tree planting has expanded globally and in Hungary it reached rates of 15 000 ha year−1, being focused mainly in the Great Hungarian Plain where forests replace grasslands and crops in a region with widespread shallow groundwater. We performed soil and groundwater observations in 31 pairs of forest and control plots in the region, including gradients of initial water table depth and salinity, soil layering, and tree species and age. Accumulated tree biomass was positively correlated with soil salinization rates following tree planting, being also affected by species (poplar > common oak > black locust) and stand age. Differences among tree species effects appeared to be related to their growth rates. Due to downward deep percolation and salt leaching episodes during the Hungarian winters, the observed salt accumulation rates were lower than those described under similar settings in the warmer Argentine Pampas. PMID:25228311

  3. Closure Report Central Nevada Test Area Subsurface Corrective Action Unit 443 January 2016

    SciTech Connect

    Findlay, Rick

    2015-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Closure Report for the subsurface Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA), Nevada, Site. CNTA was the site of a 0.2- to 1-megaton underground nuclear test in 1968. Responsibility for the site’s environmental restoration was transferred from the DOE, National Nuclear Security Administration, Nevada Field Office to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended 2011) and all applicable Nevada Division of Environmental Protection (NDEP) policies and regulations. This Closure Report provides justification for closure of CAU 443 and provides a summary of completed closure activities; describes the selected corrective action alternative; provides an implementation plan for long-term monitoring with well network maintenance and approaches/policies for institutional controls (ICs); and presents the contaminant, compliance, and use-restriction boundaries for the site.

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  5. Verification of best available technology for the 300 Area Treated Effluent Disposal Facility (310 Facility)

    SciTech Connect

    Wagner, R.N.

    1994-09-26

    This compilation of Project L-045H reference materials documents that the 300 Area Treated Effluent Disposal Facility (TEDF, also designated the 310 Facility) was designed, built, and will be operated in accordance with the best available technology (BAT) identified in the Engineering Summary Report. The facility is intended for treatment of 300 Area process sewer wastewater. The following unit operations for 300 Area process sewer water treatment are specified as: influent receipt; iron co-precipitation and sludge handling for removal of heavy metals and initial suspended solids; ion exchanged for removal of mercury and other heavy metals; ultraviolet (UV)/peroxide treatment for destruction of organic compounds, cyanide, coliforms, sulfide, and nitrite; and effluent discharge to the Columbia River with pH monitoring/control capability.

  6. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  7. Evaluation of dredged material proposed for ocean Disposal from Shoal Harbor/Compton Creek Project Area

    SciTech Connect

    Gardiner, W.W.; Borde, A.B.; Nieukirk, S.L.; Barrows, E.S.; Gruendell, B.D.; Word, J.Q.

    1996-10-01

    The objective of the Shoal Harbor/Compton Creek Project was to evaluate proposed dredged material from the Shoal harbor/Compton Creek Project Area in Belford and Monmouth, New Jersey to determine its suitability for unconfined ocean disposal at the Mud Dump Site. This was one of five waterways that the US Army Corps of Engineers- New York District requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Shoal Harbor/Compton Creek Project area consisted of bulk chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests and bioaccumulation studies. Eleven core samples were analyzed or grain size, moisture content, and total organic carbon. Other sediments were evaluated for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congers, polynuclear aromatic hydrocarbons, and 1,4- dichlorobenzene. Dredging site water and elutriate water were analyzed for metals, pesticides, and PCBs.

  8. Delineation of the subsurface geological structures of Omu-Aran area, south-western Nigeria, using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Kayode, J. S.; Nawawi, M. N. M.; Baioumy, H. M.; Khalil, A. E.; Khiruddin, B. A.

    2015-04-01

    Omu-Aran area is characterized by mining activities to exploit the valuable mineralization there. These facts motivated the present work to evaluate the factors controlling the mineralization in the study area using aeromagnetic data obtained from the Nigerian Geological survey Agency. The data was processed and interpreted with the mean of delineating subsurface geological structures around Omu-Aran in Kwara State, South-western Nigeria. Data enhancement methods was performed on the aeromagnetic map using Regional Residual Separation of the total field anomalies map; horizontal gradient enhanced and International Geomagnetic Reference Field (IGRS) removed; reduced to the pole magnetic shaded relief image was carried out; Magnetic vertical gradient calculated, Magnetic horizontal gradient measured and Analytical signal map was constructed using some computer aided packages. The interpreted map enabled delineation of various subsurface geological structures such as the rock contacts, fractured and faulted areas.

  9. Evaluation of dredged material proposed for ocean disposal from Eastchester Project Area, New York

    SciTech Connect

    Antrim, L.D.; Pinza, M.R.; Barrows, E.S.; Gardiner, W.W.; Tokos, J.J.S.; Gruendell, B.D.; Word, J.Q.

    1996-07-01

    The objective of the Eastchester project (Federal Project [FP] No. 6) was to evaluate proposed dredged material from the Eastchester project area in the Hutchinson River to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Eastchester was one of seven waterways that the U. S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. The evaluation of proposed dredged material from the Eastchester project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water- column and benthic acute toxicity tests, and bioaccumulation studies. Eighteen individual sediment core samples collected from the Eastchester project area were analyzed for grain size, moisture content, and total organic carbon (TOC). Two composite sediment samples, representing the upstream and lower reaches of the area proposed for dredging, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the two Eastchester sediment composites, were analyzed for metals, pesticides, and PCBS. An additional 1 1 composite samples were created for the USACE-New England Division (USACE-NED) using the same 18 Eastchester core samples but combined into different composites. These composites were analyzed for metals, chlorinated pesticides, PCB congeners, PAHS, and 1,4-dichlorobenzene. Water-column or SPP toxicity tests were performed along with bioaccumulation tests.

  10. Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment

    PubMed Central

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T.; Fredrickson, James

    2012-01-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990

  11. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  12. 43 CFR 3601.12 - What areas does BLM exclude from disposal of mineral materials?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of mineral materials? 3601.12 Section 3601.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Limitations on Disposal...

  13. 43 CFR 3601.12 - What areas does BLM exclude from disposal of mineral materials?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of mineral materials? 3601.12 Section 3601.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Limitations on Disposal...

  14. 43 CFR 3601.12 - What areas does BLM exclude from disposal of mineral materials?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of mineral materials? 3601.12 Section 3601.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Limitations on Disposal...

  15. 43 CFR 3601.12 - What areas does BLM exclude from disposal of mineral materials?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of mineral materials? 3601.12 Section 3601.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Limitations on Disposal...

  16. Infiltration control for low-level radioactive solid waste disposal areas: an assessment

    SciTech Connect

    Arora, H.S.

    1980-11-01

    The primary mode of radionuclide transport from shallow land-disposal sites for low-level wastes can be traced to infiltration of precipitation. This report examines the factors that affect surface water entry and movement in the ground and assesses available infiltration-control technology for solid-waste-disposal sites in the humid eastern portion of the United States. A survey of the literature suggests that a variety of flexible and rigid liner systems are available as barriers for the stored waste and would be effective in preventing water infiltration. Installation of near-surface seals of bentonite clay admixed with dispersive chemicals seem to offer the required durability and low permeability at a reasonable cost. The infiltration rate in a bentonite-sealed area may be further retarded by the application of dispersive chemicals that can be easily admixed with the surface soil. Because the effectiveness of a dispersive chemical for infiltration reduction is influenced by the physico-chemical properties of the soil, appropriate laboratory tests should be conducted prior to field application.

  17. Subsurface-controlled geological maps for the Y-12 plant and adjacent areas of Bear Creek Valley

    SciTech Connect

    King, H.L.; Haase, C.S.

    1987-04-01

    Bear Creek Valley in the vicinity of the US Department of Energy Y-12 Plant is underlain by Middle to Late Cambrian strata of the Conasauga Group. The group consists of interbedded limestones, shales, mudstones, and siltstones, and it can be divided into six discrete formations. Bear Creek Valley is bordered on the north by Pine Ridge, which is underlain by sandstones, siltstones, and shales of the Rome Formation, and on the south by Chestnut Ridge, which is underlain by dolostones of the Knox Group. Subsurface-controlled geological maps illustrating stratigraphic data and formational contacts for the formations within the Conasauga Group have been prepared for the Y-12 Plant vicinity and selected areas in Bear Creek Valley westward from the plant. The maps are consistent with all available surface and subsurface data for areas where sufficient data exist to make map construction feasible. 13 refs.

  18. Subsurface thermal regime to delineate the paleo-groundwater flow system in an arid area, Al Kufra, Libya

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom El-Said

    2016-12-01

    The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.

  19. 2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447

    SciTech Connect

    2013-03-01

    The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an

  20. Design, construction, and operations experience with the SWSA 6 (Solid Waste Storage Area) Tumulus Disposal Demonstration

    SciTech Connect

    Van Hoesen, S.D.; Van Cleve, J.E.; Wylie, A.N.; Williams, L.C.; Bolinsky, J.

    1988-01-01

    Efforts are underway at the Department of Energy facilities in Oak Ridge to improve the performance of radioactive waste disposal facilities. An engineered disposal concept demonstration involving placement of concrete encased waste on a monitored concrete pad with an earthen cover is being conducted. The design, construction, and operations experience with this project, the SWSA 6 Tumulus Disposal Demonstration, is described. 1 fig., 1 tab.

  1. Subsurface Conditions Description of the B and BX and BY Waste Management Area

    SciTech Connect

    WOOD, M.I.

    2000-03-13

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-B, -BX, and -BY tank farms. This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited, qualitative interpretation of these data.

  2. Subsurface conditions description for the S-SX waste management area

    SciTech Connect

    WOOD, M.I.

    1999-10-21

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-5 and 241-SX tank farms This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited qualitative interpretation of these data.

  3. The DOE Subsurface (SubTER) Initiative: Revolutionizing Responsible use of the Subsurface for Energy Production and Storage

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Walck, M. C.; Blankenship, D.; Bonneville, A.; Bromhal, G. S.; Daley, T. M.; Pawar, R.; Polsky, Y.; Mattson, E.; Mellors, R. J.

    2015-12-01

    The subsurface supplies more than 80% of the U.S.'s total energy needs through geothermal and hydrocarbon strategies and also provides vast potential for safe storage of CO2 and disposal of nuclear waste. Responsible and efficient use of the subsurface poses many challenges, many of which require the capability to monitor and manipulate sub-surface stress, fractures, and fluid flow at all scales. Adaptive control of subsurface fractures and flow is a multi-disciplinary challenge that, if achieved, has the potential to transform all subsurface energy strategies. As part of the U.S. Department of Energy's SubTER (Subsurface Technology and Engineering Research development and demonstration) initiative, a multi-National Laboratory team is developing next-generation approaches that will allow for adaptive control of subsurface fractures and flow. SubTER has identified an initial suite of technical thrust areas to focus work, and has initiated a number of small projects. This presentation will describe early progress associated with the SubTER technical topic areas of wellbore integrity, subsurface stress and induced seismicity, permeability manipulation and new subsurface signals. It will also describe SubTER plans, and provide a venue to solicit suggestions and discuss potential partnerships associated with future research directions.

  4. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    SciTech Connect

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  5. Time efficient way to calculate oxygen transfer areas and power input in cylindrical disposable shaken bioreactors.

    PubMed

    Klöckner, Wolf; Lattermann, Clemens; Pursche, Franz; Büchs, Jochen; Werner, Sören; Eibl, Dieter

    2014-01-01

    Disposable orbitally shaken bioreactors are a promising alternative to stirred or wave agitated systems for mammalian and plant cell cultivation, because they provide a homogeneous and well-defined liquid distribution together with a simple and cost-efficient design. Cultivation conditions in the surface-aerated bioreactors are mainly affected by the size of the volumetric oxygen transfer area (a) and the volumetric power input (P∕VL ) that both result from the liquid distribution during shaking. Since Computational Fluid Dynamics (CFD)-commonly applied to simulate the liquid distribution in such bioreactors-needs high computing power, this technique is poorly suited to investigate the influence of many different operating conditions in various scales. Thus, the aim of this paper is to introduce a new mathematical model for calculating the values of a and P∕VL for liquids with water-like viscosities. The model equations were derived from the balance of centrifugal and gravitational forces exerted during shaking. A good agreement was found among calculated values for a and P∕VL , CFD simulation values and empirical results. The newly proposed model enables a time efficient way to calculate the oxygen transfer areas and power input for various shaking frequencies, filling volumes and shaking and reactor diameters. All these parameters can be calculated fast and with little computing power.

  6. Long-term impacts on sewers following food waste disposer installation in housing areas.

    PubMed

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.

  7. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    CJ Chou; VG Johnson

    2000-04-04

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time.

  8. Investigating Groundwater Contamination Following the Disposal of Hospital Wastes in a Government Reserved Area, Enugu, Nigeria.

    PubMed

    Eze, C T; Nwagwe, O R; Ogbuene, E B; Eze, H I

    2017-02-01

    This study investigated the probable contamination of groundwater following hospital wastes disposal in a Government Reserved Area, Enugu, Nigeria. The ground water samples were collected from three distinct locations denoted as GW1, GW2 and GW3 at distances of about 100, 200 and 350 m respectively from the hospital location. The samples were collected during the dry season (December 2015, January and February 2016) and wet season (June, July and August 2016) and analyzed with standard procedures. The level of contamination of groundwater in the area was generally higher in the wet season than in dry season. The degree of contamination varies with distance and hence in the following order GW1 > GW2 > GW3 in both seasons. The study revealed the presence of both pathogenic and non-pathogenic organisms and values of the determined physicochemical ranged from (0.02 ± 0.01-272 ± 2.22 mg/L) in both seasons. The hospital management should develop effective ways to manage their wastes to protect the environment and public health.

  9. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought.

  10. Research on Geo-information Data Model for Preselected Areas of Geological Disposal of High-level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.

    2016-11-01

    The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.

  11. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  12. A geological model for the management of subsurface data in the urban environment of Barcelona and surrounding area

    NASA Astrophysics Data System (ADS)

    Vázquez-Suñé, Enric; Ángel Marazuela, Miguel; Velasco, Violeta; Diviu, Marc; Pérez-Estaún, Andrés; Álvarez-Marrón, Joaquina

    2016-09-01

    The overdevelopment of cities since the industrial revolution has shown the need to incorporate a sound geological knowledge in the management of required subsurface infrastructures and in the assessment of increasingly needed groundwater resources. Additionally, the scarcity of outcrops and the technical difficulty to conduct underground exploration in urban areas highlights the importance of implementing efficient management plans that deal with the legacy of heterogeneous subsurface information. To deal with these difficulties, a methodology has been proposed to integrate all the available spatio-temporal data into a comprehensive spatial database and a set of tools that facilitates the analysis and processing of the existing and newly added data for the city of Barcelona (NE Spain). Here we present the resulting actual subsurface 3-D geological model that incorporates and articulates all the information stored in the database. The methodology applied to Barcelona benefited from a good collaboration between administrative bodies and researchers that enabled the realization of a comprehensive geological database despite logistic difficulties. Currently, the public administration and also private sectors both benefit from the geological understanding acquired in the city of Barcelona, for example, when preparing the hydrogeological models used in groundwater assessment plans. The methodology further facilitates the continuous incorporation of new data in the implementation and sustainable management of urban groundwater, and also contributes to significantly reducing the costs of new infrastructures.

  13. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

    PubMed Central

    Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.

    2015-01-01

    The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758

  14. Planning of wastewater treatment and disposal systems of Istanbul metropolitan area.

    PubMed

    Eroglu, V; Sarikaya, H Z; Aydin, A F

    2001-01-01

    Current and future wastewater treatment and disposal strategies of Istanbul city are presented. Istanbul is the largest city of Turkey and has a population of 10 million that may reach about 20 million in 2032. The city is divided into Asian and European sides by the Bosphorus Strait. The Sea of Marmara is an enclosed sea, connected to the Black Sea and Aegean Sea by the straits of Bosphorus and Dardanelles. Therefore, there is very strong and permanent stratification in the Sea of Marmara throughout the year, lower layers carrying Mediterranean and the upper layers carrying Black Sea water. This unique coastal structure of Istanbul necessitated a detailed study to determine the level of wastewater treatment and the location and depth of marine outfalls. A comprehensive three-dimensional water quality modelling study concluded that tertiary treatment including nitrogen and phosphorus removal is required for the effluent discharges into the Marmara Sea. However, enhanced primary or even primary treatment has been found satisfactory for discharges into the lower layers of the Bosphorus and into the Black Sea. Provisions for upgrading to secondary treatment were recommended. The status of existing and planned wastewater treatment plants and sea outfalls of Istanbul city are also presented. Although the amount of treated wastewater was only 63 percent in 1998, a target of 95 percent treatment level by the end of 2000 has been adopted in implementation plans. All treatment plants are located at or close to the coast except Pasakoy WWTP which is in the catchment area of Omerli Reservoir, the major source of drinking water for Istanbul city. The Pasakoy WWTP has been designed to treat wastewaters collected from the catchment area of Omerli Reservoir to tertiary level before ultimate disposal. The implementation programme together with the cost estimates are given. Total investment on water, wastewater and stormwater projects up to year 2032 is estimated at about 10

  15. Geophysical Exploration and Visualization of subsurface voids in urban Karst areas using the Multichannel Analysis of Surface Waves (MASW) technique

    NASA Astrophysics Data System (ADS)

    Pabon, J. P.; Rodriguez, H. R.; Asencio, E.

    2006-12-01

    Geo-electrical geophysical techniques have been widely used to study Karst sinkholes in Puerto Rico, but these techniques are seriously affected by cultural noise in urban areas. There is an urgent need to assess different geophysical techniques that could be used in urban and developed regions to address problems related to geologic and engineering hazards in tropical regions. This investigation addresses the use of the Multi-channel Analysis of Surface waves (MASW) technique to study areas of limestone dissolution in urban areas covered with asphalt and concrete and shows to be a good assessment tool in areas with known/or suspected dissolution. We studied three sites with known subsurface dissolution with the MASW technique. At two sites we were able to correlate our results with soil boring information. One of the urban sites was a basketball court. The basketball court is a concrete slab constructed over the North Coast Karst Terrain of Puerto Rico. The concrete slab shows concentric cracks and the center of the slab has subsided about 2 inches with respect of the edges of the court. Our results show a bowl-shaped low velocity zone (<200m/sec) beneath the basketball court that we have interpreted as the zone of dissolution. Subsurface voids were identified at the other two sites and contrasted with soil borings.

  16. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Water and waste disposal systems which have become part of an urban area. 1951.232 Section 1951.232 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES...

  17. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Water and waste disposal systems which have become part of an urban area. 1951.232 Section 1951.232 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES...

  18. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become part of an urban area. 1951.232 Section 1951.232 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES...

  19. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Water and waste disposal systems which have become part of an urban area. 1951.232 Section 1951.232 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES...

  20. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Water and waste disposal systems which have become part of an urban area. 1951.232 Section 1951.232 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES...

  1. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.

    2011-12-01

    The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.

  2. Seismic Survey Report for Central Nevada Test Area, Subsurface, Correction Action Unit 443, Revision 1

    SciTech Connect

    2008-12-19

    The seismic survey was successful in imaging the water table and underlying structures at the site. The configuration of the water table reflector confirms the general southeast horizontal flow direction in the alluvial aquifer. Offsets in the water table reflector, both at known faults that reach the surface and at subsurface faults not previously recognized, indicate that both extension and blast-related faults are barriers to lateral groundwater flow. The results from this study have been used to optimally locate two new wells designed to monitor head levels and possible contaminant migration in the alluvial aquifer at CTNA.

  3. Distribution of volatile organic compounds in sediments near Sutton Brook Disposal Area, Tewksbury, Massachusetts, May 2001

    USGS Publications Warehouse

    Church, P.E.; Lyford, F.P.; Clifford, Scott

    2002-01-01

    Ground water at the Sutton Brook Disposal Area, a former municipal landfill in Tewksbury, Massachusetts, located adjacent to Sutton Brook, a tributary of the Shawsheen River, is contaminated by volatile organic compounds (VOCs). Results from the use of passive-vapor-diffusion samplers show vapor concentrations of petroleum hydrocarbons as high as 500,000 parts per billion by volume in pore waters of streambed sediments along an approximate 2,000-foot reach of Sutton Brook where it flows between lobes of the former landfill. Petroleum hydrocarbons were also detected in the sediments on the eastern shore of Quarry Pond, which is south of the southern landfill lobe, with a maximum vapor concentration near 2,000 parts per billion by volume. Vapor concentrations of petroleum hydrocarbons in the sediments of Sutton Brook vary by two to three orders-of-magitude over distances of 50 to 100 feet. Chlorinated hydrocarbons also were detected with passive-vapor-diffusion samplers, but generally at locations downstream of where petroleum hydrocarbons were detected, and mostly at vapor concentrations of less than 100 parts per billion by volume.

  4. A large area nano-gap interdigitated electrode array on a polymer substrate as a disposable nano-biosensor

    NASA Astrophysics Data System (ADS)

    Shim, Joon S.; Rust, Michael J.; Ahn, Chong H.

    2013-03-01

    A low-cost nano-gap interdigitated electrode array (IDA) on a polymer substrate has been developed to realize a disposable nano-biosensor for biochemical clinical analysis. Utilizing the common instruments for optical lithography, nano-scale features were fabricated on a thermoplastic polymer to produce an electrochemical nano-biosensor in a disposable format. The IDA was realized on a 3-inch cyclo-olefin copolymer wafer, which illustrates the utility of our fabrication technique as a large-area nanofabrication process for a polymer using low temperature processes. In order to demonstrate the use of the sensor for lab-on-a-chip applications, the developed IDA was integrated with a microfluidic channel and applied for the electrochemical detection of poly-aminophenol with 10-8 M detection limit. The results indicate the developed fabrication technique is suitable for the inexpensive mass fabrication of highly sensitive nano-biosensors for disposable applications.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and

  6. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  7. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  8. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  9. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    SciTech Connect

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  10. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures.

    PubMed

    Pérez-López, Rafael; Macías, Francisco; Cánovas, Carlos Ruiz; Sarmiento, Aguasanta Miguel; Pérez-Moreno, Silvia María

    2016-05-15

    Phosphogypsum wastes from phosphate fertilizer industries are stockpiled in stacks with high contamination potential. An assessment of the environmental impact, including the use of geochemical tracers such as rare earth elements (REE) and Cl/Br ratios, was carried out in the phosphogypsum stack located at the Estuary of Huelva (SW Spain). Inside the pile, highly polluted acid pore-waters flows up to the edge of the stack, emerging as small fluvial courses, known as edge outflows, which discharge directly into the estuary. The disposal area is divided into four zones; two unrestored zones with surface ponds of industrial process water and two a priori already-restored zones. However, an extensive sampling of edge outflows conducted in the perimeter of the four zones demonstrates the high potential of contamination of the whole stack, including those zones that were supposedly restored. These solutions are characterized by a pH of 1.9 and concentrations of 6100 mg/L for P, 1970 mg/L for S, 600 mg/L for F, 200mg/L for NH4(+), 100mg/L for Fe, 10-30 mg/L for Zn, As and U, and 1-10mg/L for Cr, Cu and Cd. Preliminary restoration actions and those planned for the future prioritize removal of ponded process water and cover of the phosphogypsum with artificial topsoil. These actions presuppose that the ponded process water percolates through the porous medium towards the edge up to reach the estuary. However, geochemical tracers rule out this connection and point to an estuarine origin for these leachates, suggesting a possible tidal-induced leaching of the waste pile in depth. These findings would explain the ineffectiveness of preliminary restoration measures and should be considered for the development of new action plans.

  11. [Arsenic contents in soil, water, and crops in an e-waste disposal area].

    PubMed

    Yao, Chun-xia; Yin, Xue-bin; Song, Jing; Li, Chen-xi; Qian, Wei; Zhao, Qi-guo; Luo, Yong-ming

    2008-06-01

    In order to study whether disposing electronic wastes and secondary metal smelting could cause an arsenic pollution in the environment or not, Luqiao town, Taizhou City, Zhejiang Province was selected as a study area. The main purpose of this paper was to characterize arsenic contents in the local environment, including waters, sediments, soils and rice, and to assess the potential risk to humans. Additionally, the arsenic spatial distribution property and arsenic uptake-translocation rule in soil-rice system were also studied. The results showed that the average arsenic levels in the surface water and the groundwater were 8.26 microg/L and 18.52 microg/L, respectively, which did not exceed the limiting value of Chinese Environment Standards class III . Whereas,some groundwater exceeded the recommended standard by the WHO for drinking water (10 microg/L). The arsenic (on average 7.11 mg/kg) in paddy soils and arsenic (on average 6.17 mg/kg) in the vegetable garden soils were lower than the value recommended by the National Standard (level I). The average arsenic contents in brown rice and husks were 165.1 microg/kg and 144.2 microg/kg, which was also lower than the Chinese Foods Quality Standard. The arsenic contents between the corresponding soils-rice and husks-brown rice showed significantly positive correlations. By comparison, the arsenic contents of soils and husks collected around electroplating were relatively higher than most of other pollutant sources, indicating the electroplating may lead accumulation of arsenic in the paddy soil-rice system.

  12. Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0

    SciTech Connect

    Susan Evans

    2004-11-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a transport model of radionuclide release

  13. Spatial distribution of microbial populations and carbon cycle in the subsurface environment of the Horonobe area, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Ise, K.; Terashima, M.; Sasaki, Y.; Amamiya, H.; Yoshikawa, H.

    2014-12-01

    Microorganisms are widely distributed in the subsurface environments. However, the distribution, role and rate of metabolisms, and the source of their activity are not well known. In this study, we investigated deep groundwater samples from sedimentary rocks, containing saturated methane and CO2, using boreholes at the Horonobe Underground Research Laboratory (URL), northern Hokkaido, Japan. The hydrochemical conditions of groundwaters, such as in-situ water pressure, temperature, electric conductivity, pH, redox potential, were monitored without degassing at multiple intervals along the borehole. Groundwater samples were taken periodically and chemical composition was analyzed using ICP-MS, etc. Cell counts were in the range of 103 to 105 cells ml-1. Molecular analyses revealed the spatial distribution and heterogeneity of the microbial population. Abundant methanogens were detected in the groundwater, and 80% of them were related to either Methanoregula boonei or Methanobacterium flexile that can utilize H2/CO2 by methanogenesis. Phylotypes clustered within the phylum Firmicutes, beta-Proteobacteria, delta-Proteobacteria and candidate division TM7 were dominant in the groundwater samples. Laboratory experiments using a culture technique showed that humic substances purified from the groundwater at Horonobe area appear to be degraded by microorganisms. Our results suggest that microbial spatial distributions in the subsurface environment were correlated closely with geochemical conditions, such as redox condition and carbon sources. In addition, it is inferred that humic substances are one of the important carbon sources for the subsurface microbial redox processes in the environment. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan.

  14. Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area

    SciTech Connect

    Keck, K.A.; Seitz, R.R.

    2002-09-26

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  15. Potential for Subsidence at the Low-level Waste Disposal Area

    SciTech Connect

    Keck, Karen Nina; Seitz, Roger Ray

    2002-09-01

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  16. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    SciTech Connect

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  17. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  18. Sub-surface paleochannel detection in DeGrussa area, Western Australia, using thermal infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Thakur, Sanchari; Chudasama, Bijal; Porwal, Alok; González-Álvarez, Ignacio

    2016-05-01

    Thermal Infrared (TIR) remote sensing measures emitted radiation of Earth in the thermal region of electromagnetic spectrum. This information can be useful in studying sub-surface features such as buried palaeochannels, which are ancient river systems that have dried up over time and are now buried under soil cover or overlying sediments in the present landscape. Therefore they have little or no expression on the surface topography. Study of these paleo channels has wide applications in the fields of uranium exploration and ground water hydrology. Identifying paleo channels using remote sensing technique is a cost-effective means of narrowing down search areas and thereby aids in ground exploration. The difference in thermal properties between the paleo channel-fill sediments and the surrounding bed-rock is the key to demarcate these channels. This study uses five TIR bands of day-time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) L1A data for delineation of paleo-systems in the DeGrussa area of the Capricorn Orogen in Western Australia. The temperature-emissivity separation algorithm is applied to obtain kinetic temperature and emissivity images. Sharp contrasts in kinetic temperature and emissivity values are used to demarcate the channel boundaries. Profiles of topographic elevation, temperature and emissivity values are plotted for different sections of the interpreted channels and compared to distinguish the surface channels from sub-surface channels, and also to interpret the thickness and nature of the paleo channel-fill sediments. The results are validated using core-drilling litho logs and field exploration data.

  19. Effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    SciTech Connect

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are identified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelerated vertical movement of moisture through the clay liner. 2 references, 8 figures.

  20. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    SciTech Connect

    Cook, J.R.; Fowler, J.R.

    1992-12-18

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  1. An in situ moisture monitoring system for a solid low-level radioactive disposal pit at Los Alamos National Laboratory, Technical Area 54, Area G

    SciTech Connect

    Purtymun, W.F. New Mexico Univ., Albuquerque, NM . Dept. of Geology)

    1990-01-01

    At the end of the 1950's, Los Alamos National Laboratory began to develop a Laboratory-wide, shallow-land, solid low-level radioactive waste disposal area on top of Mesita del Buey at TA-54, Area G. An in situ hydrologic monitoring system in the zone of aeration was developed in early 1990 to detect the presence of the infiltration of meteoric water into Pit 37 at Area G. Monitoring the water movement through the pit cap into the waste with leaching and transport the containment rock and possible contamination of the main aquifer is of primary concern. 2 refs., 1 fig.

  2. Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M

    SciTech Connect

    Cook, J.R.

    1994-04-15

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)

  3. Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment

    SciTech Connect

    Cook, James R.

    2005-12-07

    Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

  4. Shallow subsurface structures and geotechnical characteristics of Tal El-Amarna area, middle Egypt

    NASA Astrophysics Data System (ADS)

    Toni, Mostafa; Hosny, Ahmed; Attia, Mohsen M.; Hassoup, Awad; El-Sharkawy, Amr

    2013-12-01

    The shallow seismic refraction profiling was carried out at 18 sites in Tal El-Amarna, which is a flat area on the eastern bank of the Nile River, 50 km south of El Minia Governorate, middle Egypt. The collected data are used to estimate the P-wave velocity and to delineate the near-surface ground model beneath the study area. This study is supported by the National Research Institute of Astronomy and Geophysics due to the historical interest of the Tal El-Amarna area as a famous tourist place where there exist many Pharaoh temples and tombs. This area is low seismically active, but it is probably of high vulnerability due to the influence of the local geological conditions on earthquake ground motion, as well as the presence of poor constructions in the absence of various issues such as building designs, quality of building materials, etc. Another dataset at the study area is obtained by multi-channel passive source (microtremor) measurements, which have been recorded at four arrays. The frequency-wavenumber (f-k) method was used to derive the dispersion curves from the raw signals at each array. The resulted dispersion curves were inverted using the neighborhood algorithm to obtain the shear and P-wave velocity models. The concluded Vs and Vp values provide a preliminary estimation of the geotechnical parameters and site classification for the shallow soil as they are of great interest in civil engineering applications.

  5. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  6. Response to requests by FMF and DWPF concerning disposal of FMF saltstone drums in Z-Area vaults

    SciTech Connect

    Langton, C.A.; Cook, J.R.

    1989-07-25

    Disposal of FMF saltstone in 55 gallon drums in the Z-Area Industrial Waste Landfill requires modification of the landfill permit. Approximately 5000 drums of FMF saltstone are currently stored on SC DHEC-permitted concrete storage pads adjacent to the burial ground. At a meeting with DWPF, FMF, and EPS on July 18, 1989, IWT agreed to supply the following information: (1) Consequence of disposal of CCA (Cu, Cr, As) treated wood pallets in the Z-Area vaults. (Four drums of FMF saltstone are currently banded to each pallet.) (2) Consequence of placing partially filled FMF drums in the Z-Area vaults. (3) Formulation for clean grout back-fill. Grout will be emplaced around and over the drums, thereby isolating them from environment (rainwater) prior to vault capping. (4) Maximum loading of FMF saltstone drums in the Z-Area vaults. (5) Consequence of void volume in drums, in clean grout, or both on groundwater modeling results. This document is a response to the above requests.

  7. Geohydrologic evaluation for the 200 Area Effluent Treatment Facility State-Approved Land Disposal Site: Addendum to WAC 173-240 Engineering Report

    SciTech Connect

    Ballantyne, N.A.

    1993-08-01

    This document provides a geohydrologic evaluation for the disposal of liquid effluent from the 200 Area Effluent Treatment Facility (ETF) at the Hanford Site. This work forms an addendum to the engineering report that supports the completion of the ETF.

  8. An environmental assessment of the Charleston Ocean Dredged Material Disposal Site and surrounding areas after partial completion of the Charleston Harbor Deepening Project.

    PubMed

    Zimmerman, Lynn E; Jutte, Pamela C; Van Dolah, Robert F

    2003-11-01

    A project to deepen shipping and entrance channels in Charleston Harbor was conducted from 1999 to 2002. This generated approximately 22 million cubic yards of sediment for offshore disposal. Assessments of biological and physical conditions in the Charleston Ocean Dredged Material Disposal Site and surrounding areas were conducted prior to deepening (1993-94), and partway through the disposal period (2000). Results from the 2000 survey are presented and compared to the baseline survey. The study area was composed of the disposal zone and surrounding areas and divided into 20 one square mile strata. Within each stratum, benthic grab samples were collected from ten random sites for analysis of sediment composition and contaminants and macrobenthic assemblages. No contaminant levels were above effects range low levels. Results revealed that sediments in the western strata had significantly higher silt/clay content in the 2000 survey when compared to baseline sediments, while sediments east of the disposal zone were similar to baseline. Analyses were performed on a subset of the benthic data that compared baseline to 2000 conditions in western and eastern strata. The benthic communities in western strata were altered following disposal operations. The benthic community east of the disposal area was not different from baseline conditions. These alterations in the benthic community were attributed to changes in bottom habitat characteristics rather than pollution effects.

  9. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  10. Environmental geochemistry for surface and subsurface waters in the Pajarito Plateau and outlying areas, New Mexico

    SciTech Connect

    Blake, W.D.; Goff, F.; Adams, A.I.; Counce, D.

    1995-05-01

    This report provides background information on waters in the Los Alamos and Santa Fe regions of northern New Mexico. Specifically, the presented data include major element, trace element, and isotope analyses of 130 water samples from 94 different springs, wells, and water bodies in the area. The region considered in this study extends from the western edge of the Valles Caldera to as far east as Santa Fe Lake. For each sample, the presented analysis includes fourteen different major elements, twenty-six trace elements, up to five stable isotopes, and tritium. In addition, this data base contains certain characteristics of the water that are calculated from the aforementioned raw data, including the water`s maximum and minimum residence times, as found from tritium levels assuming no contamination, the water`s recharge elevation, as found from stable isotopes, and the charge balance of the water. The data in this report are meant to provide background information for investigations in groundwater hydrology and geochemistry, and for environmental projects. For the latter projects, the presented information would be useful for determining the presence of contamination it any one location by enabling one to compare potential contaminant levels to the background levels presented here. Likely locations of interest are those possibly effected by anthropogenic activities, including locations in and around Los Alamos National Laboratory, White Rock Canyon, and developed areas in the Rio Grande Valley.

  11. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    SciTech Connect

    MacKinnon, R.J. |; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.

  12. Chemical hazard evaluation of material disposal area (MDA) B closure project

    SciTech Connect

    Laul, Jagdish C

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  13. Gravity anomalies, caldera structure, and subsurface geology in the Rotorua area, New Zealand

    SciTech Connect

    Hunt, T.M. )

    1992-04-01

    This paper discusses a re-examination of gravity which indicates that Rotorua Caldera does not have the circular, negative gravity anomaly typical of other rhyolitic calderas. New gravity measurements and residual gravity anomalies in Rotorua City are consistent with numerous rhyolite domes and ignimbrite sheets, interbedded with a thick sequence of poorly-compacted sediments. Within the city a gravity high extends from the shore of Lake Rotorua south to Whakarewarewa and is associated with a buried ridge, formed by the coalescing of two rhyolite domes. A gravity low centered near Linton Park suggests that rhyolites are thin or absent in this area and sediments extend to a depth of about 1 km. A quantitative analysis of the residual gravity anomalies was limited by insufficient information about the density, extent, and thickness of the material underlying the rhyolites, and the uncertainty in the distribution and density of silicification within the sediments.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2002-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

  15. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    SciTech Connect

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.

  16. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    USGS Publications Warehouse

    Prudic, David E.; Randall, Allan D.

    1977-01-01

    Burial trenches for disposal of solid radioactive waste at West Valley, N.Y., are excavated in till that has very low hydraulic conductivity (about 5 x 10 to the minus 8th power centimeters per second). Fractures and root tubes with chemically oxidized and (or) reduced soil in their walls extend to 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975-76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 0.00001 to 0.001 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes. (Woodard-USGS)

  17. The Subsurface 3D Modelling of the Handeresi (Kalkim-Canakkale) Area, NW of Turkey, Pb-Zn-Cu Ore Zones

    NASA Astrophysics Data System (ADS)

    Akiska, Sinan; Sayili, Ä.°. Sönmez; Demirela, Gökhan

    2010-05-01

    A number of 3D softwares are available for subsurface modelling. Some of the complete 3D softwares are GoCAD, LYNX, TECHBASE, VULCAN, GeoBLOCK, MVS, MICROMINE and RockWorks. These softwares have their own merits and demerits. RockWorks, one of these softwares, has efficient data management capabilities. It facilitates easy entry of different types of subsurface data such as lithological, geophysical, and geochemical data. It has a simple and well organised structure to handle these data. As a result, it takes comparatively less time to develop a model. Therefore, this software is selected for this research. The topographic map of the studied area, which has been digitized before, worked up into 3D topographic surface modelling by the aid of RockWorks2006 software. After this modelling, the 25 borehole data which has been taken from the MTA's (General Directorate of Mineral Research & Exploration of Turkey) boreholes were input the software. Firstly, the ore zones in the subsurface modeled with solid modelling. But, because of the boreholes numbers were not enough, it's arguable that the accuracy of the areas modelling which has been outside of the boreholes. In this case, with the aim of supporting the modelling more, %Pb, %Zn, and %Cu data were input the software and the distribution of these elements in the subsurface were 3D modeled. The values of these elements were modeled with the cut off grades which have %Pb≥7, %Zn≥4, and %Cu≥0.3 values and this model was superposed with ore subsurface solid model. Finally, the intersecting areas were marked. As a result, there were two ore zones which have seen intensively in this area. One of them indicates the area in which the galleries are operated now. The other one comes across the area in which has been never operated. By the help of this modelling, the new ore zone has been determined which had not been detected before. The only deficiency of this modelling is the structural factors could not be reflected to

  18. Characterizing the sub-surface geometry of the Main Frontal Thrust in the Bardibas area of central Nepal

    NASA Astrophysics Data System (ADS)

    Almeida, R. V.; Hubbard, J.; Polivka, P.; Peterson, D. E.; Sapkota, S. N.; Schmid, A.; Tapponnier, P.; Timsina, C.; Foster, A. E.

    2014-12-01

    The Main Frontal Thrust (MFT) represents the most frontal surface expression of the Himalayan orogen. It is contained within the Miocene-Holocene age Siwalik Group. To better constrain the sub-surface geometry and slip history of the MFT, we conducted seismic reflection surveys around the town of Bardibas in central Nepal. Previous surveys in the area have used surface data and shallow trenches to identify the surface rupture of the great 1934 earthquake. The seismic surveys are intended to (1) confirm that the rupture identified at the surface is a through-going feature at depth; (2) image the geometry and infer the kinematics of the fault to assess the behaviour of the fault at longer timescales, and (3) evaluate how the many surface fault strands interact at depth. The surveys were conducted using a 6300 kg vibroseis minibuggy during January-March, 2014. 34 km of data were acquired in 3 long transects across the Main Frontal Thrust. The data were acquired using 264 channels with 5 m spacing. Vertical stacks of 6-12 sweeps were done at each station to improve the signal to noise ratio of the data. The seismic lines follow several of the dry riverbeds in the area and are generally orthogonal to the range front. The three seismic lines encompass a ~5 km southward step in the deformation front, with the front extending further south on the eastern side. We acquired one line on each side of the step (~2-3 km away) and the central line at the step. The Siwalik Group is strongly folded in this region. Measurements of bedding attitudes were done throughout the area to complement the seismic data. The bedding planes are generally tilted to the NE with a NW-SE strike. The faults at the surface are mostly ENE-WSW. This discrepancy seems to be spatially correlated with the southward step. Folding near the outcropping faults is asymmetric, typically with steep, narrow forelimbs and shallow, wide back-limbs. The river terraces, however, are sub-horizontal and uplifted over

  19. Drilling fluid disposal

    SciTech Connect

    Nesbitt, L.E.; Sanders, J.A.

    1981-12-01

    A maze of U.S. regulations and regulatory agencies coupled with uncertainty in interpretation of environmental data and an evolving system of disposal engineering will require industry action to monitor the area and derive a solid engineering basis for disposal of spent drilling fluid. A set of disposal methods with approximate costs is presented to serve as an initial guide for disposal. 16 refs.

  20. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    SciTech Connect

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  1. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    SciTech Connect

    Cook, J.R.

    2001-02-20

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC.

  2. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    SciTech Connect

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  3. Radiological assessment of radioactive waste-disposal areas at Oak Ridge National Laboratory. Volume 3: Technical background information for the ORNL environmental and safety report

    NASA Astrophysics Data System (ADS)

    Oakes, T. W.; Ohnesorge, W. F.; Wagner, E. B.; Chaudhry, M. Y.

    1981-12-01

    Thermoluminescent dosimeters (TLDs) were used to determine dose equivalent rates in the ORNL solid waste disposal areas. The dosimeters were exchanged and read approximately quarterly during 1979 and 1980. The data were reviewed to detect trends in dose equivalent rates, but no trends were detected other than increased radiation levels in some areas due to the lowering of White Oak Lake. The rates at the disposal site were compared with TLD readings taken in areas on the DOE reservation perimeter, as well as in remote areas that represent natural background for East Tennessee.

  4. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    SciTech Connect

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  5. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  8. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  9. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  10. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  11. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    USGS Publications Warehouse

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally

  12. Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, Southeast Washington

    SciTech Connect

    Kincaid, Charles T.; Bergeron, Marcel P.; Cole, Charles R.; Freshley, Mark D.; Johnson, Vernon G.; Kaplan, D. I.; Serne, R. Jeffrey; Streile, Gary P.; Strenge, Dennis L.; Thorne, Paul D.; Vail, Lance W.; Whyatt, Greg A.; Wurstner, Signe K.

    2000-03-01

    A composite analysis of low-level radioactive waste disposal and other radioactive sources was recently completed for the Hanford Site in Southeast Washington State. Impacts from source release and environmental transport were estimated for a 1000-year period following Site closure in a multi-step process involving 1) estimation of radiological inventories and release, 2) assessment of contaminant migration through the vadose zone, groundwater, and atmospheric pathways, 3) and estimation of doses. The analysis showed that most of the radionuclide inventory in past-practice liquid discharge sites and pre-1988 solid waste burial grounds on the 200 Area Plateau will be released in the first several hundred years following Hanford Site closure, well before projected releases from active and planned disposals of solid waste. The maximum predicted agricultural dose was less than 6 mrem/y in 2050 and declined thereafter. The maximum doses for the residential, industrial, and recreational scenarios, were 2.2, 0.7, and 0.04 mrem/y, respectively, and also declined after 2050.

  13. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    SciTech Connect

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  14. Radionuclide concentrations in soils and vegetation at radioactive-waste disposal Area G during the 1996 growing season. Progress report

    SciTech Connect

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1997-07-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G--a low-level radioactive solid-waste disposal facility at Los Alamos National laboratory--were analyzed for {sup 3}H, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, {sup 137}Cs, {sup 234}U, {sup 235}U, {sup 238}U, {sup tot}U, {sup 228}Ac, {sup 214}Bi, {sup 60}Co, {sup 40}K, {sup 54}Mn, {sup 22}Na, {sup 214}Pb, and {sup 208}Tl. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in soil and vegetation were determined. In general, most radionuclide concentrations, with the exception of {sup 3}H and {sup 239}Pu, in soils and washed and unwashed overstory and understory vegetation collected from within and around Area G were within upper limit background concentrations. Tritium was detected as high as 14,744 pCi mL{sup {minus}1} in understory vegetation collected from transuranic (TRU) waste pad {number_sign}4, and the TRU waste pad area contained the highest levels of {sup 239}Pu in soils and in understory vegetation as compared to other areas at Area G.

  15. Distribution of microbial biomass and the potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment

    SciTech Connect

    Lin, Xueju; Kennedy, David W.; Peacock, Aaron D.; McKinley, James P.; Resch, Charles T.; Fredrickson, Jim K.; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52 m deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9-17.4 m), the oxic fine-grained upper Ringold Formation (17.7-18.1 m), and the reduced Ringold Formation (18.3-52m). Microbial biomass (measured as phospholipid) ranged from 7-974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene encoding nitrous oxide reductase had an abundance of 5-17% relative to total 16S rRNA genes below 18.3 m and <5% above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97% sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90% similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5 m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum sp.. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.

  16. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    SciTech Connect

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  17. Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York

    SciTech Connect

    Pinza, M.R.; Barrows, E.S.; Borde, A.B.

    1996-09-01

    The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

  18. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    SciTech Connect

    P.R. Fresquez; E.A. Lopez

    2004-11-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

  19. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    SciTech Connect

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  20. Remote Sensing Survey of Mississippi River-Gulf Outlet, Breton Sound Disposal Area, Plaquemines Parish, Louisiana

    DTIC Science & Technology

    1993-02-01

    occur within the adjacent sound 14 or shallow shelf. Some of the characteristic species are pelecypods such as Anadara brasiliana, Chione cancel/ate...Cupuladria carierensis, and Membrariipora sp. Of these, Anedara brasilana, Chione cancellata, Pandora trilineata, Trachycardium muricatum, Diodora cayenensis...Mississippi delta area. Bulletin of the American Association of Petroleum Geologists 39:712-752. Polglase, Christopher R., Kathryn M. Kuranda, Michelle

  1. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report (1998 Annual Report)

    SciTech Connect

    Wells, D.

    1999-04-27

    In accordance with SRS Z-Area Saltstone Industrial Solid Waste Permit, wells ZBG-1, ZBG-1A and ZBG-2 are monitored for the parameters listed in this document. Sampling was done during the first and third quarters of 1998. Additional Analyses were also run. The analytical results appear in Appendix 1.

  2. On the Inclusion of the Interfacial Area Between Phases in the Physical and Mathematical Description of Subsurface Multiphase Flow

    SciTech Connect

    Gray, W.G.

    2001-01-25

    This project has contributed to the improved understanding and precise physical description of multiphase subsurface flow by combining theoretical derivation of equations, lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and simplification of field-scale equations to assess the advantages and disadvantages of the complete theory.

  3. PBC Triggers in Water Reservoirs, Coal Mining Areas and Waste Disposal Sites: From Newcastle to New York

    PubMed Central

    Smyk, Daniel; Mytilinaiou, Maria G.; Rigopoulou, Eirini I.; Bogdanos, Dimitrios P.

    2010-01-01

    Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC), a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis. PMID:21297253

  4. Site Recommendation Subsurface Layout

    SciTech Connect

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  5. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus.

    PubMed

    Lysandrou, M; Pashalidis, I

    2008-02-01

    The effect of the matrix composition (main constituents) on the concentration and chemical behavior of uranium in phosphogypsum stack solutions and leachates has been investigated. Solid and aqueous samples were taken from three different sub-areas of a phosphogypsum stack at a coastal area in Vasilikos (Cyprus). The sub-areas are characterized whether by their acidity (e.g. "aged" and "non-aged" phosphogypsum) or by their salt content, originating from pulping water during wet stacking or (after deposition) from the adjacent sea. Measurements in stack solutions and leachates showed that phosphogypsum characteristics affect both, the concentration and the chemical behavior of uranium in solution. Uranium concentration in solutions of increased salinity is up to three orders of magnitude higher than in solutions of low salinity and this is attributed to the effect of ionic strength on the solubility of phosphogypsum. Modelling showed that uranium in stack solutions is predominantly present in the form of uranium(VI) phosphate complexes (e.g. UO(2)(H(2)PO(4))(2), UO(2)HPO(4)), whereas in leachates uranium(VI) fluoro complexes (e.g. UO(2)F(2), UO(2)F(3)(-)) are predominant in solution. The latter indicates that elution of uranium from phosphogypsum takes places most probably in the form of fluoro complexes. Both, effective elution by saline water and direct migration of uranium to the sea, where it forms very stable uranium(VI) carbonato complexes, indicate that the adjacent sea will be the final receptor of uranium released from Vasilikos phosphogypsum.

  6. Shallow subsurface temperature surveys in the basin and range province-II. Ground temperatures in the upsal hogback geothermal area, West-Central Nevada, U.S.A.

    USGS Publications Warehouse

    Olmsted, F.H.; Ingebritsen, S.E.

    1986-01-01

    Numerous temperature surveys at a depth of 1 m were made in 1973-1985 in the Upsal Hogback and Soda Lakes geothermal areas in west-central Nevada. Whereas the surveys effectively delineated temperature at depth and heat flow within the relatively intense Soda Lakes thermal anomaly, they were not effective at the diffuse Upsal Hogback anomaly, where several perturbing factors that affect shallow subsurface temperatures are exceedingly variable. Albedo is the most important factor in the Upsal Hogback area, even at a depth of 30 m. All possible perturbing factors should be considered when designing a shallow temperature-based prospecting scheme. ?? 1986.

  7. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  8. Superfund record of decision (EPA Region 1): New London Submarine Base, soil and sediment at Area A Downstream Water Courses/Overbank Disposal Area, Groton, CT, March 31, 1998

    SciTech Connect

    1998-09-01

    Area A Downstream Water Courses/Overbank Disposal Area (Area A Downstream/OBDA) is located on the Naval Submarine Base New London (NSB-NLON), Groton, Connecticut. This Record of Decision (ROD) addresses the contaminated soil and sediment at this site. This ROD presents the following final remedy for soil and sediment at Area A Downstream/OBDA: Removal of surface water followed by treatment and discharge to Thames River; and Excavation of contaminated soil and sediment, followed by onsite dewatering and disposal at an offsite landfill.

  9. Strontium concentrations in chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal area in Bayo Canyon

    SciTech Connect

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr.

    1995-11-01

    Chamisa (Chrysothamnus nauseosus) shrub plants growing in a former liquid waste disposal site Solid Waste Management Unit [SWMU] 10-003(c) in Bayo Canyon at Los Alamos National Laboratory (LANL) were collected and analyzed for strontium ({sup 90}Sr) and total uranium. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant -- one plant, in particular, contained 90, 500 pCi {sup 90}Sr g{sup {minus}1} ash in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels; this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace area. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the Bayo Canyon/State Road 5 intersection was still within regional (background) concentrations.

  10. The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal

    SciTech Connect

    Conley, T.B.; Morris, M.I.; Holmes-Burns, H.; Petersell, J.; Schwendiman, L.

    1997-02-01

    In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex.

  11. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  12. Drilling fluid disposal

    SciTech Connect

    Nesbitt, L.E.; Sander, J.A.

    1981-01-01

    This paper attempts to review the effect of the regulatory process on the selection and handling of drilling fluids for proper disposal. It is shown that a maze of regulations and regulatory agencies coupled with uncertainty in interpretation of environmental data and an evolving system of disposal engineering will require industry action to monitor the area and derive a solid engineering basis for disposal of spent drilling fluid. 16 refs.

  13. Air Monitoring Leads to Discovery of New Contamination at Radioactive Waste Disposal Site (Area G) at LANL

    SciTech Connect

    Kraig, D.H.; Conrad, R.C.

    1999-06-08

    Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of {sup 239}Pu and {sup 241}Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of {sup 238}Pu were essentially unaffected, which was puzzling because the {sup 238}Pu and {sup 239}Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated and no other Area G stations showed elevations of these radionuclides. After several formal meetings didn't provide an adequate cause for the elevations, a gamma survey was performed and showed a small area of significant contamination just south of the monitor location. We found in February, 1995, a trench for a water line had been dug within a meter of so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the first rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils were very low in 238Pu which explains why we saw very little {sup 238}Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of {sup 239}Pu and {sup 241}Am dropped considerably, the y have not returned to pre-1995 levels.

  14. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    SciTech Connect

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  15. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

  16. Maps summarizing geohydrologic information in an area of salt-water disposal, eastern Altamount-Bluebell Petroleum Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Freethey, Geoffrey W.

    1994-01-01

    In the Altamont-Bluebell Petroleum Field within the Uinta Basin of Utah, saline oil-production water is being injected into the Duchesne River Formation. On the basis of geohydrologic information, a qualitative assessment of the possible effects of this injection indicates that fresh groundwater in certain areas of the Duchesne River formation may be more susceptible than water in other areas to becoming mixed with injected oil-production water. The reason for this possible mixing is because these areas containing the susceptible groundwater lack a thick shale layer above the disposal zone, as indicated in geophysical logs. In other areas, naturally occurring moderately saline water exists at shallow depths and may be withdrawn from water wells completed more than 200 ft below land surface. Additional geohydrologic information will need to be collected to allow investigators to make a quantitative determination of the rate of horizontal and vertical migration of injected oil-production water within and above the disposal zone.

  17. Combining hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)

    NASA Astrophysics Data System (ADS)

    Lagacherie, Philippe; Sneep, Anne-Ruth; Gomez, Cécile

    2013-04-01

    Previous studies have demonstrated that Visible Near InfraRed (Vis-NIR) Hyperspectral imagery is a cost-efficient way for mapping soil properties at fine resolutions (~5m) over large areas. However, such mapping is only feasible for soil surface since the effective penetration depths of optical sensors do not exceed several millimetres. This study aimed to extend the use of Vis-NIR hyperspectral imagery to the mapping of subsurface properties at three intervals of depth (15-30 cm, 30-60 cm and 60-100 cm) as specified by the GlobalSoilMap project. To avoid additional data collection, our basic idea was to develop an original Digital Soil Mapping approach that combines the digital maps of surface soil properties obtained from Vis-NIR hyperspectral imagery with legacy soil profiles of the region and with easily available images of DEM-derived parameters. The study was conducted in a pedologically-contrasted 300km² cultivated area located in the Cap Bon region (Northern Tunisia). AISA-Dual Vis-NIR hyperspectral airborne data were acquired over the studied area with a fine spatial resolution (5 m) and fine spectral resolution (260 spectral bands from 450 to 2500nm). Vegetated surfaces were masked to conserve only bare soil surface which represented around 50% of the study area. Three soil surface properties (clay and sand contents, Cation Exchange Capacity) were successfully mapped over the bare soils, from these data using Partial Least Square Regression models (R2 > 0.7). We used as additional data a set of images of landscape covariates derived from a 30 meter DEM and a local database of 152 legacy soil profiles from which soil properties values at the required intervals of depths were computed using an equal-area-spline algorithm. Our Digital Soil Mapping approach followed two steps: i) the development of surface-subsurface functions - linear models and random forests - that estimates subsurface property values from surface ones and landscape covariates and that

  18. A summary of chemical and biological testing of proposed disposal of sediment from Richmond Harbor relative to the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area

    SciTech Connect

    Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.; Pinza, M.R.

    1993-12-01

    The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposal at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.

  19. Drilling Specifications: Well Installations in the 300 Area to Support PNNL’s Integrated Field-Scale Subsurface Research Challenge (IFC) Project

    SciTech Connect

    Bjornstad, Bruce N.; Vermeul, Vince R.

    2008-01-21

    Part of the 300 Area Integrated Field-Scale Subsurface Research Challenge (IFC) will be installation of a network of high density borings and wells to monitor migration of fluids and contaminants (uranium), both in groundwater and vadose zone, away from an surface infiltration plot (Figure A-1). The infiltration plot will be located over an area of suspected contamination at the former 300 Area South Process Pond (SPP). The SPP is located in the southeastern portion of the Hanford Site, within the 300-FF-5 Operable Unit. Pacific Northwest National Laboratory (PNNL) with the support of FH shall stake the well locations prior to the start of drilling. Final locations will be based on accessibility and will avoid any surface or underground structures or hazards as well as surface contamination.

  20. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    SciTech Connect

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  1. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  2. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    SciTech Connect

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.; Simms, J.E.; Llopis, J.L.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity and details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.

  3. Subsurface evaluation of the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, using two-dimensional direct-current resistivity profiling

    USGS Publications Warehouse

    Braun, Christopher L.; Jones, Sonya A.

    2002-01-01

    During September 1999, the U.S. Geological Survey made 10 two-dimensional direct-current resistivity profile surveys in the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, to identify subsurface areas of anomalously high or low resistivity that could indicate potential contamination, contaminant pathways, or anthropogenic structures. Six of the 10 surveys (transects) were in the west parking lot. Each of the inverted sections of these transects had anomalously high resistivities in the terrace alluvium/fill (the surficial subsurface layer) that probably were caused by highly resistive fill material. In addition, each of these transects had anomalously low resistivities in the Walnut Formation (a bedrock layer immediately beneath the alluvium/fill) that could have been caused by saturation of fractures within the Walnut Formation. A high-resistivity anomaly in the central part of the study area probably is associated with pea gravel fill used in construction of a French drain. Another high resistivity anomaly in the west parking lot, slightly southeast of the French drain, could be caused by dense nonaqueous-phase liquid in the Walnut Formation. The inverted sections of the four transects in the landfill 3 area tended to have slightly higher resistivities in both the alluvium/fill and the Walnut Formation than the transects in the west parking lot. The higher resistivities in the alluvium/fill could have been caused by drier conditions in grassy areas relative to conditions in the west parking lot. Higher resistivities in parts of the Walnut Formation also could be a function of drier conditions or variations in the lithology of the Walnut Formation. In addition to the 10 vertical sections, four horizontal sections at 2-meteraltitude intervals show generally increasing resistivity with decreasing altitude that most likely results from the increased influence of the Walnut Formation, which has a higher resistivity than the terrace

  4. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  5. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  6. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  7. Scenarios of the TWRS low-level waste disposal program

    SciTech Connect

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

  8. Subsurface stratigraphy of Cambrian rocks in southern Peninsula of Michigan: Michigan basin

    SciTech Connect

    Milstein, R.L. )

    1989-08-01

    Rocks believed to be Late Cambrian exist throughout the subsurface area of Michigan's Southern Peninsula. These Cambrian rocks represent the oldest Paleozoic sedimentary deposits in the Michigan basin. Isopach and paleogeologic maps of these Cambrian rock units have been prepared with the data derived from geophysical well logs, descriptive logs, and well samples from 101 oil and gas test wells, mineral extraction wells, and deep disposal wells. A generalized contour map of the Precambrian surface has also been prepared from these data.

  9. Environmental and health impacts of household solid waste handling and disposal practices in third world cities: the case of the Accra Metropolitan Area, Ghana.

    PubMed

    Boadi, Kwasi Owusu; Kuitunen, Markku

    2005-11-01

    Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.

  10. Field Evaluations of the Quality of Effluent from Confined Dredged Material Disposal Areas. Long-Term Effects of Dredging Operations Program.

    DTIC Science & Technology

    1988-02-01

    acknowledged. This work was performed under the general supervison of Dr. Raymond L. Montgomery, Chief, EED, and Dr. John Harrison, Chief, EL. Managers of the...material discharge under Section 404 of the Clean Water Act. The Corps of Engineers has recently developed modified elutriate testing procedures for...ABSTRACT (Continued). showed that all five disposal areas were very efficient in retaining suspended solids. The relative retention of contaminants

  11. Hydrogeology, estimated impact, and regional well monitoring of effects of subsurface wastewater injection, Tampa Bay area, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1981-01-01

    Six proposed injection sites are located in Pinellas County, Fla., and the city of St. Petersburg. Projected maximum injection rate, if all sites become operational, will be about 40 million gallons per day. The injection zone at the proposed sites is in a consistently dolomitized section of the Avon Park Limestone in the lower part of the Floridan aquifer. The injection zone contains saline ground water that has a chloride concentration of 19,000 to 20,000 milligrams per liter. Pressure and velocity changes were computed at selected regional locations in the upper and lower parts of the Floridan aquifer. Results of the model computations suggest that the regional impact after 20 years of injection will be small. Three locations are proposed for regional monitoring of subsurface injection. They are in the vicinity of the intersection of highways U.S. 19 and U.S. 60 in Pinellas County, Sun City in Hillsborough County, and the intersection of Sheldon Road and Gunn Highway in Hillsborough County. (USGS)

  12. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.

  13. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    SciTech Connect

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  14. On the inclusion of the interfacial area between phases in the physical and mathematical description of subsurface multiphase flow. 1998 annual progress report

    SciTech Connect

    Gray, W.G.; Tompson, A.; Soll, W.E.

    1998-06-01

    'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3

  15. Disposal of drilling fluids

    SciTech Connect

    Bryson, W.R.

    1983-06-01

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  16. Inferring the subsurface basement depth and the structural trends as deduced from aeromagnetic data at West Beni Suef area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalil, Ahmed; Abdel Hafeez, Tharwat H.; Saleh, Hassan S.; Mohamed, Waheed H.

    2016-12-01

    The present work aimed to delineate the subsurface structures and to estimate the magnetic source depth at the selected area lying in West Beni Suef area, Western Desert, Egypt, following different geomagnetic techniques. The analysis of aeromagnetic data demonstrates five significant tectonic faults trending to NW-SE, ENE-WSW, NE-SW, E-W and NNW-SSE directions constructed using Euler deconvolution techniques. The execution of this study is initiated by transformation of the total intensity aeromagnetic data to the reduced to pole (RTP) magnetic intensity. This is followed by applying several transformation techniques and various filtering processes through qualitative and quantitative analyses on magnetic data. The reduced to the northern magnetic pole (RTP) data are separated spectrally into regional and residual magnetic components using the computed power spectrum of the magnetic data. The estimated mean depths of both regional and residual sources are found to be 5.27 km and 2.78 km respectively. Also, depth estimations have been conducted by application of the Euler deconvolution and 2-D modeling techniques. The results indicate that the eastern and northern parts of the study area discriminate deeper basement relief and the depth of basement surface reaches to 5095 m. While the southern and western parts of the study area discriminate shallower basement relief and the depth of basement surface reaches to 227 m. This study has given a clear picture of the geologic structures beneath the study area.

  17. Subsurface geology and geopressured/geothermal resource evaluation of the Lirette-Chauvin-Lake Boudreaux area, Terrebonne Parish, Louisiana

    SciTech Connect

    Lyons, W.S.

    1982-12-01

    The geology of a 125 square mile area located about 85 miles southeast of Baton Rouge and about 12 miles southeast of Houma, Louisiana, has been studied to evaluate its potential for geopressured/geothermal energy resources. Structure, stratigraphy, and sedimentation were studied in conjunction with pressure and temperature distributions over a broad area to locate and identify reservoirs that may be prospective. Recommendations concerning future site specific studies within the current area are proposed based on these findings.

  18. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  19. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  20. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  1. Assessment of soil-gas and soil contamination at the South Prong Creek Disposal Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the South Prong Creek Disposal Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the South Prong Creek Disposal Area, including two seeps and the hyporheic zone. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers in the two seeps and the hyporheic zone contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon concentration detected from the two seeps was 54.23 micrograms per liter, and the highest concentration in the hyporheic zone was 344.41 micrograms per liter. The soil-gas samplers within the boundary of the South Prong Creek Disposal Area and along the unnamed road contained total petroleum hydrocarbon mass above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler near the middle of the unnamed road that traverses the South Prong Creek Disposal Area. The highest undecane mass detected was 4.48 micrograms near the location of the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected undecane mass greater than the method detection level of 0.04 micrograms, with the highest detection of toluene mass of 109.72 micrograms in the same location as the highest total petroleum hydrocarbon mass. Soil-gas samplers installed in areas of high contaminant mass had no detections of explosives and chemical agents above their respective method detection levels. Inorganic concentrations in five soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency

  2. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration.

    PubMed

    Gázquez, M J; Mantero, J; Mosqueda, F; Bolívar, J P; García-Tenorio, R

    2014-11-01

    After the recent closure of certain phosphoric acid plants located in the South-West of Spain, it has been decided to restore a big extension (more than six hundred hectares) of salt-marshes, where some million tonnes of phosphogypsum (PG), the main by-product generated by these plants, had been disposed of. This PG is characterized by its content of high activity concentrations of several radionuclides from the uranium series, mainly (226)Ra, (210)Pb, and (210)Po and, to a lesser extent, U-isotopes. The PG disposal area can be considered as a potential source of radionuclides into their nearby environment, through the waters which percolate from them and through the efflorescences formed in their surroundings. For this reason, a detailed radioactive characterization of the mentioned waters and efflorescences has been considered essential for a proper planning of the restoration tasks to be applied in the near future in the zone. To this end, U-isotopes, (234)Th, (230)Th, (226)Ra, (210)Pb and (210)Po activity concentrations have been determined by applying both alpha-particle and gamma-ray spectrometric techniques to selected water and efflorescence aliquots collected in the area. The analysis of the obtained results has enabled to obtain information about the geochemical behaviour in the area of the different radionuclides analyzed; and the conclusion to be drawn that, in the restoration plan under preparation, both the prohibition of outflowing waters from the disposal area to the neighbouring salt-marshes, and the removal of all the efflorescences now disseminated in their surroundings are essential.

  3. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  4. Fluid Management Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 1 with ROTC 1 and Errata Sheet

    SciTech Connect

    Tim Echelard

    2006-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, south of Highway 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.

  5. Integration of computational modeling for the Los Alamos National Laboratory low level radioactive waste disposal performance assessment

    SciTech Connect

    Vold, E.L.; Birdsell, K.H.; Springer, E.P.; Hollis, D.K.; Shuman, R.

    1995-12-01

    The preliminary Performance Assessment for the Los Alamos National Laboratory Low Level Radioactive Waste Disposal Facility at Area G is drawing to completion. The disposal site is located on the top of a finger mesa in the complex terrain of a semi-arid region which leads to considerable complications in the atmospheric and subsurface transport and in the requisite modeling. Infiltration and run-off are evaluated for the proposed disposal unit closure configuration. A new analytic source release model characterizes the disposal unit performance utilizing detailed source term characterization from the inventory data base. This analysis provides input to the subsurface modeling done by the sophisticated finite element transport code, FEHM, using realistic 2-D cross-sections of the geologic units stratigraphies and the disposal units. Subsurface transport via lateral flow to intermittent alluvial waters in adjacent canyons is evaluated in addition to the usual deep aquifer. Vapor phase flow has been treated separately and calibrated to field data for tritium migration. Atmospheric transport is based on Gaussian dispersion with a correction for complex canyon terrain evaluated from on-going 3-D atmospheric transport studies. Indications to date are that the Performance Assessment objectives are met for all migration pathways.

  6. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  7. Subsurface stratigraphy and structure of A/M area at the Savannah River Site, Aiken County, South Carolina. Final report

    SciTech Connect

    Fallaw, W.C.; Sims, W.R.; Haselow, J.S.

    1991-08-01

    This report is a study of the stratigraphy and structure of the A/M Area Hazardous Waste Management Facility Post-Closure Care Permit process on the Savannah River Site. The data from the lithologic and geophysical logs of 93 wells is the basis of this analysis.

  8. Subsurface stratigraphy and structure of A/M area at the Savannah River Site, Aiken County, South Carolina

    SciTech Connect

    Fallaw, W.C.; Sims, W.R.; Haselow, J.S.

    1991-08-01

    This report is a study of the stratigraphy and structure of the A/M Area Hazardous Waste Management Facility Post-Closure Care Permit process on the Savannah River Site. The data from the lithologic and geophysical logs of 93 wells is the basis of this analysis.

  9. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  10. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.

  11. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  12. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    SciTech Connect

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  13. Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, Northwestern Mediterranean Sea.

    PubMed

    Guigue, Catherine; Tedetti, Marc; Giorgi, Sébastien; Goutx, Madeleine

    2011-12-01

    Aliphatic (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dissolved and particulate material from surface microlayer (SML) and subsurface water (SSW) sampled at nearshore observation stations, sewage effluents and harbour sites from Marseilles coastal area (Northwestern Mediterranean) in 2009 and 2010. Dissolved and particulate AH concentrations ranged 0.05-0.41 and 0.04-4.3 μg l(-1) in the SSW, peaking up to 38 and 1366 μg l(-1) in the SML, respectively. Dissolved and particulate PAHs ranged 1.9-98 and 1.9-21 ng l(-1) in the SSW, amounting up 217 and 1597 ng l(-1) in the SML, respectively. In harbours, hydrocarbons were concentrated in the SML, with enrichment factors reaching 1138 for particulate AHs. Besides episodic dominance of biogenic and pyrogenic inputs, a moderate anthropisation from petrogenic sources dominated suggesting the impact of shipping traffic and surface runoffs on this urbanised area. Rainfalls increased hydrocarbon concentrations by a factor 1.9-11.5 in the dissolved phase.

  14. Remediation of a Former USAF Radioactive Material Disposal Site

    SciTech Connect

    Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

    2003-02-25

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while

  15. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department

  16. Area Estimation and Distribution Analysis of Subsurface Flow Constructed Wetlands at Regional Scale--Take Guangzhou City for Example

    NASA Astrophysics Data System (ADS)

    Yuan, S. X.; Tang, G. L.; Xiong, H. X.; Chen, J.; Yin, X. L.; Huang, G. Q.

    2017-01-01

    In this paper, Area of Constructed Wetlands (CWs) required for treatment of domestic sewage generated by 13 million people was calculated in accordance with the distribution of existing population in Guangzhou City and mathematical model of CWs. By comparing this with land use data, the distribution of constructed wetlands at construction regional scale was simulated with GIS. The results show that, Guangzhou generate about 3.88 million m3 domestic sewage per day, which shall be treated with 59.37 km2 CWs. Assuming that a single wetland bed is 300 m2, total 197,905 wetland beds shall be required in the city. Based on the analysis and statistics on data of second national land survey of Guangzhou City with GIS, there are enough ponds, bare lands, other grasslands and other garden plots in Guangzhou that can be used for construction of regional scale CWs, but the distribution of available lands in different regions is uneven. Constructed wetlands at regional scale are mainly distributed around Baini Channel, Tianma River, Xinjie River, Liuxi River Valley, Zengjiang River Valley and on both sides of the Pearl River through Panyu and Nansha.

  17. A Sediment Testing Reference Area Database for the San Francisco Deep Ocean Disposal Site (SF-DODS)

    EPA Pesticide Factsheets

    EPA established and maintains a SF-DODS reference area database of previously-collected sediment test data. Several sets of sediment test data have been successfully collected from the SF-DODS reference area.

  18. Subsurface structure of water-gas escape features revealed by ground-penetrating radar and electrical resistivity tomography, Glen Canyon National Recreation Area, Lake Powell delta, Utah, USA

    NASA Astrophysics Data System (ADS)

    Sherrod, L.; Simpson, E. L.; Higgins, R.; Miller, K.; Morgano, K.; Snyder, E.; Vales, D.

    2016-10-01

    Data gathered by electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) were used to produce a three-dimensional image of subsurface soft-sediment deformation structures developed on the modern Lake Powell delta at Hite, Utah. ERT and GPR lines were run orthogonal across the crater. ERT resolved a low-resistivity layer up to 2 m thick in the area near the vents within the crater. This low-resistivity layer thins toward the margins representing clays ejected from the vents. Below and adjacent to this layer is a high-resistivity layer that reflects delta top and pro-delta sands. The deepest zone recognized in the ERT profiles consists of a low-resistivity layer, clay deposits that accumulated during the maximum lake high stand. This clay zone is connected to the vent within the crater by a conduit that changes diameter vertically. GPR profiles recognized the presence of collapse features restricted to the proximity of the vent. The geometry of the model is consistent with those proposed for marine pockmarks that can be generated seismically or aseismically with the exception of subaerial exposure after the dome stage development.

  19. Plant materials and amendments for controlling wind and water erosion on a fly ash disposal area: TVA Colbert Fossil Plant, Alabama

    SciTech Connect

    Maddox, J.J.; Behel, D.; Soileau, J.M.; Kelsoe, J.

    1996-12-31

    Fly ash disposal sites adjacent to fossil fueled generating plants are subject to wind and water erosion which increases the operation and maintenance costs. Gullies and unstable areas in the disposal sites require expensive leveling and filling practices. Test evaluated both warm- and cool-season cover crops established by either sod or seed. Amendments to the ash consisted of composted poultry litter (CPL), soil, soil+CPL, fertilizer and beneficial soil microbes including mycorrhizal fungi. Turf sods (419 Bermuda, Emerald zoysia, and Raleigh St. Augustine) were compared in greenhouse and field studies. Six legumes and 12 grass species were tested in the greenhouse as seeded cover crops using similar amendments and raw poultry litter (PL). Legumes grew better with CPL and Boil amendments and grasses grew better on PL and soil amendments possibly due to differences in N requirements and N supply. Cool season crops generally grew faster than warm season species in the greenhouse tests. Amendments should be mixed with the FA to ameliorate the effects of boron and salt toxicity and to increase the water holding capacity. Bermuda sod grew faster than either St, Augustine or Emerald zoysia, but requires more water. A microbial amendment increased dry matter yields of bermuda sod 2 to 3 times after 40 to 60 days over unamended controls. Microbial amendments may be justified on an economic and sustainable basis. A field study is assessing the environmental and cultural requirements to grow a cover crop on an annual basis.

  20. Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using the integration of geochemical and microbiological data.

    PubMed

    Kasemodel, Mariana Consiglio; Lima, Jacqueline Zanin; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio; Trofino, Julio Cesar; Rodrigues, Valéria Guimarães Silvestre

    2016-12-01

    Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg(-1). The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.

  1. Public health assessment addendum for Letterkenny Army Depot, USA Letterkenny Southeast Area, Chambersburg, Franklin County, Pennsylvania, Region 3. CERCLIS No. PA6213820503 and USA Letterkenny, Property Disposal Office Area, Chambersburg, Franklin County, Pennsylvania. CERCLIS No. PA2210090054. Final report

    SciTech Connect

    Not Available

    1993-05-25

    The Letterkenny Army Depot (Letterkenny) is five miles north of Chambersburg, in Franklin County, Pennsylvania. The US Army Depot consists of two National Priorities List (NPL) sites: USA Letterkenny Southeast Area (hereafter referred to as the SE Area) and USA Letterkenny - Property Disposal Office Area (hereafter referred to as the PDO Area). A public health assessment of those combined sites was released by the Agency for Toxic Substances and Disease Registry on September 30, 1988 (Appendix 1). The previous public health assessment combined discussion of both NPL sites due to similar contaminants and pathways. Since the release of the previous public health assessment, new environmental, community health concerns, and health outcome data have become available, warranting this addendum.

  2. Disposable rabbit

    DOEpatents

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  3. Disposal rabbit

    DOEpatents

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  4. Disposable Scholarship?

    ERIC Educational Resources Information Center

    Miller, Fredrick

    2004-01-01

    The digital materials that faculty produce for their classrooms often are saved only to storage devices that might become obsolete in a few years. Without an institutional effort to provide access systems, storage, and services for their digital media, are campuses in danger of creating "Disposable Scholarship"? In this article, the author…

  5. Subsurface application enhances benefits of manure redistribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...

  6. Alternative Trench Disposal Concepts

    SciTech Connect

    Wilhite, E.

    2001-09-05

    During Fiscal Year 2000, a number of activities were conducted to expand the use of trenches for disposal of low-level waste in the E-Area Low-Level Waste Facility (LLWF). This document presents a summary and interpretation of these activities in the context of future work.

  7. Disposal phase experimental program plan

    SciTech Connect

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  8. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    USGS Publications Warehouse

    Fisher, Irene; Phillips, Patrick; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William T.; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  9. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey.

    PubMed

    Fisher, Irene J; Phillips, Patrick J; Colella, Kaitlyn M; Fisher, Shawn C; Tagliaferri, Tristen; Foreman, William T; Furlong, Edward T

    2016-06-30

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24-32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  10. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect

    Rosten, R.; Malkumus, D.; Sonntag, T.; Sundquist, J.

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  11. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    SciTech Connect

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report.

  12. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    SciTech Connect

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory`s Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report.

  13. Applications of subsurface microscopy.

    PubMed

    Tetard, Laurene; Passian, Ali; Farahi, Rubye H; Voy, Brynn H; Thundat, Thomas

    2012-01-01

    Exploring the interior of a cell is of tremendous importance in order to assess the effects of nanomaterials on biological systems. Outside of a controlled laboratory environment, nanomaterials will most likely not be conveniently labeled or tagged so that their translocation within a biological system cannot be easily identified and quantified. Ideally, the characterization of nanomaterials within a cell requires a nondestructive, label-free, and subsurface approach. Subsurface nanoscale imaging represents a real challenge for instrumentation. Indeed the tools available for high resolution characterization, including optical, electron or scanning probe microscopies, mainly provide topography images or require taggants that fluoresce. Although the intercellular environment holds a great deal of information, subsurface visualization remains a poorly explored area. Recently, it was discovered that by mechanically perturbing a sample, it was possible to observe its response in time with nanoscale resolution by probing the surface with a micro-resonator such as a microcantilever probe. Microcantilevers are used as the force-sensing probes in atomic force microscopy (AFM), where the nanometer-scale probe tip on the microcantilever interacts with the sample in a highly controlled manner to produce high-resolution raster-scanned information of the sample surface. Taking advantage of the existing capabilities of AFM, we present a novel technique, mode synthesizing atomic force microscopy (MSAFM), which has the ability to probe subsurface structures such as non-labeled nanoparticles embedded in a cell. In MSAFM mechanical actuators (PZTs) excite the probe and the sample at different frequencies as depicted in the first figure of this chapter. The nonlinear nature of the tip-sample interaction, at the point of contact of the probe and the surface of the sample, in the contact mode AFM configuration permits the mixing of the elastic waves. The new dynamic system comprises new

  14. The examination of the spread of the leachates coming out of a solid waste disposal area on the ground with geophysical and geochemical methods (Sivas, Turkey)

    NASA Astrophysics Data System (ADS)

    Özel, Sevda; Yılmaz, Ali; Emin Candansayar, M.

    2017-03-01

    This study has been conducted in the irregular solid waste disposal area in the city of Sivas. The pollution spread formed by the leachates coming out of the disposal area has been examined with geophysical and geochemical works in this study. For this reason, the spread of the leachate pollution expanding in different geological units at both sides of a creek on the ground has been examined. For this purpose, the pollution spread has been examined with the methods of Direct Current Resistivity (DCR) and Electromagnetic Conductivity (EMC) and soil analyses. In the DCR method, 2D inversion of each sounding-profile datum measured alongside the lines parallel to each other and 3D inversion of the data measured in all the lines have been used in the interpretations. Apparent conductivity map has been attained from EMC measurements. The results of heavy metal analyses in the soil samples taken alongside the Haçin Creek have been assessed with the Spider diagram method. It has been determined that the flow of the leachate from geophysical models is in a SE direction and towards Kızılırmak and it continues vertically deeper than 4 m. In addition, it has been understood that the flow direction of the leachate is inspected by the geological structures. It has been understood from the geochemical results that the pollution in the soil stems from the leachate. In this way, it has been observed that the underground and surface water resources in the territory are under the threat of the pollution occurring due to the leachate.

  15. Addendum to the performance assessment analysis for low-level waste disposal in the 200 west area active burial grounds

    SciTech Connect

    Wood, M.I., Westinghouse Hanford

    1996-12-20

    An addendum was completed to the performance assessment (PA) analysis for the active 200 West Area low-level solid waste burial grounds. The addendum includes supplemental information developed during the review of the PA analysis, an ALARA analysis, a comparison of PA results with the Hanford Groundwater Protection Strategy, and a justification for the assumption of 500 year deterrence to the inadvertent intruder.

  16. INL Subsurface Wireless Sensor Platform

    SciTech Connect

    Dennis C. Kunerth; John M. Svoboda; James T. Johnson

    2005-10-01

    The Idaho National Laboratory is developing a versatile micro-power sensor interface platform for periodic subsurface sensing of environmental variables important to waste disposal sites such as volumetric moisture, water potential, and temperature. The key characteristics of the platform architecture are that the platform is passive until externally energized --no internal power source is required -- and that it communicates with a "reader" via short-range telemetry - no wires penetrate the subsurface. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing landfill structures. Functionally, the sensor package is "read" by a short-range induction coil that activates and powers the sensor platform as well as detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. As a result, the platform has a functional subsurface communication range of approximately 10 to 12 ft. and can only accept sensors that require low power to operate.

  17. Influence of Sub-Surface Irrigation on Soil Conditions and Water Irrigation Efficiency in a Cherry Orchard in a Hilly Semi-Arid Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangcan, Zhang

    2013-01-01

    Sub-surface irrigation (SUI) is a new water-saving irrigation technology. To explore the influence of SUI on soil conditions in a cherry orchard and its water-saving efficiency, experiments were conducted from 2009 to 2010 using both SUI and flood irrigation (FLI) and different SUI quotas in hilly semi-arid area of northern China. The results demonstrated the following: 1) The bulk density of the soil under SUI was 6.8% lower than that of soil under FLI (P<0.01). The total soil porosity, capillary porosity and non-capillary porosity of soils using SUI were 11.7% (P<0.01), 8.7% (P<0.01) and 43.8% (P<0.01) higher than for soils using FLI. 2) The average soil temperatures at 0, 5, 10, 15 and 20 cm of soil depth using SUI were 1.7, 1.1, 0.7, 0.4 and 0.3°C higher than those for FLI, specifically, the differences between the surface soil layers were more significant. 3) Compared with FLI, the average water-saving efficiency of SUI was 55.6%, and SUI increased the irrigation productivity by 7.9-12.3 kg m-3 ha-1. 4) The soil moisture of different soil layers using SUI increased with increases in the irrigation quotas, and the soil moisture contents under SUI were significantly higher in the 0-20 cm layer and in the 21-50 cm layer than those under FLI (P<0.01). 5) The average yields of cherries under SUI with irrigation quotas of 80-320 m3 ha-1 were 8.7%-34.9% higher than those in soil with no irrigation (CK2). The average yields of cherries from soils using SUI were 4.5%-12.2% higher than using FLI. It is appropriate to irrigate 2-3 times with 230 m3 ha-1 per application using SUI in a year with normal rainfall. Our findings indicated that SUI could maintain the physical properties, greatly improve irrigation water use efficiency, and significantly increase fruit yields in hilly semi-arid areas of northern China. PMID:24039986

  18. Wide Area Recovery and Resiliency Program (WARRP) Knowledge Enhancement Events: Agricultural Waste Disposal Workshop After Action Report

    DTIC Science & Technology

    2012-07-17

    composting procedure everyday so a significant event isn’t new. Use of Federal or State/public lands preferred. Most feedlots have a supply of hay to...useable. USDA has to buy the animals and land prior to execution. Area has a high number of feedlots. Neighbors probably not an issue. Hay and...cattle is infected with Foot and Mouth Disease (FMD). FMD is “highly contagious viral disease . . . characterized by fever and blister like lesions

  19. Scenarios of the TWRS low-level waste disposal program. Revision 1

    SciTech Connect

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

  20. Monitoring of polycyclic aromatic hydrocarbons in a produced water disposal area in the Potiguar Basin, Brazilian equatorial margin.

    PubMed

    Lourenço, Rafael André; de Oliveira, Fábio Francisco; de Souza, João Maximino; Nudi, Adriana Haddad; de Luca Rebello Wagener, Ângela; de Fátima Guadalupe Meniconi, Maria; Francioni, Eleine

    2016-09-01

    The Potiguar Basin has oil and gas production fields offshore and onshore. All treated produced water (PW) from these fields is discharged through submarine outfalls. Although polycyclic aromatic hydrocarbons (PAHs) are minor constituents of PW, their input into the marine ecosystem is environmentally critical due to potential ecological hazards. A 2-year monitoring program was conducted in the vicinity of the outfalls to evaluate PAH bioaccumulation in marine life from PW discharges. The study was performed using transplanted bivalves Crassostrea brasiliana and semipermeable membrane devices (SPMDs) to measure PAH concentrations via bioaccumulation and in seawater. The bioaccumulation of PAH in transplanted bivalves reached up to 1105 ng g(-1) in the vicinity of the monitored outfall. Significantly lower PAH concentrations were found in the reference area in comparison to the studied area around the outfalls. Time-integrated PAH concentrations in seawater ranged from 38 to 0.3 ng L(-1) near the outfalls and from 10 ng L(-1) to not detected in the reference area. Both measurement techniques were found to be effective for determining a gradient of descending PAH concentrations from the outfalls. In addition, this study also evaluated the bioavailability of PAH for local marine biota and provided information about the influence of PW discharges on the water quality of marine ecosystems.

  1. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    SciTech Connect

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-07-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

  2. In-situ grouting of the low-level radioactive waste disposal silos at ORNL`s Solid Waste Storage Area Six

    SciTech Connect

    Francis, C.W.; Farmer, C.D.; Stansfield, R.G.

    1993-07-01

    At Oak Ridge National Laboratory (ORNL), one method of solid low-level radioactive waste disposal has been disposed of in below-grade cylindrical concrete silos. Located in Solid Waste Storage Area 6 (SWSA 6), each silo measures 8 ft in diameter and 20 ft deep. Present day operations involve loading the silos with low-level radioactive waste and grouting the remaining void space with a particulate grout of low viscosity. Initial operations involving the disposal of wastes into the below-grade silos did not include the grouting process. Grouting was stated as a standard practice (in late 1988) after discovering that {approximately}75% of the silos accumulated water in the bottom of the silos in the {approximately}2 years after capping. Silo water (leachate) contained a wide range of types and concentrations of radionuclides. The migration of contaminated leachate out of the silo into adjoining soil and groundwater was considered to be a serious environmental concern. This report describes how a specially designed particulate-base grout was used to grout 54 silos previously filled with low-level radioactive waste. Grouting involved three steps: (1) silo preparation, (2) formulation and preparation of the grout mixture, and (3) injection of the grout into the silos. Thirty-five of the 54 silos grouted were equipped with a 3-in.-diam Polyvinyl Chloride (PVC) pipe used to monitor water levels in the silos. A method for rupturing the bottom section of these PVC wells was developed so that grout could be pumped to the bottom of those silos. Holes (2-in. diam) were drilled through the {approximately}18 in. thick concrete to fill the remaining 19 wells without the PVC monitoring wells. The formulation of grout injected into the silos was based on a Portland Type I cement, flyash, sand, and silica fume admixture. Compressive strength of grout delivered to SWSA6 during grouting operations averaged 1,808 lb/in{sup 2} with a bulk density of 3,549 lb/yd{sup 3}.

  3. Hydrogeologic information on the Glorieta Sandstone and the Ogallala Formation in the Oklahoma Panhandle and adjoining areas as related to underground waste disposal

    USGS Publications Warehouse

    Irwin, James Haskell; Morton, Robert B.

    1969-01-01

    The Oklahoma Panhandle and adjacent areas in Texas, Kansas, Colorado, and New Mexico have prospered because of the development of supplies of fresh water and of oil and gas. The Ogallala and, in places, Cretaceous rocks produce fresh water for irrigation, public supply, and domestic and stock use through approximately 9,000 irrigation and public supply wells and a large but undetermined number of other wells. Disposal of oil-field brine and other wastes into the Glorieta Sandstone is of concern to many local residents because of the possibility of pollution of the overlying fresh-water aquifers, particularly the Ogallala Formation. Permits for 147 disposal wells into the Glorieta have been issued in this area. This report summarizes the data on geology, hydrology, and water development currently available to the U.S. Geological Survey. Geologic information indicates that, in the report area, the Glorieta Sandstone lies at depths ranging from about 500 to 1,600 feet below the base of the Ogallala Fox, nation. The rocks between those two formations are of relatively impermeable types, but solution and removal of salt has resulted in collapse of the rocks in some places. Collapse and fracturing of the rocks could result in increased vertical permeability. This might result in movement of brine under hydrostatic head from the Glorieta Sandstone into overlying fresh-water aquifers, in places where an upward hydraulic gradient exists or is created by an increase in pressure within the Glorieta. Abandoned or inadequately sealed boreholes also are possible conduits for such fluids. The mixing of water in the fresh-water aquifers with brines injected into the Glorieta is not known to have occurred anywhere in the report area, but the information available is not adequate to show positively whether or not this may have occurred locally. Much additional information on the stratigraphy and hydrology--particularly, data on the potentiometric surface of water in the Glorieta

  4. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike; Matthews, Brian

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to

  5. Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1

    SciTech Connect

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1997-09-08

    May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs.

  6. Subsurface stormflow modeling with sensitivity analysis using a Latin-hypercube sampling technique

    SciTech Connect

    Gwo, J.P.; Toran, L.E.; Morris, M.D.; Wilson, G.V.

    1994-09-01

    Subsurface stormflow, because of its dynamic and nonlinear features, has been a very challenging process in both field experiments and modeling studies. The disposal of wastes in subsurface stormflow and vadose zones at Oak Ridge National Laboratory, however, demands more effort to characterize these flow zones and to study their dynamic flow processes. Field data and modeling studies for these flow zones are relatively scarce, and the effect of engineering designs on the flow processes is poorly understood. On the basis of a risk assessment framework and a conceptual model for the Oak Ridge Reservation area, numerical models of a proposed waste disposal site were built, and a Latin-hypercube simulation technique was used to study the uncertainty of model parameters. Four scenarios, with three engineering designs, were simulated, and the effectiveness of the engineering designs was evaluated. Sensitivity analysis of model parameters suggested that hydraulic conductivity was the most influential parameter. However, local heterogeneities may alter flow patterns and result in complex recharge and discharge patterns. Hydraulic conductivity, therefore, may not be used as the only reference for subsurface flow monitoring and engineering operations. Neither of the two engineering designs, capping and French drains, was found to be effective in hydrologically isolating downslope waste trenches. However, pressure head contours indicated that combinations of both designs may prove more effective than either one alone.

  7. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    SciTech Connect

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information.

  8. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution

    SciTech Connect

    Szecsody, James E.; Rockhold, Mark L.; Oostrom, Martinus; Moore, R. C.; Burns, Carolyn A.; Williams, Mark D.; Zhong, Lirong; Fruchter, Jonathan S.; McKinley, James P.; Vermeul, Vincent R.; Covert, Matthew A.; Wietsma, Thomas W.; Breshears, Andrew T.; Garcia, Ben J.

    2009-03-01

    subsurface area. However, the use of real-time surface and cross-borehole geophysics can be used to track the infiltrating Ca-citrate-PO4 front so some adjustments can be made in the infiltration rate to precipitate apatite in desired zones. In addition, the reactive transport code used in this study with field scale physical parameters for sediments can be used to evaluate infiltration strategies along with preliminary water infiltration tests at field scale.

  9. Tangible Exploration of Subsurface Data

    NASA Astrophysics Data System (ADS)

    Petrasova, A.; Harmon, B.; Mitasova, H.; White, J.

    2014-12-01

    Since traditional subsurface visualizations using 2D maps, profiles or charts can be difficult to interpret and often do not convey information in an engaging form, scientists are interested in developing alternative visualization techniques which would help them communicate the subsurface volume data with students and general public. We would like to present new technique for interactive visualization of subsurface using Tangible geospatial modeling and visualization system (Tangeoms). It couples a physical, three-dimensional model with geospatial modeling and analysis through a cycle of scanning and projection. Previous applications of Tangeoms were exploring the impact of terrain modifications on surface-based geophysical processes, such as overland water flow, sediment transport, and also on viewsheds, cast shadows or solar energy potential. However, Tangeoms can serve as a tool for exploring subsurface as well. By creating a physical sand model of a study area, removing the sand from different parts of the model and projecting the computed cross-sections, we can look under the ground as if we were at an excavation site, and see the actual data represented as a 3D raster in that particular part of the model. Depending on data availability, we can also incorporate temporal dimension. Our method is an intuitive and natural way of exploring subsurface data and for users, it represents an alternative to more abstract 3D computer visualization tools, by offering direct, tangible interface.

  10. A Software for soil quality conservation at organic waste disposal areas: The case of olive mill and pistachio wastes.

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Sarris, Apostolos; Papadopoulos, Nikos; Hliaoutakis, Aggelos; Kydonakis, Aris; Argyriou, Lemonia; Theocharopoulos, Sid; Kolovos, Chronis

    2016-04-01

    For the sustainable reuse of organic wastes at agricultural areas, apart from extensive evaluation of waste properties and characteristics, it is of significant importance, in order to protect soil quality, to evaluate land suitability and estimate the correct application doses prior waste landspreading. In the light of this precondition, a software was developed that integrates GIS maps of land suitability for waste reuse (wastewater and solid waste) and an algorithm for waste doses estimation in relation to soil analysis, and in case of reuse for fertilization with soil analysis, irrigation water quality and plant needs. EU and legislation frameworks of European Member States are also considered for the assessment of waste suitability for landspreading and for the estimation of the correct doses that will not cause adverse effects on soil and also to underground water (e.g. Nitrate Directive). Two examples of software functionality are presented in this study using data collected during two LIFE projects, i.e. Prosodol for landspreading of olive mill wastes and AgroStrat for pistachio wastes.

  11. Subsurface Biogeochemistry of Actinides

    SciTech Connect

    Kersting, Annie B.; Zavarin, Mavrik

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  12. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    SciTech Connect

    Grant Evenson

    2008-07-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys

  13. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    SciTech Connect

    1998-01-27

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield.

  14. No Further Action Decision Under CERCLA Study Area 16: Shoppette Debris Disposal Area. Fort Devens Main Post Site Investigation, Fort Devens, Massachusetts

    DTIC Science & Technology

    1995-01-01

    Agency and the U.S. Department of Defense as a potential site of contamination. Fort Devens was placed on the National Priorities List under the...Comprehensive Environmental Response, Compensation and Liability Act as amended by the Superfund Amendments and Reauthorization Act on December, 21, 1989...conducted that address Study Areas at Fort Devens, including a Master Environmental Plan , an Enhanced Preliminary Assessment, and Site Investigation Reports.

  15. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  16. Validation of a New Soil VOC Sampler: Revision of ASTM Practice D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, and Development of a Subsurface Sampling/Storage Device for VOC Analysis

    SciTech Connect

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani

    2003-09-15

    Soil sampling and storage practices for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from samples. The En Core{reg_sign} sampler is designed to collect and store soil samples in a manner that minimizes loss of contaminants due to volatilization and/or biodegradation. An American Society for Testing and Materials (ASTM) standard practice, D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, describes use of the En Core sampler to collect and store a soil sample of approximately 5 grams or 25 grams for volatile organic analysis. To support the ASTM practice, a study was performed to estimate the precision of the performance of the 5-gram and 25-gram En Core samplers to store soil samples spiked with low concentrations of VOCs. This report discusses revision of ASTM Practice D 6418 to include information on the precision of the En Core devices and to reference an ASTM research report on the precision study. This report also discusses revision of the ASTM practice to list storage at -12 {+-} 2 C for up to 14 days and at 4 {+-} 2 C for up to 48 hours followed by storage at -12 {+-} 2C for up to 5 days as acceptable conditions for samples stored in the En Core devices. Data supporting use of these storage conditions are given in an appendix to the practice and are presented in the research report referenced for the precision study. Prior to this revision, storage in the device was specified at 4 {+-} 2 C for up to 48 hours. The En Core sampler is designed to collect soil samples for VOC analysis at the soil surface. To date, a sampling tool for collecting and storing subsurface soil samples for VOC analysis does not exist. Development of a subsurface VOC sampling/storage device was initiated in 1999. This device, which is called the Accu Core sampler, is designed so that a soil sample can be collected below the surface using a penetrometer and

  17. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    SciTech Connect

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold; Elliott, Robert 'Dan'; Durham, Lisa

    2013-07-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  18. Corrective Action Investigation Plan: Roller Coaster Lagoons and North Disposal Trench, Tonopah Test Range, Revision 1

    SciTech Connect

    IT Corporation, Las Vegas, NV

    1996-06-27

    1.1 Purpose The purpose of this investigation is to collect data to confirm the presence or absence of contamination, evaluate the potential for contaminant migration, and select appropriate closure methods for these sites. The potential closure methods for these sites involve either clean closure, closure in place, or no further action. 1.2 Scope The scope of this investigation includes collecting surface and subsurface soil samples at the Roller Coaster Lagoons; and collecting surface soil samples at the North Disposal Trench and the small spill area associated with the Voluntary Cotiective Action (VCA) that was conducted in 1995.

  19. Preliminary Systems Design Study assessment report. Volume 5, Land disposal compliance and hydrogen generation restricted concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  20. Optimizing SVE Remediation With Subsurface Flow and Mass Transfer Measurements

    NASA Astrophysics Data System (ADS)

    Spansky, M. C.; Riha, B. D.; Rossabi, J.; Hyde, W. K.; Dixon, K. L.; Nichols, R. L.

    2002-05-01

    The 5.9-acre A-Area Miscellaneous Rubble Pile (ARP) at the DOE Savannah River Site (SRS) was created in the 1950s as a general disposal area. An aerial photograph from 1953 shows evidence of disposal activities; however, the exact materials disposed and dates of operation at ARP remain unknown. Within the larger ARP unit exists an approximately 2-acre T-shaped trench filled with ash debris to a depth of 10-14 feet. Soil sampling analysis of the ARP trench indicates the presence of the volatile organic compounds (VOCs) trichloroethelyne (TCE) and tetrachloroetheylene (PCE). TCE and PCE contamination in the trench has the potential to migrate and poses a groundwater contamination risk. Several remediation options have been considered at ARP to date. The first, passive soil vapor extraction (PSVE), uses barometric pressure fluctuations to create a differential pressure between subsurface soil vapors and the atmosphere. Five wells were installed along the axes of the ARP trench. Differential pressure in the wells was monitored to determine the potential for PSVE. Results showed that the ash formation was too shallow and permeable to create pressure gradients sufficient for effective PSVE. The addition of a temporary cap over the formation did little to improve the differential pressure. Two pumping tests were subsequently conducted at the ARP trench. Air was pumped from two separate wells and drawdowns recorded at three observation wells. Data from the tests were used to model permeability of the ash unit and to estimate the zone of influence for the proposed active soil vapor extraction (SVE) system. Results indicate a high permeability for the ash. Contaminant concentrations were monitored with a portable infrared photoacoustic multigas monitor during continuous, pulsed, and variable flow rate scenarios. The concentration and flow data were used to evaluate mass transfer limitations of the system and to optimize the full-scale SVE remediation.

  1. Ocean Disposal Site Monitoring

    EPA Pesticide Factsheets

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  2. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  3. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  4. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  5. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  6. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  7. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  8. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  9. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  10. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  11. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to... disposal of noncoal mine wastes shall be in a designated disposal site in the permit area or a...

  12. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  13. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  14. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  15. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  16. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  17. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  18. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  19. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  20. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  1. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  2. Radionuclides, Heavy Metals, and Polychlorinated Biphenyls in Soils Collected Around the Perimeter of Low-Level Radioactive Waste Disposal Area G during 2006

    SciTech Connect

    P. R. Fresquez

    2007-02-28

    Twenty-one soil surface samples were collected in March around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Three more samples were collected in October around the northwest corner after elevated tritium levels were detected on an AIRNET station located north of pit 38 in May. Also, four soil samples were collected along a transect at various distances (48, 154, 244, and 282 m) from Area G, starting from the northeast corner and extending to the Pueblo de San Ildefonso fence line in a northeasterly direction (this is the main wind direction). Most samples were analyzed for radionuclides ({sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U), inorganic elements (Al, Ba, Be, Ca, Cr, Co, Cu, Fe, Mg, Mn, Ni, K, Na, V, Hg, Zn, Sb, As, Cd, Pb, Se, Ag, and Tl) and polychlorinated biphenyl (PCB) concentrations. As in previous years, the highest levels of {sup 3}H in soils (690 pCi/mL) were detected along the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of {sup 241}Am (1.2 pCi/g dry) and the Pu isotopes (1.9 pCi/g dry for {sup 238}Pu and 5 pCi/g dry for {sup 239,240}Pu) were detected along the northeastern portions near the transuranic waste pads. Concentrations of {sup 3}H in three soil samples and {sup 241}Am and Pu isotopes in one soil sample collected around the northwest corner in October increased over concentrations found in soils collected at the same locations earlier in the year. Almost all of the heavy metals, with the exception of Zn and Sb in one sample each, in soils around the perimeter of Area G were below regional statistical reference levels (mean plus three standard deviations) (RSRLs). Similarly, only one soil sample collected on the west side contained PCB concentrations--67 {micro}g/kg dry of aroclor-1254 and 94 {micro}g/kg dry of aroclor-1260. Radionuclide and inorganic element

  3. Geophysical investigation using resistivity and GPR methods: a case study of a lubricant oil waste disposal area in the city of Ribeirão Preto, São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Lago, Alexandre Lisboa; Elis, Vagner Roberto; Borges, Welitom Rodrigues; Penner, Giovanni Chaves

    2009-07-01

    Geophysics has been shown to be effective in identifying areas contaminated by waste disposal, contributing to the greater efficiency of soundings programs and the installation of monitoring wells. In the study area, four trenches were constructed with a total volume of about 25,000 m3. They were almost totally filled with re-refined lubricating oil waste for approximately 25 years. No protection liners were used in the bottoms and laterals of the disposal trenches. The purpose of this work is to evaluate the potential of the resistivity and ground penetrating radar (GPR) methods in characterizing the contamination of this lubricant oil waste disposal area in Ribeirão Preto, SP, situated on the geological domain of the basalt spills of the Serra Geral Formation and the sandstones of the Botucatu Formation. Geophysical results were shown in 2D profiles. The geophysical methods used enabled the identification of geophysical anomalies, which characterized the contamination produced by the trenches filled with lubricant oil waste. Conductive anomalies (smaller than 185 Ωm) immediately below the trenches suggest the action of bacteria in the hydrocarbons, as has been observed in several sites contaminated by hydrocarbons in previously reported cases in the literature. It was also possible to define the geometry of the trenches, as evidenced by the GPR method. Direct sampling (chemical analysis of the soil and the water in the monitoring well) confirmed the contamination. In the soil analysis, low concentrations of several polycyclic aromatic hydrocarbons (PAHs) were found, mainly naphthalene and phenanthrene. In the water samples, an analysis verified contamination of the groundwater by lead (Pb). The geophysical methods used in the investigation provided an excellent tool for environmental characterization in this study of a lubricant oil waste disposal area, and could be applied in the study of similar areas.

  4. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  5. The sulfur system in anoxic subsurface brines and its implication in brine evolutionary pathways: the Ca-chloride brines in the Dead Sea area

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Yechieli, Yoseph; Halicz, Ludwik; Spiro, Baruch; Bein, Amos; Efron, Dov

    2001-03-01

    Important elements in the evolutionary history of saline groundwater might be overlooked when they involve both sulfate removal through reduction and input of sulfate via dissolution. These two simultaneous and apparently contrasting processes can result in a negligible net effect on the sulfate concentration. Isotopic composition of sulfur in sulfate and sulfide can be applied to identify the bacterial sulfate reduction (BSR) though the extent of the process is difficult to quantify. Saturation with respect to gypsum may suggest that gypsum dissolution also occurs. However, a more definite identification of these processes and their quantification can be achieved through the use of ammonium concentration in the anoxic brines. This approach assumes that the ammonium is derived only from the oxidation of organic matter through BSR and it requires that the C:N ratio in the oxidized organic matter be known. A minimum estimate for the sulfate reduction can be obtained when the Redfield C:N ratio (106:16) is assumed. Several calculation methods are presented to identify the extent of sulfate reduction prior to, concomitant with, or following gypsum dissolution that are based on combining sulfur isotopic compositions, Rayleigh distillation equation, and calculated gypsum saturation indices. The required assumptions are presented and their validation is discussed. The subsurface hypersaline Ca-chloride brines in the vicinity of the Dead Sea are taken as a case study. Here sulfur isotope compositions of sulfate and sulfide, and high ammonium concentrations indicate BSR occurs in the subsurface. The sulfur isotopic composition of the sulfate makes it possible to distinguish between two major groups of brine and their recent evolutionary histories: (1) the Qedem-Shalem thermal brines (δ 34S SO4=21-24‰) which emerge as springs along the shores and are slightly undersaturated with respect to gypsum; (2) DSIF-Tappuah brines (δ 34S SO4=30-60‰) which are found in shallow

  6. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  7. Subsurface Flow and Transport: A Stochastic Approach

    NASA Astrophysics Data System (ADS)

    Desbarats, Alexandre

    Anyone who has examined core or petrophysical logs from well bores has wondered at the rhythmic successions of sedimentary fades and has puzzled at their sudden disruption or reappearance. Such wonderment is no doubt shared by those who have stood at a quarry face gazing up at the intricate hierarchy of depositional patterns and the varied textures of sediments. A fortunate few have even slogged along a mine drift and observed at close hand the perplexing relationship between the geological fabric of a rock mass and occurrences of groundwater inflow. Happily, the heterogeneity of geological materials is now widely recognized and efforts over the last 20 years have been concerned with its incorporation into models of fluid flow and solute transport in the subsurface. These research efforts are, at least in part, driven by acute societal concerns over the contamination of groundwater resources and proposed plans for the disposal of nuclear and other toxic wastes in the subsurface.

  8. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  9. Electrical Subsurface Grounding Analysis

    SciTech Connect

    J.M. Calle

    2000-11-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  10. Subsurface Microbiology and Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Fletcher, Madilyn

    2001-05-01

    Jim contributed a chapter to this book, in addition to co-editing it with Madilyn Fletcher. Fredrickson, J. K., and M. Fletcher. (eds.) 2001 Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York.

  11. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  12. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  13. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  14. System dynamics-based evaluation of interventions to promote appropriate waste disposal behaviors in low-income urban areas: A Baltimore case study.

    PubMed

    Guo, Huaqing; Hobbs, Benjamin F; Lasater, Molly E; Parker, Cindy L; Winch, Peter J

    2016-10-01

    Inappropriate waste disposal is a serious issue in many urban neighborhoods, exacerbating environmental, rodent, and public health problems. Governments all over the world have been developing interventions to reduce inappropriate waste disposal. A system dynamics model is proposed to quantify the impacts of interventions on residential waste related behavior. In contrast to other models of municipal solid waste management, the structure of our model is based on sociological and economic studies on how incentives and social norms interactively affect waste disposal behavior, and its parameterization is informed by field work. A case study of low-income urban neighborhoods in Baltimore, MD, USA is presented. The simulation results show the effects of individual interventions, and also identify positive interactions among some potential interventions, especially information and incentive-based policies, as well as their limitations. The model can help policy analysts identify the most promising intervention packages, and then field test those few, rather than having to pilot test all combinations. Sensitivity analyses demonstrate large uncertainties about behavioral responses to some interventions, showing where information from survey research and social experiments would improve policy making.

  15. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    SciTech Connect

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    2016-09-26

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste management and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste

  16. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  17. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-11-16

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  18. Radioactive waste disposal in the marine environment

    NASA Astrophysics Data System (ADS)

    Anderson, D. R.

    In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.

  19. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  20. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    PubMed

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH4(+), PO4(3-) and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  1. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    SciTech Connect

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  2. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  3. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  4. Surgical area contamination--comparable bacterial counts using disposable head and mask and helmet aspirator system, but dramatic increase upon omission of head-gear: an experimental study in horizontal laminar air-flow.

    PubMed

    Friberg, B; Friberg, S; Ostensson, R; Burman, L G

    2001-02-01

    The effect of different head coverings on air-borne transmission of bacteria and particles in the surgical area was studied during 30 strictly standardized sham operations performed in a horizontal laminar air flow (LAF) unit. The operating team members wore disposable gowns plus either a non-sterile head covering consisting of a squire type disposable hood and triple laminar face mask, a sterilized helmet aspirator system or no head cover at all. In the wound area both types of head cover resulted in low and comparable air (means of 8 and 4cfu/m(3)) and surface contamination (means of 69 and 126cfu/m(2)/h) rates. Omission of head-gear resulted in a three- to five-fold increase (P > or = 0.01- 0.001), depending on site sampled air contamination rate (mean of 22cfu/m(3)) whereas the bacterial sedimentation rate in the wound area increased about 60-fold ( P > or = 0.0001). A proper head cover minimized the emission of apparently heavy particles that were not removed by the horizontal LAF and contained mainly streptococci, presumably of respiratory tract origin. Dust particle counts revealed no differences between the three experimental situations. No correlation between air and surface contamination rates or between air contamination and air particle counts was found. We conclude that, from a bacteriological point of view, disposable hoods of squire type and face masks are equally as efficient as a helmet aspirator system and both will efficiently contain the substantial emission of bacteria-carrying droplets from the respiratory tract occurring when head cover is omitted. Finally, the use of bacterial air counts to assess surgical site surface contamination in horizontal LAF units must be seriously questioned.

  5. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  6. Water-Quality Effects and Characterization of Indicators of Onsite Wastewater Disposal Systems in the East-Central Black Hills Area, South Dakota, 2006-08

    USGS Publications Warehouse

    Putnam, Larry D.; Hoogestraat, Galen K.; Sawyer, J. Foster

    2008-01-01

    Onsite wastewater disposal systems (OWDS) are used extensively in the Black Hills of South Dakota where many of the watersheds and aquifers are characterized by fractured or solution-enhanced bedrock with thin soil cover. A study was conducted during 2006-08 to characterize water-quality effects and indicators of OWDS. Water samples were collected and analyzed for potential indicators of OWDS, including chloride, bromide, boron, nitrite plus nitrate (NO2+NO3), ammonia, major ions, nutrients, selected trace elements, isotopes of nitrate, microbiological indicators, and organic wastewater compounds (OWCs). The microbiological indicators were fecal coliforms, Escherichia coli (E. coli), enterococci, Clostridium perfringens (C. perfringens), and coliphages. Sixty ground-water sampling sites were located either downgradient from areas of dense OWDS or in background areas and included 25 monitoring wells, 34 private wells, and 1 spring. Nine surface-water sampling sites were located on selected streams and tributaries either downstream or upstream from residential development within the Precambrian setting. Sampling results were grouped by their hydrogeologic setting: alluvial, Spearfish, Minnekahta, and Precambrian. Mean downgradient dissolved NO2+NO3 concentrations in ground water for the alluvial, Spearfish, Minnekahta, and Precambrian settings were 0.734, 7.90, 8.62, and 2.25 milligrams per liter (mg/L), respectively. Mean downgradient dissolved chloride concentrations in ground water for these settings were 324, 89.6, 498, and 33.2 mg/L, respectively. Mean downgradient dissolved boron concentrations in ground water for these settings were 736, 53, 64, and 43 micrograms per liter (ug/L), respectively. Mean dissolved surface-water concentrations for NO2+NO3, chloride, and boron for downstream sites were 0.222 mg/L, 32.1 mg/L, and 28 ug/L, respectively. Mean values of delta-15N and delta-18O (isotope ratios of 14N to 15N and 18O to 16O relative to standard ratios) for

  7. Terrestrial Subsurface Ecosystem

    SciTech Connect

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  8. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    SciTech Connect

    French, Sean B; Christensen, Candace; Jennings, Terry L; Jaros, Christopher L; Wykoff, David S; Crowell, Kelly J; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  9. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    None, None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  10. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect

    Sundquist, J.A.; Gillings, J.C.; Sonntag, T.L.; Denault, R.P.

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  11. Relative risk assessment of cruise ships biosolids disposal alternatives.

    PubMed

    Avellaneda, Pedro M; Englehardt, James D; Olascoaga, Josefina; Babcock, Elizabeth A; Brand, Larry; Lirman, Diego; Rogge, Wolfgang F; Solo-Gabriele, Helena; Tchobanoglous, George

    2011-10-01

    A relative risk assessment of biosolids disposal alternatives for cruise ships is presented in this paper. The area of study encompasses islands and marine waters of the Caribbean Sea. The objective was to evaluate relative human health and ecological risks of (a) dewatering/incineration, (b) landing the solids for disposal, considering that in some countries land-disposed solids might be discharged in the near-shore environment untreated, and (c) deep ocean disposal. Input to the Bayesian assessment consisted of professional judgment based on available literature and modeling information, data on constituent concentrations in cruise ship biosolids, and simulations of constituent concentrations in Caribbean waters assuming ocean disposal. Results indicate that human health and ecological risks associated with land disposal and shallow ocean disposal are higher than those of the deep ocean disposal and incineration. For incineration, predicted ecological impacts were lower relative to deep ocean disposal before considering potential impacts of carbon emissions.

  12. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  13. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    SciTech Connect

    Fecht, K R; Lillie, J T

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area.

  14. Military nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    A National Research Council (NRC) panel has endorsed a plan for a proposed underground military nuclear waste disposal facility located on a site near Carlsbad, N.M. The Department of Energy (DOE) asked NRC to evaluate the geologic suitability of the site.The NRC panel, chaired by Frank L. Parker of Vanderbilt University, concluded in its final report that “the important issues about the geology of the site have been resolved…” Those issues include the purity and volume of salt, the absence of brine pockets at the repository horizon in the areas excavated, the absence of breccia pipes and of toxic gases, and the nearly horizontal bedding of the salt. Thick underground salt beds have long been considered prime candidates for nuclear waste repositories. The existence of salt beds is believed to indicate long-term stability. In addition, the salt is flexible and will seal cracks and discontinuities over time.

  15. Subsurface connection methods for subsurface heaters

    DOEpatents

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  16. Radioactive Waste Disposal in Hydrologically-Challenged Environments: Opportunities for Waste Disposal Resource Optimization

    NASA Astrophysics Data System (ADS)

    Tauxe, J. D.; Black, P. K.

    2006-12-01

    The hydrologic behavior of arid environments poses unique benefits for low-level radioactive waste (LLW) disposal in the shallow subsurface, and unique challenges for modeling as well. Stochastic models of a pair of LLW disposal sites in southern Nevada are presented as examples of how to address a range of closely- coupled environmental contaminant transport phenomena, including unsaturated zone hydrologic processes, in the context of regulatory compliance and site operations optimization. Certain significant insights into system behavior and optimization are achievable only through probabilistic modeling techniques, followed by global sensitivity analysis. Such information is simply not available using traditional modeling techniques involving a chain of deterministic process models. Examples of specific instances of coupled phenomena are presented. The unique perspective provided by a fully-coupled probabilistic model, including contaminant transport through natural and engineered systems and assessment of risk to potential future receptors, allows site operators to evaluate the cost effectiveness of different disposal techniques, and the optimization of disposal of candidate waste streams. This approach simultaneously optimizes superior disposal sites for waste inventories at minimal cost and future risk. In light of the demands on current LLW disposal capacity around the world, this fully-integrated approach to the modeling of contaminant transport, risk to future generations, and site operations is critical to making the best use of this resource.

  17. Tritium waste disposal technology in the US

    SciTech Connect

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

  18. Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-9 Trench at the Hanford Site

    SciTech Connect

    Oostrom, Mart; Rockhold, Mark L.; Thorne, Paul D.; Truex, Michael J.; Last, George V.; Rohay, Virginia J.

    2007-11-01

    Carbon tetrachloride (CT) was discharged to waste sites at the Hanford 200 West Area. Three-dimensional modeling was conducted to enhance the conceptual model of CT distribution in the vertical and lateral direction beneath the 216-Z-9 trench and to investigate the effects of soil vapor extraction. Simulations focused on migration of dense, nonaqueous phase liquid (DNAPL) consisting of carbon tetrachloride and co-disposed organics as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. The simulations of CT migration were conducted using the Subsurface Transport Over Multiple Phases (STOMP) simulator. Simulation results support a conceptual model for CT distribution where CT in the DNAPL phase is expected to have migrated primarily in a vertical direction below the disposal trench. Results also show that the Cold Creek low permeability units retain more CT DNAPL within the vadose zone than other hydrologic unit during during soil vapor extraction. Additional characterization of the Cold Creek units would provide valuable information about the quantity of CT DNAPL remaining in the vadose zone. A significant amount of the disposed CT DNAPL may have partitioned to the vapor and subsequently water and sorbed phases. Any continued migration of CT from the vadose zone to the groundwater is likely through interaction of vapor phase CT with the groundwater and not through continued DNAPL migration. Additional effort is needed to enhance the understanding of rate-limited volatilization to improve simulation of the SVE process and to provide a basis for refining the design and operation of SVE systems.

  19. In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas. Special study

    SciTech Connect

    Not Available

    1994-02-01

    This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided.

  20. Special Analysis: Update of Disposal of Cement-Stabilized Encapsulated Waste at the E-Area Low-Level Waste Facility

    SciTech Connect

    Collard, L.B.

    2003-10-15

    This Special Analysis for Components-in-Grout (CIG) expands the list of isotopes to the full suite of normal isotopes. This revision also addresses selected isotopes in special waste forms from the K and L basin resin that have waste-specific Kds and high-concentration I-129 wastes with waste-specific Kds, including Effluent Treatment Facility (ETF) activated carbon vessels. The full suite of normal isotopes was first screened using the Slit Trench screening results as a conservative approach. The isotopes that survived the screening were analyzed to determine the appropriate CIG inventory limits. The groundwater modeling was revised to incorporate improvements and changes in other recent Special Analyses and Unreviewed Disposal Question (UDQ) evaluations. The air pathway analysis was modified to consider a distributed source rather than a point source. These changes are discussed below in intruder and groundwater sections. Tables and figures are provided in appendices that are directly related to the most recent analyses. Changes to inventory limits are shown in Table 7. Inventory limits for solubility- limited radionuclides require special treatment as discussed in Section 3.1.1.3. U-238 and Pu-239 were analyzed as being solubility-limited, because otherwise they would consume excessive amounts of their inventory limits. Other U and Pu isotopes were not analyzed as being solubility- limited because they would not consume excessive amounts of inventory limits. Current and projected inventories for the K and L basin resins are compared against inventory limits for a single set of 5 CIG trenches. Projections for the K and L basin waste are through 2035, thus actual inventory consumption is dependent on the total number of CIG trenches excavated and filled through 2035. Current inventory for three ETF activated carbon vessels awaiting disposal are compared against inventory limits for a single set of 5 CIG trenches.

  1. Subsurface geology and potential for geopressured-geothermal energy in the Turtle Bayou field-Kent Bayou field area, Terrebonne Parish, Louisiana

    SciTech Connect

    Moore, D.R.

    1982-09-01

    A 216 square mile area approximately 65 miles southwest of New Orleans, Louisiana, has been geologically evaluated to determine its potential for geopressured-geothermal energy production. The structural and stratigraphic analyses were made with emphasis upon the Early and Middle Miocene age sediments which lie close to and within the geopressured section. Three geopressured sands, the Robulus (43) sand, Cibicides opima sand, and Cristellaria (I) sand, are evaluated for their potential of producing geothermal energy. Two of these sands, the Robulus (43) sand and the Cibicides opima sand, meet several of the United States Department of Energy's suggested minimum requirements for a prospective geopressured-geothermal energy reservoir.

  2. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  3. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Gregory, Louis B.

    2015-12-01

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classified Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  4. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  5. Subsurface Microbes Expanding the Tree of Life

    SciTech Connect

    Banfield, Jillian

    2015-05-11

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  6. Subsurface Microbes Expanding the Tree of Life

    ScienceCinema

    Banfield, Jillian

    2016-07-12

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  7. Anthropogenic effects on subsurface temperature in Bangkok

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2006-09-01

    Subsurface temperatures in Bangkok, where population and density increase rapidly, were analyzed to evaluate the effects of surface warming due to urbanization. The magnitude of surface warming evaluated from subsurface temperature in Bangkok was 1.7°C which agreed with meteorological data during the last 50 years. The depth apart from steady thermal gradient, which shows an indicator of the magnitude of surface warming due to additional heat from urbanization, was deeper at the center of the city than in the suburb areas of Bangkok. In order to separate surface warming effects into global warming effect and urbanization effect, analyses of subsurface temperature have been done depending on the distance from the city center. The results show that the expansion of urbanization in Bangkok reaches up to 80 km from the city center.

  8. Urban heat island in the subsurface

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2007-12-01

    The urban heat island effect has received significant attention in recent years due to the possible effect on long-term meteorological records. Recent studies of this phenomenon have suggested that this may not be important to estimates of regional climate change once data are properly corrected. However, surface air temperatures within urban environments have significant variation, making correction difficult. In the current study, we examine subsurface temperatures in an urban environment and the surrounding rural area to help characterize the nature of this variability. The results of our study indicate that subsurface temperatures are linked to land-use and supports previous work indicating that the urban heat island effect has significant and complex spatial variability. In most situations, the relationship between subsurface and surface processes cannot be easily determined, indicating that previous studies that relying on such a linkage may require further examination.

  9. Immobilization of heavy metals contained in incinerator fly ash by application of soluble phosphate--treatment and disposal cost reduction by combined use of high specific surface area lime

    SciTech Connect

    Uchida, Toshihito; Itoh, Ichiro; Harada, Koji

    1996-12-31

    In Japan, the lime injection rate to municipal waste incinerator flue gas has had a tendency to increase in recent years. This trend is due to the need to comply with the stringent air pollution control regulation, to neutralize and remove more acid gas contained in the flue gas, together with utilization of fabric filter (FF) units to efficiently remove particulate and other hazardous materials. Evaluation results of combined application of High Specific Surface Area Lime and soluble phosphate as heavy metals immobilizing agent for fly ash intermediate treatment can help to reduce output of incinerator fly ash amount and total fly ash treatment and disposal costs. High Specific Surface Area Lime injection rate to achieve same outlet HCL concentration will be reduced to about 1/2 of the conventional lime injection rate. As the residual lime content in the fly ash is reduced, the treatment costs by soluble phosphate can be remarkably reduced.

  10. Disposables in downstream processing.

    PubMed

    Gottschalk, Uwe

    2009-01-01

    Disposable equipment has been used for many years in the downstream processing industry, but mainly for filtration and buffer/media storage. Over the last decade, there has been increasing interest in the use of disposable concepts for chromatography, replacing steel and glass fixed systems with disposable plastic modules that can be discarded once exhausted, fouled or contaminated. These modules save on cleaning and validation costs, and their reduce footprints reduce buffer consumption, water for injection, labor and facility space, contributing to an overall reduction in expenditure that lowers the cost of goods. This chapter examines the practical and economic benefits of disposable modules in downstream processing.

  11. Subsurface heat flow in an urban environment

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2004-02-01

    The subsurface temperature field beneath Winnipeg, Canada, is significantly different from that of the surrounding rural areas. Downward heat flow to depths as great as 130 m has been noted in some areas beneath the city and groundwater temperatures in a regional aquifer have risen by as much as 5°C in some areas. Numerical simulation of heat transport supports the conjecture that these temperature changes can be largely attributed to heat loss from buildings and the temperature at any given point is sensitive to the distance from and the age of any buildings. The effect is most noticable when buildings are closely spaced, which is typical of urban areas. Temperature measurements in areas more than a few hundred meters away from any heated structure were only a few tenths of a degree Celsius greater than those observed outside the city, suggesting that other reasons for increases in subsurface temperature, such as changes in surface cover or climate change, may be responsible for some of the some of the observed increase in temperatures. These sources of additional heat to the subsurface make it difficult to resolve information on past climates from temperatures measured in boreholes and monitoring wells. In some areas, the temperature increases may also have an impact on geothermal energy resources. This impact might be in the form of an increase in heat pump efficiency or in the case of the Winnipeg area, a decrease in the efficiency of direct use of groundwater for cooling.

  12. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  13. Geological considerations in hazardouswaste disposal

    USGS Publications Warehouse

    Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.

    1981-01-01

    Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.

  14. Numerical Modeling of Deep Borehole Disposal Performance: Influence of Regional Hydrology

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Hammond, G. E.; Freeze, G. A.; Hadgu, T.

    2015-12-01

    Long-term waste isolation at a deep borehole disposal facility is most favorable at a site where the crystalline basement is hydraulically isolated and groundwater flow is negligible. Site suitability guidelines include evidence of lack of fluid flow in basement, for example lack of significant topographic relief, or evidence of ancient and/or saline groundwater at depth. However, lack of local topographic relief does not preclude regional hydraulic gradients created by recharge and discharge at distant outcrops; and precisely because of hydraulic isolation, the crystalline basement has the potential to be over- or under-pressured relative to overlying units. In the absence of previous boreholes in the area of a potential site, hydraulic gradients at depth are difficult to predict, and the possibility remains that a deep borehole drilled for the disposal of waste will encounter vertical or lateral driving forces for fluid flow. This study asks the question: How large a driving force can be tolerated while still maintaining repository performance? We use PFLOTRAN (an open source, massively parallel subsurface flow and reactive transport code) and a 3-D model domain (representing a disposal borehole in crystalline basement overlain by sedimentary strata) to examine the influence of horizontal and vertical hydraulic gradients on the long-term performance of a deep borehole radioactive waste repository. Simulations include steady-state lateral hydraulic gradients and transient vertical hydraulic gradients, and predict radionuclide concentrations in an overlying aquifer to quantify the potential influence of regional hydraulic gradients on repository performance.

  15. Deep sea waste disposal

    SciTech Connect

    Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Ketchum, B.W.; Duedall, I.W.

    1985-01-01

    The book presents papers on the marine disposal of wastes. Topics considered include incineration at sea, the modelling and biological effects of industrial wastes, microbial studies of ocean dumping, deep-sea mining wastes, the chemical analysis of ferromanganese nodules, and economic aspects of deep-sea disposal.

  16. Disposable Diapers Are OK.

    ERIC Educational Resources Information Center

    Poore, Patricia

    1992-01-01

    A personal account of measuring the pros and cons of disposable diaper usage leads the author to differentiate between a garbage problem and environmental problem. Concludes the disposable diaper issue is a political and economic issue with a local environmental impact and well within our abilities to manage. (MCO)

  17. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  18. Disposal of Vessels at Sea

    EPA Pesticide Factsheets

    Vessel disposal general permits are issued by the EPA under the Marine Protection, Research and Sanctuaries Act. Information is provided for vessel disposal permit applicants and where to dispose a vessel.

  19. Consideration of privatization of solid waste disposal

    SciTech Connect

    Harrison, W.K.

    1995-09-01

    Martin County is responsible by law for the solid waste disposal needs of all County residents. In the State of Florida, counties have the responsibility of providing solid waste disposal services. Florida Statutes 403.706 divides the responsibility among local governments as follows: {open_quotes}The governing body of a County has the responsibility and power to provide for the operation of solid waste disposal facilities to meet the needs of all incorporated and unincorporated areas of the County. In accordance with this section, municipalities are responsible for collecting and transporting solid waste from their jurisdictions to a solid waste disposal facility operated by a county or operated under a contract with a county.{close_quotes} Solid waste disposal is a mandatory obligation primarily because of public health and safety concerns. In addition to contributing to environmental damage, dumping (as opposed to landfilling) contributes to infestations of insects and rodents that carry disease to the human population. Although the County may choose to provide solid waste disposal service indirectly, the ultimate responsibility for the service will remain with the County. If a contractor fails to provide the service, the County will be legally responsible to the State and to County residents for correcting the failure. This report discussess issues associated with the privatization of solid waste disposal.

  20. The distribution of subsurface damage in fused silica

    SciTech Connect

    Miller, P E; Suratwala, T I; Wong, L L; Feit, M D; Menapace, J A; Davis, P J; Steele, R A

    2005-11-21

    Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.

  1. Subsurface fracture spacing

    SciTech Connect

    Lorenz, J.C. ); Hill, R.E. )

    1991-01-01

    This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.

  2. Radionuclide concentrations in soils and vegetation at Low-Level Radioactive Waste Disposal Area G during the 1998 growing season (with a cumulative summary of {sup 3}H and {sup 239}Pu over time)

    SciTech Connect

    P. R. Fresquez; M. H. Ebinger; R. J. Wechsler; L. Naranjo, Jr.

    1999-11-01

    Soils and unwashed overstory and understory vegetation were collected at eight locations within and around Area G, a disposal facility for low-level, radioactive solid waste at Los Alamos National Laboratory. The samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup tot}U. Most of the radionuclide concentrations in soils and vegetation were within the upper 95% level of background concentrations except for {sup 3}H and {sup 239}Pu. Tritium concentrations in vegetation from most sites were greater than background concentrations of about 2 pCi mL{sup {minus}1}. The concentrations of {sup 239}Pu in soils and understory vegetation were largest in samples collected several meters north of the transuranic waste pad area and were consistent with previous results. Based on {sup 3}H and {sup 239}Pu data through 1998, it was shown that concentrations were (1) significantly greater than background concentrations (p < 0.05) in soils and vegetation collected from most locations at Area G, and (2) there was no systematic increase or decrease in concentrations with time apparent in the data.

  3. Geophysical investigations at ORNL solid waste storage area 3

    SciTech Connect

    Rothschild, E.R.; Switek, J.; Llopis, J.L.; Farmer, C.D.

    1985-07-01

    Geophysical investigations at ORNL solid waste storage area 3 have been carried out. The investigations included very-low-frequency-electromagnetic resistivity (VLF-EM), electrical resistivity, and seismic refraction surveys. The surveys resulted in the measurement of basic geophysical rock properties, as well as information on the depth of weathering and the configuration of the bedrock surface beneath the study area. Survey results also indicate that a number of geophysical anomalies occur in the shallow subsurface at the site. In particular, a linear feature running across the geologic strike in the western half of the waste disposal facility has been identified. This feature may conduct water in the subsurface. The geophysical investigations are part of an ongoing effort to characterize the site's hydrogeology, and the data presented will be valuable in directing future drilling and investigations at the site. 10 refs., 6 figs.

  4. Soil and Vegetation Project. A Detailed Study of Five Overburden Cores and Six Disposal Areas Along the Divide Section Tennessee-Tombigbee Waterway.

    DTIC Science & Technology

    1983-06-17

    of inadequate amounts of lime. Newly germinated plants of legumes and grasses require neutralizers in their root environment in order to emerge and...1203 and DA 1204, were dominated by the seeded species. Annual grasses invaded some open niches in these fields. Continued observation of the shifts...fertilizer is applied to areas vegetated with legumes and grasses , the grasses become dominant over the legumes. If management goals are to sustain a

  5. Detection of olive oil mill waste (OOMW) disposal areas using high resolution GeoEye's OrbView-3 and Google Earth images

    NASA Astrophysics Data System (ADS)

    Agapiou, Athos; Papadopoulos, Nikos; Sarris, Apostolos

    2016-01-01

    The olive oil industry is considered to be as one of the driving sectors of the agricultural economy of the Mediterranean basin. The extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environments due to high concentrations in phenolic compounds that could cause ophytotoxicity. This paper aims to examine the potential use of freely distributed satellite images for the detection of olive oil mil waste (OOMW) areas in the island of Crete through the use of two cases studies. In the first case study an archive GeoEye OrbView-3 image was used to detect OOMW areas using the Spectral Angle Mapper detection algorithm and other geometric and topographic parameters. In the second case study, Google Earth images were examined through different classification algorithms at different scales. The overall results demonstrate that remote sensing techniques can be used as an alternative to field observations so as to detect and monitor OOMW areas Furthermore, freely distributed RGB images from digital globes (such as Google Earth) can be sufficiently and effectively used for this purpose.

  6. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  7. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  8. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  9. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  10. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet...

  11. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet...

  12. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

    PubMed

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

    2011-10-01

    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  13. Nonintrusive subsurface surveying capability

    SciTech Connect

    Tunnell, T.W.; Cave, S.P.

    1994-06-01

    This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

  14. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  15. Containment of subsurface contaminants

    DOEpatents

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  16. Oklahoma's recent earthquakes and saltwater disposal.

    PubMed

    Walsh, F Rall; Zoback, Mark D

    2015-06-01

    Over the past 5 years, parts of Oklahoma have experienced marked increases in the number of small- to moderate-sized earthquakes. In three study areas that encompass the vast majority of the recent seismicity, we show that the increases in seismicity follow 5- to 10-fold increases in the rates of saltwater disposal. Adjacent areas where there has been relatively little saltwater disposal have had comparatively few recent earthquakes. In the areas of seismic activity, the saltwater disposal principally comes from "produced" water, saline pore water that is coproduced with oil and then injected into deeper sedimentary formations. These formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although most of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted.

  17. Subsurface barrier verification technologies, informal report

    SciTech Connect

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier`s integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification.

  18. Subsurface Samples: Collection and Processing

    SciTech Connect

    Long, Philip E.; Griffin, W. Timothy; Phelps, Tommy J.

    2002-12-01

    Microbiological data, interpretation, and conclusions from subsurface samples ultimately depend on the quality and representative character of the samples. Subsurface samples for environmental microbiology ideally contain only the microbial community and geochemical properties that are representative of the subsurface environment from which the sample was taken. To that end, sample contamination by exogenous microorganisms or chemical constituents must be eliminated or minimized, and sample analyses need to begin before changes in the microbial community or geochemical characteristics occur. This article presents sampling methods and sample processing techniques for collecting representative samples from a range of subsurface environments. Factors that should be considered when developing a subsurface sampling program are discussed, including potential benefits, costs, and limitations enabling researchers to evaluate the techniques that are presented and match them to their project requirements. Methods and protocols to address coring, sampling, processing and quality assessment issues are presented.

  19. Chemical-Stockpile Disposal Program. Evaluation of multiple-incinerator air-quality impacts, Edgewood Area, Aberdeen Proving Ground. Final report, November 1986-May 1987

    SciTech Connect

    Not Available

    1987-05-01

    The purpose of this study was to examine the long-term additive ambient impact of certain toxic air pollutants that will potentially be emitted from the Chemical Agent Incinerator (AI) proposed for the Edgewood Area (EA) of Aberdeen Proving Ground (APG), Maryland and from three additional planned or existing incinerators also located on the EA. This impact was determined in consideration of the existence and operation of three additional planned or existing incinerators also located on EA. Based on air-dispersion modeling conducted as part of an original analysis, emissions were estimated of chlorinated organics from the U.S. Army Medical Research Institute for Chemical Research, Development and Engineering Center Decontamination/Detoxification Municipal Waste Incinerator (MWI), for downwind distances as great as the distance to the nearest boundary of the EA. Consequently, for this evaluation, only the MWI is considered to emit chlorinated organics.

  20. Surface to subsurface cross sections showing correlation of the Dakota Sandstone, Burro Canyon (?) Formation, and upper part of the Morrison Formation in the Chama-El Vado area, Chama Basin, Rio Arriba County, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1987-01-01

    This report shows the correlation of the Dakota Sandstone, Burro Canyon(?) Formation, and the upper part of the Morrison Formation in the Chama basin from E1 Cerro dome, just west of Chama, to El Vado Reservoir. Criteria needed to recognize these formations both at the outcrop and in the subsurface is also included. 

  1. Evaluation of electromagnetic mapping methods to delineate subsurface saline waters in the Brookhaven oil field, Mississippi

    SciTech Connect

    Smith, B.D.; Bisdorf, R.; Slack, L.J.; Mazzella, A.

    1997-10-01

    Hydrologic and geophysical studies of saline waters at the Brookhaven oil field (Mississippi) began in 1985. Past and present practices to dispose of brines produced with oil and gas poise an environmental risk to ground water resources, agriculture, and other land uses. At Brookhaven, there is an elevated total chloride content in shallow (<100m) water wells within the field. Background levels of total chloride in the region are around 20 milligrams per liter (mg/L), which is exceptionally fresh water in comparison to other oil producing areas, particularly in the western United States. Contamination in the oil field at some sites is several hundred mg/L chloride as determined from water well samples taken in the mid-1980s. The EPA funded a feasibility study that included a dc resistivity survey which showed low resistivities in one area of known saline water contamination. Detailed electrical geophysical surveys are not possible due to numerous metallic features associated with oil production. In 1988 a helicopter electromagnetic (HEM) survey of the oil field was flown under contract to the USGS as part of an EPA funded research project. An interpreted resistivity map for a depth of 30m showed low resistivities associated with clays, shales, and saline waters near some of the abandoned brine disposal pits. In 1995 water wells were re-sampled and two areas of high changes in chloride content were found. Also in 1995, a new HEM survey was flown and new dc resistivity soundings were made. Comparison of the ground and airborne survey along a profile where there has been a high change in chloride content shows good agreement for interpreted subsurface resistivities. The HEM survey shows greater detail than the ground measurements and suggests there may be local vertical migration of saline waters in areas where there has been a large increase in ground water chloride content.

  2. Addendum to: Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for Corrective Action Unit (CAU) 443: Central Nevada Test Area (CNTA)-Subsurface Central Nevada Test Area, DOE/NV-977

    SciTech Connect

    2008-01-01

    The environmental remediation closure process for the nuclear test at the Central Nevada Test Area (CNTA) has progressed from the approved Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) to this addendum. The closure process required the installation of three monitoring/validation (MV) wells and validation analysis of the flow and transport model. The model validation analysis led to the conclusion that the hydraulic heads simulated by the flow model did not adequately predict observed heads at the MV-1, MV-2, and MV-3 validation points (wells and piezometers). The observed heads from screened intervals near the test horizon were higher than the model predicted and are believed to be the result of detonation-related effects that have persisted since the nuclear test. These effects, which include elevated heads out from the detonation zone and lower heads in the immediate vicinity of the detonation, are seen at other nuclear tests and typically dissipate within a few years. These effects were not included in the initial head distribution of the model. The head variations at CNTA are believed to have persisted due to the very low permeability of the material at the detonation level.

  3. Disposal of acid gases with oilfield produced water

    SciTech Connect

    Duckworth, G.L.; Kopperson, D.; Horne, S.; Kohn, G.; Romansky, D.; Chan, C.

    1998-12-31

    With tightening environmental policies, many companies are investigating alternatives to atmospheric sulfur and greenhouse gas emissions. The oil and gas industry of Alberta, Canada typically recovers a high percentage of sulfur in large sour gas processing plants, but is often looking for a more cost effective approach to dealing with small volume plants. PanCanadian Petroleum Limited and DPH Engineering Inc. have developed a disposal scheme that makes low volume sour gas processing more affordable and easier to operate by disposing of acid gases in an aqueous phase to a disposal well. The development of this scheme utilized the results of reservoir studies, computer simulations, laboratory tests and field tests. This work has further resulted in the implementation of two full scale schemes to dissolve acid gas in produced water and inject it into deep subsurface formations. These schemes have operated with minimal problems and have met their environmental requirements.

  4. Feasibility study of tank leakage mitigation using subsurface barriers

    SciTech Connect

    Treat, R.L.; Peters, B.B.; Cameron, R.J.; McCormak, W.D.; Trenkler, T.; Walters, M.F.; Rouse, J.K.; McLaughlin, T.J.; Cruse, J.M.

    1994-09-21

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulating air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.

  5. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    SciTech Connect

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.

  6. Unraveling 1.5 Ga of brittle deformation history in the Laxemar-Simpevarp area, southeast Sweden: A contribution to the Swedish site investigation study for the disposal of highly radioactive nuclear waste

    NASA Astrophysics Data System (ADS)

    Viola, G.; Venvik GanerøD, G.; Wahlgren, C.-H.

    2009-10-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site investigation at two locations in Sweden, Forsmark and Laxemar-Simpevarp, with the aim of identifying a suitable area for the construction of a deep repository for the disposal of highly radioactive nuclear waste. Fault slip data from outcrops and oriented drill cores were used to compute paleostress states and to unravel the sites' brittle deformation history. Results from the Laxemar-Simpevarp area show that its suggested brittle history results from multiple reactivation of fracture and fault sets caused by the many orogenic episodes that affected the region during at least 1.5 Ga of geological evolution in the brittle deformational regime. Two compressional, approximately NW/NNW-SE/SSE and NNE-SSW oriented shortening events generated sets of conjugate, steep strike-slip fractures. These sets formed during the late stages of the Svecokarelian and possibly also of the Gothian orogeny, soon after the region entered the brittle deformation domain. The Mesoproterozoic Sveconorwegian orogeny generated fractures and faults that are assigned to a third set of conjugate strike-slip faults, which constrain an approximately E-W σ1. The Caledonian shortening, oriented approximately NW-SE to E-W, reactivated the latter but also formed a new, similarly oriented set of subvertical strike-slip fractures. Permian transtension was oriented NW-SW and caused a prominent set of moderately dipping NW-SE trending normal faults in the Precambrian basement of the study area. Two other approximately NW-SW and NW-SE oriented shortening events are recorded in Ordovician limestones and can be tentatively linked to the far-field effects of the Laramide and Alpine orogenies.

  7. Subsurface occurrence and potential source areas of chlorinated ethenes identified using concentrations and concentration ratios, Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Garcia, C. Amanda

    2005-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Air Force Aeronautical Systems Center, Environmental Management Directorate, conducted a study during 2003-05 to characterize the subsurface occurrence and identify potential source areas of the volatile organic compounds classified as chlorinated ethenes at U.S. Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS-JRB) at Fort Worth, Texas. The solubilized chlorinated ethenes detected in the alluvial aquifer originated as either released solvents (tetrachloroethene [PCE], trichloroethene [TCE], and trans-1,2-dichloroethene [trans-DCE]) or degradation products of the released solvents (TCE, cis-1,2-dichloroethene [cis-DCE], and trans-DCE). The combined influences of topographic- and bedrock-surface configurations result in a water table that generally slopes away from a ground-water divide approximately coincident with bedrock highs and the 1-mile-long aircraft assembly building at AFP4. Highest TCE concentrations (10,000 to 920,000 micrograms per liter) occur near Building 181, west of Building 12, and at landfill 3. Highest PCE concentrations (500 to 920 micrograms per liter) occur near Buildings 4 and 5. Highest cis-DCE concentrations (5,000 to 710,000 micrograms per liter) occur at landfill 3. Highest trans-DCE concentrations (1,000 to 1,700 micrograms per liter) occur just south of Building 181 and at landfill 3. Ratios of parent-compound to daughter-product concentrations that increase in relatively short distances (tens to 100s of feet) along downgradient ground-water flow paths can indicate a contributing source in the vicinity of the increase. Largest increases in ratio of PCE to TCE concentrations are three orders of magnitude from 0.01 to 2.7 and 7.1 between nearby wells in the northeastern part of NAS-JRB. In the northern part of NAS-JRB, the largest increases in TCE to total DCE concentration ratios relative to ratios at upgradient wells are from 17 to

  8. Magnesium battery disposal characteristics

    NASA Astrophysics Data System (ADS)

    Soffer, Louis; Atwater, Terrill

    1994-12-01

    This study assesses the disposal characteristics of U.S. Army procured military magnesium batteries under current Resource Conservation and Recovery Act (RCRA) hazardous waste identification regulations administered by the U.S. Environmental Protection Agency. Magnesium batteries were tested at 100, 50, 10 and 0 percent remaining state of charge. Present findings indicate that magnesium batteries with less than 50 percent remaining charge do not exceed the federal regulatory limit of 5.0 mg/L for chromium. All other RCRA contaminates were below regulatory limits at all levels of remaining charge. Assay methods, findings, disposal requirements and design implications are discussed.

  9. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  10. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  11. Lessons Learned From Reactive Transport Modeling of a Low-Activity Waste Glass Disposal System

    SciTech Connect

    Bacon, Diana H.; McGrail, B PETER.

    2003-04-01

    A set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multi-phases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. Two different trench designs were considered, one with four rows of small waste packages, the other with three layers of larger waste packages. One-dimensional simulations were carried out to 20,000 years, whereas two-dimensional simulations could only be carried out for several hundred years due to constraints on computational time. Both the 1-D and 2-D simulations predict that the Technetium release rate from the waste packages will be lower for the new trench design at later times. Because the glass corrosion rate is significantly higher at the backfill/glass interfaces, having less interfacial area in the new trench design offsets the effect of the slightly higher pH relative to the old trench design. In the two-dimensional simulations, water can flow around the waste packages, which causes a decrease in the water flux through the waste packages and lower release rates than predicted in the 1-D simulations. This result reinforces the importance of performing multi-dimensional waste form release simulations.

  12. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  13. Airborne Electromagnetic Mapping of Subsurface Permafrost

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Minsley, B. J.; Cannia, J. C.; Smith, B. D.; Walvoord, M. A.; Voss, C. I.; Jorgenson, T. T.; Wylie, B. K.; Anderson, L.

    2011-12-01

    Concerns over the impacts of climate change have recently energized research on the potential impacts thawing permafrost may have on groundwater flow, infrastructure, forest health, ecosystems, energy production, CO2 release, and contaminant transport. There is typically little knowledge about subsurface permafrost distributions, such as thickness and where groundwater-surface-water connections may occur through taliks. In June of 2010, the U.S. Geological Survey undertook an airborne electromagnetic (AEM) survey in the area of Fort Yukon, Alaska in order to map the 3-D distribution of permafrost and provide information for the development of groundwater models within the Yukon River Basin. Prior to the development of these models, information on areas of groundwater-surface water interaction was extremely limited. Lithology determined from a borehole drilled in Fort Yukon in 1994 agrees well with the resistivity depth sections inferred from the airborne survey. In addition to lithology, there a thermal imprint appears on the subsurface resistivity values. In the upper 20-50 m, the sections show continuous areas of high electrical resistivity, consistent with alluvial gravel deposits that are likely frozen. At depth, unfrozen gravel deposits have intermediate-to-high resistivity; frozen silts have intermediate resistivity; and unfrozen silts have low resistivity. Under the Yukon River and lakes where the subsurface is not frozen, zones of moderate resistivity intermix with areas of low resistivity. The areas of loess hills on the margins of the Yukon Flats have very-high electrical resistivity, indicating higher ice content, and are associated with the some of the greatest thickness of permafrost in the survey area. This work provides the first look into the 3-D distribution of permafrost in the areas around Fort Yukon and is a demonstration of the application of AEM to permafrost mapping. The AEM survey provides unprecedented 3-D images of subsurface electrical

  14. Subsurface barrier design alternatives for confinement and controlled advection flow

    SciTech Connect

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.

  15. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  16. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  17. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Nanomaterial disposal by incineration

    EPA Science Inventory

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  19. Plumbing and Sewage Disposal.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  20. Chemical Stockpile Disposal Program

    SciTech Connect

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Pine Bluff Arsenal (PBA) in Arkansas. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the PBA and by recommending the scope and content of a more detailed site- specific study. This dependent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at PBA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources, and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 13 refs., 1 fig.

  1. Chemical Stockpile Disposal Program

    SciTech Connect

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  2. Disposal of Liquid Propellants

    DTIC Science & Technology

    1990-03-13

    concentrate (formaldehydestrongly catalyzes the formation of nitrosamines from nitrite and secondary amines ). I ° Minimize concentrations of catalytically ...components, as interest in these compounds is relatively new. Therefore, methods for disposing of similar compounds such as triethanol- amine ...appears to have the greatest potential for accomplishing degradation of HAN- based liquid propellant residues in an economical, environmentally safe manner

  3. Microbial Transport in the Subsurface

    SciTech Connect

    Ginn, Timothy R.; Camesano, Terri; Scheibe, Timothy D.; Nelson, Kirk B.; Clement, T. P.; Wood, Brian D.

    2005-12-01

    In this article we focus on the physical, chemical, and biological processes involved in the transport of bacteria in the saturated subsurface. We will first review conceptual models of bacterial phases in the subsurface, and then the processes controlling fate and transport on short (e.g., bioremediation) time scales. Finally we briefly review field bacterial transport experiments and discuss a number of issues that impact the application of current process descriptions and models at the field scale.

  4. 30 CFR 715.15 - Disposal of excess spoil.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vegetative and organic materials shall be removed from the disposal area and the topsoil shall be removed, segregated, and stored or replaced under § 715.16. If approved by the regulatory authority, organic material... additional stability and prevents mass movement, fill materials suitable for disposal shall be placed upon...

  5. 30 CFR 715.15 - Disposal of excess spoil.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vegetative and organic materials shall be removed from the disposal area and the topsoil shall be removed, segregated, and stored or replaced under § 715.16. If approved by the regulatory authority, organic material... additional stability and prevents mass movement, fill materials suitable for disposal shall be placed upon...

  6. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Disposal of human wastes. 1250.75 Section 1250.75 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At...

  7. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Disposal of human wastes. 1250.75 Section 1250.75 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At...

  8. Hydrologic implications of solid-water disposal

    USGS Publications Warehouse

    Schneider, William Joseph

    1970-01-01

    Site selection for disposal of solid wastes must be based on adequate water-resources information if pollutional potential is to be minimized. This will require regional as well as localized data on the water resources of the area. Only through such an approach can adequate protection be afforded to the environment in general and the water resources in particular.

  9. Home Sewage Disposal. Special Circular 212.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction…

  10. The disposal of orphan wastes using the greater confinement disposal concept

    SciTech Connect

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-02-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

  11. Robotics and remote handling concepts for disposal of high-level nuclear waste

    SciTech Connect

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-04-27

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies.

  12. Wastewater Disposal Wells, Fracking, and Environmental Injustice in Southern Texas

    PubMed Central

    Werder, Emily; Sebastian, Daniel

    2016-01-01

    Objectives. To investigate race and poverty in areas where oil and gas wastewater disposal wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. Methods. With location data of oil and gas disposal wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a disposal well and those farther away, adjusting for rurality and poverty, using a Poisson regression. Results. The proportion of people of color living less than 5 kilometers from a disposal well was 1.3 times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, disposal wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. Disposal wells are also disproportionately sited in high-poverty areas. Conclusions. Wastewater disposal wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as “environmental injustice.” PMID:26794166

  13. Disposal of Some Problem Chemicals.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1978

    1978-01-01

    Describes procedures for the disposal of chemicals commonly used in secondary school chemistry laboratories. Special reference is given to inorganic salts. It is suggested that cyanides and other highly toxic salts should be disposed of by experts. (MA)

  14. Subseabed Disposal Program Plan. Volume I. Overview

    SciTech Connect

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations.

  15. Evaluation of the impact of lime softening waste disposal in natural environments

    EPA Science Inventory

    Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on w...

  16. Subsurface Geotechnical Parameters Report

    SciTech Connect

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  17. Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331

    SciTech Connect

    Lively, J.W.

    2012-07-01

    . This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the

  18. Participatory management of waste disposal.

    PubMed

    Noosorn, Narongsak

    2005-05-01

    The general objective of this study was to develop a sustainable waste disposal management model in Yom riverside communities by creating a sense of ownership in the project among the villagers and encourage the community to identify problems based on their socio-cultural background. The participatory approach was applied in developing a continual learning process between the researcher and stakeholders. The Tub Phueng community of Si Samrong, Sukhothai Province was selected as the location for this study. From the population of 240 households in the area, 40 stakeholders were selected to be on the research team. The team found that the waste in this community was comprised of 4 categories: 1. Occupation: discarded insecticide containers used for farming activities; 2. Consumption: plastic bags and wrappers form pre-packed foods; 3. Traditional activities: after holding ceremonies and festivities, the waste was dumped in the river; and 4. Environmental hygiene: waste water from washing, bathing, toileting, cooking and cleaning was directly drained into the Yom River. The sustainable waste disposal model developed to manage these problems included building simple waste-water treatment wells, digging garbage holes, prosecuting people who throw garbage into the river, withdrawing privileges from people who throw garbage into the river, and establishing a garbage center. Most of the villagers were satisfied with the proposed model, looked forward to the expected positive changes, and thought this kind of solution would be easy to put into practice.

  19. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  20. Geophysical studies at proposed low-level radioactive waste disposal sites in west Texas

    SciTech Connect

    Keller, G.R.; Doser, D.I.; Whitelaw, J.; Miller, K.C.; Hua, F.; Baker, M.R.; Meeks, N. )

    1994-03-01

    Although the disposal of high-level nuclear waste is officially a national problem, the federal government has charged each state with the responsibility of disposing of its own low-level nuclear waste. Texas has considered many possible areas for its disposal facility, but has studied two sites in Hudspeth County extensively. Geophysical methods have been used to study the subsurface structure of these sites, evaluate the earthquake hazards, and set up monitoring of possible leakage from the sites. The structural studies employed the same techniques as used in petroleum exploration, but with a ore balanced reliance between seismic and potential field methods. Since the scale of these investigations was relatively small (a few miles in extent), high-resolution methodology was employed. This aspect of the project mainly impacted the seismic reflection work. The depth to the bedrock was a major concern because the near-surface alluvium is generally a good natural barrier to any potential leakage. The location of any faults near the sites was also a major concern, because faults were both an indicator of potential earthquake hazards and a possible pathway for rapid movement of any material that might leak from the site. Analysis of the tectonic stability of the site involved regional geophysical data on a crustal scale and an evaluation of the historical earthquake record. A network of seismograph stations was established in the region to monitor contemporary seismicity. Compared to typical petroleum applications of geophysical data, these studies involved a wide variety of data and an analysis that required the methodical integration of these data.

  1. Waste disposal technologies for polychlorinated biphenyls.

    PubMed Central

    Piver, W T; Lindstrom, F T

    1985-01-01

    Improper practices in the disposal of polychlorinated biphenyl (PCB) wastes by land burial, chemical means and incineration distribute these chemicals and related compounds such as polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzodioxins (PCDDs) throughout the environment. The complete range of methods for disposal that have been proposed and are in use are examined and analyzed, with emphasis given to the two most commonly used methods: land burial and incineration. The understanding of aquifer contamination caused by migration of PCBs from subsurface burial sites requires a description of the physical, chemical and biological processes governing transport in unsaturated and saturated soils. For this purpose, a model is developed and solved for different soil conditions and external driving functions. The model couples together the fundamental transport phenomena for heat, mass, and moisture flow within the soil. To rehabilitate a contaminated aquifer, contaminated groundwaters are withdrawn through drainage wells, PCBs are extracted with solvents or activated carbon and treated by chemical, photochemical or thermal methods. The chemical and photochemical methods are reviewed, but primary emphasis is devoted to the use of incineration as the preferred method of disposal. After discussing the formation of PCDFs and PCDDs during combustion from chloroaromatic, chloroaliphatic, as well as organic and inorganic chloride precursors, performance characteristics of different thermal destructors are presented and analyzed. To understand how this information can be used, basic design equations are developed from governing heat and mass balances that can be applied to the construction of incinerators capable of more than 99.99% destruction with minimal to nondetectable levels of PCDFs and PCDDs. PMID:3921358

  2. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary

  3. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  4. Measuring isotropic subsurface light transport.

    PubMed

    Happel, Kathrin; Dörsam, Edgar; Urban, Philipp

    2014-04-21

    Subsurface light transport can affect the visual appearance of materials significantly. Measuring and modeling this phenomenon is crucial for accurately reproducing colors in printing or for rendering translucent objects on displays. In this paper, we propose an apparatus to measure subsurface light transport employing a reference material to cancel out adverse signals that may bias the results. In contrast to other approaches, the setup enables improved focusing on rough surfaces (e.g. uncoated paper). We derive a measurement equation that may be used to deduce the point spread function (PSF) of subsurface light transport. Main contributions are the usage of spectrally-narrowband exchangeable LEDs allowing spectrally-resolved measurements and an approach based on quadratic programming for reconstructing PSFs in the case of isotropic light transport.

  5. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  6. Geohydrology of and potential for fluid disposal in the Arbuckle Aquifer in Kansas

    USGS Publications Warehouse

    Carr, J.E.; McGovern, H.E.; Gogel, Tony; Doveton, J.H.

    1986-01-01

    The Arbuckle aquifer is an extensive aquifer that contains mostly saline water and that immediately overlies Precambrian ' basement ' rocks throughout Kansas, except for major uplift areas where it has been removed by erosion. In the southeast part of the state, it is a major freshwater aquifer. The upper part of the Arbuckle contains significant oil and gas reservoirs in central and south-central Kansas. During the last 40 years the Arbuckle also has become the major zone of fluid disposal in the state. Most of the fluids disposed into the Arbuckle were produced from oil and gas wells in other formations. However, in recent years, state water agencies have become increasingly concerned about injection of fluids into the subsurface and the effects of injection on the hydrologic systems involved. An investigation of the geohydrology of the Arbuckle aquifer and of the hydrologic aspects of fluid disposal into the Arbuckle was conducted to evaluate these effects. Hydraulic characteristics obtained from drill stem tests, injection tests, and numerical modeling have indicated a range of permeability in the Arbuckle from 1 millidarcy to 30 darcys. Analysis of injection tests indicated that average permeability in the basin areas probably is in the 50-300 millidarcy range. Analyses of 76 geophysical logs indicate an average porosity of about 12%. An evaluation of the geohydrology of the Arbuckle shows that it is a large regional flow system that is in hydraulic connection with several other major aquifers. Groundwater flow within the Arbuckle is principally from the west-northwest to the east-southeast. Brine disposal in the Arbuckle has been increasing over the years. Rates of injection average about 60 gal/min. Model analysis, using aquifer properties similar to those expected in the basin areas and under selected conditions of well injection into the Arbuckle, indicates that, even with an injection rate of only 100 gal/min, pressure increases equivalent to fluid

  7. Locating subsurface gravel with thermal imagery

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.; Clerke, William H.; Luepke, Douglas E.

    1986-01-01

    A method was discussed for using 6 band thermal imagery to locate subsurface gravel deposits in vegetated areas. Geologic history is reviewed to select potential areas of study. An overflight was made using a thermal scanner. The data were processed with a computerized system to delineate areas showing a quartz signature radiated by a gravel deposit. The method was developed during a search for gravel on National Forest land in Louisiana. Processed data from thermal imagery was compared with known gravel deposits and exploratory drill hole logs. A high correlation was noted for a wide range of deposits, from commercial pits to trace deposits only a foot thick. Overburden at these sites varied from zero to sixty feet, near the maximum annual penetration by the thermal wave. It was concluded that the method can be used to locate buried gravel deposits and that more time and effort are needed to verify the usefulness for developing gravel pits adjacent to proposed construction sites.

  8. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  9. Towed Subsurface Optical Communications Buoy

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert C.; Farr, William H.

    2013-01-01

    The innovation allows critical, high-bandwidth submarine communications at speed and depth. This reported innovation is a subsurface optical communications buoy, with active neutral buoyancy and streamlined flow surface veins for depth control. This novel subsurface positioning for the towed communications buoy enables substantial reduction in water-absorption and increased optical transmission by eliminating the intervening water absorption and dispersion, as well as by reducing or eliminating the beam spread and the pulse spreading that is associated with submarine-launched optical beams.

  10. Assessment of the subsurface hydrology of the UIC-NARL main camp, near Barrow, Alaska, 1993-94

    USGS Publications Warehouse

    McCarthy, K.A.; Solin, G.L.

    1995-01-01

    Imikpuk Lake serves as the drinking-water source for the Ukpeagvik Inupiat Corporation-National Arctic Research Laboratory (UIC-NARL, formerly known as the Naval Arctic Research Laboratory) near Barrow, Alaska. Previously acceptable hazardous-waste disposal practices and accidental releases of various fuels and solvents during the past several decades have resulted in contamination of soil and ground water in the vicinity of the lake. As part of an assessment of the risk that subsurface contamination poses to the quality of water in the lake, the subsurface hydrology of the UIC-NARL main camp was examined. The study area is located approximately 530 kilometers north of the Arctic Circle, on the northern coast of Alaska, and the short annual thaw season and the presence of shallow, areally continuous permafrost restrict hydrologic processes. A transient ground-water system is present within the active layer-the shallow subsurface layer that thaws each summer and refreezes each winter. Water-level and thaw-depth data collected during the summers of 1993 and 1994 show that the configurations of both the water table and the subsurface frost govern the ground- water flow system in the UIC-NARL main camp and indicate that recharge to and discharge from the system are small. Spatial irregularities in the vertical extent of the active layer result from variations in land-surface elevation, variations in soil type, and the presence of buildings and other structures that either act as a heat source or block heat transfer to and from the subsurface. Distinct features in the active-layer hydrologic system in the UIC-NARL main camp include a permafrost ridge, which generally acts as a flow-system divide between the Arctic Ocean and inland water bodies; a mound in the water table, which indicates increased impedance to ground- water flow toward Imikpuk Lake and acts as a flow-system divide between the lake and Middle Salt Lagoon; and a depression in the water table, which

  11. Short-term response of subadult white sturgeon to hopper dredge disposal operations

    USGS Publications Warehouse

    Parsley, Michael J.; Popoff, Nicholas D.; Romine, Jason G.

    2011-01-01

    The effect of dredged-material disposal operations on the behavior of seven white sturgeon Acipenser transmontanus (50–101 cm fork length) was examined by analysis of the movements and depth use of these fish before, during, and after a series of hopper dredge disposal operations in the lower Columbia River. Analyses of fish locations showed that 12 flow-lane disposal operations within a 24-h period had minimal effect on subadult white sturgeon behavior; six of the seven fish showed slight attraction to the disposal area during disposals, and one fish increased its distance from the disposal area. The core area for all fish combined shifted toward the disposal area during disposals. In the 24 h after completion of the disposal operations the fish core areas shifted back toward those areas occupied before the disposals. The rates of movement, depths used, and diel movement patterns of the white sturgeon showed little change over all periods, suggesting that natural behaviors were not altered during and immediately after hopper dredge disposal operations.

  12. Subsurface defect of amorphous carbon film imaged by near field acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, J. T.; Zhao, K. Y.; Zeng, H. R.; Song, H. Z.; Zheng, L. Y.; Li, G. R.; Yin, Q. R.

    2008-05-01

    Amorphous carbon films were examined by low frequency scanning-probe acoustic microscopy (LF-SPAM). Local elastic properties as well as topography were imaged in the acoustic mode. Two kinds of subsurface defects were revealed by the LF-SPAM method. The influence of the subsurface defects on the elastic properties was also discussed. The ability to image subsurface defects was dependent on the scan area and the scan speed. Our results showed that the low frequency scanning-probe acoustic microscopy is a useful method for imaging subsurface defects with high resolution.

  13. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    PubMed

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles.

  14. Hydraulic characterization of rocky subsurface using field infiltrometer measurements coupled with hydrogeophysical investigations

    NASA Astrophysics Data System (ADS)

    Caputo, M. C.; de Carlo, L.; de Benedictis, F.; Vurro, M.

    2009-04-01

    The shallow and/or karstic and fractured aquifers are among the most important water resources. At the same time, they are particularly vulnerable to contamination. A detailed scientific knowledge of the behavior of these aquifers is essential for the development of sustainable groundwater management. Different investigation methods have been developed with the aim to characterize the subsurface and to monitor the flow and solute transport in these hydrogeology systems. This study presents the results of an investigation method, that combine large infiltrometer measurements with elettrical resistivity profiles, carried out in two different experimental sites characterized by different hydrogeology systems. One site, close to Altamura a city in the South of Italy, is represented from karstic and fractured limestone that overlays the deep aquifer. This area has been affected by sludge waste deposits derived from municipal and industrial wastewater treatment plants. The second site, close to San Pancrazio Salentino town in Southern Italy also, is represented from a quarry of calcarenite that has been used as a dump of sludge of mycelium producted from pharmaceutical industry. In both these cases the waste disposal have caused soil-subsoil contamination. Knowledge of the flow rate of the unsaturated zone percolation is needed to investigate the vertical migration of pollutants and the vulnerability of the aquifers. In this study, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil due to unsaturated water flow. Simultaneously, the vertical flow was investigated by measuring water levels during infiltrometer tests carried out using a large adjustable ring infiltrometer, designed to be installed in the field directly on the outcrop of rock. In addition electrical resistivity azimuthal surveys have been conducted to detect principal fractures strike directions that cause preferential flow. The results obtained

  15. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  16. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  17. 30 CFR 250.122 - What effect does subsurface storage have on the lease term?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... area for subsurface storage of gas, it does not affect the continuance or expiration of the lease. ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What effect does subsurface storage have on the..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  18. 30 CFR 550.122 - What effect does subsurface storage have on the lease term?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area for subsurface storage of gas, it does not affect the continuance or expiration of the lease. ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What effect does subsurface storage have on the... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  19. 30 CFR 250.122 - What effect does subsurface storage have on the lease term?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... area for subsurface storage of gas, it does not affect the continuance or expiration of the lease. ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What effect does subsurface storage have on the..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  20. 30 CFR 250.122 - What effect does subsurface storage have on the lease term?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area for subsurface storage of gas, it does not affect the continuance or expiration of the lease. ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What effect does subsurface storage have on the..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  1. 30 CFR 550.122 - What effect does subsurface storage have on the lease term?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... area for subsurface storage of gas, it does not affect the continuance or expiration of the lease. ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What effect does subsurface storage have on the... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  2. 30 CFR 550.122 - What effect does subsurface storage have on the lease term?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... area for subsurface storage of gas, it does not affect the continuance or expiration of the lease. ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What effect does subsurface storage have on the... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...

  3. Natural selection of PAH-degrading bacterial guilds at coal-tar disposal sites

    SciTech Connect

    Ghiorse, W.C.; Herrick, J.B.; Sandoli, R.L.; Madsen, E.L.

    1995-06-01

    Microbial activity patterns at buried coal-tar disposal sites have been under investigation for several years to determine the response of naturally occurring microflora to polycyclic aromatic hydrocarbons (PAHs) at the sites. At one site in upstate New York, data have shown enrichment of PAH-degrading bacteria in subsurface contaminated zones but not in uncontaminated zones. Similar work at a Midwestern site showed that the same trends existed in a heterogeneous disposal site except that a borehole outside the plume showed some PAH-mineralization activity. Polymerase chain reaction amplification of DNA extracted from sediment samples from the New York site indicated the presence of naphthalene metabolism genes nahAc and nahR, similar to those found on the NAH7 plasmid of Pseudomonas putida G7. Significant sequence polymorphism was observed in amplified nahAc products, indicating that divergent homologs of nahAc were present in the native community. Protozoan numbers were elevated in sediment samples displaying relatively high PAH-degrading activity, suggesting that a food chain was established based on PAH-degrading bacteria. Removal of the coal-tar source at the site occurred in 1991. In 1992, sampling of three key borehole stations revealed that mixing and backfilling operations had introduced soil microorganisms into the source area and introduced 14C-PAH-mineralization activity into the previously inactive pristine area. Thus removal of the source of the contaminants and restoration at the site have altered the microbial activity patterns outside the contaminant plume as well as in the source area. 15 refs., 3 figs.

  4. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    SciTech Connect

    D.W. Markman

    2001-08-06

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of

  5. Investigation of the near subsurface using acoustic to seismic coupling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural, hydrological and civil engineering applications have realized a need for information of the near subsurface over large areas. In order to obtain this spatially distributed data over such scales, the measurement technique must be highly mobile with a short acquisition time. Therefore, s...

  6. Subsurface drip irrigation: Status of the technology in 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) although a much smaller fraction of the microirrigated land area than surface drip irrigation, is growing at a much faster rate, and is the subject of considerable research and educational efforts in the United States. This paper will discuss the growth in SDI, high...

  7. Geophysical Monitoring of Two types of Subsurface Injection

    EPA Science Inventory

    Nano-scale particles of zero-valent iron (ZVI) were injected into the subsurface at the 100-D area of the DOE Hanford facility. The intent of this iron injection was to repair a gap in the existing in-situ redox manipulation barrier located at the site. A number of geophysical me...

  8. Subsurface Electromagnetic Target Characterization and Identification

    DTIC Science & Technology

    1979-06-01

    B. Subsurface Electromagnetic Video Pulse Radar System 5 C. The Subsurface Targets 11 D. Raw Measured Waveforms 14 E. Processed Waveforms 15 III...259 r i. I .. . . .... .. . . . . .;. . . . .. .. o _ • v . . • • • -• -. . .. -"... .. . II II LIST OF FIGURES Figure Page 1 The subsurface pulse ...7 3 Typical raw waveform received by the pulse radar system ..... ................... .i..... 9 4 Physical characteristics of the subsurface

  9. Low level tank waste disposal study

    SciTech Connect

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  10. LEGACY NONCONFORMANCE ISSUE IN SOLID WASTE DISPOSAL

    SciTech Connect

    ROGERS, C.A.

    2002-12-16

    Beginning in 1968 waste from sectioning, sampling, and assaying of reactor fuels was sent to underground burial caissons in the 200-W Area of the Hanford Plant in Richland, Washington. In 2002 a review of inventory records revealed that criticality safety storage limits had been exceeded. This prompted declaration of a Criticality Prevention Specification nonconformance. The corrective action illustrates the difficulties in demonstrating compliance to fissile material limits decades after waste disposal.

  11. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  12. The subsurface of Pluto from submillimetre observations

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  13. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPORATORY STUDIES FACILITY

    SciTech Connect

    W.J. Clark

    1999-06-28

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-00011 Rev 01) (CRWMS M&O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M&O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M&O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the responsibility

  14. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTION COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS

    SciTech Connect

    Kaplan, D.; et. al

    2010-01-11

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.10-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide Kd variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  15. Method of installing subsurface barrier

    SciTech Connect

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  16. Integrated Disposal Facility Risk Assessment

    SciTech Connect

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  17. Disposable diapers: safe and effective.

    PubMed

    Singh, Namita; Purthi, P K; Sachdev, Anupam; Gupta, Suresh

    2003-09-01

    Nappy rash is a common problem in infants due to their thinner skin, wetness, heat and friction under cloth nappy, fecal enzymes and alkaline urine. The disposable diapers containing Super Absorbent Material (SAM) reduce the incidence of nappy rash. SAM quickly absorbs urine and keeps the skin dry. Also disposable diapers prevent fecal contamination by absorbing the urine and containing stools.

  18. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  19. Melter Disposal Strategic Planning Document

    SciTech Connect

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  20. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)