Sample records for subsurface drainage waters

  1. An analytical solution for predicting the transient seepage from a subsurface drainage system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling

    2016-05-01

    Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.

  2. Performance of Subsurface Tube Drainage System in Saline Soils: A Case Study

    NASA Astrophysics Data System (ADS)

    Pali, A. K.

    2015-06-01

    In order to improve the saline and water logged soils caused due to groundwater table rise, installation of subsurface drainage system is considered as one of the best remedies. However, the design of the drainage system has to be accurate so that the field performance results conform to the designed results. In this investigation, the field performance of subsurface tube drainage system installed at the study area was evaluated. The performance was evaluated on the basis of comparison of the designed value of water table drop as 30 cm after 2 days of drainage and predicted and field measured hydraulic heads for a consecutive drainage period of 14 days. The investigation revealed that the actual drop of water table after 2 days of drainage was 25 cm, about 17 % less than the designed value of 30 cm after 2 days of drainage. The comparison of hydraulic heads predicted by Van Schilfgaarde equation of unsteady drainage with the field-measured hydraulic heads showed that the deviation of predicted hydraulic heads varied within a range of ±8 % indicating high acceptability of Van Schlifgaarde equation for designing subsurface drainage system in saline and water logged soils resembling to that of the study area.

  3. Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...

  4. Assessment of Nitrate-N Load in Subsurface Drainage Water from the Agricultural Fields in the Fergana Valley, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Kenjabaev, S.; Forkutsa, I.; Dukhovny, V.; Frede, H. G.

    2012-04-01

    Leaching of nitrate-N (NO3-) from irrigated agricultural land and water contamination have become a worldwide concern. This study was conducted to investigate amount of nitrate-N leached to groundwater and surface water from irrigated cotton, winter wheat and maize fields in the Fergana Valley (Uzbekistan). Therefore at two sites ("Akbarabad" and "Azizbek") equipped with closed horizontal drainage system during 2010-2011 vegetation seasons we monitored water flow, nutrient concentrations and salinity at surface and subsurface drains, at irrigation canals and groundwater. We also applied stable isotopes (δ2H and δ18O) method in order to investigate the source of drainage water runoff. Discussed are results of 2010. Farmers fertilized cotton fields with ammonium nitrate of 350-450 kg ha-1 in "Akbarabad" and 700 kg ha-1 in "Azizbek" sites. In winter wheat and maize fields (in "Akbarabad") about 500 kg ha-1 of ammonium nitrate were applied. Cotton fields were irrigated with 2700 m3 ha-1 ("Akbarabad") and 3500 m3 ha-1 ("Azizbek"). In winter wheat and maize fields applied irrigation water amounted to 3900 m3 ha-1 and 723 m3 ha-1, respectively. Frequent groundwater and subsurface drainage water sampling revealed that nitrate leaching occurred mostly during and right after the irrigation events. The estimated average nitrate-N concentration in subsurface drainage water in "Akbarabad" was slightly higher (9 mg l-1) than in "Azizbek" (8 mg l-1). During July-November (2010), in average, nitrate-N losses through subsurface drainage amounted to 24 kg ha-1 in "Akbarabad" and 18 kg ha-1 in "Azizbek". The salinity of drainage water at both sites was similar and varied between 2.3-2.7 dS m-1. Preliminary results of isotope signals of studied water (precipitation, drainage, irrigation and ground water) indicate that the source of drainage water runoff comes from the irrigation water, while the contribution of rainfall is negligible. It is planned to run simulations with DRAINMOD model for further investigation of water and N balances of the selected sites. Developed recommendations for farmers on optimum irrigation water amounts and N fertilization will allow reducing environmental risks in agricultural lands of the Fergana Valley.

  5. Assessment of Commercially Marketed Filter Materials for Tile Drainage Outlets on Golf Courses

    USDA-ARS?s Scientific Manuscript database

    Subsurface tile drainage is essential in the construction and functionality of golf course greens. However, due to turf management, the waters conveyed by the drainage network contain potentially high levels of nutrients and pesticides. The objective of this research is to assess the subsurface hydr...

  6. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    PubMed

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  7. Anthropogenic modifications to drainage conditions on streamflow variability in the Wabash River basin, Indiana

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.

    2011-12-01

    The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.

  8. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    USDA-ARS?s Scientific Manuscript database

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations w...

  9. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    USDA-ARS?s Scientific Manuscript database

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations wh...

  10. Weather, landscape, and management effects on nitrate and soluble phosphorus concentrations in subsurface drainage discharge in the western Lake Erie basin

    USDA-ARS?s Scientific Manuscript database

    Subsurface drainage, while an important and necessary agricultural production practice in the Midwest, contributes nitrate (NO3) and soluble phosphorus (P) to surface waters. Eutrophication (i.e., excessive enrichment of waters by NO3 and soluble P) supports harmful algal blooms (HABs) in receiving ...

  11. Impacts of drainage water management on subsurface drain flow, nitrate concentration, and nitrate loads in Indiana

    EPA Science Inventory

    Drainage water management is a conservation practice that has the potential to reduce drainage outflow and nitrate (NO3) loss from agricultural fields while maintaining or improving crop yields. The goal of this study was to quantify the impact of drainage water management on dra...

  12. Isotopic mixing model for quantifying contributions of soil water and groundwater in subsurface ('tile') drainage

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Gall, H.; Jafvert, C. T.; Bowen, G. J.

    2010-12-01

    Subsurface (‘tile’) drainage, consisting of buried grids of perforated pipe, has provided a means of converting millions of acres of poorly drained soils in the Midwestern U.S. into fertile cropland. However, by altering pathways and rates of soil water and groundwater movement through agricultural lands, this practice may accelerate the loss of nitrate and other agrochemicals. To better understand the hydrological controls on nitrogen dynamics in artificially drained agricultural watersheds, a field sampling program has been established at the Animal Science Research and Education Center (ASREC) at Purdue University (West Lafayette, Indiana) to (1) measure precipitation amount, tile flow, and water-table elevation, and (2) collect water samples for analysis of nitrate, major ions, and oxygen isotope ratios in precipitation, tile drainage, shallow (1 m) and deep (3 m) groundwater, and soil water during storm events. Preliminary physical, chemical, and isotopic data collected at the ASREC show a coincident timing of peak storm ‘event water’ and peak nitrate flux in tile drainage, suggesting significant routing of infiltrating event water. In this work, we aim to refine our understanding of tile drainage at the ASREC by developing a mixing model for partitioning contributions of soil water and groundwater in tile drainage during several storm runoff events ranging in precipitation intensity and coinciding with varying antecedent soil moisture conditions. The results of our model will describe tile drainage in terms of its hydrological components, soil water and groundwater, which in turn will provide a means of incorporating the effects of tile drainage in surface/subsurface hydrological transport models.

  13. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    USDA-ARS?s Scientific Manuscript database

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  14. Quantification of mine-drainage inflows to Little Cottonwood Creek, Utah, using a tracer-injection and synoptic-sampling study

    USGS Publications Warehouse

    Kimball, B.; Runkel, R.; Gerner, L.

    2001-01-01

    Historic mining in Little Cottonwood Canyon in Utah has left behind many mine drainage tunnels that discharge water to Little Cottonwood Creek. To quantify the major sources of mine drainage to the stream, synoptic sampling was conducted during a tracer injection under low flow conditions (September 1998). There were distinct increases in discharge downstream from mine drainage and major tributary inflows that represented the total surface and subsurface contributions. The chemistry of stream water determined from synoptic sampling was controlled by the weathering of carbonate rocks and mine drainage inflows. Buffering by carbonate rocks maintained a high pH throughout the study reach. Most of the metal loading was from four surface-water inflows and three subsurface inflows. The main subsurface inflow was from a mine pool in the Wasatch Tunnel. Natural attenuation of all the metals resulted in the formation of colloidal solids, sorption of some metals, and accumulation onto the streambed. The deposition on the streambed could contribute to chronic toxicity for aquatic organisms. Information from the study will help to make decisions about environmental restoration.

  15. Agricultural drainage pipe detection using ground penetrating radar: Effects of antenna orientation relative to drainage pipe directional trend

    USDA-ARS?s Scientific Manuscript database

    Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...

  16. A GPR agricultural drainage pipe detection case study: Effects of antenna orientation relative to drainage pipe directional trend

    USDA-ARS?s Scientific Manuscript database

    Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...

  17. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.

    PubMed

    Jaynes, D B; Isenhart, T M

    2014-03-01

    Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD

    NASA Astrophysics Data System (ADS)

    Saadat, S.; Bowling, L. C.; Frankenberger, J.

    2017-12-01

    Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.

  19. Design and hydrologic performance of a tile drainage treatment wetland in Minnesota, USA

    USDA-ARS?s Scientific Manuscript database

    Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters such as the Gulf of Mexico. A 0.10 ha wetland was designed,installed and monitored to treat subsurface drainage flow from farmland in Minnesota, USA. This project sought to deve...

  20. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    EPA Science Inventory

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  1. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  2. Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations

    USGS Publications Warehouse

    Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.

    2016-01-01

    BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.

  3. Corn stover harvest increases herbicide movement to subsurface drains - Root Zone Water Quality Model simulations.

    PubMed

    Shipitalo, Martin J; Malone, Robert W; Ma, Liwang; Nolan, Bernard T; Kanwar, Rameshwar S; Shaner, Dale L; Pederson, Carl H

    2016-06-01

    Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA). The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4-5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of the parent compound into the soil. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu

    2009-04-01

    The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.

  5. Corn yield under subirrigation and future climate scenarios in the Maumee river basin

    USDA-ARS?s Scientific Manuscript database

    Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...

  6. A case study examining the efficacy of drainage setbacks for limiting effects to wetlands in the Prairie Pothole Region, USA

    USGS Publications Warehouse

    Tangen, Brian; Finocchiaro, Raymond

    2017-01-01

    The enhancement of agricultural lands through the use of artificial drainage systems is a common practice throughout the United States, and recently the use of this practice has expanded in the Prairie Pothole Region. Many wetlands are afforded protection from the direct effects of drainage through regulation or legal agreements, and drainage setback distances typically are used to provide a buffer between wetlands and drainage systems. A field study was initiated to assess the potential for subsurface drainage to affect wetland surface-water characteristics through a reduction in precipitation runoff, and to examine the efficacy of current U.S. Department of Agriculture drainage setback distances for limiting these effects. Surface-water levels, along with primary components of the catchment water balance, were monitored over 3 y at four seasonal wetland catchments situated in a high-relief terrain (7–11% slopes). During the second year of the study, subsurface drainage systems were installed in two of the catchments using drainage setbacks, and the drainage discharge volumes were monitored. A catchment water-balance model was used to assess the potential effect of subsurface drainage on wetland hydrology and to assess the efficacy of drainage setbacks for mitigating these effects. Results suggest that overland precipitation runoff can be an important component of the seasonal water balance of Prairie Pothole Region wetlands, accounting on average for 34% (19–49%) or 45% (39–49%) of the annual (includes snowmelt runoff) or seasonal (does not include snowmelt) input volumes, respectively. Seasonal (2014–2015) discharge volumes from the localized drainage systems averaged 81 m3 (31–199 m3), and were small when compared with average combined inputs of 3,745 m3 (1,214–6,993 m3) from snowmelt runoff, direct precipitation, and precipitation runoff. Model simulations of reduced precipitation runoff volumes as a result of subsurface drainage systems showed that ponded wetland surface areas were reduced by an average of 590 m2 (141–1,787 m2), or 24% (3–46%), when no setbacks were used (drainage systems located directly adjacent to wetland). Likewise, wetland surface areas were reduced by an average of 141 m2 (23–464 m2), or 7% (1–28%), when drainage setbacks (buffer) were used. In totality, the field data and model simulations suggest that the drainage setbacks should reduce, but not eliminate, impacts to the water balance of the four wetlands monitored in this study that were located in a high-relief terrain. However, further study is required to assess the validity of these conclusions outside of the limited parameters (e.g., terrain, weather, soils) of this study and to examine potential ecological effects of altered wetland hydrology.

  7. Reducing phosphorus loss in tile water with managed drainage in a claypan soil.

    PubMed

    Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris

    2015-03-01

    Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary monitoring results, and other observations.

  9. Open inlet conversion: Water quality benefits of two designs

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...

  10. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    NASA Astrophysics Data System (ADS)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  11. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  12. Subsurface recharge to the Tesuque aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico

    USGS Publications Warehouse

    Wasiolek, Maryann

    1995-01-01

    Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.

  13. Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.

    2000-04-01

    A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.

  14. Characterizing phosphorus dynamics in tile-drained agricultural fieldsof eastern Wisconsin

    USGS Publications Warehouse

    Madison, Allison; Ruark, Matthew; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Laura W.; Drummy, Nancy; Cooley, Eric

    2014-01-01

    Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn–soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66–96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L−1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.

  15. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Madison, Allison M.; Ruark, Matthew D.; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Lara W.; Drummy, Nancy; Cooley, Eric T.

    2014-11-01

    Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn-soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66-96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L-1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.

  16. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...

  17. Effects of subsurface drainage systems on water and nitrogen footprints simulated with RZWQM2

    USDA-ARS?s Scientific Manuscript database

    When considering the use of drainage water management (DWM) in the Midwest to reduce nutrient contributions to the Northern Gulf of Mexico Hypoxic Zone, it is essential to understand the long-term performance of these systems. Few studies have evaluated long-term impacts of DWM and the simulation of...

  18. Performance of dentrification beds for removing nitrate from drainage water at cold temperatures

    USDA-ARS?s Scientific Manuscript database

    Transport of soluble nitrogen and phosphorus to water bodies has been a concern for many years due to human health issues, and is a major contributor to the formation of oxygen deficiency in aquatic ecosystems. Agricultural subsurface drainage is one pathway for transport of excess nutrients to surf...

  19. Evaluation of pore-water samplers at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used innovative sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report evaluates a new type of pore-water sampler developed for this investigation to examine the subsurface contamination beneath the drainage ditch. The new type of pore-water sampler appears to be an effective approach for long-term monitoring of ground water in the sand and organic-rich mud beneath the drainage ditch.

  20. Location and assessment of drainage pipes beneath farm fields and golf course greens using ground penetrating radar: A research summary

    USDA-ARS?s Scientific Manuscript database

    Enhancing the efficiency of soil water removal, and in turn crop productivity, on farmland already containing a subsurface drainage system, typically involves installing new drain lines between the old ones. However, before this approach can be attempted, the older drainage pipes need to be located...

  1. Opportunities for Reducing Nitrate Export from Drainage Systems through In-field Nitrogen Management, Cropping Practices, and Drainage Design and Management

    NASA Astrophysics Data System (ADS)

    Helmers, M.; Zhou, X.; Qi, Z.; Christianson, R.; Pederson, C.

    2011-12-01

    Subsurface drainage systems are widely used throughout the upper Midwest corn-belt. While the use of these drainage systems has greatly increased crop production, they have also increased nitrate-nitrogen export to downstream waterbodies. As a result, there is a need to evaluate and implement management practices that have potential to reduce nitrate-nitrogen loss. A twenty year study in Iowa has shown that major factors in nitrate-nitrogen loss are land use and hydrology. Studies from north-central Iowa have also indicated that nitrogen application rate and to a lesser degree timing of nitrogen application important factors for nitrate-nitrogen loss. A four-year (2007-2010) drainage management study in southeast Iowa indicates that shallow and controlled drainage systems have potential to decrease subsurface drainage and thereby reduce nitrate-N loss from drain water but the level of implementation of controlled drainage may be limited by topography. Cropping practices through cover crops or perennial biomass crops have also been documented to have potential to reduce downstream nitrate-nitrogen export but the level of implementation may be limited by management and economic considerations. To achieve reduction goals for protection of local and regional water quality will require a combination of these practices at the landscape scale.

  2. SUBSURFACE RESIDENCE TIMES AS AN ALGORITHM FOR AQUIFER SENSITIVITY MAPPING: TESTING THE CONCEPT WITH GROUND WATER MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    This poster will present a modeling and mapping assessment of landscape sensitivity to non-point source pollution as applied to a hierarchy of catchment drainages in the Coastal Plain of the state of North Carolina. Analysis of the subsurface residence time of water in shallow a...

  3. Effect of subsurface drainage on runoff and sediment yield from an agricultural watershed in western Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Istok, J. D.; Kling, G. F.

    1983-09-01

    Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.

  4. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    USGS Publications Warehouse

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing subsurface drainage systems on these lands. The length of slope of individual catchments and depth of subsurface drainage systems could be considered when prescribing drainage setback distances and assessing potential effects to wetland hydrology. Moreover, because of uncertainties associated with the efficacy of standard drainage setback distances, exclusion of subsurface drainage systems from wetland catchments would be ideal when the goal is to protect wetlands.

  5. Imaging Preferential Flow Pathways of Contaminants from Passive Acid Mine Drainage Mitigation Sites Using Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.

    2017-12-01

    The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.

  6. Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure.

    PubMed

    Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E

    2012-05-01

    A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.

  7. Durability of Drainage Improvement by Combination of Main Drain and Trench Drains with Vertical Drains in Clayey Field Converted from Paddy to Upland Use

    NASA Astrophysics Data System (ADS)

    Adachi, Kazuhide; Ohno, Satoshi; Furuhata, Masami; Ogura, Chikara; Tanimoto, Takeshi

    The drainage efficiency of a subsurface drainage system for avoidance of standing water on the plow pan of clayey field was evaluated. A subsurface drainage system with a main drain and orthogonally adjoined rice husk trench drains joined by vertical rice husk drains was constructed on a test plot and compared to an identical control plot of paddy field converted to upland use under soybean cultivation. The ratio of total underdrain discharge to rainfall in the improved plot greatly increased over two years compared to that in a control plot. In the improved plot, the peak underdrain discharge per hour associated with some heavy rainfalls was around 3 mm/h in the first year but decreased to about 2 mm/h in the second year. By improving drainage in the paddy field, standing water on the plow pan was quickly eliminated after rain events and the period of flooding on the plow pan during the soybean growing season was greatly reduced. However, underdrain discharge in the improved plot decreased greatly in the third year to be at the same level as in the control plot, and rain water flooded the plow pan for extended periods of time.

  8. Dissipation of atrazine, enrofloxacin, and sulfamethazine in wood chip bioreactors and impact on denitrification

    USDA-ARS?s Scientific Manuscript database

    Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...

  9. Estimating restorable wetland water storage at landscape scales

    EPA Science Inventory

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., the volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many...

  10. Use of industrial byproducts to filter PO43- and pesticides in golf green drainage water

    USDA-ARS?s Scientific Manuscript database

    Golf courses are vulnerable to phosphate (PO43-) and pesticide loss by infiltration because of the sandy, porous grass rooting media used and presence of subsurface tile drainage. In this study, a blend of industrial byproducts, including granulated blast furnace slag (GBFS), cement kiln dust (CKD),...

  11. Use of industrial byproducts to filter nutrients and pesticides in a golf green’s drainage water

    USDA-ARS?s Scientific Manuscript database

    Golf courses are particularly vulnerable to phosphate (PO43-) and pesticide loss by infiltration because of the sandy, porous grass rooting media used and presence of subsurface tile drainage. In this study, an effort was made to filter PO43-, chlorothalonil, mefenoxam, and propiconazole in putting ...

  12. Effect of alternative surface inlet designs on sediment and phosphorus drainage losses

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  13. A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples

    NASA Astrophysics Data System (ADS)

    Flowers, Gwenn E.; Clarke, Garry K. C.

    2002-11-01

    Basal hydrology is acknowledged as a fundamental control on glacier dynamics, especially in cases where surface meltwater reaches the bed. For many glaciers at midlatitudes, basal drainage is influenced by subaerial, englacial, and subsurface water flow. One of the major shortcomings of existing basal hydrology models is the treatment of the glacier bed as an isolated system. We present theoretical and computational models that couple glacier surface runoff, englacial water storage and transport, subglacial drainage, and subsurface groundwater flow. Each of the four model components is represented as a two-dimensional, vertically integrated layer that communicates with its neighbors through water exchange. Governing equations are derived from the law of mass conservation and are expressed as a balance between the internal distribution of water and external sources. The numerical exposition of this theory is a time-dependent finite difference model that can be used to simulate glacier drainage. In this paper we outline the theory and conduct simple tests using an idealized glacier geometry. In the companion paper, the model is tailored to Trapridge Glacier, Yukon Territory, Canada, where results are compared with measurements of subglacial water pressure.

  14. Evaluating roadway subsurface drainage practices - phase II : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-04-01

    The presence of subsurface drainage systems (e.g., granular bases or : outlets) is generally believed to be beneficial to the performance of : various pavement types. Well-performing subsurface drainage systems : form an important aspect of pavement ...

  15. Evaluation on the Efficiency of Subsurface Drainage in Chiu-Fen Landslide at Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Ying, L. Y.; Lin, D. G.

    2015-12-01

    For administrative district, the Chiu-Fen landslide is situated at northern Taiwan and comes within the jurisdiction of Ruei-Fang district, New Taipei City Government. Chiu-Fen village is a famous spot for sightseeing and tourism in Southeast Asia. In the last decade, for economic purpose, a vast area of slope land in Chiu-Fen area was reclaimed into business and commercial districts. However, due to the complicated geological and hydrological conditions, improper reclamation, and lack of appropriate soil and water conservation facilities, large scale landslides are frequently triggered by typhoon rainfall and causes damages to the transportation and residential building in the community. As a consequence, the government initiated a comprehensive field investigations and remediation plans to stabilize the landslide from 1997 and the remediation works were concentrated on subsurface drainages, namely the application of drainage well (a vertical shaft with multi-level horizontal drainage boreholes). To investigate the efficiency of drainage wells on the landslide, the A1-profile in the landslide which covers the drainage wells W2 and W4 was selected for a series of rainfall seepage and slope stability analyses. In addition, a 48-hrs design rainfall with return period of 25, 50 and 100 years based on the local meteorological data bank was adopted for the analyses. The numerical results indicate the factor safety FS of the three potential sliding surfaces within A1-profile are constantly keeping greater than one (FS > 1.0) and without decreasing with the elapsed time during rainfall. This implies that the subsurface drainage works can drain off the infiltrated rainwater from a high intensity and long duration rainfall and preserve the slope stability of landslides from deterioration. Finally, the efficiency of the drainage wells can be evaluated quantitatively in terms of the time-dependent factor of safety and the pore water pressure distribution on several potential sliding surfaces.

  16. Completion reports, core logs, and hydrogeologic data from wells and piezometers in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    Johnson, Raymond H.; Yager, Douglas B.

    2006-01-01

    In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, wells and piezometers were installed to allow for coring during installation, subsurface hydrologic testing, and the monitoring of ground-water hydraulic heads and geochemistry. This report summarizes the data that were collected during and after the installation of these wells and piezometers and includes (1) subsurface completion details, (2) locations and elevations, (3) geologic logs and elemental data, (4) slug test data for the estimation of subsurface hydraulic conductives, and (5) hydraulic head data.

  17. Stormwater Management Decision Support System for Using Low Impact Development Best Management Practices in Industrial Areas

    DTIC Science & Technology

    2015-05-30

    particulates can be trapped in the inlet then washed into the drainage system in a large storm event...and P. Matin. 2005. Performance and Whole-Life Costs of Best Management Practices and Sustainable Urban Drainage Systems . Report #01CTS21TA. Water...subsurface drainage system consisting of a parallel perforated PVC pipe system in a stone bed that connects to the third chamber, which is the discharge

  18. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.

    PubMed

    Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H

    2016-10-01

    Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Published by Elsevier Ltd.

  19. Non-linear hydraulic properties of woodchips necessary to design denitrification beds

    USDA-ARS?s Scientific Manuscript database

    Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...

  20. Can we treat enough water to meet water quality goals

    USDA-ARS?s Scientific Manuscript database

    Denitrifying woodchip bioreactors are sized to treat a portion of subsurface drainage flow from a given system. Over sizing them can create conditions under which unintended consequences could occur. A potential solution for treating additional water is to use a cascading series of bioreactor cell...

  1. Evaluating roadway subsurface drainage practices.

    DOT National Transportation Integrated Search

    2013-05-01

    The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is pre...

  2. Numerical simulation of water flow and Nitrate transport through variably saturated porous media in laboratory condition using HYDRUS 2D

    NASA Astrophysics Data System (ADS)

    Jahangeer, F.; Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The findings of the study help to enhance the understanding of the sustainable soil-water resources management and agricultural practices.

  3. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    NASA Astrophysics Data System (ADS)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1 treatment (Control) 7.3 Mg / ha and T4 treatment with 7.1 Mg / ha. Therefore, in the mixed system with two drains the best results were obtained.

  4. Evaluating roadway subsurface drainage practices : [summary].

    DOT National Transportation Integrated Search

    2013-05-01

    The bearing capacity and service life of a pavement is adversely affected by the presence of undrained water in the pavement layers. In cold climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. T...

  5. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.

  6. Winery wastewater treatment using the land filter technique.

    PubMed

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  7. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  8. Subsurface phosphorus transport through a no-till field in the semi arid Palouse region

    NASA Astrophysics Data System (ADS)

    Norby, J. C.; Brooks, E. S.; Strawn, D. G.

    2017-12-01

    Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.

  9. Organic Carbon as Inhibitor to SVOC and Metal Migration in Stormwater Drywells Discharging to the Subsurface-SLIDES

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA) authorizes the Underground Injection Control (UIC) program to protect underground drinking water (USDW) sources from contamination caused by underground injection wells, including regulation of stormwater drainage drywells for parking lot and ro...

  10. Effect of subsurface drainage on streamflow in an agricultural headwater watershed

    USDA-ARS?s Scientific Manuscript database

    Artificial drainage, also known as subsurface or tile drainage is paramount to sustaining crop production agriculture in the poorly-drained, humid regions of the world. Hydrologic assessments of individual plots and fields with tile drainage are becoming common; however, a major void exists in our u...

  11. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.

  12. Identifying riparian zones appropriate for installation of saturated buffers: A multi-watershed assessment

    USDA-ARS?s Scientific Manuscript database

    Saturated riparian buffers are a new type of conservation practice that divert a portion of subsurface tile drainage from discharge to surface water into distribution pipes that discharge tile water into riparian soils. This enables natural processes of biological uptake and denitrification to decre...

  13. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    USDA-ARS?s Scientific Manuscript database

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  14. Installation Restoration Program. Phase I. Records Search, Hazardous Materials Disposal Sites. Myrtle Beach Air Force Base, South Carolina.

    DTIC Science & Technology

    1981-10-01

    Geography 3-1 Topography 3-. Drainage 3-1 ii Page Surface Geology 3-3 Barrier Sediments 3-3 Myrtle Beach Backbarrier Sediments 3-3 soils 3-5 Subsurface...Beach AFB Surface Drainage and Surface Water Sampling Points 3-2 3.2 Myrtle Beach AFB Surface Soils 3-4 3.3 Myrtle Beach AFB Location of Geologic Cross...has created a potential contamination problem. This situation is compounded by the site’s sandy soil and shallow ground water table. b.) Weathering Pit

  15. Guidelines for the design of subsurface drainage systems for highway structural sections

    DOT National Transportation Integrated Search

    1972-06-01

    Design criteria and a design method for pavement subsurface drainage systems include inflow-outflow method of analysis, open graded drainage layers, collector drains, pipe outlets and markers. Design examples are given for embankment sections, cut se...

  16. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  17. Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen

    USDA-ARS?s Scientific Manuscript database

    Using chlorophyll meters, crop sensors, or aerial photography to fine-tune sidedress N application rates have been proposed for optimizing and perhaps reducing overall N fertilizer use on corn (Zea mays L.) and thereby improving water quality by reducing NO3 losses to surface and ground waters. Howe...

  18. Effect of tillage on macropore flow and phosphorus transport to tile drains

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) concentrations in subsurface drainage water are thought to be the result of P bypassing the soil matrix via macropore flow. The objectives of this study were to quantify event water delivery to tile drains via macropore flow paths during storm events and to determine the effe...

  19. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    USGS Publications Warehouse

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  20. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Hydrologic connectivity of geographically isolated wetlands to surface water systems

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2016-12-01

    Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.

  2. Experimental study on soluble chemical transfer to surface runoff from soil.

    PubMed

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  3. Tracking surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Miles, Katie; Willis, Ian; Benedek, Corinne; Williamson, Andrew; Tedesco, Marco

    2017-04-01

    Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) are an important component of the ice sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) to investigate SGLs in West Greenland. SAR can image through cloud and in darkness, overcoming some of the limitations of commonly used optical sensors. A semi automated algorithm is developed to detect surface lakes from Sentinel images during the 2015 summer. It generally detects water in all locations where a Landsat-8 NDWI classification (with a relatively high threshold value) detects water. A combined set of images from Landsat-8 and Sentinel-1 is used to track lake behaviour at a comparable temporal resolution to that which is possible with MODIS, but at a higher spatial resolution. A fully automated lake drainage detection algorithm is used to investigate both rapid and slow drainages for both small and large lakes through the summer. Our combined Landsat-Sentinel dataset, with a temporal resolution of three days, could track smaller lakes (mean 0.089 km2) than are resolvable in MODIS (minimum 0.125 km2). Small lake drainage events (lakes smaller than can be detected using MODIS) were found to occur at lower elevations ( 200 m) and slightly earlier in the melt season than larger events, as were slow lake drainage events compared to rapid events. The Sentinel imagery allows the analysis to be extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August, 1270 m mean elevation). Finally, the Sentinel imagery allows subsurface lakes (which are invisible to optical sensors) to be detected, and, for the first time, their dates of appearance and freeze-through to be calculated (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (1593 m mean elevation). Sentinel imagery therefore provides great potential for tracking melting, water movement and freezing within the firn zone of the GrIS.

  4. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; ...

    2015-11-08

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO 2) and methane (CH 4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH 4 and CO 2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO 2) and CH 4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DICmore » and CH 4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH 4 and DIC balance by estimating mechanisms of CH 4 and DIC production and transport pathways and oxidation of subsurface CH 4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH 4 production mechanism. The majority of subsurface CH 4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH 4 oxidation. Thus, surprisingly, CH 4 oxidation only consumed approximately 2.51± 0.82% (July) and 0.79 ± 0.79% (September) of CH 4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. Furthermore, this work highlights the importance of spatial and temporal variability of CH 4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH 4 and CO 2 production.« less

  5. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Treesearch

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  6. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    USDA-ARS?s Scientific Manuscript database

    Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...

  7. Atrazine sorption by biochar, tire chips, and steel slag as media for blind inlets: A kinetic and isotherm sorption approach

    USDA-ARS?s Scientific Manuscript database

    Surface inlets are installed in subsurface drainage systems to reduce ponding duration and surface runoff, but can contribute to water quality concerns by allowing water to directly enter buried drains. Blind inlets, consist of perforated pipes covered with gravel and are separated from an overlying...

  8. Denitrifying bioreactors for nitrate removal from tile drained cropland

    USDA-ARS?s Scientific Manuscript database

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  9. 4R Water Quality Impacts: An Assessment and Synthesis of Forty Years of Drainage Nitrogen Losses.

    PubMed

    Christianson, L E; Harmel, R D

    2015-11-01

    The intersection of agricultural drainage and nutrient mobility in the environment has led to multiscale water quality concerns. This work reviewed and quantitatively analyzed nearly 1,000 site-years of subsurface tile drainage nitrogen (N) load data to develop a more comprehensive understanding of the impacts of 4R practices (application of the right source of nutrients, at the right rate and time, and in the right place) within drained landscapes across North America. Using drainage data newly compiled in the "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database, relationships were developed across N application rates for nitrate N drainage loads and corn ( L.) yields. The lack of significant differences between N application timing or application method was inconsistent with the current emphasis placed on application timing, in particular, as a water quality improvement strategy ( = 0.934 and 0.916, respectively). Broad-scale analyses such as this can help identify major trends for water quality, but accurate implementation of the 4R approach will require site-specific knowledge to balance agronomic and environmental goals. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Optimization of denitrifying bioreactor performance with agricultural residue-based filter media

    USDA-ARS?s Scientific Manuscript database

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Columns were packed with wood chips...

  11. Performance of a pilot showcase of different wetland systems in an urban setting in Singapore.

    PubMed

    Quek, B S; He, Q H; Sim, C H

    2015-01-01

    The Alexandra Wetlands, part of PUB's Active, Beautiful, Clean Waters (ABC Waters) Programme, showcase a surface flow wetland, an aquatic pond and a sub-surface flow wetland on a 200 m deck built over an urban drainage canal. Water from the canal is pumped to a sedimentation basin, before flowing in parallel to the three wetlands. Water quality monitoring was carried out monthly from April 2011 to December 2012. The order of removal efficiency is sub-surface flow (81.3%) >aquatic pond (58.5%) >surface flow (50.7%) for total suspended solids (TSS); sub-surface (44.9%) >surface flow (31.9%) >aquatic pond (22.0%) for total nitrogen (TN); and surface flow (56.7%) >aquatic pond (39.8%) >sub-surface flow (5.4%) for total phosphorus (TP). All three wetlands achieved the Singapore stormwater treatment objectives (STO) for TP removal, but only the sub-surface flow wetland met the STO for TSS, and none met the STO for TN. Challenges in achieving satisfactory performance include inconsistent feed water quality, undesirable behaviour such as fishing, release of pets and feeding of animals in the wetlands, and canal dredging during part of the monitoring period. As a pilot showcase, the Alexandra Wetlands provide useful lessons for implementing multi-objective wetlands in an urban setting.

  12. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    NASA Astrophysics Data System (ADS)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  13. Evaluating roadway subsurface drainage practices - phase II.

    DOT National Transportation Integrated Search

    2015-04-01

    Well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of : Transportation (DOT). The recently completed Iowa Highway Research Board (IHRB) project TR-643 provided extensive : insights into Iowa...

  14. Effect of subsurface drainage on the structural capacity of flexible pavement.

    DOT National Transportation Integrated Search

    2005-01-01

    Following the recommendation of the Virginia Transportation Research Council's Pavement Research Advisory Committee, this project was initiated to determine the effectiveness of including subsurface drainage systems in pavements in Virginia. The rese...

  15. Comprehensive nitrogen budgets for controlled tile drainage fields in eastern ontario, Canada.

    PubMed

    Sunohara, M D; Craiovan, E; Topp, E; Gottschall, N; Drury, C F; Lapen, D R

    2014-03-01

    Excessive N loading from subsurface tile drainage has been linked to water quality degradation. Controlled tile drainage (CTD) has the potential to reduce N losses via tile drainage and boost crop yields. While CTD can reduce N loss from tile drainage, it may increase losses through other pathways. A multiple-year field-scale accounting of major N inputs and outputs during the cropping season was conducted on freely drained and controlled tile drained agricultural fields under corn ( L.)-soybean [ (L.) Merr.] production systems in eastern Ontario, Canada. Greater predicted gaseous N emissions for corn and soybean and greater observed lateral seepage N losses were observed for corn and soybean fields under CTD relative to free-draining fields. However, observed N losses from tile were significantly lower for CTD fields, in relation to freely drained fields. Changes in residual soil N were essentially equivalent between drainage treatments, while mass balance residual terms were systematically negative (slightly more so for CTD). Increases in plant N uptake associated with CTD were observed, probably resulting in higher grain yields for corn and soybean. This study illustrates the benefits of CTD in decreasing subsurface tile drainage N losses and boosting crop yields, while demonstrating the potential for CTD to increase N losses via other pathways related to gaseous emissions and groundwater seepage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Woodchip denitrification bioreactors: Impact of temperature and hydraulic retention time on nitrate removal

    USDA-ARS?s Scientific Manuscript database

    Woodchip denitrification bioreactors, a relatively new technology for edge-of-field treatment of subsurface agricultural drainage water, have shown potential for nitrate removal. However, very few studies have evaluated the performance of these reactors under controlled conditions similar to the fie...

  17. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Managing phosphorus export from golf courses using industrial byproducts as filter materials

    USDA-ARS?s Scientific Manuscript database

    Golf courses, and in particular the tees, fairways, and putting greens, are vulnerable to loss of phosphorus (P) as dissolved reactive P (DRP) through sandy, porous grass rooting media and subsurface tile drainage. Excess levels of phosphorus (P) in surface waters promotes eutrophication, which in t...

  19. Effectiveness of conservation practices within watersheds: Case study in tile-drained systems

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of conservation practices are governed in part by the spatial and temporal patterns of water flow as runoff and subsurface (tile) drainage. The variability in patterns of nitrate loss were examined using data from different sized catchments with four CEAP watersheds located in cent...

  20. Seasonal variation of macrolide resistance gene abundances in the South Fork Iowa River Watershed

    USDA-ARS?s Scientific Manuscript database

    The Midwestern United States is dominated by agricultural production with high concentrations of swine, leading to application of swine manure onto lands with artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and gr...

  1. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    USDA-ARS?s Scientific Manuscript database

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  2. Impact of tile drainage on evapotranspiration in South Dakota, USA, based on high spatiotemporal resolution evapotranspiration time series from a multi-satellite data fusion system

    USGS Publications Warehouse

    Yang, Yun; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Kustas, William P.; Meyers, Tilden P.; Crow, Wade; Finocchiaro, Raymond G.; Otkin, Jason; Sun, Liang; Yang, Yang

    2017-01-01

    Soil drainage is a widely used agricultural practice in the midwest USA to remove excess soil water to potentially improve the crop yield. Research shows an increasing trend in baseflow and streamflow in the midwest over the last 60 years, which may be related to artificial drainage. Subsurface drainage (i.e., tile) in particular may have strongly contributed to the increase in these flows, because of its extensive use and recent gain in the popularity as a yield-enhancement practice. However, how evapotranspiration (ET) is impacted by tile drainage on a regional level is not well-documented. To explore spatial and temporal ET patterns and their relationship to tile drainage, we applied an energy balance-based multisensor data fusion method to estimate daily 30-m ET over an intensively tile-drained area in South Dakota, USA, from 2005 to 2013. Results suggest that tile drainage slightly decreases the annual cumulative ET, particularly during the early growing season. However, higher mid-season crop water use suppresses the extent of the decrease of the annual cumulative ET that might be anticipated from widespread drainage. The regional water balance analysis during the growing season demonstrates good closure, with the average residual from 2005 to 2012 as low as -3 mm. As an independent check of the simulated ET at the regional scale, the water balance analysis lends additional confidence to the study. The results of this study improve our understanding of the influence of agricultural drainage practices on regional ET, and can affect future decision making regarding tile drainage systems.

  3. Effects of cell surface characteristics and manure-application practices on Escherichia coli populations in the subsurface: A three-farm study

    NASA Astrophysics Data System (ADS)

    Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.

    2010-12-01

    The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.

  4. Nondestructive evaluation of the condition of subsurface drainage in pavements using ground penetrating radar (GPR).

    DOT National Transportation Integrated Search

    2013-11-11

    Subsurface drainage features are routinely incorporated in the design of pavement systems as they are believed to increase pavement service life provided that they are installed correctly and maintained. Maintenance, however, is challenging in that l...

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  6. Constructed wetland attenuation of nitrogen exported in subsurface drainage from irrigated and rain-fed dairy pastures.

    PubMed

    Tanner, C C; Nguyen, M L; Sukias, J P S

    2005-01-01

    Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.

  7. Remote sensing of wet lands in irrigated areas

    NASA Technical Reports Server (NTRS)

    Ham, H. H.

    1972-01-01

    The use of airborne remote sensing techniques to: (1) detect drainage problem areas, (2) delineate the problem in terms of areal extent, depth to the water table, and presence of excessive salinity, and (3) evaluate the effectiveness of existing subsurface drainage facilities, is discussed. Experimental results show that remote sensing, as demonstrated in this study and as presently constituted and priced, does not represent a practical alternative as a management tool to presently used visual and conventional photographic methods in the systematic and repetitive detection and delineation of wetlands.

  8. Mineralogy from Cores in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Johnson, Raymond H.; Yager, Douglas B.

    2007-01-01

    In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, data was collected from drill core, which included: (1) detailed descriptions of the subsurface geology and hydrothermal alteration patterns, (2) depth of sulfide oxidation, and (3) quantitative mineralogy.

  9. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics that reflect base flow and the general hydrologic dynamics of a stream are important in understanding nutrient transport from a watershed and may be useful indicators of watersheds that are likely to have higher yields of nutrients and water. Combining streamflow statistics with information on such factors as land use, soil drainage, extent of riparian vegetation, geochemical conditions, and subsurface tile drainage in the Coastal Plain can be useful in identifying watersheds that are most likely to export excessive nitrogen due to nonpoint-source loadings and watersheds that are effective in processing nitrogen.

  10. Subsurface drainage erodes forested granitic terrane

    Treesearch

    Philip Durgin

    1984-01-01

    Abstract - Solution and landsliding, the dominant erosion processes in undisturbed forested mountainous watersheds, are both influenced by subsurface drainage. Biological processes that generate organic acids accelerate loss of dissolved solids by promoting the dissolution of primary minerals in granitic rock. These organic acids can also disperse the secondary...

  11. Nitrate concentration-drainage flow (C-Q) relationship for a drained agricultural field in Eastern North Carolina Plain

    NASA Astrophysics Data System (ADS)

    Liu, W.; Youssef, M.; Birgand, F.; Chescheir, G. M.; Maxwell, B.; Tian, S.

    2017-12-01

    Agricultural drainage is a practice used to artificially enhance drainage characteristics of naturally poorly drained soils via subsurface drain tubing or open-ditch systems. Approximately 25% of the U.S. agricultural land requires improved drainage for economic crop production. However, drainage increases the transport of dissolved agricultural chemicals, particularly nitrates to downstream surface waters. Nutrient export from artificially drained agricultural landscapes has been identified as the leading source of elevated nutrient levels in major surface water bodies in the U.S. Controlled drainage has long been practiced to reduce nitrogen export from agricultural fields to downstream receiving waters. It has been hypothesized that controlled drainage reduces nitrogen losses by promoting denitrification, reducing drainage outflow from the field, and increasing plant uptake. The documented performance of the practice was widely variable as it depends on several site-specific factors. The goal of this research was to utilize high frequency measurements to investigate the effect of agricultural drainage and related management practices on nitrate fate and transport for an artificially drained agricultural field in eastern North Carolina. We deployed a field spectrophotometer to measure nitrate concentration every 45 minutes and measured drainage flow rate using a V-notch weir every 15 minutes. Furthermore, we measured groundwater level, precipitation, irrigation amount, temperature to characterize antecedent conditions for each event. Nitrate concentration-drainage flow (C-Q) relationships generated from the high frequency measurements illustrated anti-clockwise hysteresis loops and nitrate flushing mechanism in response to most precipitation and irrigation events. Statistical evaluation will be carried out for the C-Q relationships. The results of our analysis, combined with numerical modeling, will provide a better understanding of hydrological and biogeochemical processes controlling the fate and transport of nitrate in drained agricultural landscapes.

  12. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  13. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    PubMed

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO₃-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO₃-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Profiling USGA putting greens using GPR

    USDA-ARS?s Scientific Manuscript database

    All USGA-specification putting greens require a subsurface drainage system. A typical subsurface installation is a herringbone pattern of buried 100-mm dia. PVC drainage pipes, designed such that the central main line is placed along the line of maximum slope. Laterals are spaced no more than 5 m, r...

  15. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    NASA Astrophysics Data System (ADS)

    Solander, K.; Famiglietti, J. S.; David, C. H.; Reager, J. T., II

    2014-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  16. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  17. Hydrogeologic data from a shallow flooding demonstration project, Twitchell Island, California, 1997-2001

    USGS Publications Warehouse

    Gamble, James M.; Burow, Karen R.; Wheeler, Gail A.; Hilditch, Robert; Drexler, Judy Z.

    2003-01-01

    Data were collected during a study to determine the effects of continuous shallow flooding on ground-water discharge to an agricultural drainage ditch on Twitchell Island, California. The conceptual model of the hydrogeologic setting was detailed with soil coring and borehole-geophysical logs. Twenty-two monitoring wells were installed to observe hydraulic head. Ten aquifer slug tests were done in peat and mineral sediments. Ground-water and surface-water temperature was monitored at 14 locations. Flow to and from the pond was monitored through direct measurement of flows and through the calculation of a water budget. These data were gathered to support the development of a two-dimensional ground-water flow model. The model will be used to estimate subsurface discharge to the drainage ditch as a result of the pond. The estimated discharge will be used to estimate the concentrations of DOC that can be expected in the ditch.

  18. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  19. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    NASA Astrophysics Data System (ADS)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  20. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozemeijer, J. C.; Visser, A.; Borren, W.

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less

  1. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE PAGES

    Rozemeijer, J. C.; Visser, A.; Borren, W.; ...

    2016-01-19

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less

  2. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.

  3. Dynamics of nitrate and chloride during storm events in agricultural catchments with different subsurface drainage intensity (Indiana, USA)

    USDA-ARS?s Scientific Manuscript database

    Grids of perforated pipe buried beneath many poorly drained agricultural fields in the Midwestern U.S. are believed to “short circuit” pools of nitrate-laden soil water and shallow groundwater directly into streams that eventually discharge to the Mississippi River. Although much is known about the ...

  4. The Revival of a Failed Constructed Wetland Treating of a High Fe Load AMD

    Treesearch

    A.D. Karathanasis; C.D. Barton

    1999-01-01

    Acid mine drainage (AMD) from abandoned mines has significantly impaired water quality in eastern Kentucky. A small surface flow wetland constructed in 1989 to reduce AMD effects and subsequently failed after six months of operation was renovated by incorporating anoxic limestone drains (ALDs) and anaerobic subsurface drains promoting vertical flow through successive...

  5. Estimating restorable wetland water storage at landscape scales

    USGS Publications Warehouse

    Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  6. Estimating restorable wetland water storage at landscape scales.

    PubMed

    Jones, Charles Nathan; Evenson, Grey R; McLaughlin, Daniel L; Vanderhoof, Melanie K; Lang, Megan W; McCarty, Greg W; Golden, Heather E; Lane, Charles R; Alexander, Laurie C

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  7. Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides

    PubMed Central

    Schaider, Laurel A.; Senn, David B.; Estes, Emily R.; Brabander, Daniel J.; Shine, James P.

    2014-01-01

    Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal: mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 μg g−1), Pb (up to 550 μg g−1) and Cd (up to 200 μg g−1) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage. PMID:24867708

  8. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (< 4 days) and slow (> 4 days) drainages are investigated for both small (< 0.125 km2, the minimum size detectable by MODIS) and large (≥ 0.125 km2) lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  9. Changing spatial patterns of evapotranspiration and deep drainage in response to the interactions among impervious surface arrangement, soil characteristics, and weather on a residential parcel.

    NASA Astrophysics Data System (ADS)

    Voter, C. B.; Steven, L. I.

    2015-12-01

    The introduction impervious surfaces in urban areas is a key driver of hydrologic change. It is now well understood that the amount of "effective" impervious area directly connected to the storm sewer network is a better indicator of hydrologic behavior than the total amount of impervious area. Most studies in urban hydrology have focused on the relationship between impervious connectivity and stormwater runoff or other surface water flows, with the result that the effect on subsurface flow is not as well understood. In the field, we observe differences in soil moisture availability that are dependent on proximity to impervious features and significant from a root water uptake perspective, which indicates that parcel-scale subsurface and plant water fluxes may also be sensitive to fine-scaled heterogeneity in impervious surface arrangement and connectivity. We use ParFlow with CLM, a watershed model with fully integrated variably-saturated subsurface flow, overland flow, and land-surface processes, to explore the extent to which soil moisture, evapotranspiration, and deep drainage vary under various impervious surface arrangement and soil condition scenarios, as well as under a range of precipitation regimes. We investigate the effect of several impervious surface and soil characteristics, including general lot layout, downspout disconnect, and direction of driveway/sidewalk slope, and soil compaction. We show that that some impervious connectivity schemes transfer more water from impervious areas to pervious ones and promote localized recharge by developing well-defined, fast-moving wetting fronts that are able to penetrate the root zone. Enhanced infiltration is translated more directly to recharge in normal to wet years but partitioned more often to transpiration in dry years, leading to a nonlinear relationship among precipitation, runoff and recharge.

  10. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

    PubMed

    Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D

    2013-11-01

    Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Exploring Agricultural Drainage's Influence on Wetland and ...

    EPA Pesticide Factsheets

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughout many regions of the United States and the network of artificial drainage is especially extensive in flat, poorly-drained regions like the glaciated Midwest. While beneficial for crop yields, agricultural drains often empty into streams within the natural drainage system. The increased network connectivity may lead to greater contributing area for watersheds, altered hydrology and increased conveyance of pollutants into natural water bodies. While studies and models at broader scales have implicated artificial drainage as an important driver of hydrological shifts and eutrophication, the actual spatial extent of artificial drainage is poorly known. Consequently, metrics of wetland and watershed connectivity within agricultural regions often fail to explicitly include artificial drainage. We use recent agricultural census data, soil drainage data, and land cover data to create estimates of potential agricultural drainage across the United States. We estimate that agricultural drainage in the US is greater than 31 million hectares and is concentrated in the upper Midwest Corn Belt, covering greater than 50% of available land for 114 counties. Estimated drainage values for numerous countie

  12. Subsurface Agricultural Irrigation Drainage: The Need for Regulation

    Treesearch

    A. Dennis Lemly

    1993-01-01

    Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the...

  13. Cumulative effects of wetland drainage on watershed-scale subsurface hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2017-12-01

    Subsurface hydrologic connectivity influences hydrological, biogeochemical and ecological responses within watersheds. However, information about the location, duration, and frequency of subsurface hydrologic connections within wetlandscapes and between wetlandscapes and streams is often not available. This leads to a lack of understanding of the potential effects of human modifications of the landscape, including wetland degradation and removal, on subsurface hydrologic connectivity and therefore watershed responses. Herein, we develop a computationally efficient, physically-based subsurface hydrologic connectivity model that explicitly characterizes the effects of wetland degradation and removal on the distribution, length, and timing of subsurface hydrologic connectivity within a wetland-dominated watershed in the Prairie Pothole Region of North America. We run the model using a time series of wetland inventories that reflect incremental wetland loss from 1962, to 1993, and to 2009. We also consider a potential future wetland loss scenario based on removal of all wetlands outside of the protected areas of the watershed. Our findings suggest that wetland degradation and removal over this period increased the average length, transit time, and frequency of subsurface hydrologic connections to the regional surface waters, resulting in decreased baseflow in the major river network. This study provides important insights that can be used by wetland managers and policy makers to support watershed-scale wetland protection and restoration plans to improve water resource management.

  14. Control of groundwater in surface mining

    NASA Astrophysics Data System (ADS)

    Brawner, C. O.

    1982-03-01

    The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.

  15. Subsurface agricultural irrigation drainage: the need for regulation.

    PubMed

    Lemly, A D

    1993-04-01

    Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented.

  16. Heat tracer methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    The flow of heat in the subsurface is closely linked to the movement of water (Ingebritsen et al., 2006). As such, heat has been used as a tracer in groundwater studies for more than 100 years (Anderson, 2005). As with chemical and isotopic tracers (Chapter 7), spatial or temporal trends in surface and subsurface temperatures can be used to infer rates of water movement. Temperature can be measured accurately, economically, at high frequencies, and without the need to obtain water samples, facts that make heat an attractive tracer. Temperature measurements made over space and time can be used to infer rates of recharge from a stream or other surface water body (Lapham, 1989; Stonestrom and Constantz, 2003); measurements can also be used to estimate rates of steady drainage through depth intervals within thick unsaturated zones (Constantz et al., 2003; Shan and Bodvarsson, 2004). Several thorough reviews of heat as a tracer in hydrologic studies have recently been published (Constantz et al., 2003; Stonestrom and Constantz, 2003; Anderson, 2005; Blasch et al., 2007; Constantz et al., 2008). This chapter summarizes heat-tracer approaches that have been used to estimate recharge.Some clarification in terminology is presented here to avoid confusion in descriptions of the various approaches that follow. Diffuse recharge is that which occurs more or less uniformly across large areas in response to precipitation, infiltration, and drainage through the unsaturated zone. Estimates of diffuse recharge determined using measured temperatures in the unsaturated zone are referred to as potential recharge because it is possible that not all of the water moving through the unsaturated zone will recharge the aquifer; some may be lost to the atmosphere by evaporation or plant transpiration. Estimated fluxes across confining units in the saturated zone are referred to as interaquifer flow (Chapter 1). Focused recharge is that which occurs directly from a point or line source, such as a stream, on land surface. Focused recharge may vary widely in space and time. If the water table intersects a stream channel, estimates of stream loss are called actual recharge, or just recharge. If the water table lies below the stream channel, estimates are referred to as potential recharge. For simplicity, all vertical water fluxes are referred to as drainage throughout this chapter. Whether the estimated quantity represents actual or potential recharge or drainage depends on the circumstances of each individual study.

  17. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.

  18. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.

    PubMed

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-05-28

    Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  20. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    PubMed

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.

  1. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.

    PubMed

    Arenas Amado, A; Schilling, K E; Jones, C S; Thomas, N; Weber, L J

    2017-09-01

    Nitrogen losses from artificially drained watersheds degrade water quality at local and regional scales. In this study, we used an end-member mixing analysis (EMMA) together with high temporal resolution water quality and streamflow data collected in the 122 km 2 Otter Creek watershed located in northeast Iowa. We estimated the contribution of three end-members (groundwater, tile drainage, and quick flow) to streamflow and nitrogen loads and tested several combinations of possible nitrate concentrations for the end-members. Results indicated that subsurface tile drainage is responsible for at least 50% of the watershed nitrogen load between April 15 and November 1, 2015. Tiles delivered up to 80% of the stream N load while providing only 15-43% of the streamflow, whereas quick flows only marginally contributed to N loading. Data collected offer guidance about areas of the watershed that should be targeted for nitrogen export mitigation strategies.

  2. Modeling Groundwater Flow System of a Drainage Basin in the Basement Complex Environment of Southwestern Nigera

    NASA Astrophysics Data System (ADS)

    Akinwumiju, Akinola S.; Olorunfemi, Martins O.

    2018-05-01

    This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.

  3. Pesticide leaching via subsurface drains in different hydrologic situations

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Fučík, Petr; Liška, Marek; Dobiáš, Jakub

    2017-04-01

    esticides and their degradates in tile drainage waters were studied in two small, predominantly agricultural, tile-drained subcatchments in the Bohemian-Moravian Highlands, Czech Republic. The goal was to evaluate their occurence and the dymamics of their concentrations in drainage waters in different hydrologic situations using discharge and concentration monitoring together with 18O and 2H isotope analysis for Mean Residence Time (MRT) estimation and hydrograph separations during rainfall - runoff (R-R) events. The drainage and stream discharges were measured continuously at the closing outlets of three drainage groups and one small stream. During periods of prevailing base and interflow, samples were collected manually in two-week intervals for isotope analysis and during the spraying period (March to October) also for pesticide analysis. During R-R events, samples were taken by automatic samplers in intervals varying from 20 min (summer) to 1 hour (winter). To enable isotopic analysis, precipitation was sampled both manually at two-week intervals and also using an automatic rainfall sampler which collected samples of precipitation during the R-R events at 20-min. intervals. The isotopic analysis showed, that MRT of drainage base flow and interflow varies from 2,2 to 3,3 years, while MRT of base flow and interflow in surface stream is several months. During R-R events, the proportion of event water varied from 0 to 60 % in both drainage and surface runoff. The occurrence of pesticides and their degradates in drainage waters is strongly dependent on the hydrologic situation. While degradates were permanently present in drainage waters in high but varying concentrations according to instantaneous runoff composition, parent matters were detected almost exclusively during R-R events. In periods with prevailing base flow and interflow (grab samples), especially ESA forms of chloracetanilide degradates occured in high concentrations in all samples. Average sum of degradates varried between 1 730 - 5 760 ng/l. During R-R events, pesticide concentration varried according to runoff composition and time between sprayng and event. Event with no protortiom of event water in drainage runoff were typical by incereas in degradates concentrations (up to 20 000ng/l) and none or low occurence of parent matters. Events with significant event water proportion in drainage runoff were characterised by decrease in degradates concentrations and (when event happened soon affter spraying) by presence of paternal pesticides in drinage runoff. Instanteous concentrations of paren matters can be extremely high in that causes, up to 23 000 ng/l in drainage waters and up to 40 000 ng/l in small stream. Above results suggest that drainage systems could act as significant source of pesticide leaching. When parent compounds leaches via tile drainage systems, there are some border conditions that must exist together such as the occurence of R-R event soon after the pests application and the presence of event water (or water with short residence time in the catchment) in the drainage runoff.

  4. Atmospheric nitrogen deposition and habitat alteration in terrestrial and aquatic ecosystems in southern California: implications for threatened and endangered species

    Treesearch

    Mark Fenn; Mark Poth; Thomas Meixner

    2005-01-01

    Recent studies in the transverse ranges (including Class I Wilderness areas) of southern California have emphasized the strong linkage between levels of air pollution-related atmospheric nitrogen (N) inputs into montane watersheds and levels of nitrate in surface and subsurface drainage waters (fig. 1). Nitrate concentrations in streamwater in southern California are...

  5. Exploring Agricultural Drainage's Influence on Wetland and Watershed Connectivity

    EPA Science Inventory

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughou...

  6. Selenium and boron in aquatic birds from central California

    USGS Publications Warehouse

    Paveglio, F.L.; Bunck, C.M.; Heinz, G.H.

    1992-01-01

    Subsurface agricultural drainwater used for marsh management has resulted in trace element contamination of aquatic bird food chains in central California. Consequently, we collected breeding and wintering aquatic birds from the Grassland Water District (GWD) of California during 1985-88 to measure selenium (Se) and boron (B) contamination resulting from use of such drainage water for wetland management. During the breeding and wintering periods, livers of birds from the North and South areas of the Grasslands contained concentrations of Se and B that have been associated with reproductive impairment. Birds from the South Grasslands, which had received more undiluted drainage water, were more contaminated than those from the North Grasslands. Birds had higher (P < 0.001) levels of Se and B at the end of the 1985-86 wintering period than at the beginning, indicating that the Grasslands was the major source of contamination. Concentrations of Se decreased from 1985 through 1988, after freshwater was substituted for irrigation drainage water during autumn 1985. B concentrations in wintering birds, except for American coots (Fulica americana), declined to background levels, while concentrations in breeding birds remained slightly elevated. However, after 3 years of freshwater management of the Grasslands, liver Se levels in some breeding and wintering birds still were above concentrations associated with impaired reproduction in laboratory and field studies. In areas with high potential for leaching of Se and B from agricultural land, irrigation drainage water should not be used for wetland management.

  7. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  8. After-discovery studies prolong life. [Role of the geologist in oil fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.A.

    1977-05-02

    Unless there is a problem, a field may receive little attention by geologists once the primary development phase is over. This is a mistake because analysis of production data may point to areas where more development is needed. In large, multipay fields it is hard to gather the data into a usable form and to attempt to use these data to develop a consistent subsurface interpretation which explains the facts. With wells spaced only a few hundred feet apart, the geologist cannot let his imagination run wild as he can when looking at wildcat country. However, the results obtained frommore » studying oil fields can be very rewarding for both the geologist and his company. For maximum benefit, a subsurface field review should include all facts of the geology, as well as the reservoir, petro-physical, and production engineering aspects. When a field is studied in detail, areas of poor drainage are generally found and those become potential objectives for new wells on recompletions in existing wells. The following are discussed: (1) updip undrained areas; (2) bottom water reservoirs; (3) stringer drainage; and (4) South Pass block 24 field. When a field is studied in detail, unanticipated drainage anomalies are commonly found.« less

  9. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  10. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in Midwest

    USDA-ARS?s Scientific Manuscript database

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern U.S. Tile drainage systems enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage w...

  11. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.

    2011-12-01

    The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.

  12. Inferring changes in water cycle dynamics of intensively managed landscapes via the theory of time-variant travel time distributions

    NASA Astrophysics Data System (ADS)

    Danesh-Yazdi, Mohammad; Foufoula-Georgiou, Efi; Karwan, Diana L.; Botter, Gianluca

    2016-10-01

    Climatic trends and anthropogenic changes in land cover and land use are impacting the hydrology and water quality of streams at the field, watershed, and regional scales in complex ways. In poorly drained agricultural landscapes, subsurface drainage systems have been successful in increasing crop productivity by removing excess soil moisture. However, their hydroecological consequences are still debated in view of the observed increased concentrations of nitrate, phosphorus, and pesticides in many streams, as well as altered runoff volumes and timing. In this study, we employ the recently developed theory of time-variant travel time distributions within the StorAge Selection function framework to quantify changes in water cycle dynamics resulting from the combined climate and land use changes. Our results from analysis of a subbasin in the Minnesota River Basin indicate a significant decrease in the mean travel time of water in the shallow subsurface layer during the growing season under current conditions compared to the pre-1970s conditions. We also find highly damped year-to-year fluctuations in the mean travel time, which we attribute to the "homogenization" of the hydrologic response due to artificial drainage. The dependence of the mean travel time on the spatial heterogeneity of some soil characteristics as well as on the basin scale is further explored via numerical experiments. Simulations indicate that the mean travel time is independent of scale for spatial scales larger than approximately 200 km2, suggesting that hydrologic data from larger basins may be used to infer the average of smaller-scale-driven changes in water cycle dynamics.

  13. TOUGHREACT: a new code of the TOUGH Family for Non-Isothermal multiphase reactive geochemical transport in variably saturated geologic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.

  14. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer strips can reduce the delivery of NH3-N and PO4-P by overland flow to stream channels during storm events, the management of N-rich storm runoff as NO3 via sub-surface drains would require significant interference with the drainage network. This could have a negative impact on agricultural production in the catchment.

  15. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  16. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  17. Subsurface cadmium loss from a stony soil-effect of cow urine application.

    PubMed

    Gray, Colin William; Chrystal, Jane Marie; Monaghan, Ross Martin; Cavanagh, Jo-Anne

    2017-05-01

    Cadmium (Cd) losses in subsurface flow from stony soils that have received cow urine are potentially important, but poorly understood. This study investigated Cd loss from a soil under a winter dairy-grazed forage crop that was grazed either conventionally (24 h) or with restricted grazing (6 h). This provided an opportunity to test the hypothesis that urine inputs could increase Cd concentrations in drainage. It was thought this would be a result of cow urine either (i) enhancing dissolved organic carbon (DOC) concentrations via an increase in soil pH, resulting in the formation of soluble Cd-organic carbon complexes and, or (ii) greater inputs of chloride (Cl) via cow urine, promoting the formation of soluble Cd-Cl complexes. Cadmium concentrations in subsurface flow were generally low, with a spike above the water quality guidelines for a month after the 24-h grazing. Cadmium fluxes were on average 0.30 g Cd ha -1  year -1 (0.27-0.32 g Cd ha -1  year -1 ), in line with previous estimates for agricultural soils. The mean Cd concentration in drainage from the 24-h grazed plots was significantly higher (P < 0.05) than 6-h plots. No increase in DOC concentrations between the treatments was found. However, Cl concentrations in drainage were significantly higher (P < 0.001) from the 24-h than the 6-h grazed treatment plots, and positively correlated with Cd concentrations, and therefore, a possible mechanism increasing Cd mobility in soil. Further study is warranted to confirm the mechanisms involved and quantities of Cd lost from other systems.

  18. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  19. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  20. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    PubMed

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Subsurface drainage processes and management impacts

    Treesearch

    Elizabeth T. Keppeler; David Brown

    1998-01-01

    Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...

  2. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: a case study

    USDA-ARS?s Scientific Manuscript database

    Effective and efficient methods are needed to map agricultural subsurface drainage systems. Visible (VIS), near infrared (NIR), and/or thermal infrared (TIR) imagery obtained by unmanned aircraft systems (UAS) may provide a means for determining drainage pipe locations. Preliminary UAS surveys wit...

  3. Quantifying subsurface hydrology effects on chemical transport in drainage ditches using a 20-meter flume

    USDA-ARS?s Scientific Manuscript database

    Agriculture drainage ditches serve as the veins of the Midwestern agricultural landscapes. The transport of chemical fertilizers and pesticides in these ditches affect the local and downstream ecosystems. Although much research has already been conducted on chemical transport in streams and drainage...

  4. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems

    NASA Astrophysics Data System (ADS)

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests.

  5. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems.

    PubMed

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D; Hodges, Alan W

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497kg) and 95% (205kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1=368.3μg L -1 , Y2=230.4μg L -1 ) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be $341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests. Copyright © 2017. Published by Elsevier B.V.

  6. Water resources of the Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  7. Preliminary assessment of the effects of selenium in agricultural drainage on fish in the San Joaquin Valley

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; Hamilton, S.J.; Dinar, A.; Zilberman, D.

    1991-01-01

    Concentrations of total selenium were measured in whole-body samples of seven fishes from the Sacramento and San Joaquin River systems and the San Francisco Bay complex. Concentrations of selenium (up to 11 µg/g dry weight in whole-body composite samples) were highest in fish from canals and sloughs in the Grassland Water District (Grasslands) that received large inflows of subsurface agricultural drainage water. Slightly lower selenium concentrations occurred in fish from the San Joaquin River immediately downstream from tributaries draining the Grasslands. Although circumstantial evidence suggests that selenium-sensitive species such as bluegills and largemouth bass are being excluded from the Grasslands, conclusive evidence of selenium toxicity is still lacking. In response to earlier reports of high concentrations of selenium in several species collected from the Grasslands, the California Department of Health Services has urged people to limit consumption of fish from this region.

  8. Estimating subsurface water volumes and transit times in Hokkaido river catchments, Japan, using high-accuracy tritium analysis

    NASA Astrophysics Data System (ADS)

    Gusyev, Maksym; Yamazaki, Yusuke; Morgenstern, Uwe; Stewart, Mike; Kashiwaya, Kazuhisa; Hirai, Yasuyuki; Kuribayashi, Daisuke; Sawano, Hisaya

    2015-04-01

    The goal of this study is to estimate subsurface water transit times and volumes in headwater catchments of Hokkaido, Japan, using the New Zealand high-accuracy tritium analysis technique. Transit time provides insights into the subsurface water storage and therefore provides a robust and quick approach to quantifying the subsurface groundwater volume. Our method is based on tritium measurements in river water. Tritium is a component of meteoric water, decays with a half-life of 12.32 years, and is inert in the subsurface after the water enters the groundwater system. Therefore, tritium is ideally suited for characterization of the catchment's responses and can provide information on mean water transit times up to 200 years. Only in recent years has it become possible to use tritium for dating of stream and river water, due to the fading impact of the bomb-tritium from thermo-nuclear weapons testing, and due to improved measurement accuracy for the extremely low natural tritium concentrations. Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments and estimating subsurface water volume. While many tritium transit time studies have been conducted in New Zealand, only a limited number of tritium studies have been conducted in Japan. In addition, the meteorological, orographic and geological conditions of Hokkaido Island are similar to those in parts of New Zealand, allowing for comparison between these regions. In 2014, three field trips were conducted in Hokkaido in June, July and October to sample river water at river gauging stations operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). These stations have altitudes between 36 m and 860 m MSL and drainage areas between 45 and 377 km2. Each sampled point is located upstream of MLIT dams, with hourly measurements of precipitation and river water levels enabling us to distinguish between the snow melt and baseflow contributions to the river discharge. For the June sampling, the tritium and stable isotope results indicate below normal river discharges with a strong contribution of snow melt at some sampling points, and relatively short groundwater transit times. The tritium concentration results are used to interpret mean transit times (MTTs) for each sampling point using a tritium input curve constructed from historical International Atomic Energy Agency and available Japanese data, and subsurface volumes are estimated from the MTTs and measured river discharges.

  9. 17beta-Estradiol and testosterone in drainage and runoff from poultry litter applications to tilled and no-till crop land under irrigation.

    PubMed

    Jenkins, Michael B; Endale, Dinku M; Schomberg, Harry H; Hartel, Peter G; Cabrera, Miguel L

    2009-06-01

    Thirteen million [corrected] metric tons of poultry litter are produced annually by poultry producers in the U.S. Poultry litter contains the sex hormones estradiol and testosterone, endocrine disruptors that have been detected in surface waters. The objective of this study was to evaluate the potential impact of poultry litter applications on estradiol and testosterone concentrations in subsurface drainage and surface runoff in irrigated crop land under no-till and conventional-till management. We conducted an irrigation study in fall of 2001 and spring of 2002. Four treatments, no-till plus poultry litter, conventional-till plus poultry litter, no-till plus conventional fertilizer, and conventional-till plus conventional fertilizer, were evaluated. Flow-weighted concentration and load ha(-1) of the two hormones were measured in drainage and runoff. Soil concentrations of estradiol and testosterone were measured. Based on comparisons to the conventional fertilizer (and control) treatments, poultry litter did not add to the flow-weighted concentration or load ha(-1) of either estradiol or testosterone in subsurface drainage or surface runoff. Significant differences were, however, observed between tillage treatments: flow-weighted concentrations of estradiol were greater for no-till than conventional-till plots of the June irrigation; and runoff loads of both estradiol and testosterone were less from no-till than conventional-till plots for the November irrigation. Although the differences between no-till and conventional-tillage appeared to affect the hydrologic transport of both hormones, the differences appeared to have inconsequential environmental impact.

  10. Effects of hydraulic and geologic factors on streamflow of the Yakima River Basin, Washington

    USGS Publications Warehouse

    Kinnison, Hallard B.; Sceva, Jack E.

    1963-01-01

    The Yakima River basin, in south-central Washington, is the largest single river system entirely within the confines of the State. Its waters are the most extensively utilized of all the rivers in Washington. The river heads high on the eastern slope of the Cascade Mountains, flows for 180 miles in a generally southeast direction, and discharges into the Columbia River. The western part of the basin is a mountainous area formed by sedimentary, volcanic, and metamorphic rocks, which generally have a low capacity for storing and transmitting water. The eastern part of the basin is. formed by a thick sequence of lava flows that have folded into long ridges and troughs. Downwarped structural basins between many of the ridges are partly filled with younger sedimentary deposits, which at some places are many hundreds of feet thick. The Yakima River flows from structural basin to structural basin through narrow water gaps that have been eroded through the anticlinal ridges. Each basin is also a topographic basin and a ground-water subbasin. A gaging station will measure the total outflow of a drainage area only if it is located at the surface outlet of a ground-water subbasin and then only if the stream basin is nearly coextensive with the ground-water subbasin. Many gaging stations in the Yakima basin are so located. The geology, hydrology, size. and location of 25 ground-water subbasins are described. Since the settlement of the valley began, the development of the land and water resources have caused progressive changes in the natural regimen of the basin's runoff. These changes have resulted from diversion of water from the streams, the application of water on the land for irrigation, the storage and release of flood waters, the pumping of ground water, and other factors Irrigation in the Yakima basin is reported 'to have begun about 1864. In 1955 about 425,000 acres were under irrigation. During the past 60-odd years many gaging stations have been operated at different sites within the basin. Only stations in the upper reaches, such as those below Keechelus, Kachess, or Cle Elum Lakes, give discharge records which are an accurate measure of the natural outflow of the drainage area. Farther down, stream, as the utilization of water becomes more extensive, the records at a gaging station show the discharge passing a particular point, but they do not reflect the natural outflow of the basin. Large canals divert water for use on lands above a station or carry it around a station for irrigation downstream. The deep sedimentary deposits within subbasins and the overlying alluvial gravels permit downvalley movement of large subsurface flows which bypass the gaging stations, except in the near vicinity of the water gaps. At the water gaps ground water rises to the surface, becoming streamflow, and can be accurately measured. The location of gaging stations within each subbasin is important, therefore, in determining whether the flow measured represents the total downvalley outflow or whether it is merely the surface-water component. Surface and subsurface factors that may affect the discharge records at each gaging station in the Yakima River basin include a description of upstream diversions, surface return flows, bypass canals, storage reservoirs, subsurface bypass flows, ground-water withdrawals, and other items. The available data are not sufficiently complete to permit a quantitative determination of the total basin yield at most gaging stations. However, data on the existing bypass channels, such as canals and drainage ditches, and on related subsurface movement of water provide valuable information necessary to proper use and interpretation of the streamflow records.

  11. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain

    NASA Astrophysics Data System (ADS)

    Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion

    2015-04-01

    Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far, confirming the hypothesis that subsurface flow might be a dominant runoff generation process.

  12. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulationmore » of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.« less

  13. Design and routing of storm flows in an urbanized watershed without surface streams

    NASA Astrophysics Data System (ADS)

    Schaad, David E.; Farley, Jon; Haynes, Criss

    2009-09-01

    SummaryIn the karst geologic setting of Greenbrier County, West Virginia, USA, the drainage network in the watersheds do not support surface streams, but depend entirely on sinkholes, solution cavities, or injection wells as discharge points for accumulated storm water. By providing a systematic framework for designing and routing storms in this geologic setting, functioning retention and attenuation structures have been developed which are protective of water quality while still safely discharging storm water in a controlled manner to the subsurface. This article provides a rationale for the design methodology and then examines the successful implementation of an attenuation and storm water retention design to manage the surface discharges for an entire watershed. By examining the pre-development flows and evaluating future land use patterns (i.e., installation of impermeable surfaces over large areas), as well as sinkhole conveyance capabilities, it was necessary to examine alternative disposal options for collected storm water as well as devise a basin-wide management strategy to coordinate future development of the watershed. Additionally, innovative water quality measures were implemented to help prevent contamination from preferentially infiltrating into the subsurface as a result of these land development activities.

  14. Linking selenium sources to ecosystems: San Francisco Bay-Delta Model

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2004-01-01

    Marine sedimentary rocks of the Coast Ranges contribute selenium to soil, surface water, and ground water in the western San Joaquin Valley, California. Irrigation funnels selenium into a network of subsurface drains and canals. Proposals to build a master drain (i.e., San Luis Drain) to discharge into the San Francisco Bay-Delta Estuary remain as controversial today as they were in the 1950s, when drainage outside the San Joaquin Valley was first considered. An existing 85-mile portion of the San Luis Drain was closed in 1986 after fish mortality and deformities in ducks, grebes and coots were discovered at Kesterson National Wildlife Refuge, the temporary terminus of the drain. A 28-mile portion of the drain now conveys drainage from 100,000 acres into the San Joaquin River and eventually into the Bay-Delta. If the San Luis Drain is extended directly to the Bay-Delta, as is now being proposed as an alternative to sustain agriculture, it could receive drainage from an estimated one-million acres of farmland affected by rising water tables and increasing salinity. In addition to agricultural sources, oil refineries also discharge selenium to the Bay-Delta, although those discharges have declined in recent years. To understand the effects of changing selenium inputs, scientists have developed the Bay-Delta Selenium Model.

  15. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    USGS Publications Warehouse

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou

  16. Underground storage of imported water in the San Gorgonio Pass area, southern California

    USGS Publications Warehouse

    Bloyd, Richard M.

    1971-01-01

    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  17. The influence of Critical Zone structure on runoff paths, seasonal water storage, and ecosystem composition

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Dietrich, W. E.; Rempe, D.; Dralle, D.; Dawson, T. E.; Lovill, S.; Bryk, A.

    2017-12-01

    Understanding how subsurface water storage mediates water availability to ecosystems is crucial for elucidating linkages between water, energy, and carbon cycles from local to global scales. Earth's Critical Zone (the CZ, which extends from the top of the vegetation canopy downward to fresh bedrock) includes fractured and weathered rock layers that store and release water, thereby contributing to ecosystem water supplies, and yet are not typically represented in land-atmosphere models. To investigate CZ structural controls on water storage dynamics, we intensively studied field sites in a Mediterranean climate where winter rains arrive months before peak solar energy availability, resulting in strong summertime ecosystem reliance on stored subsurface water. Intra-hillslope and catchment-wide observations of CZ water storage capacity across a lithologic boundary in the Franciscan Formation of the Northern California Coast Ranges reveal large differences in the thickness of the CZ and water storage capacity that result in a stark contrast in plant community composition and stream behavior. Where the CZ is thick, rock moisture storage supports forest transpiration and slow groundwater release sustains baseflow and salmon populations. Where the CZ is thin, limited water storage is used by an oak savanna ecosystem, and streams run dry in summer due to negligible hillslope drainage. At both sites, wet season precipitation replenishes the dynamic storage deficit generated during the summer dry season, with excess winter rains exiting the watersheds via storm runoff as perched groundwater fracture flow at the thick-CZ site and saturation overland flow at the thin-CZ site. Annual replenishment of subsurface water storage even in severe drought years may lead to ecosystem resilience to climatic perturbations: during the 2011-2015 drought there was not widespread forest die-off in the study area.

  18. Dissolved constituents including selenium in waters in the vicinity of Kesterson National Wildlife Refuge and the west grassland, Fresno and Merced Counties, California

    USGS Publications Warehouse

    Presser, T.S.; Barnes, Ivan

    1985-01-01

    Analyses were made for dissolved constituents including selenium (Se) in waters associated with subsurface agricultural drainage from the western San Joaquin Valley of California. In the vicinity of Kesterson National Wildlife Refuge and the Grassland wetlands area Se was found to be mobilized in water. As a consequence of this mobility and bioaccumulation in the aquatic food chain, Se occurred in waterfowl at levels toxic enough to cause deformities and deaths. Se concentrations in sumps that collect subsurface agricultural drainage water and inflows to drains sampled, ultimately leading into Kesterson National Wildlife Refuge and the Grassland, ranged from 84 to 4200 microgram/L (ug/L) Se. Levels of Se were reduced in the San Luis Drain flowing into Kesterson National Wildlife Refute to approximately 300 ug/L Se and in three of the drains sampled flowing into the Grassland to approximately 50 ug/L Se. Serious effects on water fowl habitat were caused by both these levels. Se contents of algal mats and salt crusts from evaporation ponds of the San Luis Drain contained up to parts per million Se. Total ecosystem assessment of Se may be necessary for the evaluation of the toxicity of Se to the environment. No other trace element reported exceeded the various criteria for water at the level of magnitude of Se. Other dissolved constituents and the isotopic ratios of oxygen and hydrogen were analyzed to elucidate water types, reaction states of the aqueous solution with respect to minerals, and the origin of mixed waters. These data will be used later to evaluate the geologic source of Se. Methods used for collection and analysis are described and documented. Hydrologic effects were found to be complex. Preliminary indications from wells are also given. A historical sequence is adhered to and other data from the study area which serve as a guide to the toxicity of Se are included. (Author 's abstract)

  19. Effect of drainage in unbound aggregate bases on flexible pavement performance.

    DOT National Transportation Integrated Search

    2008-05-01

    It has been well demonstrated that a positive subsurface drainage is beneficial in enhancing pavement performance and thus extending pavement service life. Typical permeable base materials include asphalt/cement-treated, open-graded aggregates and un...

  20. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  1. Selenium and other elements in freshwater fishes from the irrigated San Joaquin Valley, California

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; May, T.W.

    1992-01-01

    Arsenic (As), chromium (Cr), mercury (Hg), and selenium (Se) were measured in composite whole-body samples of five fishes — bluegill (Lepomis macrochirus), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), largemouth bass (Micropterus salmoides), and Sacramento blackfish (Orthodon microlepidotus) — from the San Joaquin River system to determine if concentrations were elevated from exposure to agricultural subsurface (tile) drainage. Except for Cr, the concentrations of these elements in fishes from one or more sites were elevated; however, only Se approached concentrations that may adversely affect survival, growth, or reproduction in warm water fishes. Moreover, only Se among the four measured elements exhibited a geographic (spatial) pattern that coincided with known inflows of tile drainage to the San Joaquin River and its tributaries. Historical data from the Grassland Water District (Grasslands; a region exposed to concentrated tile drainage) suggested that concentrations of Se in fishes were at maximum during or shortly after 1984 and have been slightly lower since then. The recent decline of Se concentrations in fishes from the Grasslands could be temporary if additional acreages of irrigated lands in this portion of the San Joaquin Valley must be tile-drained to protect agricultural crops from rising groundwater tables.

  2. Influence of structures on drainage patterns in the Tushka region, SW Egypt

    NASA Astrophysics Data System (ADS)

    Robinson, C. A.; El-Kaliouby, H.; Ghoneim, E.

    2017-12-01

    Remote sensing (radar, thermal and topographic) and geophysical (Vertical Electrical Sounding and Ground Penetrating Radar) data are used to understand areas with enhanced groundwater potential in deeper aquifer settings between 22°0‧-22°56‧N and 30°21-31°20‧E in the Tushka area of southwest Egypt. The premise is that areas with enhanced groundwater accumulations represent the best locations for agricultural development that is underway in this region and that deeper sources groundwater resources are the most sustainable. New fluvial and structural interpretations emphasize that the desert landscape was produced by fluvial action in the past. The correlation of high drainage and fault densities, coincident with gentle slope, guided sites for geophysical investigation that provides information about the aquifer depth and distribution, and the subsurface distribution of faults. Results confirm the presence of subsurface fault plains and fault zones and potential water aquifers at these locations. Surface environments further demonstrated an abundance of shrubs and cultivatable soils. The new approach therefore is a cost effective and noninvasive technique that can be applied throughout the eastern Sahara to assist in resource management decisions and support the planned agricultural expansion.

  3. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  4. Experimental utilization of tire shreds to enhance highway drainage.

    DOT National Transportation Integrated Search

    2001-03-01

    This project investigates the practical benefits of using shredded tires as a free draining material : in a subsurface French drain to enhance drainage along a section of highway. French drains are : below-grade structures designed to re-direct groun...

  5. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Artificial Drainage (1992) and Irrigation Types (1997)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular dataset represents the estimated area of artificial drainage for the year 1992 and irrigation types for the year 1997 compiled for every catchment of NHDPlus for the conterminous United States. The source datasets were derived from tabular National Resource Inventory (NRI) datasets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 1997). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others 2007) The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geological Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  6. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    NASA Astrophysics Data System (ADS)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  7. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    USGS Publications Warehouse

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.

  8. Widespread surface meltwater drainage in Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  9. Geology and ground-water resources of the Two Medicine unit and adjacent areas, Blackfeet Indian Reservation, Montana, with a section on chemical quality of water

    USGS Publications Warehouse

    Paulson, Q.F.; Zimmerman, Tom V.; Langford, Russell H.

    1965-01-01

    The Two Medicine Irrigation Unit, on the Blackfeet Indian Reservation of northern Montana, is irrigated by water diverted from Two Medicine Creek. Waterlogging because of overapplication of water and locally inadequate subsurface drainage is a serious problem. This study was undertaken by the U.S. Geological Survey in cooperation with the U.S. Bureau of Indian Affairs to evaluate the problem and to suggest remedies. For this study, the geology was mapped, and data concerning 129 wells and test holes were gathered. The water level in 63 wells was measured periodically. Three test holes were drilled and 4 single-well and 1 multiple-well pump tests were made. Nineteen samples of ground water were collected and analyzed chemically, and applied irrigation water was analyzed periodically.

  10. Geology and ground-water resources of the lower Lodgepole Creek drainage basin, Nebraska, with a section on chemical quality of the water

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Jochens, Eugene R.

    1957-01-01

    The area described is almost wholly in Nebraska and is the drainage basin of Lodgepole Creek from the Wyoming State line to the Colorado State line, a distance along the stream valley of about 95 miles. It covers about 1,950 square miles. The purposes of the study were to ascertain the characteristics, thickness, and extent of the water-bearing formations and to obtain and interpret data on the origin, quality, quantity, movement, availability, and use of ground water in the area. The rocks exposed in the drainage basin are the Brule formation of Oligocene (Tertiary) age, the Ogallala formation of Pliocene (Tertiary) age, and alluvium of Pleistocene and Recent (Quaternary) age. The Brule formation is mainly a siltstone, which yields an average of 950 gallons per minute (gpm) to irrigation wells tapping its fractured zones or reworked material; the maximum reported discharge is 2,200 gpm. The Ogallala formation underlies most of the area. It consists of lenticular beds of clayey, silty, sandy, and gravelly materials and supplies water to all wells on the upland, including a few large-discharge wells, and to many irrigation and public-supply wells in the valley of Lodgepole Creek. The yield of irrigation wells tapping the Ogallala formation ranges from 90 to 1,600 gpm and averages about 860 gpm. The alluvium is present in the valleys of Lodgepole Creek and its tributaries and consists mainly of heterogeneous . mixtures of silt, sand, and gravel, and lenticular bodies of these materials. Between the Colorado State line and Chappell, Nebr., irrigation wells derive most of their water from the alluvium. However, between Chappell and Sidney most of the irrigation wells tap both the alluvium and permeable zones in the underlying Brule formation, and in much of the valley west of Sidney, where the water table is beneath the bottom of the alluvium, irrigation wells derive water from the underlying Brule or Ogallala formations. Irrigation wells obtaining water chiefly from the alluvium have a yield ranging from 130 to 1,200 gpm, averaging about 770 gpm. In the Lodgepole Creek valley below Sidney the depth to water generally is less than 20 feet and, in many places, less than 10. In much of this part of the area the water table extends to the land surface or to the root zone of the vegetation, and discharge by evapotranspiration is high. In the valley of Lodgepole Creek between Sidney and the Wyoming State line, the depth to water generally ranges from less than 10 feet near the stream to more than 100 along the edge of the valley. In the upland the depth to water ranges from about 80 to about 300 feet. Recharge to the ground-water reservoir is derived chiefly from precipitation; other sources are seepage from irrigation systems and streams, and subsurface inflow of ground water. Water that infiltrates to the water table generally moves toward Lodgepole Creek in a downstream direction and is discharged into the stream through springs and seeps. However, within an area of at least 400 square miles in the northern part of the lower Lodgepole Creek drainage basin, ground water moves toward the valley of the North Platte River. Water is discharged from the ground-water reservoir into streams, by evapotranspiration, through wells, and by subsurface outflow. During the 1951-52 water year about 13,000 acre-feet of ground water left the area as streamflow. An estimated 20,000 acre-feet of water annually is discharged by the transpiration of grasses and trees growing along the creek bottom, and about 1,000 acre-feet of water leaves as subsurface outflow. During the period 1950-51 about 68,000 acre-feet of water was pumped from wells in the area for all uses. Of this amount; about 35,000 acre-feet in 1950 and 23,300 acre-feet in 1951 were used to irrigate about 15,560 and 15,790 acres. Nearly one-fourth of this water percolated back to the ground-water reservoir. These acreages, however, included about 2,100 acres irrigated in p

  11. Terrestrial and Aerial Ground-Penetrating Radar in Use for the Architectural Researches: Ancient 16TH Century Water Supply and Drainage at the Monastery of EL Escorial (madrid, Spain)

    NASA Astrophysics Data System (ADS)

    Chias, P.; Abad, T.; Echeverria, E.

    2013-07-01

    Remote sensing techniques in Archaeology are increasingly essential components of the methodologies used in archaeological and architectural researches. They allow uncovering unique forgotten data which are unobtainable using traditional excavation techniques, mainly because their precise location is lost. These data are still important since they can help to prevent flood effects inside the ancient building cellars and basements, as it happened periodically in El Escorial. Wide ancient drainage galleries run more than one hundred feet downhill outside the building, ensuring that rainwater and springs were adequately drained. Nowadays their plans are lost, and the lack of documents related both to the ancient water supply and drainage systems become an impediment to solve the stains of damp on the stone masonry walls and vaults, and even other occasional flooding effects. In this case, nondestructive techniques were needed to find the ancient underground passages in order to preserve the integrity of the building and its current activities. At a first stage oblique aerial infrared images taken from a helium barrage balloon helped to find easily, quickly and cheaply the buried masonry structures. Secondly, radar pulses were particularly interesting to image the subsurface as they were valuable means of assessing the presence and amount of both soil water and buried structures. The combination of both techniques proved to be an accurate and low-cost way to find the ancient drainage systems. Finally, results were produced by means of open source software.

  12. HESS Opinions: Linking Darcy's equation to the linear reservoir

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  13. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    NASA Astrophysics Data System (ADS)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  14. Vadose zone dynamics governing snowmelt infiltration and groundwater recharge in a seasonally frozen, semi-arid landscape

    NASA Astrophysics Data System (ADS)

    Mohammed, A.; LeBlanc, F.; Cey, E. E.; Hayashi, M.

    2016-12-01

    Snowmelt infiltration and vadose zone fluxes in seasonally frozen soils are strongly affected by meteorological and soil moisture dynamics occurring during the preceding fall and winter, and complex processes controlling soil hydraulic and thermal regimes. In order to predict their effects on hydrologic processes such as run-off generation, groundwater recharge and plant-water availability in cold regions, an improved understanding of the mechanisms governing coupled water and heat fluxes in the unsaturated zone is needed. Field and laboratory studies were conducted to investigate snowmelt infiltration and groundwater recharge through partially frozen ground over a range of climate and soil conditions in the Canadian Prairies. Meteorological and subsurface field measurements at three sites were combined with laboratory infiltration experiments on frozen undisturbed soil-columns to provide insights into the hydraulic and thermal processes governing water movement. Analysis reveals that antecedent moisture content and thermal profiles both strongly affect subsurface dynamics during infiltration of snowmelt. Preferential flow is also a critical parameter, as both thermal and hydraulic responses were observed at depth prior to complete ground thaw in the field; as well as drainage outflow from the frozen soil column experiments under certain conditions. Results indicate that both diffuse (matrix) and preferential (macropore) flow play significant roles in the infiltration and redistribution of snowmelt water under frozen soil conditions, and shallow groundwater recharge. This study highlights the critical subsurface factors and processes that control infiltration and groundwater recharge in these seasonally frozen landscapes.

  15. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  16. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  17. Profiling USGA putting greens using GPR - an as-built surveying method

    USDA-ARS?s Scientific Manuscript database

    Golf course greens that are constructed to U.S. Golf Association (USGA) standards must adhere to strict installation specifications in order to maintain proper subsurface drainage. Because the infrastructure is buried, it can be difficult to ascertain if these drainage pipes were properly installed...

  18. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  19. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.

    1993-01-01

    Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.

  20. Prognosis of flow conditions for de-centralized seepage of rainwater from roads

    NASA Astrophysics Data System (ADS)

    Meyer, Martin; Hasan, Issa; Sallwey, Jana; Graeber, Peter-Wolfgang

    2013-04-01

    Urbanization programs that include the construction of new settlements or roads lead to an increase in surface sealing. Conventional road drainage is being carried out by a rainwater sewage system coupled with collection and detention basins. This leads to local decreases in evaporation and groundwater recharge, disturbing the natural local water balance. The increased number of climate changed induced extreme precipitation events leads to a higher risk of road floodings as a result of a failure of these systems. Furthermore, the treatment of the discharge loaded with contaminants (such as heavy metals and MTBE) is resolved neither ecologically nor technologically. By using a natural, effective and sustainable evaporation and drainage strategy it is possible to reduce the probability of road floodings, to restore the natural local water balance and to establish ecologically and economically more beneficial rainwater drainage. By using PCSiWaPro®, a simulation tool for unsaturated soil zone processes developed at the Institute of Waste Management and the Technical University of Dresden, the effects of different atmospheric, hydrological and hydrogeological parameters and system conditions on the subsurface drainage flow conditions in the vicinity of a typical German highway road were studied. Special attention was given to the influence of extreme precipitation events on the drainage time at differently tilted parts of the surface, on surface drainages from lateral noise-protection barriers and on the probability of road surface underwashing. Differently constructed upper soil stratifications were tested for their ability to quickly drain water into the ground, which, besides the reduced risk of road flooding, also influence the duration time for the drainage water in each soil layer. Individual rainwater infiltration rates were applied for different regions of the model. The behaviours of three different types of soil (coarse sand, slightly silty sand and medium silty sand) were tested for their applicability as road base materials. The simulation results showed that for extreme precipitation events, the optimized decentralized road drainage system was able to discharge the accumulated rainwater. In future applications, the unsaturated flow model will be extended to a reactive transport model in order to develop strategies for optimal local drainage system design with special regard to natural purification features of different soil layer types. Additionally, PCSiWaPro® can be coupled to a groundwater model to simulate the influence of potential local groundwater contamination by road discharge on the whole underlying aquifer.

  1. Modeling nutrient removal using watershed-scale implementation of the two-stage ditch

    USDA-ARS?s Scientific Manuscript database

    Western Lake Erie Basin (WLEB) is the most intensively farmed region of the Great Lakes. Because of the flat topography and poorly-drained soils many farmers rely on drainage management practices (e.g., subsurface tile drainage, ditch channelization) to maintain productive agriculture. However, th...

  2. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota

    USGS Publications Warehouse

    Komor, S.C.

    1997-01-01

    Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.

  3. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    USGS Publications Warehouse

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This information will direct future studies and assist managers in understanding when the subsurface conduits may become overwhelmed.

  4. The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes.

    PubMed

    Spencer, Kate L; Carr, Simon J; Diggens, Lucy M; Tempest, James A; Morris, Michelle A; Harvey, Gemma L

    2017-06-01

    Saltmarshes are being lost or degraded as a result of human activity resulting in loss of critical ecosystem services including the provision of wild species diversity, water quality regulation and flood regulation. To compensate, saltmarshes are being restored or re-created, usually driven by legislative requirements for increased habitat diversity, flood regulation and sustainable coastal defense. Yet, there is increasing evidence that restoration may not deliver anticipated ecosystem services; this is frequently attributed to poor drainage and sediment anoxia. However, physical sediment characteristics, hydrology and the sediment geochemical environment are rarely examined in restoration schemes, despite such factors being critical for plant succession. This study presents the novel integration of 3D-computed X-ray microtomography to quantify sediment structure and porosity, with water level and geochemical data to understand the impact of pre-restoration land use and disturbance on the structure and functioning of restored saltmarshes. The study combines a broad-scale investigation of physical sediment characteristics in nine de-embanked saltmarshes across SE England, with an intensive study at one site examining water levels, sediment structure and the sediment geochemical environment. De-embankment does not restore the hydrological regime, or the physical/chemical framework in the saltmarshes and evidence of disturbance includes a reduction in microporosity, pore connectivity and water storage capacity, a lack of connectivity between the sub-surface environment and overlying floodwaters, and impeded sub-surface water flow and drainage. This has significant consequences for the sediment geochemical environment. This disturbance is evident for at least two decades following restoration and is likely to be irreversible. It has important implications for plant establishment in particular, ecosystem services including flood regulation, nutrient cycling and wild species diversity and for future restoration design. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone

    NASA Astrophysics Data System (ADS)

    Pini, Ronny; Benson, Sally M.

    2017-10-01

    We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of subcore-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and subcore-scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full subcore-scale data set. This enables accurate parameterisation of rock properties at the subcore-scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.

  6. Modelingevapotranspirationina sub-tropical climate

    USGS Publications Warehouse

    Savabi, M.R.; Cochrane, T.A.; German, E.; Ikiz, C.; Cockshutt, N.

    2007-01-01

    Evapotranspiration (ET) loss is estimated at about 80-85% of annual precipitation in South Florida. Accurate prediction of ET is important during and beyond the implementation of the Comprehensive Everglades Restoration Plan (CERP). In the USDA's Everglades Agro-Hydrology Model (EAHM) the soil water intake is linked with the soil water redistribution, soil evaporation, plant transpiration, subsurface lateral flow and subsurface drainage to calculate daily root zone soil water content. Hydrometeorological data from three sites with different soil moisture content and vegetal cover were used to evaluate the EAHM ET routine. In general, the EAHM water balance sub-model simulated the daily ET with acceptable accuracy in the area with standing water (Everglades) while using the Penman method. However, in the area with grass cover, there was a discrepancy between the model simulated and measured ET using either the Penman or the Priestley-Taylor method. The results indicated that in the region with two distinct climate patterns: dry (low humidity, more wind, and less precipitation) and wet (high humidity, less wind and more rainfall) such as South Florida, a combination method like Penman should be used for prediction of daily ET. However, in order to improve the predictability of the ET methods, information about surface albedo is needed for land surfaces with grass vegetation during the growing season.

  7. Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA

    USGS Publications Warehouse

    Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini

    2017-01-01

    We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.

  8. Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones

    NASA Astrophysics Data System (ADS)

    Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel

    2018-04-01

    In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.

  9. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products significantly decreased phosphate amounts. For the 38 specific filter materials evaluated, based on a 60 percent contaminant reduction level, 12 materials removed nitrate, 26 materials removed phosphate, and 21 materials removed atrazine. Furthermore, 2 materials removed zero contaminants, 16 materials removed one contaminant, 17 materials removed two contaminants, and 3 of the materials removed all three contaminants. The most effective filter materials proved to be a steam activated carbon, a zero valent iron and sulfer modified iron mixture, and a surfactant modified clay. The findings of this study indicate that there are a variety of filter materials, either separately or in combination, which have the potential to treat agricultural drainage waters.

  10. Salinization Sources Along the Lower Jordan River Under Draught Conditions

    NASA Astrophysics Data System (ADS)

    Holtzman, R.; Shavit, U.; Segal, M.; Vengosh, A.; Farber, E.; Gavrieli, I.

    2003-12-01

    The Lower Jordan River, once a flowing freshwater river, is suffering from an ongoing reduction of discharge and water quality. The river flows between the Sea of Galilee and the Dead Sea, an aerial distance of about 105 Km. The severe reduction is caused by an excessive exploitation of its sources and diversion of sewage and agricultural drainage into the river. The extreme low flows and low water quality threaten the natural existence of the river and its potential use for agriculture. In spite of its importance, little research has been done in the river. The objectives of the study were to measure the discharge and water composition along the river and to evaluate the main sources that control its flow and chemical characteristics. The hypothesis of the study was that interaction with subsurface flows significantly affects the river flow and chemical composition. The research is based on a detailed field study, which included flow rate measurements in the river and its tributaries, water sampling and analysis and mass balance calculations of water and solutes. A portable Acoustic Doppler Velocimeter (ADV) was used to measure velocities and bathymetry at different locations across the river sections. Due to accessibility constraints, a floating traverse construction, which enables the ADV's deployment from one bank of the river, was developed. It was found that flow rate ranges between 500-1,100 L/s in northern (upstream) sections and 300-1,650 L/s in the south. This low discharge represents a significant reduction from historical values and is lower than recent published estimations. This research represents base flows only, as the measurements were done during a period of two consecutive draught years. Calculated mass balance of water flows in the northern sections shows that the subsurface source contributes to the river around 200-670 L/s (30-80% of the river flow). Calculations of solute balance show that the subsurface flows add 20-50% of the mass of solutes (e.g. Sulfate) that flows in the river. The assumption of a hydraulic gradient that points at inflows from subsurface flows is encouraged by high water levels measured in nearby piezometers. Possible natural subsurface sources include shallow groundwater or rising of water from deep formations. The existence of adjacent thermal wells strengthens the reasonability of such water rise. Possible anthropogenic sources include return flows and effluents. The results are consistent and agree with the geochemical and isotopic analyses. It is concluded that the impact of the subsurface component on the Jordan River is significant and must be taken into consideration, for future water management schemes and implementation of the Peace Treaty between Israel and Jordan.

  11. Flow Pathways of Snow and Ground Ice Melt Water During Initial Seasonal Thawing of the Active Layer on Continuous Permafrost

    NASA Astrophysics Data System (ADS)

    Sjoberg, Y.; Johansson, E.; Rydberg, J.

    2017-12-01

    In most arctic environments, the snowmelt is the main hydrologic event of the year as a large fraction of annual precipitation rapidly moves through the catchment. Flow can occur on top of the frozen ground surface or through the developing active layer, and flow pathways are critical determinants for biogeochemical transport. We study the linkages between micro topography, active layer thaw, and water partitioning on a hillslope in Greenland during late snowmelt season to explore how seasonal subsurface flow pathways develop. During snowmelt, a parallel surface drainage pattern appears across the slope, consisting of small streams, and water also collects in puddles across the slope. Thaw rates in the active layer were significantly higher (T-test p<0.01) on wet parts of the slope (0.8 cm/day), compared to drier parts of the slope (0.6 cm/day). Analyses of stable water isotopic composition show that snow had the lightest isotopic signatures, but with a large spread of values, while seasonally frozen ground and standing surface water (puddles) were heavier. The stream water became heavier over the two-week sampling period, suggesting an increasing fraction of melted soil water input over time. In contrast, standing surface water (puddles) isotopic composition did not change over time. In boreal catchments, seasonal frost has previously been found to not significantly influence flow pathways during most snowmelt events, and pre-event groundwater make out most of the stream water during snowmelt. Our results from a continuous permafrost environment show that both surface (overland) and subsurface flow pathways in the active layer are active, and that a large fraction of the water moving on the hillslope comes from melted ground ice rather than snow in the late snowmelt season. This suggests a possibility that flow pathways during snowmelt could shift to deeper subsurface flow following degradation of continuous permafrost.

  12. The interaction of natural organic matter with iron in a wetland (Tennessee Park, Colorado) receiving acid mine drainage

    USGS Publications Warehouse

    Peiffer, Stefan; Walton-Day, Katherine; Macalady, Donald L.

    1999-01-01

    Pore water from a wetland receiving acid mine drainage was studied for its iron and natural organic matter (NOM) geochemistry on three different sampling dates during summer 1994. Samples were obtained using a new sampling technique that is based on screened pipes of varying length (several centimeters), into which dialysis vessels can be placed and that can be screwed together to allow for vertical pore-water sampling. The iron concentration increased with time (through the summer) and had distinct peaks in the subsurface. Iron was mainly in the ferrous form; however, close to the surface, significant amounts of ferric iron (up to 40% of 2 mmol L-1 total iron concentration) were observed. In all samples studied, iron was strongly associated with NOM. Results from laboratory experiments indicate that the NOM stabilizes the ferric iron as small iron oxide colloids (able to pass a 0.45μm dialysis membrane). We hypothesize that, in the pore water of the wetland, the high NOM concentrations (>100 mg C L-1) allow formation of such colloids at the redoxcline close to the surface and at the contact zone to the adjacent oxic aquifer. Therefore, particle transport along flow paths and resultant export of ferric iron from the wetland into ground water might be possible.

  13. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  14. Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia

    USGS Publications Warehouse

    Hobba, William A.

    1993-01-01

    The effects of underground mining and mine collapse on areal hydrology were determined at one site where the mined bed of coal lies above major streams and at two sites where the bed of coal lies below major streams. Subsidence cracks observed at land surface generally run parallel to predominant joint sets in the rocks. The mining and subsidence cracks increase hydraulic conductivity and interconnection of water-bearing rock units, which in turn cause increased infiltration of precipitation and surface water, decreased evapotranspiration, and higher base flows in some small streams. Water levels in observation wells in mined areas fluctuate as much as 100 ft annually. Both gaining and losing streams are found in mined areas. Mine pumpage and drainage can cause diversion of water underground from one basin to another. Areal and single-well aquifer tests indicated that near-surface rocks have higher transmissivity in a mine-subsided basin than in unmined basins. Increased infiltration and circulation through shallow subsurface rocks increase dissolved mineral loads in streams, as do treated and untreated contributions from mine pumpage and drainage. Abandoned and flooded underground mines make good reservoirs because of their increased transmissivity and storage. Subsidence cracks were not detectable by thermal imagery, but springs and seeps were detectable.

  15. Determining water storage depletion within Iran by assimilating GRACE data into the W3RA hydrological model

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Forootan, E.; Kuhn, M.; Awange, J.; van Dijk, A. I. J. M.; Schumacher, M.; Sharifi, M. A.

    2018-04-01

    Groundwater depletion, due to both unsustainable water use and a decrease in precipitation, has been reported in many parts of Iran. In order to analyze these changes during the recent decade, in this study, we assimilate Terrestrial Water Storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) into the World-Wide Water Resources Assessment (W3RA) model. This assimilation improves model derived water storage simulations by introducing missing trends and correcting the amplitude and phase of seasonal water storage variations. The Ensemble Square-Root Filter (EnSRF) technique is applied, which showed stable performance in propagating errors during the assimilation period (2002-2012). Our focus is on sub-surface water storage changes including groundwater and soil moisture variations within six major drainage divisions covering the whole Iran including its eastern part (East), Caspian Sea, Centre, Sarakhs, Persian Gulf and Oman Sea, and Lake Urmia. Results indicate an average of -8.9 mm/year groundwater reduction within Iran during the period 2002 to 2012. A similar decrease is also observed in soil moisture storage especially after 2005. We further apply the canonical correlation analysis (CCA) technique to relate sub-surface water storage changes to climate (e.g., precipitation) and anthropogenic (e.g., farming) impacts. Results indicate an average correlation of 0.81 between rainfall and groundwater variations and also a large impact of anthropogenic activities (mainly for irrigations) on Iran's water storage depletions.

  16. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard

    2018-01-01

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE < 0.5) uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately simulate hydrologic processes in mildly sloped watersheds.

  17. Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin

    USDA-ARS?s Scientific Manuscript database

    The US Midwest is expected to experience higher intensity rainfall events along with an increased chance of drought during the mid- and late-21st century under climate change. Development of strategies to mitigate the impact of these projected changes on agricultural production may be critical for e...

  18. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 24. Seismic Refraction Tomography for Volume Analysis of Saturated Alluvium in the Straight Creek Drainage and Its Confluence With Red River, Taos County, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2007-01-01

    As part of a research effort directed by the New Mexico Environment Department to determine pre-mining water quality of the Red River at a molybdenum mining site in northern New Mexico, we used seismic refraction tomography to create subsurface compressional-wave velocity images along six lines that crossed the Straight Creek drainage and three that crossed the valley of Red River. Field work was performed in June 2002 (lines 1-4) and September 2003 (lines 5-9). We interpreted the images to determine depths to the water table and to the top of bedrock. Depths to water and bedrock in boreholes near the lines correlate well with our interpretations based on seismic data. In general, the images suggest that the alluvium in this area has a trapezoidal cross section. Using a U.S. Geological Survey digital elevation model grid of surface elevations of this region and the interpreted elevations to water table and bedrock obtained from the seismic data, we generated new models of the shape of the buried bedrock surface and the water table through surface interpolation and extrapolation. Then, using elevation differences between the two grids, we calculated volumes of dry and wet alluvium in the two drainages. The Red River alluvium is about 51 percent saturated, whereas the much smaller volume of alluvium in the tributary Straight Creek is only about 18 percent saturated. When combined with average ground-water velocity values, the information we present can be used to determine discharge of Straight Creek into Red River relative to the total discharge of Red River moving past Straight Creek. This information will contribute to more accurate models of ground-water flow, which are needed to determine the pre-mining water quality in the Red River.

  19. On the theory of drainage area for regular and non-regular points.

    PubMed

    Bonetti, S; Bragg, A D; Porporato, A

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47 , W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219 , 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  20. On the theory of drainage area for regular and non-regular points

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Bragg, A. D.; Porporato, A.

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  1. Role of air on local water retention behavior in the shallow heterogeneous vadose zone

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-12-01

    In the presence of a subsurface source, air flowing through the unsaturated soil can transport toxic vapor into subsurface structures due to pressure gradients created by, e.g., a pressure drop within the building. Development of dynamic air pathways in the subsurface are largely controlled by the geological heterogeneity and the spatial and temporal distribution of soil moisture. To better understand how these air pathways are developed, it is crucial to know how water is retained in heterogeneous medium at spatial resolutions that are finer than those adopted in typical hydrologic and soil physics applications. Although methods for soil water pressure measurement can be readily found in literature, a technique for measuring “air pressure” in wet soil is not well-established or documented. Hydrophobic porous ceramic cups have been used to measure non-wetting NAPL phase pressure in two-phase systems. However, our preliminary tests using the hydrophobic ceramic cups installed in highly wet soil showed that under conditions of fast drainage of the wetting fluid that is replaced by air, it typically took some time before the cups responded to register the air pressure. Therefore, an attempt was made to develop a more robust method where the time lag is minimized. The tested materials were; 1) ceramic porous cups, 2) sintered stainless steel cups, 3) porous glass discs, and 4) non-woven PTFE fabric. The ceramic cups, sintered stainless steel cups and sintered porous glass discs required hydrophobic treatment, whereas the non-woven PTFE fabric is hydrophobic by itself. To treat the ceramic porous cups, the method proposed by Parker and Lenhard [1988] was adopted. The sintered porous stainless steel cups and porous glass discs were treated by a commercially available water repellant compound. For those four materials, contact angle, water entry pressure, and time lag to respond to an imposed pressure were measured. The best performing material was then tested in a simple heterogeneous column. The column was packed using two sands to form three layers where the coarser sand was sandwitched by two layers of a finer sand. In each layer, soil moisture, water pressure and air pressure were monitored. The soil was initially saturated and suction at the bottom was gradually increased to induce wetting fluid drainage, and followed by a wetting cycle. In the drainage cycle, the coarse middle layer did not drain until air front reached the bottom of the top fine layer. Once the air front reached the fine-coarse interface, air was quickly pulled into the coarse layer. The results showed that the newly developed hydrophobic material showed very small time lag and captured the abrupt air pressure change in the wet soil. In the wetting cycle, we observed positive air pressure which indicated entrapment of air and its compression as wetting proceeded. This behavior cannot be evaluated properly without the rapid measurement of air pressure. The method is currently being applied in a large 2D vertical aquifer with a structured heterogeneity to investigate how air pathways are formed under various flux/temperature conditions at the soil surface.

  2. 3D time-lapse Electrical Resistivity Tomography (ERT) to monitor subsurface flow processes during a sprinkling and injection experiment on a mountain slope

    NASA Astrophysics Data System (ADS)

    Inauen, C.; Green, A.; Rabenstein, L.; Greenhalgh, S.; Kinzelbach, W.; Doetsch, J.; Hertrich, M.; Smoorenburg, M.; Volze, N.

    2012-04-01

    Understanding the relationships between precipitation volumes, surface runoff and subsurface storage, drainage and flow processes on mountain slopes is critical for flood management in alpine regions. In the Schächen catchment (central Switzerland) an unexpectedly delayed and heavy flood reaction to a long duration rainfall event was observed in 2005. It is believed that the steep creeping landmass slopes with thick soils were responsible for the delay. To better comprehend and visualise water infiltration and runoff formation we conducted a 3D time-lapse ERT experiment during a water sprinkling and injection experiment on the side of a hill in the Schächental region presumed representative of soil and other conditions associated with the delayed flood. Constant sprinkling at a rate of about 10mm/h was applied to a plot of area 30m x 5m. The electrical conductivity of the sprinkled water was approximately that of the pore water (25mS/m). A total of 33 consecutive ERT data sets, each comprising 3521 measured electrode configurations, were recorded with a 96-electrode array over an area of 27.5m x 14m, which included two thirds of the sprinkled area. Each electrode configuration was measured at a repeat interval of 2 to 2.8 hours. The entire 3D ERT monitoring experiment was divided into two separate time intervals: (1) the initial 25 hour period involving only freshwater sprinkling, until steady state was reached, (2) the following 35 hour period during which, in addition to the sprinkling, salt water was injected in two boreholes at a depth of 1m (unsaturated zone). The salt water injections were separated by 17 hours, and monitored until 14 hours after sprinkling stopped. During the first interval all changes in the subsurface resistivity are caused by changes in the water saturation and the temperature of the fluid, whereas in the second interval they are mainly due to changes in salt concentration of the pore fluid. Supplementary measurements of water table elevation and fluid electric conductivity were made in several boreholes. To image the subsurface resistivity changes, we inverted the ratios of time-lapse resistances to their background (pre-sprinkling) values. The sprinkling during time interval 1 allowed us to examine near-surface infiltration. Even from the first time window, the emergence of a shallow wetting front could be observed in the inverted depth sections as a decrease in bulk resistivity. Both salt water plumes during interval 2 were found to move laterally as well as vertically through the soil into a zone of fissured Flysch. Below the water table, the plume could be tracked further as a weaker ERT signal, which shows a flow component parallel to the water table in the downslope direction where it eventually breaks the surface. 3D ERT monitoring has proven to be a powerful tool to monitor water sprinkling and injection experiments. Due to its advantageous ability to resolve changes, both in time and in space, it captured most of the soil moisture and flow dynamics. Processes, such as infiltration and drainage, which are important for the understanding of runoff formation, could be readily visualized.

  3. Drainage Basins as Large-Scale Field Laboratories of Change: Hydro-biogeochemical- economic Model Study Support for Water Pollution and Eutrophication Management Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2008-12-01

    Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.

  4. Investigating summer flow paths in a Dutch agricultural field using high frequency direct measurements

    NASA Astrophysics Data System (ADS)

    Delsman, J. R.; Waterloo, M. J.; Groen, M. M. A.; Groen, J.; Stuyfzand, P. J.

    2014-11-01

    The search for management strategies to cope with projected water scarcity and water quality deterioration calls for a better understanding of the complex interaction between groundwater and surface water in agricultural catchments. We separately measured flow routes to tile drains and an agricultural ditch in a deep polder in the coastal region of the Netherlands, characterized by exfiltration of brackish regional groundwater flow and intake of diverted river water for irrigation and water quality improvement purposes. We simultaneously measured discharge, electrical conductivity and temperature of these separate flow routes at hourly frequencies, disclosing the complex and time-varying patterns and origins of tile drain and ditch exfiltration. Tile drainage could be characterized as a shallow flow system, showing a non-linear response to groundwater level changes. Tile drainage was fed primarily by meteoric water, but still transported the majority (80%) of groundwater-derived salt to surface water. In contrast, deep brackish groundwater exfiltrating directly in the ditch responded linearly to groundwater level variations and is part of a regional groundwater flow system. We could explain the observed salinity of exfiltrating drain and ditch water from the interaction between the fast-responding pressure distribution in the subsurface that determined groundwater flow paths (wave celerity), and the slow-responding groundwater salinity distribution (water velocity). We found water demand for maintaining water levels and diluting salinity through flushing to greatly exceed the actual sprinkling demand. Counterintuitively, flushing demand was found to be largest during precipitation events, suggesting the possibility of water savings by operational flushing control.

  5. A two-dimensional transient analytical solution for a ponded ditch drainage system under the influence of source/sink

    NASA Astrophysics Data System (ADS)

    Sarmah, Ratan; Tiwari, Shubham

    2018-03-01

    An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.

  6. Geology and water-resources reconnaissance of Lenger Island, State of Pohnpei, Federated States of Micronesia, 1991

    USGS Publications Warehouse

    Anthony, Stephen S.; Spengler, Steven R.

    1996-01-01

    Lenger is a small (less than 0.2 square miles) volcanic island located within the lagoon of Pohnpei Island. Ground water on Lenger moves as shallow subsurface flow through weathered bedrock slopes into low-lying areas near the coast before discharging into the surrounding lagoon. Estimated ground-water recharge to the island from rainfall is 506,000 gallons per day on the basis of a mean annual rainfall of 140 inches. The basal part of Lenger is composed of a relatively low- permeability post-shield-building lava flow. This flow is overlain by a more permeable conglomerate of stream deposits which is in turn overlain by a relatively low-permeability columnar-jointed lava flow. The limited land mass and relatively low-permeability lava flows that form the bedrock of Lenger are not favorable to the formation of well-defined drainage basins or large basal ground-water bodies. Numerous springs and seeps discharge shallow subsurface flow at the contact between water-bearing weathered bedrock and underlying less-permeable bedrock. Because the amount of water stored in these shallow subsurface ground-water bodies is limited, springflow and seepflow rates are directly related to rainfall. Barbosa Pond, the largest surface-water body on Lenger, contained 162,000 gallons of water on June 19, 1991. On June 20, 1991, springflow into the pond increased from 0.6 gallons per minute during base-flow conditions to 21 gallons per minute during a 4-hour period of rain that totaled 0.74 inches. The water from Barbosa Pond contains iron and manganese in concentrations that may cause problems in a water-supply system. Small-scale development of ground water, such as was done at Barbosa Pond by the Japanese, is possible by tapping water stored in colluvial talus deposits that flank the base of Mosher hill. The source of water in these deposits is from seeps and springs that have low base flows; however, additional quantities of water could be obtained from these deposits by widening or deepening the capture area of wells used to develop these deposits. If sufficient storage facilities are built, water from these deposits would be available during drought conditions.

  7. Competing feedbacks drive state transitions during initial catchment evolution: Examples from post-mining landscape and ecosystems evolution

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Wolfgang, Schaaf; Werner, Gerwin

    2014-05-01

    Within the context of severely disturbed landscapes with little or no ecological memory, such as post-mining landscapes, we propose a simple framework that explains the catchment evolution as a result of competing feedbacks influenced by the initial conditions and the atmospheric drivers such as rainfall intermittency and intensity. The first stage of the evolution is dominated by abiotic feedbacks triggered by rainfall and subsequent fluid flow causing particle mobilisation on the surface and in the subsurface leading to flow concentration or in some instances to densification of surface and subsurface substrates. Subsequently, abiotic-biotic feedbacks start to compete in the sense that biological activity generally stabilizes substrate by preventing particle mobilisation and hence contribute to converting the substrate to a habitat. We suggest that these competing feedbacks may generate alternative stable states in particular under semi-arid and arid climatic conditions, while in temperate often energy limited environments biological process "outcompete" abiotic processes leading to a stable state, in particular from the water balance point of view for comparable geomorphic situations. To illustrate this framework, we provide examples from post-mining landscapes, in which soil, water and vegetation was monitored. In case of arid regions in Australia, we provide evidence that the initial conditions of a mine waste disposal "locked" the system into a state that was limited by water and nutrient storage capacity while at the same time it was stable from a geomorphic point of view for the observation period. The cause of the system to be locked in, is the very high hydraulic conductivity of the substrate, that has not undergone any changes during the first years. In contrast to this case study, we illustrate how this framework explains the evolution of an artificial catchment (Hühnerwasser Catchment) in Lusatia (150 km southeast of Berlin, Germany). During the initial phase of development the catchment changed very rapidly due to sediment transport, drainage network formation, and soil crusting very similar to geomorphic processes observed in arid and semi-arid landscapes void of dense vegetation. Hydraulic properties changed rapidly after few wet and dry cycles, indicative of particle mobilisation and trapping in the subsurface. Accordingly, the hydrological regime was controlled by rapid surface runoff enhanced through crust formation and at the same time a shallow ground water system developed. This surface runoff regime peeked about two years initialisation as shown by a maximum area of drainage channels. A major, fairly rapid transition occurred between three and five years after placement, in which the sediment transport ceased and vegetation coverage of the drainage channel exceeded 90%. The transition represents the onset of a transpiration dominated regime that is further enhanced by change of the plant composition of the vegetation with tree recruitment from the surrounding forming significant clusters in the catchment. This transition in the third year was also seen in a significant increase in soil fauna and plant diversity.

  8. Drainage lineaments in late Quaternary sediments, Ascension and East Baton Rouge Parishes, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdseye, R.U.; Christians, G.L.; Olson, J.L.

    1988-09-01

    Analysis of conventional aerial photographs, NHAP imagery, and topographic maps covering Ascension and East Baton Rouge Parishes in southeastern Louisiana reveals fine-textured parallel sets of drainage lineaments and numerous fluvial anomalies. Linear physiographic features include stream channels, natural levees, stream valleys, rectangular drainage patterns, and terrace scarps. Late Pleistocene and Holocene surfaces are involved, but only small drainages are affected and no such control is exerted on the Mississippi river. Most lineaments show preferred northeast and northwest trends. Orientations of mapped joint systems are similar to lineament orientations, which suggests that trends of physiographic lineaments are controlled by underlying structure.more » Several surface faults are mapped in the northern portion of the region, all of which strike essentially east-west. Salt domes are located in the subsurface to the south; however, they have no geomorphic expression and do not seem to be associated with the lineaments. Therefore, joints rather than faults or salt diapirs are a likely structural control. Joints may provide paths of weakness along which surface drainage might develop preferentially. Thus, joints probably exert an important control on the geomorphology of the region. The joint pattern appears to be related to the local distribution of the Mesozoic and Cenozoic strata, and may result from regional subsidence due to the thick accumulation of deltaic sediments. Conclusive subsurface data are currently unavailable, and shallow seismic surveys in the future may strengthen the case for an interpretation of structural control of drainage.« less

  9. Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland

    USGS Publications Warehouse

    Burow, K.R.; Constantz, J.; Fujii, R.

    2005-01-01

    Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch. Copyright ?? 2005 National Ground Water Association.

  10. Linking point scale process non-linearity, catchment organization and linear system dynamics in a thermodynamic state space

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert

    2017-04-01

    It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to an elevated density of the preferential flow paths, imply a less non-linear system behavior. This is because they avoid persistence of very dry states system states by facilitating recharge of the soil moisture stock. Based on the proposed approach we compare dynamics of four distinctly different catchments in their respective state space and demonstrate the feasibility of the approach to explain differences and similarities in their rainfall runoff regimes.

  11. Microbial and Nutrient Concentration and Load Data During Stormwater Runoff at a Swine Concentrated Animal Feeding Operation in the North Carolina Coastal Plain, 2006-2007

    USGS Publications Warehouse

    Harden, Stephen L.

    2008-01-01

    This report summarizes water-quality and hydrologic data collected during 2006-2007 to characterize bacteria and nutrient loads associated with overland runoff and subsurface tile drainage in spray fields at a swine concentrated animal feeding operation. Four monitoring locations were established at the Lizzie Research Site in the North Carolina Coastal Plain Physiographic Province for collecting discharge and water-quality data during stormwater-runoff events. Water stage was measured continuously at each monitoring location. A stage-discharge relation was developed for each site and was used to compute instantaneous discharge values for collected samples. Water-quality samples were collected for five storm events during 2006-2007 for analysis of nutrients and fecal indicator bacteria. Instantaneous loads of nitrite plus nitrate, total coliform, Escherichia coli (E. coli), and enterococci were computed for selected times during the five storm events.

  12. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  13. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.

  14. Discovering buried channels of the Yamuna in alluvial plains of NW India using geophysical investigations: implications for major drainage reorganization during Late Quaternary

    NASA Astrophysics Data System (ADS)

    Paul, D.; Khan, I.; Sinha, R.

    2016-12-01

    Climatic changes and active tectonic movements in the northwestern plains of India during the Late Quaternary have led to the migration and abandonment of drainage systems and formation of a large number of palaeochannels. It has been postulated by previous workers that the Yamuna was flowing along the present-day dry palaeochannels of Ghaggar-Hakra riverbed >120 Ka ago and was relocated to its current position only during the Late Quaternary. However, till date, no conclusive evidence has been provided as to when and why the Yamuna avulsion occurred. This study aims to establish sub-surface existence of buried channels of paleo-Yamuna as possible courses of the paleo-Ghaggar river. Geo-electric studies using vertical electrical resistivity soundings (1D-VES), multi electrode electrical resistivity tomography (2D-ERT) and multi probe well log surveys have been carried out in one of the paleochannels of the Yamuna to map the large-scale geometry and architecture of the palaeochannel system in the subsurface. The main objective is to reconstruct the shallow subsurface stratigraphy and alluvial architecture of the interfluve between the modern Yamuna and Sutlej Rivers, in particular the linkage of the paleocourses of the Yamuna River to the drainage network of the northwestern alluvial plains. The geophysical signatures recorded as VES on two transects trending NW-SE in Karnal and Kaithal districts of Haryana at 9 and 13 locations respectively along with continuous ERT reveals the presence of subsurface fine to coarse sand bodies (20 to 30m thick) interbedded with silty clay layers that are laterally stacked. The occurrence of thick and wide subsurface sand bodies in the subsurface implies that these are the deposits of a large river system and suggests that the Yamuna was connected to the paleo-Ghaggar River as hypothesized by earlier workers based on remote sensing techniques. However, detailed sedimentological and chronological constraints are required to establish such links to unravel the stratigraphic manifestation of the buried channels, their sediment provenance and paleoclimatic conditions during the period when these river systems were active.

  15. Peatland Structural Controls on Spring Distribution

    NASA Astrophysics Data System (ADS)

    Hare, D. K.; Boutt, D. F.; Hackman, A. M.; Davenport, G.

    2013-12-01

    The species richness of wetland ecosystems' are sustained by the presence of discrete groundwater discharge, or springs. Springs provide thermal refugia and a source of fresh water inflow crucial for survival of many wetland species. The subsurface drivers that control the spatial distribution of surficial springs throughout peatland complexes are poorly understood due to the many challenges peatlands pose for hydrologic characterization, such as the internal heterogeneities, soft, dynamic substrate, and low gradient of peat drainage. This has previously made it difficult to collect spatial data required for restoration projects that seek to support spring obligate and thermally stressed species such as trout. Tidmarsh Farms is a 577-acre site in Southeastern Massachusetts where 100+ years of cranberry farming has significantly altered the original peatland hydrodynamics and ecology. Farming practices such as the regular application of sand, straightening of the main channel, and addition of drainage ditches has strongly degraded this peatland ecosystem. Our research has overlain non-invasive geophysical, thermal, and water isotopic data from the Tidmarsh Farms peatland to provide a detailed visualization of how subsurface peat structure and spring patterns correlate. Ground penetrating radar (GPR) has proven particularly useful in characterizing internal peat structure and the mineral soil interface beneath peatlands, we interpolate the peatland basin at a large scale (1 km2) and compare this 3-D surface to the locations of springs on the peat platform. Springs, expressed as cold anomalies in summer and warm anomalies in winter, were specifically located by combining fiber-optic and infrared thermal surveys, utilizing the numerous relic agricultural drainage ditches as a sampling advantage. Isotopic signatures of the spring locations are used to distinguish local and regional discharge, differences that can be explained in part by the peat basin structure delineated with GPR. The study expands our understanding of complex peat systems and will be used to inform wetland restoration based on hydrodynamic processes; yielding a more successful, resilient restoration and desired ecologic function. Our research demonstrates how the use of GPR in combination with thermal imagery and isotopic analysis can help characterize degraded peatlands, informing a process-based approach to ecological restoration of the site with the ability to monitor changes through time.

  16. Subsurface geomicrobiology of the Iberian Pyritic Belt, a terrestrial analogue of Mars

    NASA Astrophysics Data System (ADS)

    Amils, Ricardo

    Terrestrial subsurface geomicrobiology is a matter of growing interest on many levels. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies, e.g., Mars. Ŕ Tinto is an unusual extreme acidic environment due to its size, constant acidic pH, high ıo concentration of heavy metals and high level of microbial diversity. Ŕ Tinto rises in the core of ıo the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ŕ Tinto are not due to acid mine drainage resulting ıo from mining activity. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ from retrieved cores (MARTE project). Preliminary results clearly show that there is an active subsurface geomicrobiology in the Iberian Pyritic Belt associated to places were ground waters intersects the sulfidic ore body.

  17. Geochemical and isotopic tracing of water in nested southern Minnesota corn-belt watersheds.

    PubMed

    Magner, J A; Alexander, S C

    2002-01-01

    Land-use changes over the last century in southern Minnesota have influenced riverine water chemistry. A nested watershed approach was used to examine hydrologic pathways of water movement in this now agriculturally intensive region. From field scale subsurface tile-drains of the Beauford ditch to the respective outlets of the Cobb River and Blue Earth River, more than 125 samples were collected for major dissolved ions and isotopes between March 1994 and June 1996 over a range of climatic conditions that included snowmelt and storm-flows. Results indicate that riverine water chemistry is dominated by subsurface tile-drained row crop agriculture. In the mid-1990s, regional ground water discharge into the Cobb and Blue Earth Rivers comprised less than 10% of the total flow based on ionic mixing calculations. Ammonia, present in manure or as anhydrous, is readily exchanged in the soil. This ion exchange releases increasing ratios of magnesium, sodium and strontium relative to calcium, the dominant cation. Soil thaw and snowmelt recharge influenced March-April tile-drain and ditch water isotopic values. Light deltaD values increased as spring infiltration-derived water was displaced from the soil zone by heavier summer precipitation. Delta15N followed a similar but opposite pattern with relatively heavy March-April tile-drain and ditch values trending to lighter delta15N through the growing season. The future of southern Minnesota riverine water quality is closely linked to the management of the landscape. To improve the riverine environment, land owners and managers will need to address cropping systems, fertilization practices and drainage.

  18. Lateral, vertical, and longitudinal connectivity of runoff source areas drive stream hydro-biogeochemical signals across a low relief drainage network

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2017-12-01

    Our understanding of the balance between longitudinal, lateral, and vertical expansion and contraction of reactive flowpaths and source areas in headwater catchments is limited. To address this, we utilized an ephemeral-to-perennial stream network in the Piedmont region of North Carolina, USA to gain new understanding about critical zone mechanisms that drive runoff generation and biogeochemical signals in both groundwater and stream water. Here, we used chemical and hydrometric data collected from zero through second order catchments to characterize spatial and temporal runoff and overland, shallow soil, and deep subsurface flow across characteristic landscape positions. Our results showed that the active stream network was driven by two superimposed runoff generation regimes that produced distinct hydro-biogeochemical signals at the catchment outlet. The baseflow runoff generation regime expanded and contracted the stream network seasonally through the rise and fall of the seasonal water table. Superimposed on this, event-activated source area contributions were driven by surficial and shallow subsurface flowpaths. The subsurface critical zone stratigraphy in this landscape coupled with the precipitation regime activated these shallow flowpaths frequently. This drove an increase in dissolved organic carbon (DOC) concentrations with increases in runoff across catchment scales. DOC-runoff relationship variability and spread was driven by the balance between runoff regimes as well as a seasonal depletion of DOC from shallow subsurface flowpath activation and annual replenishment from litterfall. From this, we suggest that the hydro-biogeochemical signals at larger catchment outlets can be driven by a balance of longitudinal, lateral, and vertical source area contributions, critical zone structure, and complex hydrological processes.

  19. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  20. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.

  1. Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances

    NASA Astrophysics Data System (ADS)

    Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.

    2016-12-01

    Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of two described types of groundcover. We then analyze hydrological sensitivity to presence or absence of particular groundcover types, their respective patchiness, and possible changes in overland flow pathways.

  2. Quaternary history of the Kiseiba Oasis region, southern Egypt

    NASA Astrophysics Data System (ADS)

    Maxwell, Ted A.; Haynes, C. Vance; Nicoll, Kathleen; Johnston, Andrew K.; Grant, John A.; Kilani, Ali

    2017-12-01

    Kiseiba Oasis and depression are located in southern Egypt between the Selima Sand Sheet to the west and the Nile to the east, an important area that hosted Late Cenozoic drainage, Middle Pleistocene lakes, and numerous Paleolithic and Neolithic cultural sites. A synthesis of orbital data, field surveying and near-surface stratigraphy provides new insights into the Quaternary history of this region. Shuttle Imaging Radar data show a complex of fluvial channels that are due to stringers of surficial fluvial lag, subsurface fluvial deposits, and areas of deep alluvium. Three topographic surfaces are described: 1) the Atmur El-Kibeish, above 230 m elevation, which displays a linear pattern of light radar returns, possibly formed from northeast drainage; 2) the Acheulean Surface, at 200 m elevation, that has dark radar patterns resulting from thick alluvium bounded by pebble sand and calcrete strata, and 3) the Kiseiba Surface, below 190 m, that has a complex series of surface and subsurface fluvial and aeolian sediments. Initial drainage from the Early through Middle Pleistocene was to the northeast, which may have lasted through the Last Interglacial. Later reworking of sediments during the Last Glacial Maximum and the Holocene resulted in topographic inversion, with any subsequent local drainage on the Kiseiba Surface to the southwest, towards the Kiseiba Scarp.

  3. Orbital radar studies of paleodrainages in the central Namib Desert

    USGS Publications Warehouse

    Lancaster, N.; Schaber, G.G.; Teller, J.T.

    2000-01-01

    Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area. (C) Elsevier Science Inc., 2000.Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area.

  4. Watershed models for instructional films

    Treesearch

    Peter E. Black; Raymond E. Leonard

    1970-01-01

    Watershed models, with a special sponge material that simulates soil drainage, were used to make an instructional film on subsurface flow and stream flow. Construction of the models and filming techniques are described.

  5. Ecohydrological and subsurface controls on drought-induced contraction and disconnection of stream networks

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Kirchner, J. W.; Whiting, J. A.

    2016-12-01

    Temporary headwater streams - both intermittent and ephemeral waterways - supply water to approximately 1/3 of the US population, and 60% of streams used for drinking water are temporary. Stream ecologists increasingly recognize that a gradient of processes across the drying continuum affect ecosystems at dynamic terrestrial-aquatic interfaces. Understanding the hydrological controls across that gradient of drying may improve management of these sensitive systems. One possible control on surface flows includes transpiration losses from either the riparian zone or the entire watershed. We mapped several stream networks under extreme low flow conditions brought on by severe drought in central Idaho and California in 2015. Compared to previous low-flow stream length estimates, the active drainage network had generally decreased by a very small amount across these sites, perhaps because stored water buffered the precipitation decrease, or because flowing channel heads are fixed by focused groundwater flow emerging at springs. We also examined the apparent sources of water for both riparian and hillslope trees using isotopic techniques. During drought conditions, we hypothesized that riparian trees - but not those far from flowing streams - would be sustained by streamflow recharging riparian aquifers, and thus would transpire water that was isotopically similar to streamflow because little soil water would remain available below the wilting point and stream water would be sustain those trees. We found a more complex pattern, but in most places stream water and water transpired by trees were isotopically distinct regardless of flow intermittency or tree location. We also found that hillslope trees outside of the riparian zone appeared to be using different waters from those used by riparian trees. Finally, we explore subsurface controls on network extent, showing that bedrock characteristics can influence network stability and contraction patterns.

  6. Neotectonic Activity from the Upper Reaches of the Arabian Gulf and Possibilities of New Oil Fields

    NASA Astrophysics Data System (ADS)

    Sissakian, V. K.; Abdul Ahad, A. D.; Al-Ansari, N.; Knutsson, S.

    2018-03-01

    Upper reaches of the Arabian Gulf consist of different types of fine sediments including the vast Mesopotamia Plain sediments, tidal flat sediments and estuarine sabkha sediments. The height of the plain starts from zero meter and increases northwards to three meters with extremely gentle gradient. The vast plain to the north of the Arabian Gulf is drained by Shat Al-Arab (Shat means river in Iraqi slang language) and Khor Al-Zubair (Khor means estuary). The former drains the extreme eastern part of the plain; whereas, the latter drains the western part. Shat Al-Arab is the resultant of confluence of the Tigris and Euphrates rivers near Al-Qurna town; about 160 km north of the Arabian Gulf mouth at Al-Fao town; whereas, the length of Khor Al-Zubair is about 50 km; as measured from Um Qasir Harbor. The drainage system around Khor Al-Zubair is extremely fine dendritic; whereas around Shat Al-Arab is almost parallel running from both sides of the river towards the river; almost perpendicularly. The fine dendritic drainage around Khor Al-Zubair shows clear recent erosional activity, beside water divides, abandoned irrigation channels and dislocated irrigational channels and estuarine distributaries; all are good indication for a Neotectonic activity in the region. These may indicate the presence of subsurface anticlines, which may represent oil fields; since tens of subsurface anticlines occur in near surroundings, which are oil fields.

  7. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed seek to reduce the amount of drainage water produced. One approach is to reduce the amount of drainage per irrigated acre. From modeling simulations performed for the SLDFRE EIS of the Westlands Area of the SLU, theoretical minimums that can be achieved range from approximately 0.16 to 0.25 acre-feet per acre per year (AF/acre/year). Minimum production rates from the Northerly Area of the SLU are theorized as being much higher, approximately 0. 42 to 0.28 AF/acre/year. Rates shown in the SLU Plans for drained acres from the two areas combined are 0.5 AF/acre/year at the subsurface drain stage and 0.37 AF/acre/year after a series of on-farm and regional measures are instituted. Land retirement is a key strategy to reduce drainage because it can effectively reduce drainage to zero if all drainage-impaired lands are retired. Land retirement alternatives considered in the SLDFRE EIS differ for the two areas analyzed in the SLU. The Northerly Area is to retire a nominal 10,000 acres and Westlands is to retire up to 300,000 acres. The initial land retirement option recently put forth in the SLU Plans predicted drainage volume reductions that are consistent with 200,000 acres of land retirement, but only 100,000 acres of land retirement was proposed. Within the proposed area of drainage there are, for all practical purposes, unlimited reservoirs of selenium and salt stored within the aquifers and soils of the valley and upslope in the Coast Ranges. Salt imported in irrigation water is estimated to be at least 1.5 million tons per year for the Westlands and Northerly Areas (SJVDIP, 1998). Analysis of the land retirement alternatives presented in the SLDFRE EIS indicates that land retirement of a minimum of only 100,000 acres results in the annual pumping to the surface of 20,142 pounds of selenium or about a million pounds of selenium over a 50 year period. Retiring 200,000 acres results in an annual pumping of 14,750 pounds of selenium; and reti

  8. Geophysical Investigations at Hidden Dam, Raymond, California: Summary of Fieldwork and Data Analysis

    USGS Publications Warehouse

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2010-01-01

    Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify potential seepage in that area. This report is primarily a summary of the field geophysical data acquisition, with some preliminary results and interpretation. Further work will involve a more rigorous analysis of the geophysical datasets and an examination of a large dataset of historical observations of water levels in a number of observation wells and piezometers compared with reservoir elevation. In addition, a partially saturated flow model will be developed to better understand seepage patterns given the available information about dam construction, geophysical results, and data from installed observation wells and piezometers.

  9. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    NASA Astrophysics Data System (ADS)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  10. 4D ground penetrating radar measurements as non-invasive means for hydrological process investigation

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Allroggen, Niklas

    2017-04-01

    The missing vision into the subsurface appears to be a major limiting factor for our hydrological process understanding and theory development. Today, hydrology-related sciences have collected tremendous evidence for soils acting as drainage network and retention stores simultaneously in structured and self-organising domains. However, our present observation technology relies mainly on point-scale sensors, which integrate over a volume of unknown structures and is blind for their distribution. Although heterogeneity is acknowledged at all scales, it is rarely seen as inherent system property. At small scales (soil moisture probe) and at large scales (neutron probe) our measurements leave quite some ambiguity. Consequently, spatially and temporally continuous measurement of soil water states is essential for advancing our understanding and development of subsurface process theories. We present results from several irrigation experiments accompanied by 2D and 3D time-lapse GPR for the development of a novel technique to visualise and quantify water dynamics in the subsurface. Through the comparison of TDR, tracer and gravimetric measurement of soil moisture it becomes apparent that all sensor-based techniques are capable to record temporal dynamics, but are challenged to precisely quantify the measurements and to extrapolate them in space. At the same time excavative methods are very limited in temporal and spatial resolution. The application of non-invasive 4D GPR measurements complements the existing techniques and reveals structural and temporal dynamics simultaneously. By consequently increasing the density of the GPR data recordings in time and space, we find means to process the data also in the time-dimension. This opens ways to quantitatively analyse soil water dynamics in complex settings.

  11. KEEPING DUST UNDER THE CARPET

    EPA Science Inventory

    The paper gives results of a study of civil engineering fabrics applied to fugitive dust problems. The fabrics, commonly used for ground stabilization, subsurface drainage, railroad construction and maintenance, sediment control, and erosion control, are available from Celanese, ...

  12. Application of BIM Technology in Building Water Supply and Drainage Design

    NASA Astrophysics Data System (ADS)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  13. The role of subsurface water flow paths on hillslope hydrological processes, landslides and landform development in steep mountains of Japan

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Tsujimura, Maki; Tabuchi, Hidekazu

    2004-03-01

    Hydrological monitoring was conducted in high-relief watersheds in the Japan Alps to investigate the relationship between hillslope hydrological processes and landform evolution in steep granite and shale mountains. In the Koshibu watershed, underlain by Mesozoic shale, the drainage density and frequency was significantly lower than in the Yotagiri watershed underlain by granite. Drainage micro-morphology analysis showed that hillslopes in the watersheds K1 and K6 (Koshibu basin) are mostly combinations of talus and bedrock exposures. In contrast, watershed Y1 (Yotagiri basin) is composed of several zero-order streams with hollows. Infinite slope stability analysis indicates that the regolith shear strength in the K6 watershed (Koshibu basin) is lower than that of the Y1 hillslope, but groundwater levels were higher in the Y1 hillslope than in the K6 hillslope during storm events. These data suggest that, although the shear strength of the soil is stronger in the Yotagiri watershed, the slopes are unstable because of the groundwater conditions, whereas deep-seated landslides may occur episodically in the Koshibu watershed associated with extreme storms and very high antecedent soil moisture. These differences would strongly contribute to the different observed hillslope processes and drainage characteristics.

  14. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was effective in producing a high resolution subsurface model in a large and complex study area that extends well beyond the field scale.

  15. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss.

    PubMed

    Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D

    2009-01-01

    Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.

  16. Superfund record of decision (EPA Region 1): Otis Air National Guard (USAF), Operable Unit 5, Falmouth, MA, September 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    This decision document presents the Air Force Center for Environmental Excellence (AFCEE) selected remedial action decisions for contaminant source areas at the following Areas of Contamination (AOCs) at the Massachusetts Military Reservation (MMR) in Barnstable County on Cape Cod, Massachusetts: Fire Training Area No. 2 and Landfill No. 2 (FTA-2/LF-2); Petroleum Fuels Storage Area, Fuel Spill No. 10, and Fuel Spill No. 11 (PFSA/FS-10/FS-11); Storm Drainage Ditch No. 2, Fuel Spill No. 6, and Fuel Spill No. 8 (SD-2/FS-6/FS-8); Storm Drainage Ditch No. 2, Fire Training Area No. 3, and Coal Storage Yard No. 4 (SF-3/FTA-3/CY-4); Storm Drainage Ditch No.more » 4 (SD-4); and Storm Drainage Ditch No. 5 and Fuel Spill No. 5 (SD-5/FS-5). The selected remedy for AOC FTA-2/LF-2 is Biosparging with Ambient Air Monitoring. This remedial action is a source control action that addresses leaching of organic compounds to groundwater, the principal known threat at AOC FTA-2/LF-2. It consists of designing, constructing, and operating a biosparging treatment system, maintaining institutional controls, and five-year reviews of remedy protectiveness. The remedy reduces the release of contaminants from subsurface soils by treating subsurface soils to meet protective cleanup levels.« less

  17. Temporal geochemical variations in above- and below-drainage coal mine discharge

    USGS Publications Warehouse

    Burrows, Jill E.; Peters, Stephen C.; Cravotta, Charles A.

    2015-01-01

    Water quality data collected in 2012 for 10 above- and 14 below-drainage coal mine discharges (CMDs), classified by mining or excavation method, in the anthracite region of Pennsylvania, USA, are compared with data for 1975, 1991, and 1999 to evaluate long-term (37 year) changes in pH, SO42−, and Fe concentrations related to geochemistry, hydrology, and natural attenuation processes. We hypothesized that CMD quality will improve over time because of diminishing quantities of unweathered pyrite, decreased access of O2 to the subsurface after mine closure, decreased rates of acid production, and relatively constant influx of alkalinity from groundwater. Discharges from shafts, slopes, and boreholes, which are vertical or steeply sloping excavations, are classified as below-drainage; these receive groundwater inputs with low dissolved O2, resulting in limited pyrite oxidation, dilution, and gradual improvement of CMD water quality. In contrast, discharges from drifts and tunnels, which are nearly horizontal excavations into hillsides, are classified as above-drainage; these would exhibit less improvement in water quality over time because the rock surfaces continue to be exposed to air, which facilitates sustained pyrite oxidation, acid production, and alkalinity consumption. Nonparametric Wilcoxon matched-pair signed rank tests between 1975 and 2012 samples indicate decreases in Fe and SO42− concentrations were highly significant (p < 0.05) and increases in pH were marginally significant (p < 0.1) for below-drainage discharges. For above-drainage discharges, changes in Fe and SO42−concentrations were not significant, and increases in pH were highly significant between 1975 and 2012. Although a greater proportion of above-drainage discharges were net acidic in 2012 compared to below-drainage discharges, the increase in pH between 1975 and 2012 was greater for above- (median pH increase from 4.4 to 6.0) compared to below- (median pH increase from 5.6 to 6.1) drainage discharges. For cases where O2 is limited, transformation of aqueous FeII species to FeIII may be kinetically limited. In contrast, where O2 is abundant, aqueous Fe concentrations may be limited by FeIIImineral precipitation; thus, trends in Fe may not follow those for SO42−. In either case, when the supply of alkalinity is sufficient to buffer decreased acidity, the pH could increase by a step trend from strongly acidic (3–3.5) to near neutral (6–6.5) values. Modeled equilibrium with respect to FeIII precipitates varies with pH and Fe and SO42−reconcentrations: increasing pH promotes the formation of ferrihydrite, while decreasing concentrations of Fe limit the formation of ferrihydrite, and decreasing Fe and SO42−concentrations limit the precipitation of schwertmannite and favor formation of FeIIIhydroxyl complexes and uncomplexed Fe2+ and Fe3+. The analysis of the long-term geochemical changes in CMDs in the anthracite field and the effect of the hydrologic setting on water quality presented in this paper can help prioritize CMD remediation and facilitate selection and design of the most appropriate treatment systems.

  18. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the soil system. Focus of this pilot study is on quantifying potential contamination of both the root zone and the deeper groundwater with pharmaceutical residues. We have installed a field monitoring network at several locations in the vadose zone and the local groundwater system, which enables us to measure vertical solute profiles in the soil water by taking samples. Based on field data obtained during the experiments, combined with SWAP (1D) and Hydrus (2D) model simulations, flow and transport of the sub-irrigated treated wastewater are quantified. In the south of The Netherlands, the Bavaria Beer Brewery abstracts a large volume of groundwater and discharges treated wastewater to local surface water which transports the water rapidly out of the region. At the same time, neighboring farmers invest in sprinkler irrigation systems to maintain their crop production during drought periods. In this region, increasing pressure is put on the regional groundwater and surface water availability. Within a pilot study, a sub-irrigation system has been installed, by using subsurface drains, interconnected through a collector drain, and connected to an inlet control basin for the treated wastewater to enter the drainage system. We combine both process-based modeling of the soil-plant-atmosphere system and field experiments to i) investigate the amount of water that needs to be and that can be sub-irrigated, and ii) quantify the effect on soil moisture availability and herewith reduced needs for aboveground irrigation.

  19. Characterization of particulate and dissolved phosphorus in tile and nearby riverine systems

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Arai, Y.; David, M.; Gentry, L.

    2017-12-01

    In the Midwestern U.S., the drainage of agricultural land is predominantly managed by the tile drain system because of its poorly drain properties of clay rich indigenous soils. An accelerated subsurface flow of phosphorus (P) has recently been documented as a primary P transport path in contrast to the typical surface runoff events observed in the Eastern U.S. Recent studies suggested the important role of particulate P (PP) load in agricultural tile drainage water during high flow events. It was hypothesized that PP in the tile water is transported to riverine system contributing to the negative environmental impacts in the Midwestern U.S. In this study, correlation assessment of physicochemical properties of PP in agricultural tile drainage and nearby river samples after a storm event was conducted using a combination of 31P-nuclear magnetic resonance spectroscopy, P K-edge X-ray absorption near edge structure spectroscopy, X-ray diffraction, zetasizer, and transmission electron microscopy. Results show that significantly more colloidal (i.e. 1 nm- 2 µm) and silt-sized (i.e. > 2 µm) particles as well as higher dissolved total P (DTP) and dissolved reactive P (DRP) concentrations existed in river samples than tile samples. Tile and river samples showed similar zeta potential in each particle-size fraction and similar element distributions on colloidal fraction. However, colloidal P concentration and distribution are slightly different between tile and river samples: more colloidal total P and organic P existed in tile colloids than river colloids. The results of P speciation and mineralogical assessment will also be discussed.

  20. Early Mars: A regional assessment of denudation chronology

    NASA Technical Reports Server (NTRS)

    Maxwell, T. A.; Craddock, R. A.

    1993-01-01

    Within the oldest highland units on Mars, the record of crater degradation indicates that fluvial resurfacing was responsible for modifying the Noachian through middle-Hesperian crater population. Based on crater frequency in the Noachian cratered terrain, age/elevation relations suggest that the highest exposures of Noachian dissected and plateau units became stabilized first, followed by successively lower units. In addition, studies of drainage networks indicate that the frequency of Noachian channels is greatest at high elevations. Together, these observations provide strong evidence of atmospheric involvement in volatile recycling. The long time period of crater modification also suggests that dendritic highland drainage was not simply the result of sapping by release of juvenile water, because the varied geologic units as well as the elevation dependence of stability ages makes it unlikely that subsurface recycling could provide a continuous supply of water for channel formation by sapping. While such geomorphic constraints on volatile history have been established by crater counts and stratigraphic relations using the 1:2M photomosaic series, photogeologic age relationships at the detailed level are needed to establish a specific chronology of erosion and sedimentation. Age relations for discrete erosional slopes and depositional basins will help refine ages of fluvial degradation, assess effectiveness of aeolian processes, and provide a regional chronology of fluvial events.

  1. Evaluation of Reactive Mixtures for Treatment of Mine Drainage From a Waste Rock Storage Area in Northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Jeen, S.; Bain, J. G.; Blowes, D. W.

    2007-12-01

    A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.

  2. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it flows into the stream.

  3. High resolution electrical resistivity tomography of golf course greens irrigated with reclaimed wastewater: Hydrological approach

    NASA Astrophysics Data System (ADS)

    Tapias, Josefina C.; Lovera, Raúl; Himi, Mahjoub; Gallardo, Helena; Sendrós, Alexandre; Marguí, Eva; Queralt, Ignasi; Casas, Albert

    2014-05-01

    Actually, there are over 300 golf courses and more than three thousand licensed players in Spain. For this reason golf cannot be considered simply a hobby or a sport, but a very significant economic activity. Considered as one of the most rapidly expanding land-use and water demanding business in the Mediterranean, golf course development generates controversy. In the recent years there has been a considerable demand for golf courses to adopt environmentally sustainable strategies and particularly water authorities are forcing by law golf managers to irrigate with alternative water resources, mainly reclaimed wastewater. Watering practices must be based on soil properties that are characterized by samples removed from the different zones of the golf course and submitted to an accredited physical soil testing laboratory. Watering schedules are critical on greens with poor drainage or on greens with excessively high infiltration rates. The geophysical survey was conducted over the greens of the Girona Golf Club. Eighteen electrical resistivity tomographies were acquired using a mixed Wenner-Schlumberger configuration with electrodes placed 0.5 meter apart. Small stainless-steel nails were used as electrodes to avoid any damage in the fine turfgrass of greens The resistivity meter was set for systematically and automatically selects current electrodes and measurement electrodes to sample apparent resistivity values. Particle size analysis (PSA) has been performed on soil materials of any putting green. The PSA analysis has been composed of two distinct phases. The first has been the textural analysis of the soils for determining the content of sand, silt, and clay fraction via the use of a stack of sieves with decreasing sized openings from the top sieve to the bottom. Subsequently, the hydraulic conductivity of the substrates has been evaluated by means of Bredding and Hazen empirical relationships. The results of this research show that the electrical resistivity tomography is a non-invasive and cost-effective technique for high resolution characterizing the subsurface below golf course greens. The obtained models have provided detailed information on the lateral and vertical variability of each the subsurface and from an empirical correlation between the values of electrical resistivity and hydraulic permeability to assess the preferred areas of drainage that could pose in risk to the vulnerability of the underlying aquifers.

  4. Using AnnAGNPS to Predict the Effects of Tile Drainage Control on Nutrient and Sediment Loads for a River Basin.

    PubMed

    Que, Z; Seidou, O; Droste, R L; Wilkes, G; Sunohara, M; Topp, E; Lapen, D R

    2015-03-01

    Controlled tile drainage (CTD) can reduce pollutant loading. The Annualized Agricultural Nonpoint Source model (AnnAGNPS version 5.2) was used to examine changes in growing season discharge, sediment, nitrogen, and phosphorus loads due to CTD for a ∼3900-km agriculturally dominated river basin in Ontario, Canada. Two tile drain depth scenarios were examined in detail to mimic tile drainage control for flat cropland: 600 mm depth (CTD) and 200 mm (CTD) depth below surface. Summed for five growing seasons (CTD), direct runoff, total N, and dissolved N were reduced by 6.6, 3.5, and 13.7%, respectively. However, five seasons of summed total P, dissolved P, and total suspended solid loads increased as a result of CTD by 0.96, 1.6, and 0.23%. The AnnAGNPS results were compared with mass fluxes observed from paired experimental watersheds (250, 470 ha) in the river basin. The "test" experimental watershed was dominated by CTD and the "reference" watershed by free drainage. Notwithstanding environmental/land use differences between the watersheds and basin, comparisons of seasonal observed and predicted discharge reductions were comparable in 100% of respective cases. Nutrient load comparisons were more consistent for dissolved, relative to particulate water quality endpoints. For one season under corn crop production, AnnAGNPS predicted a 55% decrease (CTD) in dissolved N from the basin. AnnAGNPS v. 5.2 treats P transport from a surface pool perspective, which is appropriate for many systems. However, for assessment of tile drainage management practices for relatively flat tile-dominated systems, AnnAGNPS may benefit from consideration of P and particulate transport in the subsurface. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Evaluation of Roadway Subsurface Drainage on Rural Routes

    DOT National Transportation Integrated Search

    2017-09-01

    Excess moisture has been identified as a cause for stripping, raveling, debonding, and rutting in flexible pavement [ODOT, 2016a]. The Ohio Department of Transportation (ODOT) has been getting substantially less than the expected 15 year service life...

  6. A Microfluidics Study to Quantify the Impact of Microfracture Properties on Two-Phase Flow in Tight Rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2017-12-01

    Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including reservoir production, carbon storage and sequestration, and hazardous waste sequestration. A reliable prediction of capillary trapping, for instance, can determine the fracture fluid saturation subsequent to hydraulic fracturing of unconventional formations or the efficacy of water flooding in fractured reservoirs.

  7. Remote sensing of the hydrologic history of the eastern Sahara

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Blom, R. G.; Paillou, P.

    2010-12-01

    The eastern Sahara Desert has never been thoroughly mapped in terms of the landforms and subsurface signs of past climates conducive to human occupation. As part of ongoing work and through a new proposal to NASA, we are generating new maps of the paleohydrology, topography, geomorphology, and surficial deposits of the area and developing GIS-based models which use the data to pinpoint past resources and travel pathways. The maps we are generating will constitute a unique resource for exploration for water and archeological sites in the Gilf Kebir and other regions of NE Africa. That the Sahara was favorable for human habitation at times has long been known. With the remarkable paleo-landscape revealed by the L-band (25 cm) Shuttle Imaging Radar-A in 1981, it became clear that ancient humans concentrated along integrated drainage systems dubbed “radar rivers” by McCauley and colleagues. However SIR-A and subsequent long-wavelength radar coverage was limited and regional understanding of the drainage network has remained elusive. We are mapping the area with three sensors optimized for mapping and characterizing arid regions: The Japanese PALSAR L-band imaging radar, NASA’s SRTM, and ASTER. Together these sensors provide full coverage of the area allowing characterization and mapping of surface and subsurface landforms formed and modified by former wetter climates. In particular and following the work of Ghoneim, Robinson, El Baz and others, we are mapping the regional drainage network revealed by the radar images and applying modern analysis tools to the drainage basins and channels. These include drainage density, channel gradient vs. distance, and longitudinal and cross-channel topographic profiles. We use these quantities to estimate a stream’s past approach to equilibrium and this to infer balances between climate, tectonic uplift, and other changes in base level. Discovery over the last few years of large paleolakes (e.g. Mega Lake Chad, North Darfur Lake, etc.) also provide a constraint on Pleistocene rainfall in the area. Archaeologists have never had a synoptic view of the region around Gilf Kebir. In addition, the national governments of the region need a detailed map of landforms and resources for conservation efforts. The data and maps produced by this study will be unique and will be used for many years as a base for further studies of the archaeology of the region as well as other applications in hydrology, ecology, geomorphology, and tourism. Part of this work was done under contract with NASA.

  8. A comparison of high-resolution specific conductance-based end-member mixing analysis and a graphical method for baseflow separation of four streams in hydrologically challenging agricultural watersheds

    USGS Publications Warehouse

    Kronholm, Scott C.; Capel, Paul D.

    2015-01-01

    Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end-member mixing analysis that used high-resolution specific conductance measurements (SC-EMMA) were used to estimate daily and average long-term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC-EMMA is strongly related to the choice of slowflow and fastflow end-member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end-members. There were substantial discrepancies among the BFI and SC-EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC-EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present.

  9. Subsurface drainage for rehabilitation of PCC pavement - Rt. 202 Gray - New Gloucester.

    DOT National Transportation Integrated Search

    2003-12-01

    Many existing roadways are being enhanced due to the pressures of increased vehicular traffic. Some of : these improvements involve widening the present travel way to accommodate a turning lane and/or : additional travel lanes. This often necessitate...

  10. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    NASA Astrophysics Data System (ADS)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  11. Impact of anthropomorphic soil genesis on hydraulic properties: the case of cranberry production

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    The construction of a cranberry field requires the installation of a drainage system which causes anthropic layering of the natural sequence of soil strata. Over the years, the soil hydraulic properties may change under the influence of irrigation and water table control. In fact, natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle accelerated by water management will alter the hydrodynamic behavior of the soil (Gaillard et al., 2007; Wildenschild and Sheppard, 2013; Bodner et al., 2013). Today, advances in the field of tomography imagery allows the study a number of physicals processes of soils (Wildenschilds and Sheppard, 2013) especially for the transport of colloidal particles (Gaillard et al., 2007) and consolidation (Reed et al, 2006; Pires et al, 2007). Therefore, the main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan. A soil columns laboratory experiment was setup in fall 2013, pressure head, input and output flow, tracer monitoring (KBr and ZrO2) and tomographic analyses have been used to quantify the temporal variation of the soil hydrodynamic properties of these soil columns. The results showed that the water management (irrigation and drainage) has strong effect on soil genesis and causes significant alteration of soil hydraulic properties, which may reduce soil drainage capacity. Knowledge about the mechanisms responsible of anthropic cranberry soil genesis will allow us to predict soil evolution according to several conditions (soil type, drainage system design, water management) to better anticipate and control their future negative effects on cranberry production. References: Bodner, G., P. Scholl and H.P. Kaul. 2013. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133: 1-9. doi:http://dx.doi.org/10.1016/j.still.2013.05.006. Gaillard, J.-F., C. Chen, S.H. Stonedahl, B.L.T. Lau, D.T. Keane and A.I. Packman. 2007. Imaging of colloidal deposits in granular porous media by X-ray difference micro-tomography. Geophysical Research Letters 34: L18404. doi:10.1029/2007GL030514. Pires, L.F., O.O.S. Bacchi and K. Reichardt. 2007. Assessment of soil structure repair due to wetting and drying cycles through 2D tomographic image analysis. Soil and Tillage Research 94: 537-545. doi:http://dx.doi.org/10.1016/j.still.2006.10.008. Reed, A. H., Thompson, K. E., Zhang, W., Willson, C. S., & Briggs, K. B. (2006). Quantifying consolidation and reordering in natural granular media from computed tomography images. Advances in X-ray Tomography for Geomaterials, 263-268. Wildenschild, D. and A.P. Sheppard. 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources 51: 217-246. doi:http://dx.doi.org/10.1016/j.advwatres.2012.07.018.

  12. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  13. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.

  14. Phytostabilization of a landfill containing coal combustion waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Christopher; Marx, Donald; Adriano, Domy

    2005-12-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pinemore » trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.« less

  15. Integration of real time kinematic satellite navigation with ground-penetrating radar surveys

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture, environmental mapping, and construction benefit from subsurface imaging by revealing the spatial variability of underground features. Features surveyed of agricultural interest are bedrock depth, soil horizon thicknesses, and buried–object features such as drainage pipe. For t...

  16. Subsurface drainage for rehabilitation of PCC pavement : interim report - fourth year, August 2002.

    DOT National Transportation Integrated Search

    2002-08-01

    Many existing roadways are being enhanced due to the pressures of increased vehicular traffic. Some of : these improvements involve widening the present travel way to accommodate a turning lane and/or : additional travel lanes. This often necessitate...

  17. A study of the relationships between strength, density, permeability, and gradations of aggregate bases.

    DOT National Transportation Integrated Search

    1978-01-01

    Accumulating evidence that inadequate subsurface drainage of some pavements was related to impervious base courses led to an investigation of the influence of low permeability fine materials on the physical characteristics of typical base courses. It...

  18. Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.

    2011-01-01

    The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components of the hydrologic cycle in the Pinelands. In the Pinelands, recharge replenishes the aquifer system and contributes to groundwater flow, most of which moves to wetlands and surface water where natural discharge occurs. Some groundwater flow is intercepted by supply wells. Recharge rates generally are highest during the non-growing season and are inversely related to evapotranspiration. Analysis of subsurface hydraulic gradients, water-table fluctuations, and streamflow variability indicates a strong linkage between groundwater and wetlands, lakes and streams. Gradient analysis indicates that most wetlands are in groundwater discharge areas, but some wetlands are in groundwater recharge areas. The depth to the water table ranges from zero at surface-water features up to about 10 meters in topographically high areas. Depth to water fluctuates seasonally, and the magnitude of these fluctuations generally increases with distance from surface water. Variations in the permeability of the soils and sediments of the aquifer system strongly affect patterns of water movement through the subsurface and the interaction of groundwater with wetlands, lakes and streams. Mean annual streamflow during 2004-06 ranged from 83 to 106 percent of the long-term mean annual discharge, indicating that the data-collection period can be considered representative of average conditions. Measurements of groundwater levels, stream stage, and stream discharge and locations of start-of-flow are illustrated in basin-wide maps of water-table altitude, depth to the water table, and stream base flow during the period. Water-level data collected along 15 hydrologic transects that span the range of environments from uplands through wetlands to surface water were used to determine hydraulic gradients, potential flow directions, and areas of recharge and discharge. These data provide information about the localized interactions of groundwater with wetlands and surface water. Wetlands were categorized with r

  19. 40 CFR 440.144 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-cut mine plant site shall not exceed the volume of infiltration, drainage and mine drainage waters... of infiltration, drainage and mine drainage waters which is in excess of the make up water required...

  20. 40 CFR 440.144 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cut mine plant site shall not exceed the volume of infiltration, drainage and mine drainage waters... of infiltration, drainage and mine drainage waters which is in excess of the make up water required...

  1. Land Retirement as a Habitat Restoration Tool

    NASA Astrophysics Data System (ADS)

    Singh, P. N.; Wallender, W. W.

    2007-12-01

    Use of intensive irrigation in arid and semi-arid areas usually leads to gradual salination of the soil leading to crop yield decline. The salination problem is mitigated by applying irrigation in excess of crop requirements, which leaches the excess salt load to the groundwater. Insufficient natural or man made drainage to dispose off this saline recharge to the groundwater leads to a gradual rise in the water table and eventual encroachment upon the root zone. This may ultimately make the land unfit for any economically productive activity. The abandoned land may even lead to desertification with adverse environmental consequences. In drainage basins with no surface outflow (sometimes called closed basins), land retirement has been proposed as a management tool to address this problem. Land retirement essentially entails intentionally discontinuing irrigation of selected farmlands with the expectation that the shallow water table beneath those lands should drop and the root zone salinity level should decrease. In the San Joaquin Valley of California, intensive irrigation in conjunction with a shallow underlying layer of clay, known as the Corcoran clay layer and absence of a drainage system caused the root zone to become highly saline and the shallow water table to rise. Land retirement would remove from production those farmlands contributing the poorest quality subsurface drain water. Based on numerical models results, it was expected that with land retirement of substantial irrigated lands with poor drainage characteristics, beneath which lies shallow groundwater with high salt load, the shallow water table beneath those lands should drop. A part of the retired lands could also be used for wildlife habitat. A potential negative side of the land retirement option that has to be considered is that in certain enabling evapotranspiration, soil and water table conditions, water will be drawn upwards and evaporated, leaving a deposit of salts on the surface and in the root zone. Salt on the surface may then be wind blown to adjacent areas creating a potential environmental hazard. Using field results from the U.S. Department of the Interior Land Retirement Demonstration Project at the Tranquillity site located in western Fresno County, principles of mass balance in a fixed control volume, the HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, and PEST, a model-independent parameter optimizer, we have investigated the processes of soil water and salinity movement in the root zone and the deep vadose zone. Various combinations of evapotranspiration, soil water retention properties, water table condition and top and bottom boundary condition were tested. We show that certain Land Retirement scenarios decrease shallow water table and soil water salinity and enhance development of native plants as a means to facilitate habitat restoration for certain combination of soil and bottom boundary condition. Other combinations are not sustainable.

  2. Using constructed wetlands to treat subsurface drainage from intensively grazed dairy pastures in New Zealand.

    PubMed

    Tanner, C C; Nguyen, M Long; Sukias, J P S

    2003-01-01

    Performance data, during the start-up period, are presented for constructed wetlands treating subsurface drainage from dairy pastures in Waikato (rain-fed) and Northland (irrigated), North Island, New Zealand. The wetlands comprised an estimated 1 and 2% of the drained catchment areas, respectively. Nitrate concentrations were high in the drainage inflows at both sites (medians 10 g m(-3) at Waikato and 6.5 g m(-3) at Northland), but organic N was also an important form of N at Waikato (37% of TN). Comparison of wetland inflow and outflow nutrient concentrations showed overall nutrient reductions during passage through the wetlands for NO3-N (34 and 94% for medians, respectively), TN (56 and 33%, respectively), and DRP (80%, Northland only). Median NH4-N (both sites) and DRP (Waikato) concentrations showed apparent increases between the wetland inlets and outlets. However, a mass balance calculated for the 3 month preliminary monitoring periods showed substantial mass removal of DRP (80%) and all measured forms of N (NO3-N 78%, NH4-N 41%, Org-N 99.8% and TN 96%) in the Waikato wetland. Monitoring of these systems needs to be continued through a range of seasons and years to fully assess their long-term performance.

  3. Use of electromagnetic induction methods to monitor remediation at the University of Connecticut landfill: 2004–2011

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.; Joesten, Peter K.

    2012-01-01

    Time‐lapse geophysical surveys using frequency‐domain electromagnetics (FDEM) can indirectly measure time‐varying hydrologic parameters such as fluid saturation or solute concentration. Monitoring of these processes provides insight into aquifer properties and the effectiveness of constructed controls (such as leachate interceptor trenches), as well as aquifer responses to natural or induced stresses. At the University of Connecticut landfill, noninvasive, electromagnetic induction (EMI) methods were used to monitor changes in subsurface electrical conductivity that were related to the landfill‐closure activities. After the landfill was closed, EMI methods were used to monitor changes in water saturation and water quality. As part of a long‐term monitoring plan to observe changes associated with closure, redevelopment, and remediation of the former landfill, EMI data were collected to supplement information from groundwater samples collected in wells to the south and north of the landfill. In comparison to single‐point measurements that could have been collected by conventional installation of additional monitoring wells, the EMI methods provided increased spatial coverage, and were less invasive and therefore less destructive to the wetland north of the landfill. To monitor effects of closure activities on the subsurface conductivity, EMI measurements were collected from 2004 to 2011 along discrete transects north and south of the landfill prior to, during, and after the landfill closure. In general, the results indicated an overall decline in subsurface electrical conductivity with time and with distance from the former landfill. This decline in electrical conductivity indicated that the closure and remediation efforts reduced the amount of leachate that originated from the landfill and that entered the drainages to the north and south of the landfill.

  4. Relation of drainage problems to high ground-water levels, Coconut Grove area, Oahu, Hawaii

    USGS Publications Warehouse

    Swain, L.A.; Huxel, C.J.

    1971-01-01

    Purpose and Scope In 1969, hydrologic data-collection sites were established in and around the Coconut Grove area for the purpose of measuring directly the relationship between rainfall, runoff, ground-water levels, the level of water in Kawainui Swamp and the canals, and tidal fluctuations. The primary objective was to identify the causes of the occurrence and persistence of flooding and to gain data on which to base recommendations for remedial action. The scope of the study included establishing and operating flow and stage-recording gages on the Swamp, Kawainui Canal, and the inner canal; periodic and repeated measurements of ground-water level in test borings throughout the residential area; collection and analysis of soil and construction borings made for engineering purposes; the assembly and analysis of all available data relating surface and subsurface flow conditions, and the development of conclusions as to the causes and means to alleviate the flooding. This report summarizes the information collected from October 1969 to June 1971, includes analysis of the data, and discusses the probable causes of flooding.

  5. Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Close, M. E.; Abraham, P.

    2018-01-01

    Diffuse nitrate losses from agricultural land pollute groundwater resources worldwide, but can be attenuated under reducing subsurface conditions. In New Zealand, the ability to predict where groundwater denitrification occurs is important for understanding the linkage between land use and discharges of nitrate-bearing groundwater to streams. This study assesses the application of linear discriminant analysis (LDA) for predicting groundwater redox status for Southland, a major dairy farming region in New Zealand. Data cases were developed by assigning a redox status to samples derived from a regional groundwater quality database. Pre-existing regional-scale geospatial databases were used as training variables for the discriminant functions. The predictive accuracy of the discriminant functions was slightly improved by optimising the thresholds between sample depth classes. The models predict 23% of the region as being reducing at shallow depths (<15 m), and 37% at medium depths (15-75 m). Predictions were made at a sub-regional level to determine whether improvements could be made with discriminant functions trained by local data. The results indicated that any gains in predictive success were offset by loss of confidence in the predictions due to the reduction in the number of samples used. The regional scale model predictions indicate that subsurface reducing conditions predominate at low elevations on the coastal plains where poorly drained soils are widespread. Additional indicators for subsurface denitrification are a high carbon content of the soil, a shallow water table, and low-permeability clastic sediments. The coastal plains are an area of widespread groundwater discharge, and the soil and hydrology characteristics require the land to be artificially drained to render the land suitable for farming. For the improvement of water quality in coastal areas, it is therefore important that land and water management efforts focus on understanding hydrological bypassing that may occur via artificial drainage systems.

  6. Hydrological regime shift in a constructed catchment: Effect of vegetation encroachment on surface runoff

    NASA Astrophysics Data System (ADS)

    Hinz, C.; Caviedes-Voullieme, D.; Andezhath Mohanan, A.; Brueck, Y.; Zaplata, M.

    2017-12-01

    The Hühnerwasser catchment (Chicken Creek) was constructed to provide discharge for a small stream in the post-mining landscape of Lusatia, Germany. It has an area of 6 ha and quaternary sands with a thickness of 2-4 m were dumped on to a clay liner to prevent deep drainage. After completion of the construction the catchment was left to develop on its own without intervention and has been monitored since 2005. The upper part of the catchment discharges water and sediment into the lower part forming an alluvial fan. Below the alluvial fan is a pond receiving all surface and subsurface water from the upper catchment. After the formation of the drainage network vegetation started growing and surface runoff decreased until the water balance was dominated by evapotranspiration. This regime shift and the rate at which it happened depends on the vegetation encroachment into the rills and the interrill areas. Based on the hypothesis that vegetation will increase surface roughness and infiltration behavior, aerial photos were used to map rills and vegetation within and outside the rills for the last 10 years to obtain a time series of change. Observational evidence clearly shows that vegetation encroaches from the bottom, from the interrill areas as well as from the top. The rills themselves did not change their topology, however, the width of the erosion rills and gully increased at the bottom. For a subcatchment area a high resolution a physical based numerical model of overland flow was developed to explicitly assess the importance of increasing roughness and infiltration capacity for surface runoff. For the purpose of analyzing the effect of rainfall variability a rainfall generator was developed to carry out large sets of simulations. The simulations provide a means to assess how the roughness/infiltration feedback affects the rate of regime shift for a set of parameters that are consistent with the observed hydrological behavior of the drainage network.

  7. Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, J.; Bertschinger, V.; Aley, T.

    1993-04-01

    Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less

  8. Using a Process Based Model to Simulate the Effects of Drainage and Land Use Change on Hydrology, and Sediment and Nutrient Transport in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Wahl, M.; Turnbull, S. J.

    2015-12-01

    Historically the Midwestern United State was a region dominated by prairie grasses and wetlands. To make use of the rich soils underlying these fertile environments, farmers converted the land to agriculture and currently the Midwest is a region of intensive agricultural production, with agriculture being a predominant land use. The Midwest is a region of gentle slopes, tight soils, and high water tables, and in order to make the lands suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. As part of the Minnesota River Basin Integrated Study we are simulating nested watersheds in a sub-basin of the Minnesota River Basin, Seven Mile Creek, using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis) to simulate water, sediment, and nutrients. Representative of the larger basin, more than 80% of the land in the watershed is dedicated to agricultural practices. From a process perspective, the hydrology is complicated, with snow accumulation and melt, frozen soil, and tile drains all being important processes within the watershed. In this study we attempt to explicitly simulate these processes, including the tile drains, which are simulated as a network of subsurface pipes that collect water from the local water table. Within the watershed, tiles discharge to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. Testing of the methods on smaller basins demonstrates the ability of the model to simulate measured tile flow. At the larger scale, the model demonstrates ability to simulate flow and sediments. Sparse nutrient data limit the assessment of nutrient simulations. The models are being used to asses an array of potential future land use scenarios, including predevelopment and increased agricultural use. Results from these simulations will be presented. Preliminary results indicate that tile drains increase discharge and erosion in the watershed.

  9. Remote sensing for environmental protection of the eastern Mediterranean rugged mountainous areas, Lebanon

    NASA Astrophysics Data System (ADS)

    Khawlie, M.; Awad, M.; Shaban, A.; Bou Kheir, R.; Abdallah, C.

    Lying along the eastern Mediterranean coast with elevated mountain chains higher than 2500 m straddling its terrain, Lebanon is a country of natural beauty and is thus attracting tourism. However, with a population density exceeding 800/km 2 and a rugged steep sloping land, problems abound in the country calling for holistic-approach studies. Only remote sensing, whose use is new in Lebanon can secure such needed studies within a scientific and pragmatic framework. The paper demonstrates for the concerned themes, the innovative use of remote sensing in such a difficult terrain, giving three examples of major environmental problems in the coastal mountains. Only few studies have so far focused on those mountains, notably application of remote sensing. The rugged mountainous terrain receives considerable rain, but the water is quickly lost running on the steep slopes, or infiltrating through fractures and the karstic conduits into the subsurface. Field investigations are difficult to achieve, therefore, remote sensing helps reveal various surface land features important in reflecting water feeding into the subsurface. Optical, radar and thermal infrared remotely sensed data cover a wide spectrum serving that purpose. A map of preferential groundwater accumulation potential is produced. It can serve for better water exploitation as well as protection. Because the terrain is karstic and rugged, the subsurface water flow is difficult to discern. Any pollution at a certain spot would certainly spread around. This constitutes the second example of environmental problems facing the mountainous areas in Lebanon. An integrated approach using remote sensing and geographic information systems (GIS) gives good results in finding out the likelihood of how pollution, or contaminants, can selectively move in the subsurface. A diagnostic analysis with a GIS-type software acts as a guide producing indicative maps for the above purpose. The third example given deals with the problem of losing soil, which is a very vital source in such mountainous land. With steep slopes, torrential rain and improper human interference, run-off is high and water-soil erosion is continuously deteriorating the land cover. Remote sensing can facilitate studying the factors enhancing the process, such as soil type, slope gradient, drainage, geology and land cover. Digital elevation models created from SAR imagery contribute significantly to assessing vulnerability of hydric-soil erosion over such a difficult terrain. GIS layers of the above factors are integrated with erosional criteria to produce a risk map of soil erosion. Results indicate that 36% of the Lebanese terrain is under threat of high-level erosion, and 52% of that is concentrated in the rugged mountainous regions.

  10. Profiling USGA putting greens using GPR - an as-built surveying method

    USDA-ARS?s Scientific Manuscript database

    Putting greens installed using the United States Golf Association (USGS) specifications have a subsurface infrastructure constructed to exacting standards. It may be difficult to discern those drainage systems that possess installation flaws, as some flaws may not be readily obvious as their being ...

  11. Quantification of metal loads by tracer injection and synoptic sampling in Daisy Creek and the Stillwater River, Park County, Montana, August 1999

    USGS Publications Warehouse

    Nimick, David A.; Cleasby, Thomas E.

    2001-01-01

    A metal-loading study using tracer-injection and synoptic-sampling methods was conducted in Daisy Creek and a short reach of the Stillwater River during baseflow in August 1999 to quantify the metal inputs from acid rock drainage in the New World Mining District near Yellowstone National Park and to examine the downstream transport of these metals into the Stillwater River. Loads were calculated for many mainstem and inflow sites by combining streamflow determined using the tracer-injection method with concentrations of major ions and metals that were determined in synoptic water-quality samples. Water quality and aquatic habitat in Daisy Creek have been affected adversely by drainage derived from waste rock and adit discharge at the McLaren Mine as well as from natural weathering of pyrite-rich mineralized rock that comprises and surrounds the ore zones. However, the specific sources and transport pathways are not well understood. Knowledge of the main sources and transport pathways of metals and acid can aid resource managers in planning and conducting effective and cost-efficient remediation activities. The metals cadmium, copper, lead, and zinc occur at concentrations that are sufficiently elevated to be potentially lethal to aquatic life in Daisy Creek and to pose a toxicity risk in part of the Stillwater River. Copper is of most concern in Daisy Creek because it occurs at higher concentrations than the other metals. Acidic surface inflows had dissolved concentrations as high as 20.6 micrograms per liter (?g/L) cadmium, 26,900 ?g/L copper, 76.4 ?g/L lead, and 3,000 ?g/L zinc. These inflows resulted in maximum dissolved concentrations in Daisy Creek of 5.8 ?g/L cadmium, 5,790 ?g/L copper, 3.8 ?g/L lead, and 848 ?g/L zinc. Significant copper loading to Daisy Creek occurred only in the upper half of the stream. Sources included subsurface inflow and right-bank (mined side) surface inflows. Copper loads in left-bank (unmined side) surface inflows were negligible. Most (71 percent) of the total copper loading in the study reach occurred along a 341-foot reach near the stream?s headwaters. About 53 percent of the total copper load was contributed by five surface inflows that drain a manganese bog and the southern part of the McLaren Mine. Copper loading from subsurface inflow was substantial, contributing 46 percent of the total dissolved copper load to Daisy Creek. More than half of this subsurface copper loading occurred downstream from the reaches that received significant surface loading. Flow through the shallow subsurface appears to be the main copper-transport pathway from the McLaren Mine and surrounding altered and mineralized bedrock to Daisy Creek during base-flow conditions. Little is known about the source of acid and copper in this subsurface flow. However, possible sources include the mineralized rocks of Fisher Mountain upgradient of the McLaren Mine area, the surficial waste rock at the mine, and the underlying pyritic bedrock.

  12. Interactions Between Hydroclimate and Soil Properties Control the Risk For Altered Hydrologic Partitioning From Changing Snowmelt

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Longley, P.; Weiss, S. G.; Kampf, S. K.; Flint, A. L.

    2016-12-01

    Mountain snowmelt is a critical water source for downstream human populations and local ecosystem health. Here we explore the relatively unknown hydrologic consequences of two observed trends in Western U.S. snowpack dynamics: 1) shifts from snow to rain and 2) earlier and slower snowmelt. We apply two modeling approaches to tease apart the hydrologic effects of altered winter water inputs: 1) highly resolved one-dimensional HYDRUS modeling based on the Richard's equation at intensively measured sites and 2) the distributed Basin Characterization Model (BCM) over the Southwestern U.S. with relatively simple subsurface processes. The HYDRUS model was trained using observations from ten Snow Telemetry (SNOTEL) sites to investigate drainage below the root zone under scenarios of rain only and slower snowmelt. We found that shifts to rain-only regimes and earlier snowmelt both resulted in greater fluxes below the root zone using the measured soil depths. However, drainage fluxes and differences among scenarios diminished precipitously when rooting depths were increased to account for uncertainty. Next using the BCM, we compared water partitioning during historical runs from 1940-2014 to a scenario with all precipitation as rain but identical climate. We found that ET generally increased from eliminating snowpack sublimation. Recharge and runoff exhibited diverging responses to shifting precipitation regimes; runoff typically decreased and recharge increased, with the exception of areas in western and southern California and central Arizona. The observed changes in annual runoff and recharge were primarily caused by changes in input intensity and not changes in input timing. Runoff was most sensitive in areas with wet winters and low soil water storage. Both modeling approaches corroborated the potential for diverging changes in mountain water budgets from altered winter water inputs that will be mediated precipitation regime (i.e. precipitation intensity and timing) and soil water storage. Efforts to link these results to water resources will be discussed.

  13. Paper versus plastic, water versus carbon and sustainable agriculture in the US

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2011-12-01

    It is increasingly recognized that food and energy security are inextricably linked to climate and climate change, resulting in the so-called climate, energy, food nexus, with the water cycle at its hub. The ability to provide sufficient and consistent energy and food for this generation, while not depleting soil, climate and water resources for future generations involves interconnected feedbacks along the paths of this wheel. In the US corn belt, for example, agricultural water management in the form of subsurface drainage lowers the regional water table to enhance crop production, while at the same time providing a conduit for the more efficient export of nitrate-nitrogen to the Gulf of Mexico and increasing rates of decomposition and subsidence in organic-rich soils. The use of control structures to regulate drainage water has the potential to reduce nitrate and carbon dioxide losses, while at the same time increasing the emissions of other greenhouse gases. Increased biofuels production offers the potential to increase domestic energy security, but at the cost of increased water demand and threats to food security. Just as budding US consumer environmentalists of the last decade struggled with the question of paper versus plastic for bagging their groceries, today's informed consumers are being asked to tacitly choose between water and carbon. The local foods movement encourages consumption of locally-produced foods as a means of reducing carbon emissions associated with food transportation, among other perceived benefits. At the same time, the concept of virtual water trade recognizes that importing the water embedded in production in the form of food can balance a local water deficit. Taking into account the virtual water of food production and carbon emissions of food transportation, the spatial arrangement of the current US crop portfolio minimizes neither water nor carbon footprints. Changes in crop distribution result in trade-offs between the per capita carbon and water footprints of the typical US diet. A compromise portfolio involving interactive water management, where the local region is defined by water availability, can help to minimize both the carbon and water footprints of food production in the conterminous US.

  14. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    PubMed

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  15. A steady state solution for ditch drainage problem with special reference to seepage face and unsaturated zone flow contribution: Derivation of a new drainage spacing eqaution

    NASA Astrophysics Data System (ADS)

    Yousfi, Ammar; Mechergui, Mohammed

    2016-04-01

    The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et al. (2001). In this work, a novel solution based on theoretical approach will be adapted to incorporate both the seepage face and the unsaturated zone flow contribution for solving ditch drained aquifers problems. This problem will be tackled on the basis of the approximate 2D solution given by Castro-Orgaz et al. (2012). This given solution yields the generalized water table profile function with a suitable boundary condition to be determined and provides a modified DF theory which permits as an outcome the analytical determination of the seepage face. To assess the ability of the developed equation for water-table estimations, the obtained results were compared with numerical solutions to the 2-D problem under different conditions. It is shown that results are in fair agreement and thus the resulting model can be used for designing ditch drainage systems. With respect to drainage design, the spacings calculated with the newly derived equation are compared with those computed from the DF theory. It is shown that the effect of the unsaturated zone flow contribution is limited to sandy soils and The calculated maximum increase in drain spacing is about 30%. Keywords: subsurface ditch drainage; unsaturated zone; seepage face; water-table, ditch spacing equation

  16. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...

  17. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...

  18. 40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...

  19. Assessment of Subsurface Drainage Management Practices to Reduce Nitrogen Loadings Using AnnAGNPS

    EPA Science Inventory

    The goal of the Future Midwest Landscape project is to quantify current and future landscape services across the region and examine changes expected to occur as a result of two alternative drivers of future change: the growing demand for biofuels; and hypothetical increases in in...

  20. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    USGS Publications Warehouse

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over-lying surficial and underlying Upper Floridan aquifers. The Upper Floridan aquifer is present throughout the study area and is extremely permeable and typically capable of transmitting large volumes of water. This high permeability largely is due to the widening of fractures and formation of conduits within the aquifer through dissolu-tion of the limestone by infiltrating water. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes. A model of the Upper Floridan aquifer was created to better understand the ground-water system and to provide resource managers a tool to evaluate ground-water and surface-water interactions in the Suwannee River Basin. The model was developed to simulate a single Upper Floridan aquifer layer. Recharge datasets were developed to represent a net flux of water to the top of the aquifer or the water table during a period when the system was assumed to be under steady-state conditions (September 1990). A potentiometric-surface map representing water levels during September 1990 was prepared for the Suwannee River Water Management District (SRWMD), and the heads from those wells were used for calibration of the model. Additionally, flows at gaging sites for the Suwannee, Alapaha, Withlacoochee, Santa Fe, Fenholloway, Aucilla, Ecofina, and Steinhatchee Rivers were used during the calibration process to compare to model computed flows. Flows at seven first-magnitude springs selected by the SRWMD also were used to calibrate the model. Calibration criterion for matching potentiometric heads was to attain an absolute residual mean error of 5 percent or less of the head gradient of the system which would be about 5 feet. An absolute residual mean error of 4.79 feet was attained for final calibration. Calibration criterion for matching streamflow was based on the quality of measurements made in the field. All measurements used were rated ?good,? so the desire was for simulated values to be wi

  1. Test of a simplified modeling approach for nitrogen transfer in agricultural subsurface-drained catchments

    NASA Astrophysics Data System (ADS)

    Henine, Hocine; Julien, Tournebize; Jaan, Pärn; Ülo, Mander

    2017-04-01

    In agricultural areas, nitrogen (N) pollution load to surface waters depends on land use, agricultural practices, harvested N output, as well as the hydrology and climate of the catchment. Most of N transfer models need to use large complex data sets, which are generally difficult to collect at larger scale (>km2). The main objective of this study is to carry out a hydrological and a geochemistry modeling by using a simplified data set (land use/crop, fertilizer input, N losses from plots). The modelling approach was tested in the subsurface-drained Orgeval catchment (Paris Basin, France) based on following assumptions: Subsurface tile drains are considered as a giant lysimeter system. N concentration in drain outlets is representative for agricultural practices upstream. Analysis of observed N load (90% of total N) shows 62% of export during the winter. We considered prewinter nitrate (NO3) pool (PWNP) in soils at the beginning of hydrological drainage season as a driving factor for N losses. PWNP results from the part of NO3 not used by crops or the mineralization part of organic matter during the preceding summer and autumn. Considering these assumptions, we used PWNP as simplified input data for the modelling of N transport. Thus, NO3 losses are mainly influenced by the denitrification capacity of soils and stream water. The well-known HYPE model was used to perform water and N losses modelling. The hydrological simulation was calibrated with the observation data at different sub-catchments. We performed a hydrograph separation validated on the thermal and isotopic tracer studies and the general knowledge of the behavior of Orgeval catchment. Our results show a good correlation between the model and the observations (a Nash-Sutcliffe coefficient of 0.75 for water discharge and 0.7 for N flux). Likewise, comparison of calibrated PWNP values with the results from a field survey (annual PWNP campaign) showed significant positive correlation. One can conclude that the simplified modeling approach using PWNP as a driving factor for the evaluation of N losses from drained agricultural catchments gave satisfactory results and we can propose this approach for a wider use.

  2. Fluvial processes on Mars: Erosion and sedimentation

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  3. Current and future groundwater recharge in West Africa as estimated from a range of coupled climate model outputs

    NASA Astrophysics Data System (ADS)

    Verhoef, Anne; Cook, Peter; Black, Emily; Macdonald, David; Sorensen, James

    2017-04-01

    This research addresses the terrestrial water balance for West Africa. Emphasis is on the prediction of groundwater recharge and how this may change in the future, which has relevance to the management of surface and groundwater resources. The study was conducted as part of the BRAVE research project, "Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa - Second Phase", funded under the NERC/DFID/ESRC Programme, Unlocking the Potential of Groundwater for the Poor (UPGro). We used model output data of water balance components (precipitation, surface and subsurface run-off, evapotranspiration and soil moisture content) from ERA-Interim/ERA-LAND reanalysis, CMIP5, and high resolution model runs with HadGEM3 (UPSCALE; Mizielinski et al., 2014), for current and future time-periods. Water balance components varied widely between the different models; variation was particularly large for sub-surface runoff (defined as drainage from the bottom-most soil layer of each model). In-situ data for groundwater recharge obtained from the peer-reviewed literature were compared with the model outputs. Separate off-line model sensitivity studies with key land surface models were performed to gain understanding of the reasons behind the model differences. These analyses were centered on vegetation, and soil hydraulic parameters. The modelled current and future recharge time series that had the greatest degree of confidence were used to examine the spatiotemporal variability in groundwater storage. Finally, the implications for water supply planning were assessed. Mizielinski, M.S. et al., 2014. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), pp.1629-1640.

  4. Stormwater infiltration and the 'urban karst' - A review

    NASA Astrophysics Data System (ADS)

    Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.

    2017-09-01

    The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.

  5. Ionic composition and nitrate in drainage water from fields fertilized with different nitrogen sources, middle swamp watershed, North Carolina, August 2000-August 2001

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2004-01-01

    A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving applications of swine lagoon effluent compared to sites receiving commercial fertilizer.

  6. Hydro-chemical detection of permafrost degradation in the Eastern European Alps - Implications for geomorphological process studies and natural hazard assessment

    NASA Astrophysics Data System (ADS)

    Kraushaar, Sabine; Kamleitner, Sarah; Czarnowsky, Verena; Blöthe, Jan; Morche, David; Knöller, Kay; Lachner, Johannes

    2017-04-01

    The Gepatschferner glacier in the Upper Kaunertal valley is one of the fastest melting glaciers in the Eastern European Alps. With a retreat rate of around 110 m a-1 since the hydrological year 2012/ 2013, unconsolidated sediments of steep lateral moraines have been exposed to erosion, from which nowadays episodic and perennial springs well. We hypothesize that the springs indicate the melt out of dead ice lenses in areas below 2500 m, causing a potential significant morphological change in the moraines and a decrease of slope stability in the proglacial long after glacier retreat. However, permafrost degradation has not been considered so far in contemporary erosion measurements. The present study aims to identify the spring water's origin and displays first attempts of quantifying thermal erosion, which describes the matrix volume loss due to melting and drainage of ice water. Samples were routinely analyzed for temperature, electrical conductivity, δ2H, and δ18O. Results support the hypothesis that certain springs derive from melting ice of similar isotopic signature as the glacier. In a second step, chosen samples were examined for the long-lived anthropogenic nuclide 129I. Since the 1950s the atmospheric abundance of 129I has significantly increased. Its occurrence in the water samples hints a surface contact of the waters in the last 65 years. Springs of ice origin show little 129I content and are believed to derive from dead ice by the glacier. First electric resistivity measurements support the hydro-chemical results and suggest the existence of ice lenses in the subsurface. Ice ablation and discharge measurements allowed first estimates of the thermal erosion volume caused by the melt out and drainage of ice lenses.

  7. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- andmore » intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.« less

  8. Tile Drainage Density Reduces Groundwater Travel Times and Compromises Riparian Buffer Effectiveness.

    PubMed

    Schilling, Keith E; Wolter, Calvin F; Isenhart, Thomas M; Schultz, Richard C

    2015-11-01

    Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Geophysical Characterization of Subsurface Properties Relevant to the Hydrology of the Standard Mine in Elk Basin, Colorado

    USGS Publications Warehouse

    Minsley, Burke J.; Ball, Lyndsay B.; Burton, Bethany L.; Caine, Jonathan S.; Curry-Elrod, Erika; Manning, Andrew H.

    2010-01-01

    Geophysical data were collected at the Standard Mine in Elk Basin near Crested Butte, Colorado, to help improve the U.S. Environmental Protection Agency's understanding of the hydrogeologic controls in the basin and how they affect surface and groundwater interactions with nearby mine workings. These data are discussed in the context of geologic observations at the site, the details of which are provided in a separate report. This integrated approach uses the geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements, which is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. This approach combines the benefit of many direct but sparse field observations with spatially continuous but indirect measurements of physical properties through the use of geophysics. Surface geophysical data include: (1) electrical resistivity profiles aimed at imaging variability in subsurface structures and fluid content; (2) self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow-flow patterns; and (3) magnetic measurements, which provide information on lateral variability in near-surface geologic features, although there are few magnetic minerals in the rocks at this site. Results from the resistivity data indicate a general two-layer model in which an upper highly resistive unit, 3 to 10 meters thick, overlies a less resistive unit that is imaged to depths of 20 to 25 meters. The high resistivity of the upper unit likely is attributed to unsaturated conditions, meaning that the contact between the upper and lower units may correspond to the water table. Significant lateral heterogeneity is observed because of the presence of major features such as the Standard and Elk fault veins, as well as highly heterogeneous joint distributions. Very high resistivities (greater than 10 kiloohmmeters) are observed in locations that may correspond to more silicified, lower porosity rock. Several thin (2 to 3 meters deep and up to tens of meters wide) low-resistivity features in the very near surface coincide with observed surface-water drainage features at the site. These are limited to depths less than 3 meters and may indicate surface and very shallow groundwater flowing downhill on top of less permeable bedrock. The data do not clearly point to discrete zones of high infiltration, but these cannot be ruled out given the heterogeneous nature of joints in the shallow subsurface. Disseminated and localized electrically conductive mineralization do not appear to play a strong role in controlling the resistivity values, which generally are high throughout the site. The self-potential analysis highlights the Standard fault vein, the northwest (NW) Elk vein near the Elk portal, and several polymetallic quartz veins. These features contain sulfide minerals in the subsurface that form an electrochemical cell that produces their distinct self-potential signal. A smaller component of the self-potential signal is attributed to relatively moderate topographically driven shallow groundwater flow, which is most prevalent in the vicinity of Elk Creek and to a lesser extent in the area of surface-water drainage below the Level 5 portal. Given the anomalies associated with the electrochemical weathering near the Standard fault vein, it is not possible to completely rule out downward infiltration of surface water and shallow groundwater intersected by the fault, though this is an unlikely scenario given the available data. Magnetic data show little variation, consistent with the mostly nonmagnetic host rocks and mineralization at the site, which is verified by magnetic susceptibility measurements and X-ray diffraction mineralogy data on local rock samples. The contact between the Ohio Creek Member of the Mesaverde Formation and Wasatch Formation coincides with a change in character of the magnetic signature, though

  10. Exploring the utility of real-time hydrologic data for landslide early warning

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.

    2017-12-01

    Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.

  11. Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

    2007-01-01

    Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

  12. Landscape hydrology and scaling of nitrate 15N and 18O isotope composition in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Martin, R. A.; Keller, C. K.; Orr, C. H.; Huggins, D. R.; Evans, R. D.

    2014-12-01

    Understanding how pore- to hillslope-scale processes combine to control nutrient export at larger scales is a fundamental challenge in today's agroecosystems as the carbon and contamination footprints of production agriculture come under increasing scrutiny. At the Cook Agronomy Farm (CAF) Long-Term Agricultural Research (LTAR) station near Pullman, WA we are using in-field observations to track how local-scale hydrological routing and biogeochemical processing interact to control landscape-scale water and nutrient exports. Previous research at the CAF has shown that conservative tracers and reactive nutrient quantities (NO3-,and DOC concentrations, DOM quality) in landscape-scale drainage can be explained by straightforward mixing of waters from variably contributing areas. Nitrate stable isotope composition in subsurface drain effluent indicate that most leached nitrate originates from reduced nitrogen fertilizer applied to the CAF in the autumn, which undergoes nitrification and subsequent leaching. This occurs over a timespan of weeks to months. However, water samples from contributing areas exhibit nitrate d15N and d18O significantly greater than subsurface drain effluent at all locations, and time-series consistent with the occurrence of denitrification at some locations. Possible explanations include pore-scale processing of nitrogen that does not affect the other tracers (like EC, DOM quality, and DOC concentration), and landscape-scale transport pathways that bypass our field instruments. Through this work we are contributing to a broader understand of how global change and local factors and management practices interact to affect the fate of fertilizer N, which is a cross-cutting research theme of the national LTAR network.

  13. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.

  14. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diameter piping shall be required for water closets. (f) Wet-vented drainage system. Plumbing fixture traps... connected to the drainage system shall be installed with a water seal trap (§ 3280.606(a)). (2) The drainage... to which it is connected and shall be equipped with a water-tight cap or plug matching the drain...

  15. Contributions of systematic tile drainage to watershed-scale phosphorus transport.

    PubMed

    King, Kevin W; Williams, Mark R; Fausey, Norman R

    2015-03-01

    Phosphorus (P) transport from agricultural fields continues to be a focal point for addressing harmful algal blooms and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. However, research on the contributions of tile drainage to watershed-scale P losses is limited. The objective of this study was to evaluate long-term P movement through tile drainage and its manifestation at the watershed outlet. Discharge data and associated P concentrations were collected for 8 yr (2005-2012) from six tile drains and from the watershed outlet of a headwater watershed within the Upper Big Walnut Creek watershed in central Ohio. Results showed that tile drainage accounted for 47% of the discharge, 48% of the dissolved P, and 40% of the total P exported from the watershed. Average annual total P loss from the watershed was 0.98 kg ha, and annual total P loss from the six tile drains was 0.48 kg ha. Phosphorus loads in tile and watershed discharge tended to be greater in the winter, spring, and fall, whereas P concentrations were greatest in the summer. Over the 8-yr study, P transported in tile drains represented <2% of typical application rates in this watershed, but >90% of all measured concentrations exceeded recommended levels (0.03 mg L) for minimizing harmful algal blooms and nuisance algae. Thus, the results of this study show that in systematically tile-drained headwater watersheds, the amount of P delivered to surface waters via tile drains cannot be dismissed. Given the amount of P loss relative to typical application rates, development and implementation of best management practices (BMPs) must jointly consider economic and environmental benefits. Specifically, implementation of BMPs should focus on late fall, winter, and early spring seasons when most P loading occurs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    PubMed

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  17. Drainage water management

    USDA-ARS?s Scientific Manuscript database

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  18. Understanding Subsurface Flow Mechanisms by Studying Recession Flow Curves

    NASA Astrophysics Data System (ADS)

    patnaik, S.; Biswal, B.; D, N.

    2013-12-01

    The recession flows offer valuable information on the subsurface systems of the drainage which cannot be observed due to technological limitations. Many analytical frameworks have been proposed in the past to analyze recession flow curves assess. Among them the most widely used one is Brutsaert-Neiber method of expressing negative time derivative of Q (discharge at the basin outlet at time t), -dQ/dt, as a function of Q itself, which eliminates the need of finding a reference time. Typically, basins across geographical regions display a power law relationship of the type: -dQ/dt = kQ^α. For a particular basin, the exponent α remains fairly constant recession events while the coefficient k varies greatly from one recession event to another, indicating the dynamic nature -dQ/dt-Q relationship. Recent observations show that subsurface storage in a basin mainly controls the dynamic parameter k. As subsurface water takes long time to fully drain, k of a recession event can also be influenced by the storage that occurred during the past rainfall events. We indirectly analyze the effect of past storage on recession flow by considering past streamflow as a proxy of past storage. A stronger relationship implies that the basin is able to store water for longer duration, and vice versa. In this study, we used streamflow data from 388 USGS basins that are relatively unaffected by human activities to find out the factors that affect the relationship between the power law correlation (R^2_PN) between past discharge and k, where the subscript N is the number of days of past streamflow observations considered for the recession event. For most of the basins R^2_PN decreases with N. We then selected 18 physical and climatological parameters for each study basin and investigated how they influence the value of R^2_PN for each N. We followed multiple linear regression method and found that R^2_PN is strongly influenced by the selected parameters (R^2 = 0.58) for N =30 days. We also employed principal component analysis to identify influence of individual parameters on R^2_PN. Our findings strongly indicate the possibility of understanding subsurface flow mechanism by merely analyzing recession flow curves.

  19. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno

    2015-10-01

    For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.

  20. Detrital cave sediments record Late Quaternary hydrologic and climatic variability in northwestern Florida, USA

    NASA Astrophysics Data System (ADS)

    Winkler, Tyler S.; van Hengstum, Peter J.; Horgan, Meghan C.; Donnelly, Jeffrey P.; Reibenspies, Joseph H.

    2016-04-01

    Detrital sediment in Florida's (USA) submerged cave systems may preserve records of regional climate and hydrologic variability. However, the basic sedimentology, mineralogy, stratigraphic variability, and emplacement history of the successions in Florida's submerged caves remains poorly understood. Here we present stratigraphic, mineralogical, and elemental data on sediment cores from two phreatic cave systems in northwestern Florida (USA), on the Dougherty Karst Plain: Hole in the Wall Cave (HITW) and Twin Cave. Water flowing through these caves is subsurface flow in the Apalachicola River drainage basin, and the caves are located just downstream from Jackson Blue (1st magnitude spring, > 2.8 m3 s- 1 discharge). Sedimentation in these caves is dominated by three primary sedimentary styles: (i) ferromanganese deposits dominate the basal recovered stratigraphy, which pass upsection into (ii) poorly sorted carbonate sediment, and finally into (iii) fine-grained organic matter (gyttja) deposits. Resolving the emplacement history of the lower stratigraphic units was hampered by a lack of suitable material for radiocarbon dating, but the upper organic-rich deposits have a punctuated depositional history beginning in the earliest Holocene. For example, gyttja primarily accumulated in HITW and Twin Caves from ~ 5500 to 3500 cal yr. BP, which coincides with regional evidence for water-table rise of the Upper Floridian Aquifer associated with relative sea-level rise in the Gulf of Mexico, and evidence for invigorated drainage through the Apalachicola River drainage basin. Gyttja sediments were also deposited in one of the caves during the Bølling/Allerød climate oscillation. Biologically, these results indicate that some Floridian aquatic cave (stygobitic) ecosystems presently receive minimal organic matter supply in comparison to prehistoric intervals. The pre-Holocene poorly sorted carbonate sediment contains abundant invertebrate fossils, and likely documents a period of enhanced limestone dissolution and cave formation (speleogenesis) during lower paleo water levels. Further work is still required to (a) determine whether precipitation of the ferromanganese deposits is inorganically or biologically mediated, (b) temporally constrain the emplacement history of the primary sedimentary styles, and (c) determine the full geographic extent of these sedimentary signals. However, these preliminary observations suggest that sedimentation in the inland underwater caves of northwestern Florida is related to Quaternary-scale hydrographic variability in the Apalachicola River drainage basin in response to broader ocean and atmospheric forcing.

  1. A synthesis and comparative evaluation of drainage water management

    USDA-ARS?s Scientific Manuscript database

    Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...

  2. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  3. 40 CFR 440.141 - Specialized definitions and provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shaking tables. (7) “Infiltration water” means that water which permeates through the earth into the plant... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...

  4. 40 CFR 440.141 - Specialized definitions and provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., hydrocyclones, or shaking tables. (7) “Infiltration water” means that water which permeates through the earth... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...

  5. 40 CFR 440.141 - Specialized definitions and provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., hydrocyclones, or shaking tables. (7) “Infiltration water” means that water which permeates through the earth... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...

  6. 40 CFR 440.141 - Specialized definitions and provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., hydrocyclones, or shaking tables. (7) “Infiltration water” means that water which permeates through the earth... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...

  7. 40 CFR 440.141 - Specialized definitions and provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shaking tables. (7) “Infiltration water” means that water which permeates through the earth into the plant... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...

  8. Hillslope hydrology research at Caspar Creek

    Treesearch

    Elizabeth T. Keppeler; Peter H. Cafferata

    1991-01-01

    As part of the ongoing Caspar Creek Watershed Study on Jackson Demonstration State Forest, researchers from the US Forest Service and the California Department of Forestry and Fire Protection are investigating subsurface drainage in the headwaters of the basin. In order to predict how land use practices will impact stream systems, and hence habitats for aquatic...

  9. Hydrogeochemical exploration: a reconnaissance study on northeastern Seward Peninsula, Alaska: Chapter A in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Graham, Garth E.; Taylor, Ryan D.; Buckley, Steve

    2015-01-01

    A reconnaissance hydrogeochemical study employing high-resolution/high-sensitivity inductively coupled plasma mass spectrometry analysis of stream and seep water samples (n= 171) was conducted in an area of limited bedrock exposure on the northeastern Seward Peninsula, Alaska. Sampling was focused in drainages around four main areas—at the Anugi Pb-Zn-Ag occurrence and in streams upstream of historically and currently mined placer gold deposits in the Candle Creek, Utica, and Monument Mountain areas. The objective of the study was to determine whether distribution of elevated metal concentrations in water samples could “see” through sediment cover and provide evidence of bedrock sources for base metals and gold. Some observations include (1) elevated Ag, As, Pb, and Zn concentrations relative to the study area as a whole in stream and seep samples from over and downstream of part of the Anugi Pb-Zn-Ag prospect; (2) abrupt downstream increases in Tl and Sb ± Au concentrations coincident with the upstream termination of productive placer deposits in the Inmachuk and Old Glory Creek drainages near Utica; (3) high K, Mo, Sb, and F throughout much of the Inmachuk River drainage near Utica; and (4) elevated As ± base metals and Au at two sites along Patterson Creek near the town of Candle and three additional contiguous sites identified when an 85th percentile cut-off was employed. Molybdenum ± gold concentrations (>90th percentile) were also measured in samples from three sites on Glacier Creek near Monument Mountain. The hydrogeochemistry in some areas is consistent with limited stream-sediment data from the region, including high Pb-Zn-Ag-As concentrations associated with Anugi, as well as historical reports of arsenopyrite-bearing veins upstream of placer operations in Patterson Creek. Chemistry of samples in the Inmachuk River-Old Glory Creek area also suggest more laterally extensive stibnite- (and gold-?) bearing veining than is currently known in the Old Glory Creek drainage. Our results indicate that hydrogeochemistry can be a useful method of geochemical exploration and offer targets for follow-up rock, soil, and subsurface sampling to ascertain the presence of mineralized bedrock.

  10. Evaluation of Urban Drainage Infrastructure: New York City Case Study

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Grossberg, M.; Khanbilvardi, R.

    2017-12-01

    Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.

  11. Geohydrologic reconnaissance of drainage wells in Florida

    USGS Publications Warehouse

    Kimrey, J.O.; Fayard, L.D.

    1984-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed standards values for gross alpha concentrations. (USGS)

  12. Modeling of subglacial hydrological development following rapid supraglacial lake drainage.

    PubMed

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.

  13. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  14. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  15. 40 CFR 440.143 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an open-cut mine plant site shall not exceed the volume of infiltration, drainage and mine drainage... of infiltration, drainage and mine drainage waters which is in excess of the make up water required...

  16. 40 CFR 440.143 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an open-cut mine plant site shall not exceed the volume of infiltration, drainage and mine drainage... of infiltration, drainage and mine drainage waters which is in excess of the make up water required...

  17. Constraining Greenland basal water extent and drainage morphology from radar reflectivity and specularity analysis

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Bell, R. E.; Paden, J. D.

    2017-12-01

    Subglacial water has been observed and theorized to cause changes in basal sliding. Across Greenland, water drainage can produce massive speed-ups, or conversely, very little responses from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine where shifts in drainage occur and what controls them. By using routing models and the reflectivity and specularity of radar bed echoes from NASA IceBridge, we provide insight into the character of the subglacial water systems and their variability across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and Petermann Glacier as a northern example. In the south at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply. In winter, water is stored on bedrock ridges but is absent in the sediment-filled troughs. In the summer, water drains to the troughs that focus this water, flooding the bed to intensify sliding locally. The topography and material properties of the bed strongly determine the degree to which subglacial drainage focuses at Russell. Conversely, the drainage systems in northern Greenland are vastly different. In Petermann, radar reflectivity indicates a persistent water distribution beneath the fast moving ice trunk. We observe a widespread water distribution with only a weak drainage focusing along the shear margin. Contrasted to Russell, topography and bed materials exert minor roles in determining Petermann's drainage behavior. Instead, local heat production and heat transfer with the neighboring glaciers strongly determine the water distribution in Petermann. We also interpret the radar reflectivity and routing model results in the context of basal roughness and drainage morphology, which we estimate from a more detailed analysis of the specularity of the bed echoes. Together, our results provide insights into the interaction between subglacial drainage, melt supply, and basal roughness over a wide range of environment. Local conditions often determine how drainage focuses at the bed and thereby play a significant role in controlling individual catchment responses to meltwater supply.

  18. Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material

    USDA-ARS?s Scientific Manuscript database

    Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...

  19. Water-resources activities of the U.S. Geological Survey in Idaho, fiscal years 1989-90

    USGS Publications Warehouse

    Kemp, B. N.

    1993-01-01

    Twenty-five funded projects were conducted by the Water Resources Division of the U.S. Geological Survey, Idaho District, during fiscal years 1989-90. These projects were done in cooperation with 13 State and local agencies, 11 other Federal agencies, and 1 International Commission. State and local cooperative funding amounted to about $1.1 million in fiscal year 1989 and $1 million in fiscal year 1990; Federal funding amounted to about $3.6 million in fiscal year 1989 and about $4.4 million in fiscal year 1990. In conducting its fiscal year 1989-90 activities, the Idaho District employed a total of 83 employees. Projects other than continuing programs for collection of hydrologic data included establishment of statewide surface-water and groundwater-quality monitoring networks; study of effects of irrigation drainage; development of a hydraulic model to determine water-surface elevations for decreased discharges of the Snake River at Swan Falls Dam; evaluation of subsurface waste disposal; delineation of agricultural areas of the State with high concentrations of dissolved nitrogen; evaluation of water use and its effect on groundwater levels and thermal waters in specific areas of the State; and determination of the cause or causes of rapidly decreasing hot-spring discharges along Hot Creek. (USGS)

  20. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  1. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    USGS Publications Warehouse

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable variability in the transmissivity of the basin-fill aquifer. Field data also indicate that the basin-fill aquifer is more transmissive than the underlying alluvial-fan aquifer. Data from the Pine Valley monzonite aquifer indicate that its transmissivity may be highly variable and that it is strongly influenced by the connection of fractures. The Navajo and Kayenta aquifers provide most of the potable water to the municipalities of Washington County. Because of large outcrop exposures, uniform grain size, and large stratigraphic thickness, these formations are able to receive and store large amounts of water. In additional, structural have resulted in extensive fracture zones that enhance ground-water recharge and movement within these aquifers. Aquifer testing of the Navajo aquifer indicates that horizontal hydraulic-conductivity values range from 0.2 to 32 feet per day at different locations and my be primarily dependent on the extent of fracturing. Limited data indicate that the Kayenta aquifer generally is less transmissive than the Navajo aquifer. The aquifers are bounded to the south and west by the erosional extent of the formations and to the east by the Hurricane Fault, which completely offsets these formations and is assumed to be a lateral no-flow boundary. Like the Hurricane Fault, the Gunlock Fault is assumed to be a lateral no-flow boundary that divides the Navajo and Kayenta aquifers within the study area into two parts: the main part, between the Hurricane and Gunlock Faults, and the Gunlock part, west of the Gunlock Fault. Generally, the water in the Vanajo and Kayenta aquifers contains few dissolved minerals. However, two distinct areas contain water with dissolved-solids concentrations greater than 500 milligrams per liter: a larger area north of the city of St. George and a smaller area of a few miles west of the town of Hurricane. Mass-balance calculations indicate that in the higher-dissolved-solids area north of St. George, as much as 2.7 cubic feet per second may be entering the aquifer from underlying formations. For the area west of Hurricane, as much as 1.5 cubic feet per second may be entering the aquifer from underlying formations. On the basis of measurements, estimates, and numerical simulations, total water moving through the Navajo and Kayenta aquifers is estimated to be about 25,000 acre-feet per year for the main part and 5,000 acre-feet per year for the Gunlock part. The primary source of recharge is assumed to be infiltration of precipitation in the main part and seepage from the Santa Clara River in the Gunlock part. The primary source of discharge is assumed to be a well discharge for both the main and Gunlock parts of the aquifers. Numerical simulations indicate that faults with major offset, such as the Washington Hollow Fault and an unnamed fault near Anderson Junction, may impede horizontal ground-water flow. Also, increased horizontal hydraulic conductivity along the orientation of predominant surface fracturing may be important factor in regional ground-water flow. Simulations with increased north-south hydraulic conductivity substantially improved the match to measured water levels in the central area of the model between Snow Canyon and Mill Creek. Numerical simulation of the Gunlock part, using aquifer properties determined for the city of St. George municipal well field, resulted in a reasonable representation of regional water levels and estimated seepage from and to the Santa Clara River. To quantify the Gunlock part of the Navajo and Kayenta aquifers, a better understanding of ground-water flow at the Gunlock Fault is needed.

  2. Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

    USGS Publications Warehouse

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable variability in the transmissivity of the basin-fill aquifer. Field data also indicate that the basin-fill aquifer is more transmissive than the underlying alluvial-fan aquifer. Data from the Pine Valley monzonite aquifer indicate that its transmissivity may be highly variable and that it is strongly influenced by the connection of fractures.The Navajo and Kayenta aquifers provide most of the potable water to the municipalities of Washington County. Because of large outcrop exposures, uniform grain size, and large stratigraphic thickness, these formations are able to receive and store large amounts of water. In addition, structural forces have resulted in extensive fracture zones that enhance ground-water recharge and movement within these aquifers. Aquifer testing of the Navajo aquifer indicates that horizontal hydraulic-conductivity values range from 0.2 to 32 feet per day at different locations and may be primarily dependent on the extent of fracturing. Limited data indicate that the Kayenta aquifer generally is less transmissive than the Navajo aquifer. The aquifers are bounded to the south and west by the erosional extent of the formations and to the east by the Hurricane Fault, which completely offsets these formations and is assumed to be a lateral no-flow boundary. Like the Hurricane Fault, the Gunlock Fault is assumed to be a lateral no-flow boundary that divides the Navajo and Kayenta aquifers within the study area into two parts: the main part, between the Hurricane and Gunlock Faults; and the Gunlock part, west of the Gunlock Fault.Generally, the water in the Navajo and Kayenta aquifers contains few dissolved minerals. However, two distinct areas contain water with dissolved-solids concentrations greater than 500 milligrams per liter: a larger area north of the city of St. George and a smaller area a few miles west of the town of Hurricane. Mass-balance calculations indicate that in the higher-dissolved-solids area north of St. George, as much as 2.7 cubic feet per second may be entering the aquifer from underlying formations. For the area west of Hurricane, as much as 1.5 cubic feet per second may be entering the aquifer from underlying formations.On the basis of measurements, estimates, and numerical simulations, total water moving through the Navajo and Kayenta aquifers is estimated to be about 25,000 acre-feet per year for the main part and 5,000 acre-feet per year for the Gunlock part. The primary source of recharge is assumed to be infiltration of precipitation in the main part and seepage from the Santa Clara River in the Gunlock part. The primary source of discharge is assumed to be well discharge for both the main and Gunlock parts of the aquifers. Numerical simulations indicate that faults with major offset, such as the Washington Hollow Fault and an unnamed fault near Anderson Junction, may impede horizontal ground-water flow. Also, increased horizontal hydraulic conductivity along the orientation of predominant surface fracturing may be an important factor in regional ground-water flow. Simulations with increased north-south hydraulic conductivity substantially improved the match to measured water levels in the central area of the model between Snow Canyon and Mill Creek. Numerical simulation of the Gunlock part, using aquifer properties determined for the city of St. George municipal well field, resulted in a reasonable representation of regional water levels and estimated seepage from and to the Santa Clara River. To further quantify the Gunlock part of the Navajo and Kayenta aquifers, a better understanding of ground-water flow at the Gunlock Fault is needed.

  3. Irrigated agriculture and freshwater wetlands: A struggle for coexistence in the western United States

    Treesearch

    A. Dennis Lemly

    1994-01-01

    This paper is a review of the major environmental problems associated with irrigated agriculture in the western United States. Freshwater wetlands are being contaminated by subsurface agricultural irrigation drainage in many locations. Historic freshwater inflows have been diverted for agricultural use, and remain- ing freshwater supplies are not sufficient to maintain...

  4. Streamflow characteristics of a naturally drained forested watershed in southeast Atlantic coastal plain

    Treesearch

    Devendra M. Amatya; Carl C. Trettin

    2010-01-01

    Information about streamflow characteristics e.g. runoff-rainfall (R/O) ratio, rate and timing of flow, surface and subsurface drainage (SSD), and response time to rainfall events is necessary to accurately simulate fluxes and for designing best management practices (BMPs). Unfortunately, those data are scarce in the southeastern Atlantic coastal plain, a highly...

  5. Subsurface pipeflow dynamics of north-coastal California swale systems

    Treesearch

    Robert R. Ziemer; Jeffrey S. Albright

    1987-01-01

    Abstract - Pipeflow dynamics are being studied at Caspar Creek Experimental Watershed in north-coastal California near Ft. Bragg. Pipes have been observed at depths to 2 m within trenched swales and at the heads of gullied channels in small (0.8 to 2 ha) headwater drainages. Digital data loggers connected to pressure transducers monitor discharge using calibrated...

  6. Injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, T.A.; Moran, T.C.; Broschart, D.W.

    1998-12-31

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990`s, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. An innovative procedure of injecting grout into the mine workings to reduce AMD and the resulting treatment costs is proposed. The procedure involves injecting grout mixesmore » composed primarily of coal combustion byproducts (CCB`s) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to help achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera operation confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. Closer injection hole spacing was used in second-mined areas to account for collapsed workings. The construction documents have been prepared with the project being bid in late 1997. The engineer`s cost estimate was approximately $2,500,000, with the low bid of approximately $2,300,000 being submitted by Howard Concrete Pumping of Bridgeville, PA.« less

  7. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  8. A Pseudo-Vertical Equilibrium Model for Slow Gravity Drainage Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, Beatrix; Guo, Bo; Bandilla, Karl; Celia, Michael A.; Flemisch, Bernd; Helmig, Rainer

    2017-12-01

    Vertical equilibrium (VE) models are computationally efficient and have been widely used for modeling fluid migration in the subsurface. However, they rely on the assumption of instant gravity segregation of the two fluid phases which may not be valid especially for systems that have very slow drainage at low wetting phase saturations. In these cases, the time scale for the wetting phase to reach vertical equilibrium can be several orders of magnitude larger than the time scale of interest, rendering conventional VE models unsuitable. Here we present a pseudo-VE model that relaxes the assumption of instant segregation of the two fluid phases by applying a pseudo-residual saturation inside the plume of the injected fluid that declines over time due to slow vertical drainage. This pseudo-VE model is cast in a multiscale framework for vertically integrated models with the vertical drainage solved as a fine-scale problem. Two types of fine-scale models are developed for the vertical drainage, which lead to two pseudo-VE models. Comparisons with a conventional VE model and a full multidimensional model show that the pseudo-VE models have much wider applicability than the conventional VE model while maintaining the computational benefit of the conventional VE model.

  9. Simulating Sustainable P Management Practices in Tile-Drained Landscapes of Central Ohio Using the Agricultural Policy Environmental Extender (APEX)

    NASA Astrophysics Data System (ADS)

    Ford, W. I., III; King, K.; Williams, M.

    2014-12-01

    Despite extensive application of conservation practices to minimize sediment P delivery to streams, hypoxic conditions and harmful algal blooms persist in receiving water bodies. Tile-drainage networks are a focal point for reducing soluble P in the food-producing Midwestern United States in that they promote higher connectivity between upland soils and stream channels which decreases soil contact time, and biogeochemical alterations. A critical next step to reduce the environmental impact and maintain sustainable agriculture is to implement best management practices (BMPs) under a holistic framework that considers adverse effects to water resources and crop production, while maintaining economic feasibility. The objective of this study was to apply a robust numerical model, the Agricultural Policy Environmental Extender (APEX), in a tile-drained landscape in Central Ohio in order to evaluate the effectiveness of a suite of BMPs on soluble and particulate P delivery to stream channels. The model was applied and evaluated at two adjacent edge-of-field sites with similar soil, topographic and management characteristics (except for tillage and tile installation on the south field in 2012, preceded by more than 20 years of no-till operations). Three years of daily discharge, total suspended solids, soluble P, soluble N (NO3 and NH4), total P, total N, and crop yields were utilized to verify the model performance. Prevalent BMPs simulated within the modeling framework included drainage water management, tillage and crop rotations, the 4Rs framework (right fertilizer source, rate, time, and placement), and bioreactors. Results of the study quantify the ability of the numerical model to simulate hydrology and P transport for surface runoff and subsurface tile drainage and highlight modifications that improve model performance. Further, results highlight BMPs that effectively reduce P loads to streams while maintaining crop yields, which can later be used to inform BMPs implemented at edge-of-field sites in Ohio. While beyond the scope of this study, future work aims to investigate the sustainability of BMPs under dynamic climate conditions and across watershed gradients.

  10. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  11. Regolith-atmosphere exchange of water in Mars' recent past

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.

    2017-03-01

    We investigate the exchange of water vapour between the regolith and atmosphere of Mars, and how it varies with different orbital parameters, atmospheric dust contents and surface water ice reservoirs. This is achieved through the coupling of a global circulation model (GCM) and a regolith diffusion model. GCM simulations are performed for hundreds of Mars years, with additional one-dimensional simulations performed for 50 kyr. At obliquities ɛ =15∘ and 30°, the thermal inertia and albedo of the regolith have more control on the subsurface water distribution than changes to the eccentricity or solar longitude of perihelion. At ɛ =45∘ , atmospheric water vapour abundances become much larger, allowing stable subsurface ice to form in the tropics and mid-latitudes. The circulation of the atmosphere is important in producing the subsurface water distribution, with increased water content in various locations due to vapour transport by topographically-steered flows and stationary waves. As these circulation patterns are due to topographic features, it is likely the same regions will also experience locally large amounts of subsurface water at different epochs. The dustiness of the atmosphere plays an important role in the distribution of subsurface water, with a dusty atmosphere resulting in a wetter water cycle and increased stability of subsurface ice deposits.

  12. Batch test screening of industrial product/byproduct filter materials for agricultural drainage water treatment

    USDA-ARS?s Scientific Manuscript database

    Filter treatment may be a viable means for removing the nitrate, phosphate, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water ...

  13. United States Geological Survey, programs in Nevada

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  14. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  15. Impact of seasonality on artificial drainage discharge under temperate climate conditions

    Treesearch

    Ulrike Hirt; Annett Wetzig; Devandra Amatya; Marisa Matranga

    2011-01-01

    Artificial drainage systems affect all components of the water and matter balance. For the proper simulation of water and solute fluxes, information is needed about artificial drainage discharge rates and their response times. However, there is relatively little information available about the response of artificial drainage systems to precipitation. To address this...

  16. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua

    2018-04-01

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.

  17. Contrasting nitrogen fate in watersheds using agricultural and water quality information

    USGS Publications Warehouse

    Essaid, Hedeff I.; Baker, Nancy T.; McCarthy, Kathleen A.

    2016-01-01

    Surplus nitrogen (N) estimates, principal component analysis (PCA), and end-member mixing analysis (EMMA) were used in a multisite comparison contrasting the fate of N in diverse agricultural watersheds. We applied PCA-EMMA in 10 watersheds located in Indiana, Iowa, Maryland, Nebraska, Mississippi, and Washington ranging in size from 5 to 1254 km2 with four nested watersheds. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer, and manure for the period from 1987 to 2004. Watershed average Surplus N ranged from 11 to 52 kg N ha−1 and from 9 to 32% of N input. Solute concentrations in streams, overland runoff, tile drainage, groundwater (GW), streambeds, and the unsaturated zone were used in the PCA-EMMA procedure to identify independent components contributing to observed stream concentration variability and the end-members contributing to streamflow and NO3 load. End-members included dilute runoff, agricultural runoff, benthic-processing, tile drainage, and oxic and anoxic GW. Surplus N was larger in watersheds with more permeable soils (Washington, Nebraska, and Maryland) that allowed greater infiltration, and oxic GW was the primary source of NO3 load. Subsurface transport of NO3 in these watersheds resulted in some removal of Surplus N by denitrification. In less permeable watersheds (Iowa, Indiana, and Mississippi), NO3 was rapidly transported to the stream by tile drainage and runoff with little removal. Evidence of streambed removal of NO3 by benthic diatoms was observed in the larger watersheds.

  18. Spatially explicit shallow landslide susceptibility mapping over large areas

    USGS Publications Warehouse

    Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.

  19. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.

    PubMed

    Tanner, Chris C; Sukias, James P S

    2011-01-01

    Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.

  20. Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.

    2017-12-01

    In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.

  1. Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.

  2. Capturing Flow-weighted Water and Suspended Particulates from Agricultural Canals During Drainage Events.

    PubMed

    Bhadha, Jehangir H; Sexton, Anne; Lang, Timothy A; Daroub, Samira H

    2017-11-07

    The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.

  3. Effects of recharge from drainage wells on quality of water in the Floridan Aquifer in the Orlando area, central Florida

    USGS Publications Warehouse

    Schiner, G.R.; German, E.R.

    1983-01-01

    Approximately 400 drainage wells in the Orlando area inject, by gravity, large quantities of stormwater runoff that may or may not be suitable for most purposes without treatment into the same freshwater zones of the Floridan aquifer tapped for public supply. The wells are used mostly to control lake levels and dispose of urban storm runoff. Recharge from drainage wells compensates for heavy withdrawals from the Floridan aquifer and helps maintain aquifer pressures that retard upward saltwater encroachment. Sixty-five supply wells and 21 drainage wells within a 16-mile radius of Orlando were sampled from September 1977 to June 1979. Most constituent concentrations were slightly higher in water from drainage wells than in water from supply wells. The most notable differences were in bacteria colony count and total nitrogen concentrations. With the exception of bacteria, water from drainage wells would generally meet the maximum contaminant levels established by the National Interim Primary and Proposed Secondary Drinking Water Regulations. (USGS)

  4. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  5. Hydrologic Analysis of Fort Leonard Wood, Missouri

    DTIC Science & Technology

    2015-08-01

    of water available to FLW from the Roubidoux Creek drainage . In this case, because water is lost to the groundwater system while flowing through...taken from the Roubidoux Creek drainage . Roubidoux Creek is intermittent, and the stream loses water to the groundwater system as it flows through...13 Figure 5. FLW drainage divide

  6. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.

    PubMed

    Zajíček, Antonín; Fučík, Petr; Kaplická, Markéta; Liška, Marek; Maxová, Jana; Dobiáš, Jakub

    2018-04-01

    Dynamics of pesticides and their metabolites in drainage waters during baseflow periods and rainfall-runoff events (RREs) were studied from 2014 to 2016 at three small, tile-drained agricultural catchments in Bohemian-Moravian Highlands, Czech Republic. Drainage systems in this region are typically built in slopes with considerable proportion of drainage runoff originating outside the drained area itself. Continuous monitoring was performed by automated samplers, and the event hydrograph was separated using 18 O and 2 H isotopes and drainage water temperature. Results showed that drainage systems represent a significant source for pesticides leaching from agricultural land. Leaching of pesticide metabolites was mainly associated with baseflow and shallow interflow. Water from causal precipitation diluted their concentrations. The prerequisites for the leaching of parental compounds were a rainfall-runoff event occurring shortly after spraying, and the presence of event water in the runoff. When such situations happened consequently, pesticides concentrations in drainage water were high and the pesticide load reached several grams in a few hours. Presented results introduce new insights into the processes of pesticides movement in small, tile-drained catchments and emphasizes the need to incorporate drainage hydrology and flow-triggered sampling into monitoring programmes in larger catchments as well as in environment-conservation policy.

  7. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  8. Potential influence of sugarcane cultivation on estuarine water quality of Louisiana's gulf coast.

    PubMed

    Southwick, Lloyd M; Grigg, Brandon C; Kornecki, Ted S; Fouss, James L

    2002-07-17

    Sugarcane is cultivated on some 170000 ha of land in south central and southwestern Louisiana. This acreage drains into bayous and rivers that empty into Louisiana's coastal bays and estuaries. For a number of years the state's Department of Agriculture and Forestry and Department of Environmental Quality have collected water quality data from this sugarcane area. Study of these data shows that approximately one in five detections of atrazine is above the maximum contaminant level (MCL) for drinking water. Currently there is no U.S. atrazine standard for protection of aquatic life. February and October detections of this herbicide are probably due to sugarcane cultivation. Nitrate levels have remained below the MCL for drinking water, but nitrate and phosphorus concentrations may pose a potential for eutrophication problems. The contribution of sugarcane production to the nutrient status of Louisiana's coastal water bodies is difficult to assess because there are other sources of nutrients in the area and native soil phosphorus levels are high. Cultural practices such as subsurface drains, open drainage ditches, and postharvest residue management have potential through enhancement of soil infiltration for decreasing sugarcane's contribution to water quality problems in southern and coastal Louisiana. A new field project is being installed at the Louisiana State University Agricultural Experiment Station's Sugarcane Research Station at St. Gabriel to assess the water quality benefits of these practices with respect to sugarcane cultivation.

  9. SULFATE REDUCTION IN GROUNDWATER: CHARACTERIZATION AND APPLICATIONS FOR REMEDIATION

    PubMed Central

    Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreón-Diazconti, C.; Johnson, B.

    2013-01-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in-situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron (ZVI) and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications. PMID:21947714

  10. A GIS System for Inferring Subsurface Geology and Material Properties: Proof of Concept

    DTIC Science & Technology

    2006-09-01

    geologic structure. For example, interbedded sedimentary rocks comprise significant proportions of the Appalachian Mountains as well as various mountain ...Pitted surfaces a. Shallow, rounded, non-uniform b. More or less circular Hills and Mountains … Drainage...pear-shaped ap - pendages; talus common at bases of slopes along boundaries; strongly verti- cally jointed; vertical escarpments; co- lumnar jointing

  11. Effect of logging on subsurface pipeflow and erosion: coastal northern California, USA

    Treesearch

    R. R. Ziemer

    1992-01-01

    Abstract - Three zero-order swales, each with a contributing drainage area of about 1 ha, were instrumented to measure pipeflows within the Caspar Creek Experimental Watershed in northwestern California, USA. After two winters of data collection, the second-growth forest on two of the swales was clearcut logged. The third swale remained as an uncut control. After...

  12. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  13. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  14. Legacy of contaminant N sources to the NO3- signature in rivers: a combined isotopic (δ15N-NO3-, δ18O-NO3-, δ11B) and microbiological investigation

    NASA Astrophysics Data System (ADS)

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-02-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability.

  15. Dissecting the variable source area concept - Flow paths and water mixing processes

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Easton, Z. M.; Lyon, S. W.; Brown, L. D.; Walter, M. T.; Steenhuis, T.

    2010-12-01

    Variable source areas (VSAs) are hot spots of hydrological (saturation excess runoff) and biogeochemical processes (e.g. nitrogen, phosphorus, organic carbon cycling) in the landscapes of the northeastern U.S. The prevalence of shallow, highly transmissive soils, steep topography, and impeding layers in the soil (i.e. fragipan) have long been recognized as first-order controls on VSA formation. Nevertheless, there is still understanding to be gained by studying subsurface flow processes in VSAs. Thus, we instrumented (trenched) a 0.5 ha hillslope in the southern tier of New York State, U.S.A. and measured water fluxes in the trench, upslope water table dynamics, surface and bedrock topography in conjunction with isotopic and geochemical tracers in order to four-dimensionally characterize (XYZ and Time) subsurface storm flow response within the VSA for five storm events. We used tracer-based hydrograph separation models and physically measured flow components to separate temporally (i.e. event and pre-event) and spatially shallow water from above the fragipan layer (including both surface runoff and shallow interflow) and deeper water from below the fragipan layer. Shallow water (event/pre-event) contributions were greatest during storms with wet antecedent conditions and large rainfall amounts (> 15 mm), when soils above the fragipan were saturated, prohibiting deep percolation through cracks in the fragipan. Shallow water contributions were well correlated to the saturated contributing area. During these events, the pre-event shallow water peaked on the rising and falling limb, which can be explained by flushing of pre-event water from macropores on the rising limb and subsequent drainage of pre-event water from micropores into macropores on the falling limb. During events with dry antecedent conditions, greater amounts of event water (24 - 28 %) are proportionally contributed by surface runoff in the top 10 cm of the soil through macropores than by shallow interflow from the soil-fragipan interface. Pre-event deeper water contributions to total trench discharge varied between 15 and 65% but were independent of total rainfall amounts, rainfall intensities, and water table dynamics. Our results have important implication for the protection of streams from dissolved pollutant transport and recommend that preference be given to variable-width buffers over fixed-width stream buffers.

  16. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  17. Use of large-scale multi-configuration EMI measurements to characterize heterogeneous subsurface structures and their impact on crop productivity

    NASA Astrophysics Data System (ADS)

    Brogi, Cosimo; Huisman, Johan Alexander; Kaufmann, Manuela Sarah; von Hebel, Christian; van der Kruk, Jan; Vereecken, Harry

    2017-04-01

    Soil subsurface structures can play a key role in crop performance, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI have been shown to be able of providing information about dominant shallow subsurface features. However, previous work with EMI has typically not reached beyond the field scale. The objective of this study is to use large-scale multi-configuration EMI to characterize patterns of soil structural organization (layering and texture) and the associated impact on crop vegetation at the km2 scale. For this, we carried out an intensive measurement campaign and collected high spatial resolution multi-configuration EMI data on an agricultural area of approx. 1 km2 (102 ha) near Selhausen (North Rhine-Westphalia, Germany) with a maximum depth of investigation of around 2.5 m. We measured using two EMI instruments simultaneously with a total of nine coil configurations. The instruments were placed inside polyethylene sleds that were pulled by an all-terrain-vehicle along parallel lines with a spacing of 2 to 2.5 m. The driving speed was between 5 and 7 km h-1 and we used a 0.2 Hz sampling frequency to obtain an in-line resolution of approximately 0.3 m. The survey area consists of almost 50 different fields managed in different way. The EMI measurements were collected between April and December 2016 within a few days after the harvest of each field. After data acquisition, EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid. The resulting EMI maps allowed us to identify three main areas with different subsurface heterogeneities. The differences between these areas are likely related to the late quaternary geological history (Pleistocene and Holocene) of the area that resulted in spatially variable soil texture and layering, which has a strong impact on spatio-temporal soil water content variability. The high resolution surveys also allowed us to identify small scale geomorphological structures as well as anthropogenic activities such as soil management and drainage networks carried out in the last 150 years. To identify areas with similar subsurface structures with high spatial resolution, we applied multiband image classification using the nine coil configurations as bands of a single image. We compared both supervised and unsupervised classification and obtained promising preliminary results showing a good degree of conformity between EMI supervised classification maps and observed patterns in plant productivity.

  18. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.

    2010-01-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint andmore » serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i.e., CP, NP and HDU) showed relatively large variation during the seasonal wetting-drying cycle. For the soil below 2-m depth, the seasonal variation of soil water content was relatively small. The construction of the surface barrier was completed in April 2008. In the soil below the surface barrier (Nests C and D), the CP measurements showed that water content at the soil between 0.6-m and 2.3-m depths was very stable, indicating no climatic impacts on soil water condition beneath the barrier. The NP-measured water content showed that soil water drainage seemed occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) in FY09. The HDU-measured water pressure decreased consistently in the soil above 5-m depth, indicating soil water drainage at these depths of the soil. In the soil below the edge of the surface barrier (Nest B), the CP-measured water content was relatively stable through the year except at the 0.9-m depth; the NP-measured water content showed that soil water drainage was occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) but at a slightly smaller magnitude than those in Nests C and D; the HDU-measurements show that the pressure head changes in FY09 in Nest B were less than those for C and D but more than those for A. The soil-water-pressure head was more sensitive to soil water regime changes under dry conditions. In the soil beneath the barrier, the theoretical steady-state values of pressure head is equal to the negative of the distance to groundwater table. Hence, it is expected that, in the future, while the water content become stable, the pressure head will keep decreasing for a long time (e.g., many years). These results indicate that the T Tank Farm surface barrier was performing as expected by intercepting the meteoric water from infiltrating into the soil and the soil was becoming drier gradually. The barrier also has some effects on the soil below the barrier edge but at a reduced magnitude.« less

  19. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    NASA Astrophysics Data System (ADS)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  20. Towards a more efficient and robust representation of subsurface hydrological processes in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Rahman, M.; Kollet, S. J.; Wagener, T.

    2017-12-01

    Understanding the impacts of land cover and climate changes on terrestrial hydrometeorology is important across a range of spatial and temporal scales. Earth System Models (ESMs) provide a robust platform for evaluating these impacts. However, current ESMs lack the representation of key hydrological processes (e.g., preferential water flow, and direct interactions with aquifers) in general. The typical "free drainage" conceptualization of land models can misrepresent the magnitude of those interactions, consequently affecting the exchange of energy and water at the surface as well as estimates of groundwater recharge. Recent studies show the benefits of explicitly simulating the interactions between subsurface and surface processes in similar models. However, such parameterizations are often computationally demanding resulting in limited application for large/global-scale studies. Here, we take a different approach in developing a novel parameterization for groundwater dynamics. Instead of directly adding another complex process to an established land model, we examine a set of comprehensive experimental scenarios using a very robust and establish three-dimensional hydrological model to develop a simpler parameterization that represents the aquifer to land surface interactions. The main goal of our developed parameterization is to simultaneously maximize the computational gain (i.e., "efficiency") while minimizing simulation errors in comparison to the full 3D model (i.e., "robustness") to allow for easy implementation in ESMs globally. Our study focuses primarily on understanding both the dynamics for groundwater recharge and discharge, respectively. Preliminary results show that our proposed approach significantly reduced the computational demand while model deviations from the full 3D model are considered to be small for these processes.

  1. From Río Tinto to Mars: the terrestrial and extraterrestrial ecology of acidophiles.

    PubMed

    Amils, R; González-Toril, E; Aguilera, A; Rodríguez, N; Fernández-Remolar, D; Gómez, F; García-Moyano, A; Malki, M; Oggerin, M; Sánchez-Andrea, I; Sanz, J L

    2011-01-01

    The recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities. The oxidants that drive the system appear to come from the rock matrix, contradicting conventional acid mine drainage models. These resources need only groundwater to launch microbial metabolism. There are several similarities between the vast deposits of sulfates and iron oxides on Mars and the main sulfide-containing iron bioleaching products found in the Tinto. Firstly, the short-lived methane detected both in Mars' atmosphere and in the sediments and subsurface of the IPB and secondly, the abundance of iron, common to both. The physicochemical properties of iron make it a source of energy, a shield against radiation and oxidative stress as well as a natural pH controller. These similarities have led to Río Tinto's status as a Mars terrestrial analogue. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Groundwater recharge from point to catchment scale

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  3. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Fred

    2016-06-01

    A surface barrier is a commonly used technology for isolation of subsurface contaminants. Surface barriers for isolating radioactive waste are expected to perform for centuries to millennia, yet there are very few data for field-scale surface barriers for periods approaching a decade or longer. The Prototype Hanford Barrier (PHB) with a design life of 1000 years was constructed over an existing radioactive waste site in 1994 to demonstrate its long-term performance. The primary element of the PHB is an evapotranspiration-capillary (ETC) barrier in which precipitation water is stored in a fine-textured soil layer and later released to the atmosphere via evapotranspiration. To address the barrier performance under extreme conditions, this study included an enhanced precipitation stress test from 1995 to 1997 to determine barrier response to extreme precipitation events. During this period a 1000 year 24 h return rainstorm was simulated in March every year. The loss of vegetation on barrier hydrology was tested with a controlled fire test in 2008. The 19 year monitoring record shows that the store-and-release mechanism worked as well as or better than the design criterion. Average drainage from the ETC barrier amounted to an average of 0.005 mm yr-1, which is well below the design criterion of 0.5 mm yr-1. After a simulated wildfire, the naturally reestablished vegetation and increased evaporation combined to release the stored water and summer precipitation to the atmosphere such that drainage did not occur in the 5 years subsequent to the fire.

  4. Comparative analysis of the outflow water quality of two sustainable linear drainage systems.

    PubMed

    Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J

    2014-01-01

    Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.

  5. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    USGS Publications Warehouse

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  6. Global 30m Height Above the Nearest Drainage

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick

    2016-04-01

    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and variable thresholding methods. The resulting HAND dataset was analyzed regarding its spatial variability and to assess the global distribution of the main landform types: valley, ecotone, slope, and plateau. The method used to compute HAND was implemented using PCRaster software, running on Google Compute Engine platform running under Ubuntu Linux. The Google Earth Engine was used to perform mosaicing and clipping of the original DEMs as well as to provide access to the final product. The effort took about three months of computing time on eight core CPU virtual machine.

  7. The Baltimore Engineers and the Chesapeake Bay, 1961-1987

    DTIC Science & Technology

    1988-01-01

    supply and drought management study that will identify those measures required to optimize the use of exist- ing water supplies in the Bay drainage ... drainage area of the Chesapeake, the Susquehanna accounts for 43% and the Potomac for 22% of this land area. The total average inflow of fresh water to...right) water supply and, tn some areas, abatement of acid mine drainage . not allowed the Susquehanna to escape from serious water supply

  8. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    NASA Astrophysics Data System (ADS)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  9. Effect of Drainage and Management Practices on Hydrology of Pine Plantation

    Treesearch

    R. Wayne Skaggs; Devendra M. Amatya; G. M. Chescheir; C. D. Blanton; J. W. Gilliam

    2006-01-01

    This paper reviews results of long-term studies, initiated in the late 1980s, to determine the hydrologic and water quality impacts of drainage and related water and forest management practices on a poorly drained site in Carteret County, North Carolina. Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth...

  10. Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Burbey, T. J.

    2011-12-01

    Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention to mitigate seepage would be required for lake level recovery in the near future.

  11. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life: HYDROLOGY OF A 1000 YEAR ETC BARRIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. Fred

    A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In thismore » design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.« less

  12. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  13. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and composition of alteration products. The lithologic variability in this area leads to differing water-rock interactions occurring in different parts of the drainage basin. Anthropogenic influences also affect the water; at the far downgradient end of the drainage basin, increased levels of chloride and sulfate in the groundwater suggest an increased influence of irrigation recharge. Results from both water and rock analyses are combined in geochemical modeling software to determine plausible reactions that occur in groundwater collected at the sampling sites.

  15. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    PubMed

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2015-04-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.

  17. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    PubMed

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  18. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.

  19. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidences from the Early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2014-10-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.

  20. Effects of coal mine drainage on the water quality of small receiving streams in Washington, 1975-77

    USGS Publications Warehouse

    Packard, F.A.; Skinner, E.L.; Fuste, L.A.

    1988-01-01

    Drainage from abandoned coal mines in western and central Washington has minimal environmental impact. Water quality characteristics that have the most significant environmental impact are suspended sediment and turbidity. Water quality data from 51 abandoned coal mines representing 11 major coal bearing areas indicate that less than 1% of the mine drainage has a pH of 4.5 or less. Fifty percent of the drainage is alkaline and has pH 7.0 and greater, and about 95% of the drainage has pH 6.0 and greater. Less than 2% is acidified to a pH of 5.6, a point where water and free (atmospheric) carbon dioxide are in equilibrium. The area where pH 5.6 or less is most likely to occur is in the Centralia/Chehalis mine district. No significant difference in diversity of benthic organisms was found between stations above and below the mine drainage. However, within the 50-ft downstream reach ostracods were more abundant than above the mine drainage and mayflies, stoneflies, and caddisflies were less abundant than at the control site. Correlations to water quality measurements show that these faunal changes are closely associated with iron and sulfate concentrations. (USGS)

  1. Effects of timber harvesting on the lag time of a Caspar Creek watershed...a study in progress

    Treesearch

    Karen D. Hardison

    1982-01-01

    Researchers are not agreed on the effects of logging on lag time. Numerous studies have shown that the use of heavy equipment in logging operations can cause soil compaction. Also, associated roads alter natural drainage patterns by concentrating runoff and interrupting subsurface flow. As a result these researchers say, less infiltration into the soil takes place...

  2. Remote sensing of subsurface water temperature by Raman scattering.

    PubMed

    Leonard, D A; Caputo, B; Hoge, F E

    1979-06-01

    The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.

  3. A proposal for a separative network to evacuate drainage waters and pluvial waters of stagnation in arid zones (Ain Sahra locality, Touggourt, Algeria)

    NASA Astrophysics Data System (ADS)

    Nettari, Kamel; Boutoutaou, Djamel; Rezagui, Djihed

    2018-05-01

    Many agglomerations of the Algerian Sahara, are currently affected by a rise of waters of the superficial aquifer. This rise is due to discharges of drainage water and urban wastewater. In addition, the rare stormy rains that occur in these areas cause very high material damage. To avoid this damage, it is essential to propose a separative network to evacuate the drainage andpluvial stagnant waters and propose some adequate solutions to avoid potential flooding.

  4. Phosphorus retention and fractionation in an eutrophic wetland: A one-year mesocosms experiment under fluctuating flooding conditions.

    PubMed

    Tercero, María Del Carmen; Álvarez-Rogel, José; Conesa, Héctor Miguel; Párraga-Aguado, Isabel; González-Alcaraz, María Nazaret

    2017-04-01

    This study aimed to evaluate the response of salt marshes to pulses of PO 4 3- -enriched water, with and without the presence of Phragmites australis. A one-year mesocosms experiment was performed in simulated soil profiles (fine-textured surface layers and sandy subsurface layers) from a coastal salt marsh of the Mar Menor lagoon under alternating flooding-drying conditions with eutrophic water, under low (1.95 mg L -1 P-PO 4 3- ) and high (19.5 mg L -1 P-PO 4 3- ) P load, and with the presence/absence of Phragmites. The PO 4 3- concentrations in soil porewater and drainage water were regularly measured, and P accumulated in soils (including a fractionation procedure) and plants (roots, rhizomes, stems and leaves) were analyzed. The experimental mesocosms were highly effective in the removal of P from the eutrophic flooding water (>90% reduction of the P added to the system both in the soil pore water and drainage water), regardless of the nutrient load, the season of the year and the presence/absence of Phragmites. The soil was the main sink of the P added to the system, while Phragmites had a minor role in P removal. The biomass of Phragmites accumulated ∼27% of the P added with the flooding water in the treatment with water of low P load while ∼12% of P in that of high P load; the rhizomes were the organs that contributed the most (∼67-72% of the total P retained by the plants). Ca/Mg compounds were the main contributors to the retention of P in the soil compartment, especially in the fine-textured surface soil layers (∼34-53% of the total P in the soil was present in this fraction). Phragmites favored the retention of P onto metal oxides (∼12% increase of the P retained in the metal oxides fraction in the treatment with water of high P load). Hence, the use of constructed wetlands to ameliorate the negative impacts of P-enriched waters in the Mar Menor lagoon and similar areas is recommended. We propose the incorporation of fine-textured carbonated materials, with high content of Ca/Mg compounds, and the use of Phragmites to favor the retention of P by these systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Toward more accurate basal boundary conditions: a new 2-D model of distributed and channelised subglacial drainage

    NASA Astrophysics Data System (ADS)

    Werder, M. A.; Hewitt, I. J.; Schoof, C.; Flowers, G. E.

    2012-04-01

    Basal boundary conditions are one of the least constrained components of today's ice sheet models. To get at these one needs to know the distributed basal water pressure. We present a new glacier drainage system model to contribute to this missing piece of the puzzle. This two dimensional mathematical/numerical model combines distributed and channelised drainage at the ice-bed interface coupled to a water storage component. Notably the model determines the location of the channels as part of the solution. This is achieved by allowing channels (modelled as R-channels) to form on any of the edges of the unstructured triangular grid used to discretise the model. The distributed system is represented by a water sheet which is a continuum description of a linked-cavity system and exchanges water with the channels along their length. Water storage is parameterised as a function of the subglacial water pressure, which can be interpreted as storage in an englacial aquifer or due to elastic processes. The parabolic equation that determines the water pressure is solved using finite elements, the time evolution of the water sheet thickness and channel diameter are governed by local differential equations that are integrated using explicit methods. To explore the model's properties, we apply it to synthetic ice sheet catchments with areas up to 3000km2. We present steady state drainage system configurations and evaluate their channel-network properties (fractal dimensions, channel spacing). We find that an arborescent channel network forms whose density depends on the water sheet conductivity relative to water input. As a further experiment, we force the model with a seasonally and diurnally varying melt water input to investigate how the modelled drainage system evolves on these time scales: a channelised system grows up glacier as meltwater is delivered to the bed in spring and collapses in autumn. Water pressure is highest just before the formation of channels and then drops. Conversely, the diurnal variations in discharge affect the drainage system morphology only slightly. Instead they lead to large water pressure variations which lag meltwater input and coincide with changes in the volume of stored water. By incorporating an evolving R-channel network within a continuum model of distributed water drainage and storage, this 2-D model succeeds in qualitatively reproducing many of the observed and postulated features of the glacier drainage system.

  6. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    USDA-ARS?s Scientific Manuscript database

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  7. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches

    USDA-ARS?s Scientific Manuscript database

    Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...

  8. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... adjust the existing drainage system to accommodate the increased water regime on the condition that the... water regime, the causes thereof, and the planned changes in the existing drainage system. In order to... drainage systems. (b) Unless otherwise provided in this part, the production of an agricultural commodity...

  9. Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.

    1990-01-01

    Storm-related water-quality data were collected at a drainage-well site and at a spring site in Clarksville, Tennessee, to define the effects of storm-water runoff on the quality of ground water in the area. A dye-trace test verified the direct hydraulic connection between the drainage well and Mobley Spring. Samples of storm run off and spring flow were collected at these sites for nine storms during the period February to October 1988. Water samples were collected also from Mobley Spring and two other springs and two observation wells in the area during dry-weather conditions to assess the general quality of ground water in an urban karst terrain. Evaluation of the effect of storm-water runoff on the quality of local ground water is complicated by the presence of other sources of contaminants in the area Concentrations and load for most major constituents were much smaller in storm-water runoff at the drainage well than in the discharge of Mobley Spring, indicating that much of the chemical constituent load discharged from the spring comes from sources other than the drainage well. However, for some of the minor constituents associated with roadway runoff (arsenic, copper, lead, organic carbon, and oil and grease), the drainage well contributed relatively large amounts of these constituents to local ground water during storms. The close correlation between concentrations of total organic carbon and concentrations of most trace metals at the drainage-well and Mobley Spring sites indicates that these constituents are transported together. Many trace metals were flushed early during each runoff event. Mean storm loads for copper, lead, zinc, and four nutrient species (total nitrogen, ammonia nitrogen, total phosphorus, and orthophosphorus) in storm-water runoff at the drainage-well site were lower than mean storm load predicted from an existing regression model. The overprediction by the model may be a result of the small size of the drainage area relative to the range of drainage areas used in the development of the models, or to the below-normal amounts of rainfall during the period of sampling for this investigation. Loads& in storm-water runoff for 22 constituents were extrapolated from sampled storms to total loads for the period February to October 1988. Calculated loads for trace metals for the period ranged from 0.030pound.s for cadmium to 12pound.s for strontium. Loads of the primary nutrients ranged from 0.97pounds for nitrite as nitrogen to 34pounds of organic nitrogen. Storm-water quality at the drainage-well and Mobley Spring sites was compared to background water quality of the local aquifer; as characterized by dry-weather samples from three springs and two observation wells in the Clarksville area. Concentrations of total-recoverable cadmium, chromium, copper, lead, and nickel were higher in many stormwater samples from both the drainage-well and Mobley Spring sites than in samples from any other site. In addition, concentrations of total organic carbon, methylene blue active substances, and total-recoverable oil and grease were generally higher in storm-water samples from the drainage-well site than in any ground-water sample. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total recoverable iron, manganese, and methylene blue active substances in storm samples from the drainage-well site exceeded the maximum contaminant levels listed in Tennessee?s drinking-water standards (1988) by as much as 2,500 and 5,500 colonies per 100 milliliters, and 2.7, 0.29, and 0.05 milligrams per liter, respectively. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total-recoverable iron, manganese, and lead in storm samples from Mobley Spring exceeded the maximum contaminant levels by as much as 500 and 4,500 colonies per 100 milliliters, and 18.7,0.65, and 0.02 milligrams per liter, respectively. For iron, manganese, and bacteria, these undesirable

  10. Advances in drainage: Selected works from the Tenth International Drainage Symposium

    USGS Publications Warehouse

    Strock, Jeffrey S.; Hay, Christopher; Helmers, Matthew; Nelson, Kelly A.; Sands, Gary R.; Skaggs, R. Wayne; Douglas-Mankin, Kyle R.

    2018-01-01

    This article introduces a special collection of fourteen articles accepted from among the 140 technical presentations, posters, and meeting papers presented at the 10th International ASABE Drainage Symposium. The symposium continued in the tradition of previous symposia that began in 1965 as a forum for presenting and assessing the progress of drainage research and implementation throughout the world. The articles in this collection address a wide range of topics grouped into five broad categories: (1) crop response, (2) design and management, (3) hydrology and scale, (4) modeling, and (5) water quality. The collection provides valuable information for scientists, engineers, planners, and others working on crop production, water quality, and water quantity issues affected by agricultural drainage. The collection also provides perspectives on the challenges of increasing agricultural production in a changing climate, with ever-greater attention to water quality and quantity concerns that will require integrated technical, economic, and social solutions.

  11. Mining influence on underground water resources in arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Luo, A. K.; Hou, Y.; Hu, X. Y.

    2018-02-01

    Coordinated mining of coal and water resources in arid and semiarid regions has traditionally become a focus issue. The research takes Energy and Chemical Base in Northern Shaanxi as an example, and conducts statistical analysis on coal yield and drainage volume from several large-scale mines in the mining area. Meanwhile, research determines average water volume per ton coal, and calculates four typical years’ drainage volume in different mining intensity. Then during mining drainage, with the combination of precipitation observation data in recent two decades and water level data from observation well, the calculation of groundwater table, precipitation infiltration recharge, and evaporation capacity are performed. Moreover, the research analyzes the transforming relationship between surface water, mine water, and groundwater. The result shows that the main reason for reduction of water resources quantity and transforming relationship between surface water, groundwater, and mine water is massive mine drainage, which is caused by large-scale coal mining in the research area.

  12. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  13. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the Tongue River to 1,460 ?S/cm at 25?C on Prairie Dog Creek. The Tongue River drainage basin has the largest percentage of area underlain by Mesozoic-age and older rocks and by more resistant rocks. In addition, the higher annual precipitation and a steeper gradient in this basin compared to basins in the plains produce relatively fast stream velocities, which result in a short contact time between stream waters and basin materials. The Powder River drainage basin, which has the largest drainage area and most diverse site conditions, had the largest range of median specific-conductance values among the four major drainage basins. Median values in that basin ranged from 680 ?S/cm at 25?C on Clear Creek to 5,950 ?S/cm at 25?C on Salt Creek. Median specific-conductance values among sites in the Cheyenne River drainage basin ranged from 1,850 ?S/cm at 25?C on Black Thunder Creek to 4,680 ?S/cm at 25?C on the Cheyenne River. The entire Cheyenne River drainage basin is in the plains, which have low precipitation, soluble geologic materials, and relatively low gradients that produce slow stream velocities and long contact times. Median specific-conductance values among sites in the Belle Fourche River drainage basin ranged from 1,740 ?S/cm at 25?C on Caballo Creek to 2,800 ?S/cm at 25?C on Donkey Creek. Water in the study area ranged from a magnesium-calcium-bicarbonate type for some sites in the Tongue River drainage basin to a sodium-sulfate type at many sites in the Powder, Cheyenne, and Belle Fourche River drainage basins. Little Goose Creek, Goose Creek, and the Tongue River in the Tongue River drainage basin, and Clear Creek in the Powder River drainage basin, which have headwaters in the Bighorn Mountains, consistently had the smallest median dissolved-sodium concentrations, sodium-adsorption ratios, dissolved-sulfate concentrations, and dissolved-solids concentrations. Salt Creek, Wild Horse Creek, Little Powder River, and the Cheyenne River, which have headwat

  14. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    PubMed

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  15. Measuring Subsurface Water Fluxes Using a Heat Pulse Sensor

    NASA Astrophysics Data System (ADS)

    Ochsner, T. E.; Wang, Q.; Horton, R.

    2001-12-01

    Subsurface water flux is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. Heat pulse sensors have been proposed as promising tools for measuring subsurface water fluxes. Our heat pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water flux, a 15-s heat pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, heat pulse methods have required cumbersome mathematical analysis to calculate soil water flux from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water flux and the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the line heat source. The simplicity of this relationship makes heat pulse sensors a more attractive option for measuring subsurface water fluxes.

  16. The role of contact angle on unstable flow formation during infiltration and drainage in wettable porous media

    NASA Astrophysics Data System (ADS)

    Wallach, Rony; Margolis, Michal; Graber, Ellen R.

    2013-10-01

    The impact of contact angle on 2-D spatial and temporal water-content distribution during infiltration and drainage was experimentally studied. The 0.3-0.5 mm fraction of a quartz dune sand was treated and turned subcritically repellent (contact angle of 33°, 48°, 56°, and 75° for S33, S48, S56, and S75, respectively). The media were packed uniformly in transparent flow chambers and water was supplied to the surface as a point source at different rates (1-20 ml/min). A sequence of gray-value images was taken by CCD camera during infiltration and subsequent drainage; gray values were converted to volumetric water content by water volume balance. Narrow and long plumes with water accumulation behind the downward moving wetting front (tip) and negative water gradient above it (tail) developed in the S56 and S75 media during infiltration at lower water application rates. The plumes became bulbous with spatially uniform water-content distribution as water application rates increased. All plumes in these media propagated downward at a constant rate during infiltration and did not change their shape during drainage. In contrast, regular plume shapes were observed in the S33 and S48 media at all flow rates, and drainage profiles were nonmonotonic with a transition plane at the depth that water reached during infiltration. Given that the studied media have similar pore-size distributions, the conclusion is that imbibition hindered by the nonzero contact angle induced pressure buildup at the wetting front (dynamic water-entry value) that controlled the plume shape and internal water-content distribution during infiltration and drainage.

  17. Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saucier, R.T.

    1977-02-01

    Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less

  18. Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition.

    PubMed

    Zhang, T Q; Tan, C S; Wang, Y T; Ma, B L; Welacky, T

    2017-02-15

    Recent ascertainment of tile drainage a predominant pathway of soil phosphorus (P) loss, along with the rise in concentration of soluble P in the Lake Erie, has led to a need to re-examine the impacts of agricultural practices. A three-year on-farm study was conducted to assess P loss in tile drainage water under long-term conventional- (CT) and non-tillage (NT) as influenced by yard waste leaf compost (LC) application in a Brookston clay loam soil. The effects of LC addition on soil P loss in tile drainage water varied depending on P forms and tillage systems. Under CT, dissolved reactive P (DRP) loss with LC addition over the study period was 765g P ha -1 , 2.9 times higher than CT without LC application, due to both a 50% increase in tile drainage flow volume and a 165% increase in DRP concentration. Under NT, DRP loss in tile drainage water with LC addition was 1447gPha -1 , 5.3 times greater than that for NT without LC application; this was solely caused by a 564% increase in DRP concentration. However, particulate P loads in tile drainage water with LC application remained unchanged, relative to non-LC application, regardless of tillage systems. Consequently, LC addition led to an increase in total P loads in tile drainage water by 57 and 69% under CT and NT, respectively. The results indicate that LC application may become an environmental concern due to increased DRP loss, particularly under NT. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. Field drains as a route of rapid nutrient export from agricultural land receiving biosolids.

    PubMed

    Heathwaite, A L; Burke, S P; Bolton, L

    2006-07-15

    We report research on the environmental risk of incidental nutrient transfers from land to water for biosolids amended soils. We show that subsurface (drainflow) pathways of P transport may result in significant concentrations, up to 10 mg total P l(-1), in the drainage network of an arable catchment when a P source (recent biosolids application) coincides with a significant and active transport pathway (rainfall event). However, the high P concentrations were short-lived, with drainage ditch total P concentrations returning to pre-storm concentrations within a few days of the storm event. In the case of the drainflow concentrations reported here, the results are unusual in that they describe an 'incidental event' for a groundwater catchment where such events might normally be expected to be rare owing to the capacity of the hydrological system to attenuate nutrient fluxes for highly adsorbed elements such as P. Consequently, there is a potential risk of P transfers to shallow groundwater systems. We suggest that the findings are not specific to biosolids-alone, which is a highly regulated industry, but that similar results may be anticipated had livestock waste or mineral fertilizer been applied, although the magnitude of losses may differ. The risk appears to be more one of timing and the availability of a rapid transport pathway than of P source.

  20. Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Malone, Robert W.; Gronberg, Jo Ann M.; Thorp, K.R.; Ma, Liwang

    2012-01-01

    Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.

  1. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    PubMed

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  2. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  3. Mine Water Treatment in Hongai Coal Mines

    NASA Astrophysics Data System (ADS)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  4. Streamflow distribution maps for the Cannon River drainage basin, southeast Minnesota, and the St. Louis River drainage basin, northeast Minnesota

    USGS Publications Warehouse

    Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.

    2017-12-27

    Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface-water appropriations. Presented streamflow distribution maps are foundational work intended to support the development of additional streamflow distribution maps that include statistical constraints on the selected flow conditions.

  5. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  6. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  7. How does subsurface retain and release stored water? An explicit estimation of young water fraction and mean transit time

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; McDonnell, Jeffrey; Laudon, Hjalmar; Bishop, Kevin

    2017-04-01

    The stable isotopes of water have served science well as hydrological tracers which have demonstrated that there is often a large component of "old" water in stream runoff. It has been more problematic to define the full transit time distribution of that stream water. Non-linear mixing of previous precipitation signals that is stored for extended periods and slowly travel through the subsurface before reaching the stream results in a large range of possible transit times. It difficult to find tracers can represent this, especially if all that one has is data on the precipitation input and the stream runoff. In this paper, we explicitly characterize this "old water" displacement using a novel quasi-steady physically-based flow and transport model in the well-studied S-Transect hillslope in Sweden where the concentration of hydrological tracers in the subsurface and stream has been measured. We explore how subsurface conductivity profile impacts the characteristics of old water displacement, and then test these scenarios against the observed dynamics of conservative hydrological tracers in both the stream and subsurface. This work explores the efficiency of convolution-based approaches in the estimation of stream "young water" fraction and time-variant mean transit times. We also suggest how celerity and velocity differ with landscape structure

  8. Influence of the stopcock on the efficiency of percutaneous drainage catheters: laboratory evaluation.

    PubMed

    D'Agostino, H B; Park, Y; Moyers, J P; vanSonnenberg, E; Sanchez, R B; Goodacre, B W; Kim, Y H; Vieira, M V

    1992-08-01

    The effects of stopcocks on percutaneous fluid drainage were tested in a laboratory model by using a standard stopcock (6-French inner diameter) and a prototype stopcock (9-French inner diameter) connected to 8-, 10-, 12-, 14-, and 16-French catheters. Catheters were immersed in water alone or in viscous fluid with particulate matter, and the system was connected to low wall suction or gravity drainage. The average volume of fluid aspirated in a given period with and without a stopcock was compared for each catheter. The standard stopcock decreased drainage efficiency for these catheters by 13-42%. This decreased drainage efficiency was worse with the larger catheters. Particulate fluid blocked the stopcock connection for all catheters. With the prototype stopcock, drainage of water alone was reduced by 0-9% for the catheters of different sizes. Particulate fluid did not obstruct the prototype stopcock with any size catheter. With gravity drainage, the volume of water aspirated was reduced by 12-42% with the standard stopcock and by 3-6% with the prototype stopcock. These data suggest that stopcock connections greatly influence the efficiency of the percutaneous drainage systems. Stopcocks with larger inner diameters may improve drainage over that achievable with the stopcocks that are currently available.

  9. Holocene evolution of the North Atlantic subsurface transport

    NASA Astrophysics Data System (ADS)

    Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph

    2017-04-01

    Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.

  10. In-situ Use of Ground Water by Alfalfa

    USDA-ARS?s Scientific Manuscript database

    One proposal for drainage water disposal is to reuse drainage water for irrigation of salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept of serial biological concentration requires in-situ crop water reuse from shallow gr...

  11. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  12. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  13. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  14. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  15. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  16. Transport and fate of nitrate and pesticides: Hydrogeology and riparian zone processes

    USGS Publications Warehouse

    Puckett, L.J.; Hughes, W.B.

    2005-01-01

    There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO3- in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl-, NO3-, pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl-, NO3-, pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water. ?? ASA, CSSA, SSSA.

  17. 40 CFR 264.221 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the... the attenuative capacity and thickness of the liners and soils present between the impoundment and...

  18. 40 CFR 264.221 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the... the attenuative capacity and thickness of the liners and soils present between the impoundment and...

  19. 40 CFR 264.221 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the... the attenuative capacity and thickness of the liners and soils present between the impoundment and...

  20. Ground-water hydrology of the Punjab region of West Pakistan, with emphasis on problems caused by canal irrigation

    USGS Publications Warehouse

    Greenman, D.W.; Swarzenski, W.V.; Bennett, G.D.

    1967-01-01

    Rising water tables and the salinization of land as the result of canal irrigation threaten the agricultural economy of the Punjab. Since 1954 the Water and Soils Investigation Division of the West Pakistan Water and Power Development Authority has inventoried the water and soils resources of the Punjab and investigated the relations between irrigation activities, the natural hydrologic factors, and the incidence of waterlogging and subsurface-drainage problems. This report summarizes the findings of the investigation, which was carried out under a cooperative agreement between the Government of Pakistan and the U.S. Agency for International Development, and its predecessor, the U.S. International Cooperation Administration. Leakage from the canal systems, some of which have been in operation for more than 100 years, is the principal cause of rising water levels and constitutes the major component of ground-water recharge in the Punjab. Geologic studies have shown that virtually the entire Punjab is underlain to depths of 1,000 feet or more by unconsolidated alluvium, which is saturated to within a few feet of land surface. The alluvium varies in texture from medium sand to silty clay, but sandy sediments predominate. Large capacity wells, yielding 4 cfs or more, can be developed almost everywhere. Ground water occurring within a depth of 500 feet below the surface averages less than 1,000 ppm of dissolved solids throughout approximately two-thirds of the Punjab. It is estimated that the volume of usable ground water in storage in this part of the alluvial aquifer is on the order of 2 billion acre-feet. In the other one-third of the Punjab, total dissolved solids range from 1,000 to about 20,000 ppm. In about one-half of this area (one-sixth of the area of the Punjab) some ground water can be utilized by diluting with surface water from canals. The ground-water reservoir underlying the Punjab is an unexploited resource of enormous economic value. It is recognized that the scientific management of this ground-water reservoir is the key to permanent irrigation agriculture in the Punjab. The West Pakistan Water .and Power Development Authority has prepared a long-range program for reclaiming the irrigated lands of the Punjab. The essential feature of this program is a proposed network of tubewells (drilled wells) located with an .average density of about one per square mile. Groundwater withdrawals will serve the dual purpose of helping to supply irrigation requirements and of providing subsurface drainage. Despite the feasibility and inherent advantages of tubewell reclamation methods, it is inevitable that just as the superposition of the canal system on the native environment caused undesirable side effects, large-scale ground-water withdrawals again will disturb the hydrologic regimen. The distribtution of withdrawals and maintenance of a favorable salt balance are two distinct, but related aspects of the ground-water budget that present potential hazards that must be considered in the design and management of the tubewell projects. The availability of ground water for irrigation diminishes from northeast to southwest, or downgradient along the doab (an area lying between two rivers) and is negligible in the centers of the lower parts of the doabs, where the ground water is too highly mineralized for use. Ground-water supplies must be developed in areas where they are available and it might become necessary, under a program of maximum exploitation of ground-water resources, to transfer supplies from outside sources to points of use in the lower parts of the doabs. Several factors inherent in the tubewell system will tend to depreciate the quality of ground water with time. Among these are the addition of salts leached from the soils, increased concentration of salts due .to repeated cycles of recirculation, and the possible lateral and upward encroachment of saline water in response to pumping. It is reasonably ce

  1. Predicting Plant-Accessible Water in the Critical Zone: Mountain Ecosystems in a Mediterranean Climate

    NASA Astrophysics Data System (ADS)

    Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.

    2017-12-01

    Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.

  2. Thermal–moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhi; Zhang, Mingli; Ma, Wei

    Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less

  3. The effects of spatial heterogeneity and subsurface lateral transfer on evapotranspiration estimates in large scale Earth system models

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.; Fan, Y.; Kirchner, J. W.; Miralles, D. G.

    2017-12-01

    Most Earth system models (ESM) average over considerable sub-grid heterogeneity in land surface properties, and overlook subsurface lateral flow. This could potentially bias evapotranspiration (ET) estimates and has implications for future temperature predictions, since overestimations in ET imply greater latent heat fluxes and potential underestimation of dry and warm conditions in the context of climate change. Here we quantify the bias in evaporation estimates that may arise from the fact that ESMs average over considerable heterogeneity in surface properties, and also neglect lateral transfer of water across the heterogeneous landscapes at global scale. We use a Budyko framework to express ET as a function of P and PET to derive simple sub-grid closure relations that quantify how spatial heterogeneity and lateral transfer could affect average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimation of average ET. Our analysis at global scale shows that the effects of sub-grid heterogeneity will be most pronounced in steep mountainous areas where the topographic gradient is high and where P is inversely correlated with PET across the landscape. In addition, we use the Total Water Storage (TWS) anomaly estimates from the Gravity Recovery and Climate Experiment (GRACE) remote sensing product and assimilate it into the Global Land Evaporation Amsterdam Model (GLEAM) to correct for existing free drainage lower boundary condition in GLEAM and quantify whether, and how much, accounting for changes in terrestrial storage can improve the simulation of soil moisture and regional ET fluxes at global scale.

  4. Filling the gap: using non-invasive geophysical methods to monitor the processes leading to enhanced carbon turnover induced by periodic water table fluctuations

    NASA Astrophysics Data System (ADS)

    Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.

  5. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO

    USGS Publications Warehouse

    Stottlemyer, R.; Troendle, C.A.

    1999-01-01

    Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca

  6. Management of hydro-biogeochemical connectivity of geographically isolated wetlands to reduce the risk of eutrophication of Lake Winnipeg

    NASA Astrophysics Data System (ADS)

    Creed, Irena F.; Ameli, Ali

    2017-04-01

    Lake Winnipeg - a transboundary water resource that is the 10th largest freshwater lake in the world - was recently listed as the most threatened lake in the world due to eutrophication. Its watershed has experienced amongst the highest geographically isolated wetland (GIW) drainage rates in the world, leading to increased nutrient loads to remaining wetlands and downstream streams and lakes. GIWs are surrounded by uplands - and thus collect and store water from the surrounding landscape during snowmelt or storm events, and filter nutrients before slowly returning water to the water cycle. When drained, GIWs become connected to downstream flows and nutrients move unimpeded from and through them to downstream waters. Therefore, effective GIW management strategies can reduce nutrient loads to regional surface water bodies in the Lake Winnipeg watershed. But, how do we prioritize wetland protection and restoration efforts? We know that hydrologic connections to GIWs vary in length and timing, and hypothesize that long and slow hydrologic connections to a GIW have higher potential for P retention, while short and fast hydrologic connections to a GIW have lower potential for P retention along the flow path, leading to higher P concentrations within the GIW. We test these hypotheses in a watershed that drains into the North Saskatchewan River and ultimately to Lake Winnipeg. Using a novel model that quantifies the continuum of time and length variations of subsurface-surface hydrological connections to each GIW, we explore the relationship between length and time and time of hydrologic connection to a GIW and nutrients in the GIW. We found that GIWs are not always "isolated" islands - rather, they are connected to other surface waters in diverse ways. GIWs with no modeled surface or subsurface hydrological connections had the lowest nutrient concentrations and algal biomass. Recharge GIWs have lower concentrations of nutrients than discharge wetlands. Discharge GIWs with longer (slower) connections removed more nutrients along flow path to the wetland than discharge GIWs with shorter (faster) connections. Based on our findings, GIWs with long and slow hydrological connections have the highest potential for retaining phosphorus and therefore reducing eutrophication of downstream waters, and therefore should be prioritized in wetland protection and restoration strategies.

  7. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  8. Localized rapid warming of West Antarctic subsurface waters by remote winds

    NASA Astrophysics Data System (ADS)

    Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.

    2017-08-01

    The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.

  9. Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980

    USGS Publications Warehouse

    Hull, R.W.; Martin, J.B.

    1982-01-01

    Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)

  10. Linking sediment structure, hydrological functioning and biogeochemical cycling in disturbed coastal saltmarshes and implications for vegetation development

    NASA Astrophysics Data System (ADS)

    Spencer, Kate; Harvey, Gemma; James, Tempest; Simon, Carr; Michelle, Morris

    2014-05-01

    Saltmarsh restoration undoubtedly provides environmental enhancement, with vegetation quickly re-establishing following the breach of sea walls and subsequent tidal inundation of previously defended areas. Yet evidence increasingly suggests that the restored saltmarshes do not have the same biological characteristics as their natural counterparts (Mossman et al. 2012) and this may be in part be due to physicochemical parameters at the site including anoxia and poor drainage. Hence, restored saltmarshes may not offer the range and quality of ecosystem services anticipated. These environments will have been 'disturbed' by previous land use and there is little understanding of the impacts of this disturbance on the wider hydrogeomorphic and biogeochemical functioning in restored saltmarshes and the implications for saltmarsh vegetation development. This study examines linkages between physical sediment characteristics, sediment structure (using X-ray microtomography), sub-surface hydrology (using pressure transducers and time series analysis), and sediment and porewater geochemistry (major and trace elements, major anions) in sediment cores collected from undisturbed saltmarshes and those restored by de-embankment. Sub-surface sediments in restored saltmarshes have lower organic matter content, lower moisture content and higher bulk density than undisturbed sites. Using X-ray tomography a clear horizon can be observed which separates relict agricultural soils at depth with less dense and structureless sediments deposited since de-embankment. Ratios of open to closed pore space suggest that while undisturbed saltmarshes have the highest porosity, restored saltmarshes have larger void spaces, but limited pore connectivity. Sub-surface hydrological response to tidal flooding was subdued in the restored compared to the undisturbed site, suggesting that porewater flow may be impeded. Time series analysis indicated that flow pathways differ in restored saltmarsh sediments with preferential horizontal flows. The undisturbed saltmarsh displayed typical vertical geochemical sediment profiles. However, in the restored sites total Fe and Mn are elevated at depth indicating an absence of diagenetic cycling, whilst porewater sulphate and nitrate increased at depth suggesting that vertical solute transport is impeded in restored sites. In surface sediments, though total Hg concentrations are similar, Hg methylation rates are significantly higher than in the undisturbed saltmarsh suggesting that surface anoxia and poor drainage may result in increased mobilization and bioavailability of Hg. These findings have implications for the wider biogeochemical ecosystem services offered by saltmarsh restoration and the water-logged, anoxic conditions produced are unsuitable for seedling germination and plant growth. This highlights the need for integrated understanding of physical and biogeochemical processes.

  11. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.

  12. Sensing water from subsurface drip irrigation laterals: In situ sensors, weighing lysimeters and COSMOS under vegetated and bare conditions

    USDA-ARS?s Scientific Manuscript database

    Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...

  13. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees.

    PubMed

    Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M

    2014-05-01

    Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Water shifts due to climatic fluctuations between floodplain storage reservoirsAnthropogenic changes to hydrology directly impact water available to treesEcohydrologic approaches to integration of hydrology afford new possibilities.

  14. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees

    PubMed Central

    Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M

    2014-01-01

    Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Key Points Water shifts due to climatic fluctuations between floodplain storage reservoirs Anthropogenic changes to hydrology directly impact water available to trees Ecohydrologic approaches to integration of hydrology afford new possibilities PMID:25506099

  15. Geology and geologic history of the Moscow-Pullman basin, Idaho and Washington, from late Grande Ronde to late Saddle Mountains time

    USGS Publications Warehouse

    Bush, John H; Garwood, Dean L; Dunlap, Pamela

    2016-01-01

    The Moscow-Pullman basin, located on the eastern margin of the Columbia River flood basalt province, consists of a subsurface mosaic of interlayered Miocene sediments and lava flows of the Imnaha, Grande Ronde, Wanapum, and Saddle Mountains Basalts of the Columbia River Basalt Group. This sequence is ~1800 ft (550 m) thick in the east around Moscow, Idaho, and exceeds 2300 ft (700 m) in the west at Pullman, Washington. Most flows entered from the west into a topographic low, partially surrounded by steep mountainous terrain. These flows caused a rapid rise in base level and deposition of immature sediments. This field guide focuses on the upper Grande Ronde Basalt, Wanapum Basalt, and sediments of the Latah Formation.Late Grande Ronde flows terminated midway into the basin to begin the formation of a topographic high that now separates a thick sediment wedge of the Vantage Member to the east of the high from a thin layer to the west. Disrupted by lava flows, streams were pushed from a west-flowing direction to a north-northwest orientation and drained the basin through a gap between steptoes toward Palouse, Washington. Emplacement of the Roza flow of the Wanapum Basalt against the western side of the topographic high was instrumental in this process, plugging west-flowing drainages and increasing deposition of Vantage sediments east of the high. The overlying basalt of Lolo covered both the Roza flow and Vantage sediments, blocking all drainages, and was in turn covered by sediments interlayered with local Saddle Mountains Basalt flows. Reestablishment of west-flowing drainages has been slow.The uppermost Grande Ronde, the Vantage, and the Wanapum contain what is known as the upper aquifer. The water supply is controlled, in part, by thickness, composition, and distribution of the Vantage sediments. A buried channel of the Vantage likely connects the upper aquifer to Palouse, Washington, outside the basin. This field guide locates outcrops; relates them to stratigraphic well data; outlines paleogeographic basin evolution from late Grande Ronde to the present time; and notes structures, basin margin differences, and features that influence upper aquifer water supply.

  16. Efficient Probabilistic Forecasting for High-Resolution Models through Clustered-State Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Grossberg, M.; Khanbilvardi, R.

    2016-12-01

    Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.

  17. 4-D Model of CO2 Deposition at North and South of Mars from HEND/Odyssey and MOLA/MGS

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V.; Smith, D. E.; Zuber, M. T.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.

    2003-01-01

    The first 1.5 year of neutron mapping measurements onboard Mars Odyssey spacecraft are presented based on High Energy Neutron Detector (HEND) observations. HEND instrument is a part of GRS suite responsible for registration of epithermal and fast neutrons originating in Mars subsurface layer. The scattering of fast neutrons in Mars surface caused by primary cosmic rays is strongly sensitive to presence of hydrogen atoms. Even several percents of subsurface water significantly depress epithermal and fast neutron flux. It turns orbit neutron spectroscopy into one of most efficient methods for finding distribution of subsurface water. The Mars Odyssey observations revealed huge water- ice regions above 60N and 60S latitudes. It was founded that distribution of subsurface water has layered structure at these regions. It is thought that more than 50% wt water ice covered by relatively dry layer with different thickness.

  18. Contamination and effects in freshwater ditches resulting from an aerial application of cypermethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shires, S.W.; Bennett, D.

    1985-04-01

    Cypermethrin (Ripcord) was applied at 25 g ai ha-1 by fixed-wing aircraft to a large field (11.6 ha) of winter wheat bordered on three sides by drainage ditches. About 60% of the nominal application rate was deposited on the crop and about 6% (maximum) was deposited over the water surface. The amount of spray drift deposited upwind declined sharply with increasing distance from the treated field. Downwind, the spray drift was small but occurred over a much greater distance. Very low (0.03 micrograms liter-1 maximum) concentrations of cypermethrin were found in subsurface water samples and these declined rapidly after spraying.more » Bioassay tests, using a sensitive indicator species, confirmed that only a small amount of cypermethrin contamination had occurred in the ditch adjacent to the downwind perimeter of the field. Frequent sampling of the zooplankton and macroinvertebrate fauna of the ditches indicated that there were no marked biological effects resulting from the cypermethrin application. Only a few air-breathing corixids and the highly susceptible water mites showed minor short-term reductions in abundance after spraying. No effects were observed on either caged or indigenous fish stocks and no significant residues of cypermethrin were found in fish tissues.« less

  19. Conceptualization of Karstic Aquifer with Multiple Outlets Using a Dual Porosity Model.

    PubMed

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad

    2017-07-01

    In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south-west of Iran using 22-years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the recession and also surface recharge periods. Results indicate that both CR and DPR models are capable of simulating the ordinates of spring hydrographs which drainage less developed karstic aquifer. However, the goodness of fit criteria indicates outperformance of DPR model for simulation of total hydrograph ordinates. In addition, the DPR model is capable of quantifying hydraulic properties of two hydrologically connected overlapping continua conduits network and fissure matrix which lays important foundations for the mining operation and water resource management whereas homogeneous model representations of the karstic subsurface (e.g., the CR) do not work accurately in the karstic environment. © 2017, National Ground Water Association.

  20. Legacy of contaminant N sources to the NO3− signature in rivers: a combined isotopic (δ15N-NO3−, δ18O-NO3−, δ11B) and microbiological investigation

    PubMed Central

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-01-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability. PMID:28150819

  1. Application of seepage flow models to a drainage project in fractured rock

    NASA Astrophysics Data System (ADS)

    Gmünder, Ch.; Arn, Th.

    1993-04-01

    Various theoretical approaches are used to model groundwater flow in fractured rock. This paper presents the application of several approaches to the restoration of the drainage of Rofla tunnel, Grisons, Switzerland. In this tunnel it became necessary to take measures against the washing out of calcium carbonates from the tunnel lining cement, because the calcium carbonate clogged up the existing drainage tubes leading to increased rock water pressures on the inside arch of the tunnel. Drainage boreholes were drilled on a section of the tunnel and their influence on the water pressures was monitored. On the basis of the geological survey different seepage flow models were established to reproduce the measured water pressures. The models were then used to predict the future water pressures acting on the tunnel lining after restoration. Thus, the efficacy of the different drainage proposals could be predicted and therefore optimised. Finally, the accuracy of the predictions is discussed and illustrated using the measurements in the test section.

  2. [VC and DCE in groundwater and drainage channel water].

    PubMed

    Ackermann, A

    2004-12-01

    In an area used merely for gardening in a downland moor, which is partly transformed to an industrial estate, accidentally a contamination of a drainage channel with VOC's - predominantly chloroethylene (vinyl chloride [VC]) and 1.2-cis-dichloroethylene (DCE) - was found. The ascending ground water leaks into the drainage channels. The dissolved harmful substances (water solubility of VC is 1.6 g/l) can reach the radix range of plants and fruit bosks and can theoretically be incorporated with the water influx. Additionally the water from the drainage channels can be used to water the crops. Six gardens and a housing were involved. In the groundwater of the mainly concerned region max. 5,000 microg/l VOC's (quite predominantly VC and DCE) was measured from 147 samples. In the drainage channel water max. 2,500 microg/l was measured from 52 samples (limit value according to the drinking water ordinance is 10 microg/l). In the sediment of the channel with approximately 60,000 microg/kg VOC was found in dry matter (6 samples). We describe, how the consumer protection dept. dealt with this unexpected situation and what measures were taken. The impact on human health by the contaminated ground and channel water or by means of contaminated plants are determined for tree fruits, potatoes, bulbs and carrots. The soil air was contaminated, but in buildings no harmful compounds were detectioned.

  3. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling

    USDA-ARS?s Scientific Manuscript database

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of it...

  4. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    USGS Publications Warehouse

    Malone, Robert W.; Nolan, Bernard T.; Ma, Liwang; Kanwar, Rameshwar S.; Pederson, Carl H.; Heilman, Philip

    2014-01-01

    Well tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model's ability to simulate pesticide transport to subsurface drain flow over a long term period under different tillage systems and application rates is not clear. Therefore, we calibrated and tested RZWQM using six years of data from Nashua, Iowa. In this experiment, atrazine was spring applied at 2.8 (1990–1992) and 0.6 kg/ha/yr (1993–1995) to two 0.4 ha plots with different tillage (till and no-till). The observed and simulated average annual flow weighted atrazine concentrations (FWAC) in subsurface drain flow from the no-till plot were 3.7 and 3.2 μg/L, respectively for the period with high atrazine application rates, and 0.8 and 0.9 μg/L, respectively for the period with low application rates. The 1990–1992 observed average annual FWAC difference between the no-till and tilled plot was 2.4 μg/L while the simulated difference was 2.1 μg/L. These observed and simulated differences for 1993–1995 were 0.1 and 0.1 μg/L, respectively. The Nash–Sutcliffe model performance statistic (EF) for cumulative atrazine flux to subsurface drain flow was 0.93 for the no-till plot testing years (1993–1995), which is comparable to other recent model tests. The value of EF is 1.0 when simulated data perfectly match observed data. The order of selected parameter sensitivity for RZWQM simulated FWAC was atrazine partition coefficient > number of macropores > atrazine half life in soil > soil hydraulic conductivity. Simulations from 1990 to 1995 with four different atrazine application rates applied at a constant rate throughout the simulation period showed concentrations in drain flow for the no-till plot to be twice those of the tilled plot. The differences were more pronounced in the early simulation period (1990–1992), partly because of the characteristics of macropore flow during large storms. The results suggest that RZWQM is a promising tool to study pesticide transport to subsurface drain flow under different tillage systems and application rates over several years, the concentrations of atrazine in drain flow can be higher with no-till than tilled soil over a range of atrazine application rates, and atrazine concentrations in drain flow are sensitive to the macropore flow characteristics under different tillage systems and rainfall timing and intensity.

  5. Integrated Modeling Approach for Verifying Water Storage Services for a Payment for Environmental Service Programs

    NASA Astrophysics Data System (ADS)

    Hendricks, G.; Shukla, S.; Guzha, A. C.

    2013-12-01

    Hydrologic models have been used for improved understanding of how an ecosystem's hydrologic response to human intervention and may provide substantial insight into the viability of payment for environmental services (PES) programs. Little is currently known about how hydrologic models can contribute to the design and evaluation of PES programs. Increased water storage is a desired environmental service (ES) for the Florida Everglades' watershed to reduce nutrient loads and excessive flows to lakes and estuaries in the region. We present monitoring and modeling results to verify the water storage PES for two ranch sites (wetland and watershed scales) located in the Northern Everglades region located north of the Lake Okeechobee (LO). Verification of the water storage PES using at least 3 years of hydrologic data was inconclusive due to variable rainfall during pre- and post-PES periods. An integrated surface and groundwater model, MIKE-SHE/MIKE11, was used to help verify the water storage service as well as predict ecological responses for different water storage scenarios (different levels of storage). The hydrological model was calibrated and validated using field measurements and was able to effectively simulate the surface and groundwater levels for the watershed (Nash Sutcliffe Efficiency, NSE = 0.54 to 0.82) and for surface water levels within wetlands (NSE = 0.54 to 0.84). Scenario analyses for storage levels showed an inverse relationship between board heights for water control structures and flows at the watershed outlet. Changes in flow were marginal when board heights approached a maximum indicating movement of water into subsurface storage. Combining simulation results with field measurements showed reduced flows and increased subsurface storage (2 cm/yr.), a desired outcome for protecting LO and estuarine systems from excessive flows. Simulated wetland water levels were combined with LIDAR-based topography to predict inundation for wetlands at the two PES sites for exploring the addition of biodiversity related ES. Simulations showed that effects of increased storage on enhanced hydro-periods and biodiversity was limited to the wetlands close to the drainage ditches. Results for a variety of water management scenarios showed that modeling can be used as an effective tool for optimizing the ES for a desired PES scheme. Measured and predicted surface flows from watershed and wetland water levels for different scenarios are currently being combined with ecological measurements to develop hydro-ecological models that predict the effects of enhanced water storage on ecological diversity.

  6. Using a Geographic Information System to Assess Site Suitability for Managed Aquifer Recharge using Stormwater Capture

    NASA Astrophysics Data System (ADS)

    Teo, E. K.; Harmon, R. E.; Beganskas, S.; Young, K. S.; Fisher, A. T.; Weir, W. B.; Lozano, S.

    2015-12-01

    We are completing a regional analysis of Santa Cruz and northern Monterey Counties, CA, to assess the conditions amenable to managed aquifer recharge using stormwater runoff. Communities and water supply agencies across CA are struggling to mitigate the ongoing drought and to develop secure and sustainable water supplies to support long-term municipal, agricultural, environmental and other needs. Enhanced storage of groundwater is an important part of this effort in many basins. This work is especially timely because of the recently enacted "Sustainable Groundwater Management Act" (SGMA), which requires the development of groundwater sustainability agencies and implementation of basin management plans in coming decades. Our analysis focuses specifically on the distributed collection of stormwater runoff, a water source that has typically been treated as a nuisance or waste, from drainages having an area on the order of 40-160 hectares. The first part of this project is a geographic information system (GIS) analysis using surface and subsurface data sets. Developing complete and accurate datasets across the study region required considerable effort to locate, assemble, co-register, patch, and reconcile information from many sources and scales. We have complete spatial coverage for surface data, but subsurface data is more limited in lateral extent. Sites that are most suitable for distributed stormwater capture supporting MAR have high soil infiltration capacity, are well-connected to an underlying aquifer with good transmissive and storage properties, and have space to receive MAR. Additional considerations include method of infiltration, slope, and land use and access. Based on initial consideration of surface data and slope, 7% of the complete study region appears to be "suitable or highly suitable" for MAR (in the top third of the rating system), but there is considerable spatial heterogeneity based on the distribution of shallow soils and bedrock geology.

  7. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  8. Geohydrologic reconnaissance of drainage wells in Florida; an interim report

    USGS Publications Warehouse

    Kimrey, Joel O.; Fayard, Larry D.

    1982-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) Surface-water injection wells, and (2) interaquifer connector wells. Surface-water injection wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mining operations and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed standards values for gross alpha concentrations. (USGS)

  9. 40 CFR 264.221 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the..., climatic conditions, the stress of installation, and the stress of daily operation; (2) Placed upon a...

  10. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The...

  11. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The...

  12. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...

  13. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...

  14. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...

  15. Enzymatic activity in the surface microlayer and subsurface water in the harbour channel

    NASA Astrophysics Data System (ADS)

    Perliński, Piotr; Mudryk, Zbigniew J.; Antonowicz, Józef

    2017-09-01

    Hydrolytic activity of eight extracellular enzymes was determined spectrofluorimetric method in the surface microlayer and subsurface water in the harbour channel in Ustka. The ranking order of the potential enzyme activity rates in the studied water layers was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > xylanase > cellulase > chitinase. The level of activity of all studied hydrolases was higher in the surface microlayer than subsurface water. No clear gradients in the level of enzymatic activity were determined along the horizontal profile of the studied channel. Activity of extracellular enzymes was strongly influenced by the season.

  16. Study on removal efficiency of nitrogen and phosphorus from agricultural wastewater by subsurface flow constructed wetland

    NASA Astrophysics Data System (ADS)

    Ling, Zhen; Li, Jie

    2018-03-01

    Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.

  17. Drainage-return, surface-water withdrawal, and land-use data for the Sacramento-San Joaquin Delta, with emphasis on Twitchell Island, California

    USGS Publications Warehouse

    Templin, William E.; Cherry, Daniel E.

    1997-01-01

    Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).

  18. Comparison of the South Florida Natural System Model with Pre-canal Everglades Hydrology Estimated from Historical Sources

    USGS Publications Warehouse

    McVoy, Christopher; Park, Winifred A.; Obeysekera, Jayantha

    1996-01-01

    Preservation and restoration of the remaining Everglades ecosystem is focussed on two aspects: improving upstream water quality and improving 'hydropatterns' - the timing, depth and flow of surface water. Restoration of hydropatterns requires knowledge of the original pre-canal drainage conditions as well as an understanding of the soil, topo-graphic, and vegetation changes that have taken place since canal drainage began in the 1880's. The Natural System Model (NSM), developed by the South Florida Water Management District (SFWMD) and Everglades National Park, uses estimates of pre-drainage vegetation and topography to estimate the pre-drainage hydrologic response of the Everglades. Sources of model uncertainty include: (1) the algorithms, (2) the parameters (particularly those relating to vegetation roughness and evapotranspiration), and (3) errors in the assumed pre-drainage vegetation distribution and pre-drainage topography. Other studies are concentrating on algorithmic and parameter sources of uncertainty. In this study we focus on the NSM output -- predicted hydropattern -- and evaluate this by comparison with all available direct and indirect information on pre-drainage hydropatterns. The unpublished and published literature is being searched exhaustively for observations of water depth, flow direction, flow velocity and hydroperiod, during the period prior and just after drainage (1840-1920). Additionally, a comprehensive map of soils in the Everglades region, prepared in the 1940's by personnel from the University of Florida Agricultural Experiment Station, the U.S. Soil Conservation Service, the U.S. Geological Survey, and the Everglades Drainage District, is being used to identify wetland soils and to infer the spatial distribution of pre-drainage hydrologic conditions. Detailed study of this map and other early soil and vegetation maps in light of the history of drainage activities will reveal patterns of change and possible errors in the input to the NSM. Changes in the wetland soils are important because of their effects on topography (soil subsidence) and in their role as indicators of hydropattern.

  19. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  20. Concentration and characterization of dissolved organic matter in the surface microlayer and subsurface water of the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yang, Gui-Peng; Wu, Guan-Wei; Gao, Xian-Chi; Xia, Qing-Yan

    2013-01-01

    A total of 19 sea-surface microlayer and corresponding subsurface samples collected from the Bohai Sea, China in April 2010 were analyzed for chlorophyll a, dissolved organic carbon (DOC) and its major compound classes including total dissolved carbohydrates (TDCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) and total hydrolysable amino acids (THAA, including dissolved free, DFAA, and combined fraction, DCAA). The concentrations of DOC in the subsurface water ranged from 130.2 to 407.7 μM C, with an average of 225.9±75.4 μM C, while those in the surface microlayer varied between 140.1 and 330.9 μM C, with an average of 217.8±56.8 μM C. The concentrations of chlorophyll a, DOC, TDCHO and THAA in the microlayer were, respectively correlated with their subsurface water concentrations, implying that there was a strong exchange effect between the microlayer and subsurface water. The concentrations of DOC and TDCHO were negatively correlated with salinity, respectively, indicating that water mixing might play an important role in controlling the distribution of DOC and TDCHO in the water column. Major constituents of DCAA and DFAA present in the study area were glycine, alanine, glutamic acid, serine and histidine. Principal component analysis (PCA) was applied to examine the complex compositional differences that existed among the sampling sites. Our results showed that DFAA had higher mole percentages of glycine, valine and serine in the microlayer than in the subsurface water, while DCAA tended to have higher mole percentages of glutamic acid, aspartic acid, threonine, arginine, alanine, tyrosine, phenylalanine and leucine in the microlayer. The yields of TDCHO and THAA exhibited similar trends between the microlayer and subsurface water. Carbohydrate species displayed significant enrichment in the microlayer, whereas the DFAA and DCAA exhibited non-uniform enrichment in the microlayer.

  1. SHALLOW GROUNDWATER USE BY ALFALFA

    USDA-ARS?s Scientific Manuscript database

    One proposal for drainage water disposal is to reuse drainage water for irrigation of salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept of serial biological concentration requires in-situ crop water reuse from shallow gr...

  2. Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.

    2017-05-01

    We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.

  3. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  4. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  5. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse on the west side of California’s San Joaquin Valley

    USDA-ARS?s Scientific Manuscript database

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a potential water resource rather than as a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustain...

  6. Risk assessment of water quality in three North Carolina, USA, streams supporting federally endangered freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Ward, S.; Augspurger, T.; Dwyer, F.J.; Kane, C.; Ingersoll, C.G.

    2007-01-01

    Water quality data were collected from three drainages supporting the endangered Carolina heelsplitter (Lasmigona decorata) and dwarf wedgemussel (Alasmidonta heterodon) to determine the potential for impaired water quality to limit the recovery of these freshwater mussels in North Carolina, USA. Total recoverable copper, total residual chlorine, and total ammonia nitrogen were measured every two months for approximately a year at sites bracketing wastewater sources and mussel habitat. These data and state monitoring datasets were compared with ecological screening values, including estimates of chemical concentrations likely to be protective of mussels, and federal ambient water quality criteria to assess site risks following a hazard quotient approach. In one drainage, the site-specific ammonia ecological screening value for acute exposures was exceeded in 6% of the samples, and 15% of samples exceeded the chronic ecological screening value; however, ammonia concentrations were generally below levels of concern in other drainages. In all drainages, copper concentrations were higher than ecological screening values most frequently (exceeding the ecological screening values for acute exposures in 65-94% of the samples). Chlorine concentrations exceeding the acute water quality criterion were observed in 14 and 35% of samples in two of three drainages. The ecological screening values were exceeded most frequently in Goose Creek and the Upper Tar River drainages; concentrations rarely exceeded ecological screening values in the Swift Creek drainage except for copper. The site-specific risk assessment approach provides valuable information (including site-specific risk estimates and ecological screening values for protection) that can be applied through regulatory and nonregulatory means to improve water quality for mussels where risks are indicated and pollutant threats persist. ?? 2007 SETAC.

  7. The effect of sampling frequency on the accuracy of nitrogen load estimates from a drained loblolly pine plantation in eastern North Carolina

    Treesearch

    George M. Chescheir; François Birgand; Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya

    2010-01-01

    Nutrient loading in drainage outflow is estimated from measured flows and nutrient concentrations in the drainage water. The loading function is ideally continuous, representing the product of continuously measured outflows and nutrient concentrations in drainage water. However, loading is often estimated as the product of continuously measured outflow and nutrient...

  8. Liquid redistribution behind a drainage front in porous media imaged by neutron radiography

    NASA Astrophysics Data System (ADS)

    Hoogland, Frouke; Lehmann, Peter; Moebius, Franziska; Vontobel, Peter; Or, Dani

    2013-04-01

    Drainage from porous media is a highly dynamic process involving the motion of a displacement front with rapid pore scale interfacial jumps and phase entrapment, but also a more gradual host of liquid redistribution processes in the unsaturated region behind the front. Depending on the velocity of the drainage process, liquid properties and the permeability of the porous medium, redistribution lingers long after the main drainage process is stopped, until gravity and capillary forces regain equilibrium. The rapid and often highly inertial Haines jumps at the drainage front challenge the validity of Buckingham-Darcy law and thus representation of the process based on the foundation of Richards equation. To quantify front displacement and liquid reconfiguration and to test validity of Richards equation with respect to fast drainage dynamics, we carried out drainage experiments by withdrawing water from the bottom of initially saturated sand-filled Hele-Shaw cells at constant water flux (2.6 or 13.1 mm/minute). Water content distribution and evolution of drainage front were measured with neutron radiography at spatial and temporal resolutions of 0.1 mm and 3 seconds, respectively. Water pressure was measured above and below the front using pressure transducers and a tensiometer. After the pump was stopped (at a front depth around 100 mm), capillary pressure values in the unsaturated region (above the front) gradually converged to a new equilibrium. The pressure signal in the saturated region below the front reflected viscous losses during flow that were relaxed when the pump stopped. During pressure relaxation water was redistributed primarily downward in the unsaturated region. Pressure signals and dynamics of water content profiles for fast process (13.6 mm/minute) could not be reproduced with Richards equation based on hydraulic functions determined in preceding laboratory experiments. To explore if the deviations stem from inappropriate hydraulic functions we redefined them based on fitting the slow experiment (2.6 mm/min) and apply the optimized functions for the fast experiment. Finally we will discuss application of alternative formulation based on foam drainage equation to represent liquid redistribution dynamics behind the front.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatheway, A.W.; Anderson, D.R.

    Missouri's first gas works began operation in 1845 (St. Louis). By 1900, gas works operated in many northern-Missouri coal belt towns, major cities, and Hannibal and Cape Girardeau (Mississippi River supply). Today's 40-odd former manufactured gas plant (FMPGs) sites are fiscal nightmares for parent utility companies; all hazardous waste groups are prevalent to the plants. Tar residuals may migrate along/through geologic anomalies. Tar-water emulsions typically were disposed in tar wells or nearby drainages or many times plumbed directly into sewers, which typically leaked into the environment at unpredictable down gradient locations. Just as well site geologic characteristics and current groundwatermore » usage may render FMPGs relatively harmless from the human exposure standpoint. Geologic deduction, photo interpretation, careful subsurface exploration and engineering geophysics can locate hot spots and delimit contaminant migration. Many types of historic documents chronicle changes in plant character and equipment, as well as mode of operation. Without such details, mistakes in characterization are likely and errors in risk assessment and selection of remedial technologies are possible.« less

  10. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    USGS Publications Warehouse

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  11. Highway subdrainage design

    DOT National Transportation Integrated Search

    1990-07-01

    This report contains five chapters relating to highway subdrainage design. Chapter 1 is devoted to a general discussion of the adverse effects of subsurface water, the types and sources of subsurface water and its movements, and the types of subsurfa...

  12. In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland)

    NASA Astrophysics Data System (ADS)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2011-11-01

    The soil water release (SWC) and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction (h) and unsaturated hydraulic conductivity (K-coefficient) as a function of soil water content, SWC (θ), were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM) was appropriate for this work. Independently, the saturated hydraulic conductivity (Ks) was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400-700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in Ks in conjunction with a steep K-coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.

  13. Ground Water Issue. BASIC CONCEPTS OF CONTAMINANT SORPTION AT HAZARDOUS WASTE SITES

    EPA Science Inventory

    One of the major issues of concern to the Regional Superfund Ground Water Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. Processes which influence the behavior of contaminants in the subsurface must be considered bot...

  14. The Role of Interdisciplinary Earth Science in the Assessment of Regional Land Subsidence Hazards: Toward Sustainable Management of Global Land and Subsurface-Fluid Resources

    NASA Astrophysics Data System (ADS)

    Galloway, D. L.

    2012-12-01

    Land-level lowering or land subsidence is a consequence of many local- and regional-scale physical, chemical or biologic processes affecting soils and geologic materials. The principal processes can be natural or anthropogenic, and include consolidation or compaction, karst or pseudokarst, hydrocompaction of collapsible soils, mining, oxidation of organic soils, erosive piping, tectonism, and volcanism. In terms of affected area, there are two principal regional-scale anthropogenic processes—compaction of compressible subsurface materials owing to the extraction of subsurface fluids (principally groundwater, oil and gas) and oxidation and compaction accompanying drainage of organic soils—which cause significant hazards related to flooding and infrastructure damage that are amenable to resource management measures. The importance of even small magnitude (< 10 mm/yr) subsidence rates in coastal areas is amplified by its contribution to relative sea-level rise compared to estimated rates of rising eustatic sea levels (2-3 mm/yr) attributed to global climate change. Multi- or interdisciplinary [scientific] studies, including those focused on geodetic, geologic, geophysical, hydrologic, hydrogeologic, geomechanical, geochemical, and biologic factors, improve understanding of these subsidence processes. Examples include geodetic measurement and analysis techniques, such as Global Positioning System (GPS), Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (InSAR), which have advanced our capabilities to detect, measure and monitor land-surface motion at multiple scales. Improved means for simulating aquifer-system and hydrocarbon-reservoir deformation, and the oxidation and compaction of organic soils are leading to refined predictive capabilities. The role of interdisciplinary earth science in improving the characterization of land subsidence attributed to subsurface fluid withdrawals and the oxidation and compaction of organic soils is examined. How these improved capabilities are translating into improved sustainable management of regional land and water resources in a few select areas worldwide are presented. The importance of incorporating these improved capabilities in coherent resource management strategies to control the depletion of resources and attendant hazards also are discussed.

  15. How Darcy's Law sparked various fields of subsurface hydrology.

    NASA Astrophysics Data System (ADS)

    de Rooij, Gerrit H.

    2016-04-01

    Henry Darcy built the drinking water supply system of the French city of Dijon in the mid-19th century. In doing so, he developed an interest in the flow of water through sands, and, experimented with water flow in a vertical cylinder filled with different sands. He found Darcy's Law in this way, and until this day it is the cornerstone of the theory of water flow in porous media. Darcy's Law was quickly adopted for calculating groundwater flow, which blossomed after the introduction of a few very useful simplifying assumptions that permitted a host of analytical solutions to groundwater problems, including flows toward pumped drinking water wells and toward drain tubes. In soil hydrology, Darcy's Law itself required modification to facilitate its application for different soil water contents. The understanding of the relationship between the potential energy of soil water and the soil water content emerged early in the 20th century. The mathematical formalization of the consequences for the flow rate and storage change of soil water was established in the 1930s, but only after the 1970s did computers become powerful enough to tackle unsaturated flows head-on. In combination with crop growth models, this allowed Darcy-based models to aid in the setup of irrigation practices and to optimize drainage designs. In the past decades, spatial variation of the hydraulic properties of aquifers and soils has been shown to affect the transfer of solutes from soils to groundwater and from groundwater to surface water. All this emerged from a law derived from a few experiments on a cylinder filled with sand in the 1850s. The poster tracks this development of groundwater hydrology and soil water hydrology through seminal contributions over the past 160 years.

  16. A Water Balance Model for Hill reservoir - Aquifer Exchange Water Flux Quantification and Uncertainty Analysis - Application to the Kamech catchment, Tunisia

    NASA Astrophysics Data System (ADS)

    Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme

    2013-04-01

    In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two hydrological years (09/2009-08/2010 and 09/2010-08/2011) shows that the net surface-subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer predominates the discharge from the aquifer to the reservoir. Moreover the surface-subsurface exchange constitutes the main output component in the water balance. The annual surface-subsurface exchange flux appeared almost constant from one year to the other one whatever the hydrological conditions variability over the catchment. Moreover, the analysis of the intra-annual variability shows that the flux was nearly constant within every year. Reference: Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  17. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan

    NASA Astrophysics Data System (ADS)

    Radaideh, Omar M. A.; Grasemann, Bernhard; Melichar, Rostislav; Mosar, Jon

    2016-12-01

    This study investigates the dominant orientations of morphological features and the relationship between these trends and the spatial orientation of tectonic structures in SW Jordan. Landsat 8 and hill-shaded images, constructed from 30 m-resolution ASTER-GDEM data, were used for automatically extracting and mapping geological lineaments. The ASTER-GDEM was further utilized to automatically identify and extract drainage network. Morphological features were analyzed by means of azimuth frequency and length density distributions. Tectonic controls on the land surface were evaluated using longitudinal profiles of many westerly flowing streams. The profiles were taken directly across the northerly trending faults within a strong topographic transition between the low-gradient uplands and the deeply incised mountain front on the east side of the Dead Sea Fault Zone. Streams of the area are widely divergent, and show numerous anomalies along their profiles when they transect faults and lineaments. Five types of drainage patterns were identified: dendritic, parallel, rectangular, trellis, and modified dendritic/trellis. Interpretation and analysis of the lineaments indicate the presence of four main lineament populations that trend E-W, N-S, NE-SW, and NW-SE. Azimuthal distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing directions. The similarity in orientation of lineaments, drainage system, and subsurface structural trends highlights the degree of control exerted by underlying structure on the surface geomorphological features. Faults and lineaments serve as a preferential conduit for surface running waters. The extracted lineaments were divided into five populations based on the main age of host rocks outcropping in the study area to obtain information about the temporal evolution of the lineament trends through geologic time. A general consistency in lineament trends over the different lithological units was observed, most probably because repeated reactivation of tectonism along preexisting deep structural discontinuities which are apparently crustal weakness zones. The reactivation along such inherited discontinuities under the present-day stress field is the most probable explanation of the complicated pattern and style of present-day landscape features in SW Jordan.

  18. Land subsidence in the southwestern Mojave Desert, California, 1992–2009

    USGS Publications Warehouse

    Brandt, Justin; Sneed, Michelle

    2017-07-19

    Groundwater has been the primary source of domestic, agricultural, and municipal water supplies in the southwestern Mojave Desert, California, since the early 1900s. Increased demands on water supplies have caused groundwater-level declines of more than 100 feet (ft) in some areas of this desert between the 1950s and the 1990s (Stamos and others, 2001; Sneed and others, 2003). These water-level declines have caused the aquifer system to compact, resulting in land subsidence. Differential land subsidence (subsidence occurring at different rates across the landscape) can alter surface drainage routes and damage surface and subsurface infrastructure. For example, fissuring across State Route 247 at Lucerne Lake has required repairs as has pipeline infrastructure near Troy Lake.Land subsidence within the Mojave River and Morongo Groundwater Basins of the southwestern Mojave Desert has been evaluated using InSAR, ground-based measurements, geology, and analyses of water levels between 1992 and 2009 (years in which InSAR data were collected). The results of the analyses were published in three USGS reports— Sneed and others (2003), Stamos and others (2007), and Solt and Sneed (2014). Results from the latter two reports were integrated with results from other USGS/ MWA cooperative groundwater studies into the broader scoped USGS Mojave Groundwater Resources Web site (http://ca.water.usgs.gov/ mojave/). This fact sheet combines the detailed analyses from the three subsidence reports, distills them into a longer-term context, and provides an assessment of options for future monitoring.

  19. Analytical Deriving of the Field Capacity through Soil Bundle Model

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Viola, F.; Antinoro, C.; Noto, L. V.

    2015-12-01

    The concept of field capacity as soil hydraulic parameter is widely used in many hydrological applications. Althought its recurring usage, its definition is not univocal. Traditionally, field capacity has been related to the amount of water that remains in the soil after the excess water has drained away and the water downward movement experiences a significant decresase. Quantifying the drainage of excess of water may be vague and several definitions, often subjective, have been proposed. These definitions are based on fixed thresholds either of time, pressure, or flux to which the field capacity condition is associated. The flux-based definition identifies the field capacity as the soil moisture value corresponding to an arbitrary fixed threshold of free drainage flux. Recently, many works have investigated the flux-based definition by varying either the drainage threshold, the geometry setting and mainly the description of the drainage flux. Most of these methods are based on the simulation of the flux through a porous medium by using the Darcy's law or Richard's equation. Using the above-mentioned flux-based definition, in this work we propose an alternative analytical approach for deriving the field capacity based on a bundle-of-tubes model. The pore space of a porous medium is conceptualized as a bundle of capillary tubes of given length of different radii, derived from a known distribution. The drainage from a single capillary tube is given by the analytical solution of the differential equation describing the water height evolution within the capillary tube. This equation is based on the Poiseuille's law and describes the drainage flux with time as a function of tube radius. The drainage process is then integrated for any portion of soil taking into account the tube radius distribution which in turns depends on the soil type. This methodology allows to analytically derive the dynamics of drainage water flux for any soil type and consequently to define the soil field capacity as the latter reachs a given threshold value. The theoretical model also accounts for the tortuosity which characterizes the water pathways in real soils, but neglects the voids mutual interconnections.

  20. Current research trend on urban sewerage system in China

    NASA Astrophysics Data System (ADS)

    Ning, Yun-Fang; Dong, Wen-Yi; Lin, Lu-Sheng; Zhang, Qian

    2017-03-01

    The research emphasis has always been on sewerage treatment technology in China, though urban drainage system has gained little attention. In the context of urban drainage system and the problem associated with rain, the focus is still mainly toward the simple “emissions”. While the relationship between conservation and utilization of rainwater resources and urban ecology are popular, the relationship between rainwater discharge and non-point source pollution are often neglected. The reasonable choice of sewerage system is dependent on the collection and discharge of urban sewerage, the applicability and economic benefits, along with the ability to meet the water quality requirements and environmental protection. This paper analyzes and summarizes the development of urban drainage system in china, and introduces different drainage forms. The choice of drainage system should be based on the overall planning of the city, environmental protection requirements, the local natural conditions and water conditions, urban sewerage and water quality, the original drainage facilities, and local climatic conditions. It must be comprehensive to meet the environmental protection requirements, through technical and economic comparison.

Top