Method of imaging the electrical conductivity distribution of a subsurface
Johnson, Timothy C.
2017-09-26
A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.
Using electrical impedance tomography to map subsurface hydraulic conductivity
Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.
2000-01-01
The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.
Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples
NASA Astrophysics Data System (ADS)
Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.
2016-12-01
Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.
Vinegar, Harold J.; Sandberg, Chester Ledlie
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processesmore » receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. Furthermore, the results also demonstrate the sensitivity of surface based ERT measurements to those changes over time.« less
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
2016-09-22
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processesmore » receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. Furthermore, the results also demonstrate the sensitivity of surface based ERT measurements to those changes over time.« less
Electrical resistance tomography using steel cased boreholes as electrodes
Daily, W.D.; Ramirez, A.L.
1999-06-22
An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.
Electrical resistance tomography using steel cased boreholes as electrodes
Daily, William D.; Ramirez, Abelardo L.
1999-01-01
An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Wellman, Dawn M.
2015-06-26
Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method ismore » implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.« less
NASA Astrophysics Data System (ADS)
Sailhac, P.; Marquis, G.; Darnet, M.; Szalai, S.
2003-04-01
Surface self potential measurements (SP) are useful to characterize underground fluid flow or chemical reactions (as redox) and can be used in addition to NMR and electrical prospecting in hydrological investigations. Assuming that the SP anomalies have an electrokinetic origin, the source of SP data is the divergence of underground fluid flow; one important problem with surface SP data is then its interpretation in terms of fluid flow geometry. Some integral transform techniques have been shown to be powerful for SP interpretation (e.g. Fournier 1989, Patella, 1997; Sailhac &Marquis 2001). All these techniques are based upon Green’{ }s functions to characterize underground water flow, but they assume a constant electrical conductivity in the subsurface. This unrealistic approximation results in the appearance of non-electrokinetic sources at strong lateral electrical conductivity contrasts. We present here new Green’{ }s functions suitable for media of heterogeneous electrical conductivity. This new approach allows the joint interpretation of electrical resistivity tomography and SP measurements to detect electrokinetic sources caused by fluid flow. Tests on synthetic examples show that it gives more realistic results that when a constant electrical conductivity is assumed.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states frommore » PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of changes subsurface electrical conductivity, in both the saturated and unsaturated zones, arising from water table changes and from river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev .« less
NASA Astrophysics Data System (ADS)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
2017-02-01
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Identification of subsurface structures using electromagnetic data and shape priors
NASA Astrophysics Data System (ADS)
Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond
2015-03-01
We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.
An estimation of the electrical characteristics of planetary shallow subsurfaces with TAPIR antennas
NASA Astrophysics Data System (ADS)
Le Gall, A.; Reineix, A.; Ciarletti, V.; Berthelier, J. J.; Ney, R.; Dolon, F.; Corbel, C.
2006-06-01
In the frame of the NETLANDER program, we have developed the Terrestrial And Planetary Investigation by Radar (TAPIR) imaging ground-penetrating radar to explore the Martian subsurface at kilometric depths and search for potential water reservoirs. This instrument which is to operate from a fixed lander is based on a new concept which allows one to image the various underground reflectors by determining the direction of propagation of the reflected waves. The electrical parameters of the shallow subsurface (permittivity and conductivity) need to be known to correctly determine the propagation vector. In addition, these electrical parameters can bring valuable information on the nature of the materials close to the surface. The electric antennas of the radar are 35 m long resistively loaded monopoles that are laid on the ground. Their impedance, measured during a dedicated mode of operation of the radar, depends on the electrical parameters of soil and is used to infer the permittivity and conductivity of the upper layer of the subsurface. This paper presents an experimental and theoretical study of the antenna impedance and shows that the frequency profile of the antenna complex impedance can be used to retrieve the geoelectrical characteristics of the soil. Comparisons between a numerical modeling and in situ measurements have been successfully carried over various soils, showing a very good agreement.
Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean
NASA Astrophysics Data System (ADS)
Hartkorn, Oliver; Saur, Joachim
2017-11-01
We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, David F.
Program BRNBOX conducts a systematic search through a pre-defined 3D volume of candidate sub-surface Born scattering points in order to identify the particular point that minimizes the misfit between predicted (i.e., calculated) and observed electromagnetic (EM) data. This global minimum misfit point is interpreted as the location where electrically conductive proppant is injected into a sub-surface petroleum reservoir in a hydraulic fracturing experiment.
Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary.
Grayver, Alexander V; Schnepf, Neesha R; Kuvshinov, Alexey V; Sabaka, Terence J; Manoj, Chandrasekharan; Olsen, Nils
2016-09-01
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.
Nutrient Estimation Using Subsurface Sensing Methods
USDA-ARS?s Scientific Manuscript database
This report investigates the use of precision management techniques for measuring soil conductivity on feedlot surfaces to estimate nutrient value for crop production. An electromagnetic induction soil conductivity meter was used to collect apparent soil electrical conductivity (ECa) from feedlot p...
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
NASA Technical Reports Server (NTRS)
Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles
2016-01-01
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.
Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary
Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils
2016-01-01
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045
NASA Astrophysics Data System (ADS)
Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu
2017-07-01
2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.
LOCATION AND CHARACTERIZATION OF SUBSURFACE ANOMALIES USING A SOIL CONDUCTIVITY PROBE
An electrical conductivity probe, designed for use with "direct push" technology, has been successfully used to locate buried drums, contaminant plumes, and to precisely locate and characterize a previously installed permeable reactive iron wall. The conductivity probe was desig...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.
1996-10-01
Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less
Using electrical resistance tomography to map subsurface temperatures
Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.
1994-09-13
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.
1994-01-01
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.
2017-12-01
The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.
Geoelectrical signatures of reactive mixing
NASA Astrophysics Data System (ADS)
Ghosh, U.; Bandopadhyay, A.; Jougnot, D.; Le Borgne, T.; Meheust, Y.
2017-12-01
Characterizing the effects of fluid mixing on geochemical reactions in the subsurface is of paramount importance owing to their pivotal role in processes such as contaminant migration or aquifer remediation, to name a few [1]. Large velocity gradients in the porous media are expected to lead to enhanced diffusive mixing accompanied by augmented reaction rates [2]. Despite its importance, accurate monitoring of such processes still remains an open challenge, mainly due to the opacity of the medium and to the lack of access to it. However, in recent years, geophysical methods based on electrical conductivity and polarization have come up as a promising tool for mapping and monitoring such reactions in the subsurface. In this regard, one of the main challenges is to properly characterize the multiple sources of electrical signals and in particular isolate the influence of reactive mixing on the electrical conductivity from those of other sources [3]. In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of obtaining a spatially-resolved measurement of local reaction rates in the subsurface from electrical measurements. To this end, we employ a lamellar description of the mixing interface [4] with novel semi-analytical upscaling techniques to quantify changes in electrical conductivity induced by chemical reactions across mixing fronts. The changes in electrical conductivity are strongly dependent on the concentration of ionic species as well as on the polarization of the pore (water) solution around the grains, which in turn are controlled by local reaction rates and, consequently, by the local velocity gradients. Hence, our results essentially suggest that local variations in the electrical conductivity may be quantitatively related to the mixing and reaction dynamics, and thus be used as a measurement tool to characterize these dynamics. References 1. M. Dentz, T. Le Borgne, A. Englert, and B. Bijeljic, J. Cont. Hyd., 120, 1-17, 2011. 2. T. Le Borgne, T. R. Ginn, and M. Dentz, Geophys. Res. Lett., 41(22), 7898-7906, 2014. 3. R Knight et al. Reviews of Geophysics, 48(4), 2010. 4. T. Le Borgne, M. Dentz, and E. Villermaux, J. Fluid Mech., 770, 458-498, 2015.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
NASA Astrophysics Data System (ADS)
Bernardinetti, Stefano; Bruno, Pier Paolo; Lavoué, François; Gresse, Marceau; Vandemeulebrouck, Jean; Revil, André
2017-04-01
The need to reduce model uncertainty and produce a more reliable geophysical imaging and interpretations is nowadays a fundamental task required to geophysics techniques applied in complex environments such as Solfatara Volcano. The use of independent geophysical methods allows to obtain many information on the subsurface due to the different sensitivities of the data towards parameters such as compressional and shearing wave velocities, bulk electrical conductivity, or density. The joint processing of these multiple physical properties can lead to a very detailed characterization of the subsurface and therefore enhance our imaging and our interpretation. In this work, we develop two different processing approaches based on reflection seismology and seismic P-wave tomography on one hand, and electrical data acquired over the same line, on the other hand. From these data, we obtain an image-guided electrical resistivity tomography and a post processing integration of tomographic results. The image-guided electrical resistivity tomography is obtained by regularizing the inversion of the electrical data with structural constraints extracted from a migrated seismic section using image processing tools. This approach enables to focus the reconstruction of electrical resistivity anomalies along the features visible in the seismic section, and acts as a guide for interpretation in terms of subsurface structures and processes. To integrate co-registrated P-wave velocity and electrical resistivity values, we apply a data mining tool, the k-means algorithm, to individuate relationships between the two set of variables. This algorithm permits to individuate different clusters with the objective to minimize the sum of squared Euclidean distances within each cluster and maximize it between clusters for the multivariate data set. We obtain a partitioning of the multivariate data set in a finite number of well-correlated clusters, representative of the optimum clustering of our geophysical variables (P-wave velocities and electrical resistivities). The result is an integrated tomography that shows a finite number of homogeneous geophysical facies, and therefore permits to highlight the main geological features of the subsurface.
NASA Astrophysics Data System (ADS)
Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin
2018-04-01
This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.H.; Pellerin, L.; Becker, A.
1998-06-01
'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field datamore » can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents dominate in this range, as in traditional electromagnetic exploration methods, little work has been done by the geophysical community above 500 kHz.'« less
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
Electrical properties of PMMA ion-implanted with low-energy Si+ beam
NASA Astrophysics Data System (ADS)
Hadjichristov, G. B.; Gueorguiev, V. K.; Ivanov, Tz E.; Marinov, Y. G.; Ivanov, V. G.; Faulques, E.
2010-01-01
The electrical properties of polymethylmethacrylate (PMMA) after implantation with silicon ions accelerated to an energy of 50 keV are studied under DC electric bias field. The electrical response of the formed material is examined as a function of Si+ fluence in the range 1014 - 1017 cm-2. The carbonaceous subsurface region of the Si+-implanted PMMA displays a significant DC conductivity and a sizable field effect that can be used for electronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.
2009-08-05
Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1more » Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppeliers, Christian
Matlab code for inversion of frequency domain, electrostatic geophysical data in terms of scalar scattering amplitudes in the subsurface. The data is assumed to be the difference between two measurements: electric field measurements prior to the injection of an electrically conductive proppant, and the electric field measurements after proppant injection. The proppant is injected into the subsurface via a well, and its purpose is to prop open fractures created by hydraulic fracturing. In both cases the illuminating electric field is assumed to be a vertically incident plane wave. The inversion strategy is to solve a set of linear system ofmore » equations, where each equation defines the amplitude of a candidate scattering volume. The model space is defined by M potential scattering locations and the frequency domain (of which there are k frequencies) data are recorded on N receivers. The solution thus solves a kN x M system of linear equations for M scalar amplitudes within the user-defined solution space. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed to be scattered by subsurface proppant volumes. No field validation examples have so far been provided.« less
Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana
McDougal, Robert R.; Smith, Bruce D.
2000-01-01
The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
Brooks, G.A.; Olyphant, G.A.; Harper, D.
1991-01-01
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Brooks, Glenn A.; Olyphant, Greg A.; Harper, Denver
1991-07-01
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.
NASA Astrophysics Data System (ADS)
Aly, Said A.; Farag, Karam S. I.; Atya, Magdy A.; Badr, Mohamed A. M.
2018-06-01
A joint multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey was conducted at the anticipated eastern extensional area of the 15th-of-May City, southeastern Cairo, Egypt. The main objective of the survey was to highlight the applicability, efficiency, and reliability of utilizing such non-invasive surface techniques in a field like geologic mapping, and hence to image both the vertical and lateral electrical resistivity structures of the subsurface bedrock. Consequently, a total of reliable 6 multi-spacing electromagnetic-terrain conductivity meter and 7 DC-resistivity horizontal profiles were carried out between August 2016 and February 2017. All data sets were transformed-inverted extensively and consistently in terms of two-dimensional (2D) electrical resistivity smoothed-earth models. They could be used effectively and inexpensively to interpret the area's bedrock geologic sequence using the encountered consecutive electrically resistive and conductive anomalies. Notably, the encountered subsurface electrical resistivity structures, below all surveying profiles, are correlated well with the mapped geological faults in the field. They even could provide a useful understanding of their faulting fashion. Absolute resistivity values were not necessarily diagnostic, but their vertical and lateral variations could provide more diagnostic information about the layer lateral extensions and thicknesses, and hence suggested reliable geo-electric earth models. The study demonstrated that a detailed multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey can help design an optimal geotechnical investigative program, not only for the whole eastern extensional area of the 15th-of-May City, but also for the other new urban communities within the Egyptian desert.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, David F.; Bartel, Lewis C.
Program LETS calculates the electric current distribution (in space and time) along an electrically energized steel-cased geologic borehole situated within the subsurface earth. The borehole is modeled as an electrical transmission line that “leaks” current into the surrounding geology. Parameters pertinent to the transmission line current calculation (i.e., series resistance and inductance, shunt capacitance and conductance) are obtained by sampling the electromagnetic (EM) properties of a three-dimensional (3D) geologic earth model along a (possibly deviated) well track.
Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma
Zume, J.T.; Tarhule, A.; Christenson, S.
2006-01-01
Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.
Johnson, Carole D.; White, Eric A.; Joesten, Peter K.
2012-01-01
Time‐lapse geophysical surveys using frequency‐domain electromagnetics (FDEM) can indirectly measure time‐varying hydrologic parameters such as fluid saturation or solute concentration. Monitoring of these processes provides insight into aquifer properties and the effectiveness of constructed controls (such as leachate interceptor trenches), as well as aquifer responses to natural or induced stresses. At the University of Connecticut landfill, noninvasive, electromagnetic induction (EMI) methods were used to monitor changes in subsurface electrical conductivity that were related to the landfill‐closure activities. After the landfill was closed, EMI methods were used to monitor changes in water saturation and water quality. As part of a long‐term monitoring plan to observe changes associated with closure, redevelopment, and remediation of the former landfill, EMI data were collected to supplement information from groundwater samples collected in wells to the south and north of the landfill. In comparison to single‐point measurements that could have been collected by conventional installation of additional monitoring wells, the EMI methods provided increased spatial coverage, and were less invasive and therefore less destructive to the wetland north of the landfill. To monitor effects of closure activities on the subsurface conductivity, EMI measurements were collected from 2004 to 2011 along discrete transects north and south of the landfill prior to, during, and after the landfill closure. In general, the results indicated an overall decline in subsurface electrical conductivity with time and with distance from the former landfill. This decline in electrical conductivity indicated that the closure and remediation efforts reduced the amount of leachate that originated from the landfill and that entered the drainages to the north and south of the landfill.
NASA Astrophysics Data System (ADS)
Xu, Z.; Bassett, S.; Hu, B. X.; Dyer, S.
2016-12-01
Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electric conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 14 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This abstract documented the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.
Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects
NASA Astrophysics Data System (ADS)
Couchman, M. J.; Everett, M. E.
2017-12-01
As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, S A; Daily, W D; Ramirez, A L
2002-01-31
Subsurface imaging technology, such as electric resistance tomography (ERT), is rapidly improving as a means for characterizing some soil properties of the near-surface hydrologic regime. While this information can be potentially useful in developing hydrologic models of the subsurface that are required for contaminant transport investigations, an image alone of the subsurface soil regime gives little or no information about how the site will respond to groundwater flow or contaminant transport. In fact, there is some question that tomographic imaging of soils alone can even provide meaningful values of hydraulic properties, such as the permeability structure, which is critical tomore » estimates of contaminant transport at a site. The main objective of this feasibility study was to initiate research on electrical imaging not just as a way to characterize the soil structure by mapping different soil types at a site but as a means of obtaining quantitative information about how a site will respond hydrologically to an infiltration event. To this end, a scaled system of electrode arrays was constructed that simulates the subsurface electrode distribution used at the LLNL Vadose Zone Observatory (VZO) where subsurface imaging of infiltration events has been investigated for several years. The electrode system was immersed in a 10,000-gallon tank to evaluate the fundamental relationship between ERT images and targets of a given volume that approximate infiltration-induced conductivity anomalies. With LDRD funds we have explored what can be initially learned about porous flow and transport using two important electrical imaging methods--electric resistance tomography (ERT) and electric impedance tomography (EIT). These tomographic methods involve passing currents (DC or AC) between two electrodes within or between electrode arrays while measuring the electric potential at the remaining electrodes. With the aid of a computer-based numerical inversion scheme, the potentials are used to solve for the electrical conductivity distribution in the region bounded by the electrode arrays. Groundwater movement resulting from a leak or surface spill will produce measurable conductivity changes that have been imaged using ERT or EIT. The kind of laboratory scale experiments supported by this work will help us to better understand the connection between imaged conductivity anomalies and the groundwater or contaminant flow that causes them. This work will also help to demonstrate the feasibility or value of doing lab experiments in imaging that can be applied to interpreting field-scale experiments. A secondary objective of this study was to initiate a collaboration with researchers at the Rensselaer Polytechnic Institute (RPI; Troyl NY) who are also participants in the newly created NSF Center for Subsurface Imaging and Sensing Systems (CenSSIS) which is managed in part by RPI. During the course of this study C.R. Carrigan and W. Daily visited the electromagnetic imaging lab at RPI to initiate discussions on subsurface imaging technology with Professors David Isaacson, Jon Newell, Gary Salunier and their research graduate students. A major goal of CenSSIS is to promote collaborations among researchers with imaging backgrounds in different disciplines (geosciences, biomedical, civil engineering and biomedical) that will lead to new solutions of common subsurface imaging problems. The geophysical test section constructed for this study included electrode arrays that resemble biomedical array distributions. Comparing images of the same target produced with the 4-array geophysical approach and with the biomedical imaging approach will help us to better understand differences and advantages that are characteristic of the two imaging methods. Our initial interactions with the researchers at RPI concluded that this was a viable problem to consider. The support for this subsequent research will come from a 3-year Office of Basic Energy Sciences (BES) proposal that has just received funding. This feasibility study contributed positively to the successful review and ultimately to the award of this BES funding. A letter (Appendix) from Professor Michael Silevitch, Director of CenSSIS, to Dr. Rokaya Al-Ayat, Director of the LLNL Science & Technology Office, acknowledges the contribution of this LDRD study to obtaining the Basic Energy Science grant that will fund further work in this area.« less
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERTmore » to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.« less
Time-lapse electrical geophysical monitoring of amendment-based biostimulation
Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.
Coupled charge migration and fluid mixing in reactive fronts
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves
2017-04-01
Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501
NASA Astrophysics Data System (ADS)
Hsu, H.; Chang, P. Y.; Yao, H. J.
2017-12-01
For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.
Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan
2013-01-01
Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater contamination by ethanol. Conductivity measurements were performed at the laboratory scale on EtOH–water mixtures (0 to 0.97 v/v EtOH) and EtOH–salt solution mixtures (0 to 0.99 v/v EtOH) with and without a sand matrix using a conductivity probe and a four-electrode electrical measurement over the low frequency range (1–1000 Hz). A Lichtenecker–Rother (L–R) type mixing model was used to simulate electrical conductivity as a function of EtOH concentration in the mixture. For all three experimental treatments increasing EtOH concentration resulted in a decrease in measured conductivity magnitude (|σ|). The applied L–R model fitted the experimental data at concentration ≤ 0.4 v/v EtOH, presumably due to predominant and symmetric intermolecular (EtOH–water) interaction in the mixture. The deviation of the experimental |σ| data from the model prediction at higher EtOH concentrations may be associated with hydrophobic effects of EtOH–EtOH interactions in the mixture. The |σ| data presumably reflected changes in relative strength of the three types of interactions (water–water, EtOH–water, and EtOH–EtOH) occurring simultaneously in EtOH–water mixtures as the ratio of EtOH to water changed. No evidence of measurable polarization effects at the EtOH–water and EtOH–water–mineral interfaces over the investigated frequency range was found. Our results indicate the potential for using electrical measurements to characterize and monitor EtOH spills in the subsurface.
NASA Astrophysics Data System (ADS)
Mahjoub, Himi; Tapias, Josefina C.; Lovera, Raúl; Rivero, Lluís; Font, Xavier; Casas, Albert
2016-04-01
Constructed wetlands for removing pollutants from wastewater in small communities are growing rapidly in many regions of the world. The advantages over conventional mechanical sanitation systems, where land availability is not a limiting factor, are low energy requirements, easy operation and maintenance, low sludge production and cost-effectivity. Nevertheless, with time the cleaning process can result in gradual clogging of the porous layer by suspended solids, bacterial film, chemical precipitates and compaction. The clogging development causes decrease of hydraulic conductivity, reduced oxygen supply and further leads to a rapid decrease of the treatment performance. As the investment involved in reversing clogging can represent a substantial fraction of the cost of a new system it is essential to assess in advance the evolution of clogging process and detect potential failures in the system. Since there is a lack of experiences for monitoring the functionality of constructed wetlands time-lapse electrical resistivity tomography studies have been conducted at horizontal sub-surface flow municipal wastewater treatment wetlands of Catalonia (Spain). The results of this research show that electrical resistivity tomography can be a very useful technique for assessing the extent of silting up processes that clog the subsurface flow constructed wetlands through the gravel layer. In the unsaturated zone, the electrical resistivity is greater at the end of the filter, since the pores contains air which is dielectric, while at the beginning of the filter the resistivity is lower because the electrical conduction of organic matter around the mineral grains. Conversely, in the saturated zone, the electrical resistivity is lower at the end of the filter, since pores contain a higher proportion of high ionic conductivity wastewater, while at the beginning of the filter the electrical resistivity is higher because of the lower porosity due to the clogging process.
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.
Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
MT2D Inversion to Image the Gorda Plate Subduction Zone
NASA Astrophysics Data System (ADS)
Lubis, Y. K.; Niasari, S. W.; Hartantyo, E.
2018-04-01
The magnetotelluric method is applicable for studying complicated geological structures because the subsurface electrical properties are strongly influenced by the electric and magnetic fields. This research located in the Gorda subduction zone beneath the North American continental plate. Magnetotelluric 2D inversion was used to image the variation of subsurface resistivity although the phase tensor analysis shows that the majority of dimensionality data is 3D. 19 MT sites were acquired from EarthScope/USArray Project. Wepresent the image of MT 2D inversion to exhibit conductivity distribution from the middle crust to uppermost asthenosphere at a depth of 120 kilometers. Based on the inversion, the overall data misfit value is 3.89. The Gorda plate subduction appears as a high resistive zone beneath the California. Local conductive features are found in the middle crust downward Klamath Mountain, Bonneville Lake, and below the eastern of Utah. Furthermore, mid-crustal is characterized by moderately resistive. Below the extensional Basin and Range province was related to highly resistive. The middle crust to the uppermost asthenosphere becomes moderately resistive. We conclude that the electrical parameters and the dimensionality of datain the shallow depth(about 22.319 km) beneath the North American platein accordance with surface geological features.
NASA Technical Reports Server (NTRS)
Delory, G. T.; Grimm, R. E.
2003-01-01
Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.
NASA Astrophysics Data System (ADS)
Duris, J. W.; Rossbach, S.; Atekwana, E. A.; Werkema, D., Jr.
2003-04-01
Little is known about the complex interactions between microbial communities and electrical properties in contaminated aquifers. In order to investigate possible connections between these parameters a study was undertaken to investigate the hypothesis that the degradation of hydrocarbons by resident microbial communities causes a local increase in organic acid concentrations, which in turn cause an increase in native mineral weathering and a concurrent increase in the bulk electrical conductivity of soil. Microbial community structure was analyzed using a 96-well most probable number (MPN) method and rDNA intergenic spacer region analysis (RISA). Microbial community structure was found to change in the presence of hydrocarbon contaminants and these changes were consistently observed in regions of high electrical conductivity. We infer from this relationship that geophysical methods for monitoring the subsurface are a promising new technology for monitoring changes in microbial community structure and simultaneous changes in geochemistry that are associated with hydrocarbon degradation.
Development of a direct push based in-situ thermal conductivity measurement system
NASA Astrophysics Data System (ADS)
Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan
2016-04-01
Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct push based approaches, called Thermal Conductivity Profiler (TCP), that operates based on the principles of a hollow cylindrical geometry heat source. To determinate thermal conductivity in situ, the transient temperature at the middle of the probe and electrical power dissipation is measured. At the same time, this work presents laboratory results obtained when this novel hollow cylindrical probe system was tested on different materials for calibration. By using the hollow cylindrical probe, the thermal conductivity results have an error of less than 2.5% error for solid samples (Teflon, Agar jelly, and Nylatron). These findings are useful to achieve a proper thermal energy balance in the shallow subsurface by using direct push technology and TCP. By providing information of layers with high thermal conductivity, suitable for thermal storage capability, can be used determine borehole heat exchanger design and, therefore, determine geothermal heat pump architecture.
NASA Astrophysics Data System (ADS)
Tan, Xihe; Mester, Achim; von Hebel, Christian; van der Kruk, Jan; Zimmermann, Egon; Vereecken, Harry; van Waasen, Stefan
2017-04-01
Electromagnetic induction (EMI) systems offer a great potential to obtain highly resolved layered electrical conductivity models of the shallow subsurface. State-of-the-art inversion procedures require quantitative calibration of EMI data, especially for short-offset EMI systems where significant data shifts are often observed. These shifts are caused by external influences such as the presence of the operator, zero-leveling procedures, the field setup used to move the EMI system and/or cables close by. Calibrations can be performed by using collocated electrical resistivity measurements or taking soil samples, however, these two methods take a lot of time in the field. To improve the calibration in a fast and concise way, we introduce a novel on-site calibration method using a series of apparent electrical conductivity (ECa) values acquired at multiple elevations for a multi-configuration EMI system. No additional instrument or pre-knowledge of the subsurface is needed to acquire quantitative ECa data. By using this calibration method, we correct each coil configuration, i.e., transmitter and receiver coil separation and the horizontal or vertical coplanar (HCP or VCP) coil orientation with a unique set of calibration parameters. A multi-layer soil structure at the corresponding measurement location is inverted together with the calibration parameters using full-solution Maxwell equations for the forward modelling within the shuffled complex evolution (SCE) algorithm to find the optimum solution under a user-defined parameter space. Synthetic data verified the feasibility for calibrating HCP and VCP measurements of a custom made six-coil EMI system with coil offsets between 0.35 m and 1.8 m for quantitative data inversions. As a next step, we applied the calibration approach on acquired experimental data from a bare soil test field (Selhausen, Germany) for the considered EMI system. The obtained calibration parameters were applied to measurements over a 30 m transect line that covers a range of conductivities between 5 and 40 mS/m. Inverted calibrated EMI data of the transect line showed very similar electrical conductivity distributions and layer interfaces of the subsurface compared to reference data obtained from vertical electrical sounding (VES) measurements. These results show that a combined calibration and inversion of multi-configuration EMI data is possible when including measurements at different elevations, which will speed up the measurement process to obtain quantitative EMI data since the labor intensive electrical resistivity measurement or soil coring is not necessary anymore.
Macy, Jamie P.; Kryder, Levi; Walker, Jamieson
2012-01-01
Coordinated application of electrical and electromagnetic geophysical methods provided better characterization of the Highway 95 Fault. The comparison of dipole-dipole resistivity, TEM, and CSAMT data confirm faulting of an uplifted block of resistive Paleozoic Carbonate that lies beneath a more conductive sandstone unit. A more resistive alluvial basin-fill unit is found above the sandstone unit, and it constitutes only about 150 m of the uppermost subsurface.
Paillet, Frederick; Hite, Laura; Carlson, Matthew
1999-01-01
Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.
2010-12-01
Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.
Parallel Infrastructure Modeling and Inversion Module for E4D
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-10-09
Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes to produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurfacemore » conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network of metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases computational demands. 3) The ERT imaging algorithm requires specialized modifications to accomodate high conductivty inclusions within the computational mesh. The solution to each of these challenges was implemented within E4D (formerly FERM3D), which is a parallel ERT imaging code developed at PNNL (IPID #30249). The infrastructure modeling module implement in E4D uses a method of decoupling the model at the metallic interface(s) boundaries, into several well posed sub-problems (one for each distinct metallicinclusion) that are subsequently solved and recombined to form the global solution. The approach is based on the immersed interface method, with has been applied for similar problems in other fields (e.g. semiconductor industry). Comparisons to analytic solutions have shown the results to be very accurate, addressing item 1 above. The solution is implemented about an unstructured mesh, which enables arbitrary shapes to be efficiently modelled, thereby addressing item 2 above. In addition, the algorithm is written in parallel and shows excellent scalability, which also addresses equation 2 above. Finally, because only the boundaries of metallic inclusions are modeled, there are no high conductivity cells within the modeling mesh, and the problem described by item 3 above is no longer applicable.« less
NASA Astrophysics Data System (ADS)
Aguirre, E. E.; Karchewski, B.
2017-12-01
DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.
USDA-ARS?s Scientific Manuscript database
The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...
Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation
NASA Astrophysics Data System (ADS)
Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo
2017-04-01
Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the relatively high resistivity of the NGP suspension. This is in line with geochemical data from both the injected NGP suspension and the groundwater samples. Furthermore, temporal changes in the IP images are consistent with variations in total iron concentration in groundwater (a proxy for the NGP concentration) as well as in situ groundwater parameters, such as pH and oxidation-reduction potential. Our results demonstrate the applicability of IP imaging for the real-time monitoring of nanoparticle injection, as well as of the accompanying geochemical changes. Part of this research is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 309517.
NASA Astrophysics Data System (ADS)
Samson, C.; Mah, J.; Haltigin, T.; Holladay, S.; Ralchenko, M.; Pollard, W.; Monteiro Santos, F. A.
2017-05-01
Perennial springs at the Gypsum Hill site on Axel Heiberg Island in the Canadian Arctic (79°24‧N, 90°44‧W) represent a high-fidelity analogue to hydrothermal systems that might exist on Mars. The springs were surveyed using an electromagnetic induction sounder (EMIS) and ground penetrating radar (GPR). Both instruments probed the subsurface to a depth of approximately 3 m. Lateral EMIS soundings were performed every metre along a 400 m long reconnaissance line roughly oriented SW-NE and extending through 23 active springs and 1 dry outlet to measure electrical conductivity. Two distinct zones were identified within the survey area on the basis of these data: in the southwest portion, sharp conductivity peaks correspond to isolated springs with well-defined outlets, flowing over dry rocky soil; in the northeast portion, the springs are fed by a pervasive network of saline fluids, resulting in high background readings and muddy surface conditions. These observations are consistent with vertical EMIS sounding data which showed that the brine body feeding the saline springs can be found closer to the ground surface towards the northeast portion of the survey site. In areas of high electrical conductivity, the GPR data exhibits strong scattering. The noisy areas are sharply defined and interpreted to correspond to narrow vertical conduits feeding individual spring outlets. The EMIS is a rugged instrument that could be included as payload in future rover-based Mars exploration missions aiming at probing the shallow subsurface for the presence of brine pockets.
NASA Astrophysics Data System (ADS)
Kessouri, P.; Johnson, T. C.; Day-Lewis, F. D.; Slater, L. D.; Ntarlagiannis, D.; Johnson, C. D.
2016-12-01
The former Brandywine MD (Maryland, USA) Defense Reutilization and Marketing Office (DRMO) was designated a hazardous waste Superfund site in 1999. The site was used as a storage area for waste and excess government equipment generated by several U.S. Navy and U.S. Air Force installations, leading to soil and groundwater contamination by volatile organic compounds (VOCs). Active bioremediation through anaerobic reductive dehalogenation was used to treat the groundwater and the aquifer unconsolidated materials in 2008, with electrical geophysical measurements employed to track amendment injections. Eight years later, we used spectral induced polarization (SIP) and time domain induced polarization (TDIP) on 2D surface lines and borehole electrical arrays to assess the long term impact of active remediation on physicochemical properties of the subsurface. Within the aquifer, the treated zone is more electrically conductive, and the phase shift describing the polarization effects is higher than in the untreated zone. Bulk conductivity and phase shift are also locally elevated close to the treatment injection well, possibly due to biogeochemical transformations associated with prolonged bacterial activity. Observed SIP variations could be explained by the presence of biofilms coating the pore space and/or by-products of the chemical reactions catalyzed by the bacterial activity (e.g. iron sulfide precipitation). To investigate these possibilities, we conducted complementary well logging measurements (magnetic susceptibility [MS], nuclear magnetic resonance [NMR], gamma-ray) using 5 boreholes installed at both treated and untreated locations of the site. We also collected water and soil samples on which we conducted microbiological and chemical analyses, along with geophysical observations (SIP, MS and NMR), in the laboratory. These measurements provide further insights into the physicochemical transformations in the subsurface resulting from the treatment and highlight the possibility of long term monitoring of treatment-impacted zones using electrical geophysics.
Low signal-to-noise FDEM in-phase data: Practical potential for magnetic susceptibility modelling
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Hanssens, Daan; De Smedt, Philippe
2018-05-01
In this paper, we consider the use of land-based frequency-domain electromagnetics (FDEM) for magnetic susceptibility modelling. FDEM data comprises both out-of-phase and in-phase components, which can be related to the electrical conductivity and magnetic susceptibility of the subsurface. Though applying the FDEM method to obtain information on the subsurface conductivity is well established in various domains (e.g. through the low induction number approximation of subsurface apparent conductivity), the potential for susceptibility mapping is often overlooked. Especially given a subsurface with a low magnetite and maghemite content (e.g. most sedimentary environments), it is generally assumed that susceptibility is negligible. Nonetheless, the heterogeneity of the near surface and the impact of anthropogenic disturbances on the soil can cause sufficient variation in susceptibility for it to be detectable in a repeatable way. Unfortunately, it can be challenging to study the potential for susceptibility mapping due to systematic errors, an often poor low signal-to-noise ratio, and the intricacy of correlating in-phase responses with subsurface susceptibility and conductivity. Alongside use of an accurate forward model - accounting for out-of-phase/in-phase coupling - any attempt at relating the in-phase response with subsurface susceptibility requires overcoming instrument-specific limitations that burden the real-world application of FDEM susceptibility mapping. Firstly, the often erratic and drift-sensitive nature of in-phase responses calls for relative data levelling. In addition, a correction for absolute levelling offsets may be equally necessary: ancillary (subsurface) susceptibility data can be used to assess the importance of absolute in-phase calibration though hereby accurate in-situ data is required. To allow assessing the (importance of) in-phase calibration alongside the potential of FDEM data for susceptibility modelling, we consider an experimental test case whereby the in-phase responses of a multi-receiver FDEM instrument are calibrated through downhole susceptibility data. Our results show that, while it is possible to derive approximate susceptibility profiles from FDEM data, robust quantitative analysis hinges on appropriate calibration of the responses.
A new instrument designedfor frequency-domain sounding in the depth range 0-10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductibity) and displacement currents...
Geophysical evaluation of the Success Dam foundation, Porterville, California
Hunter, L.E.; Powers, M.H.; Haines, S.; Asch, T.; Burton, B.L.; Serafini, D.C.
2006-01-01
Success Dam is a zonedearth fill embankment located near Porterville, CA. Studies of Success Dam by the recent Dam Safety Assurance Program (DSAP) have demonstrated the potential for seismic instability and large deformation of the dam due to relatively low levels of earthquake shaking. The U.S. Army Corps of Engineers conducted several phases of investigations to determine the properties of the dam and its underlying foundation. Detailed engineering studies have been applied using a large number of analytical techniques to estimate the response of the dam and foundation system when subjected to earthquake loading. Although a large amount of data have been acquired, most are 'point' data from borings and results have to be extrapolated between the borings. Geophysical techniques were applied to image the subsurface to provide a better understanding of the spatial distribution of key units that potentially impact the stability. Geophysical investigations employing seismic refraction tomography, direct current (DC) resistivity, audio magnetotellurics (AMT) and self-potential (SP) were conducted across the location of the foundation of a new dam proposed to replace the existing one. Depth to bedrock and the occurrence of beds potentially susceptible to liquefaction were the focus of the investigations. Seismic refraction tomography offers a deep investigation of the foundation region and looks at compressional and shear properties of the material. Whereas resistivity surveys determines conductivity relationships in the shallow subsurface and can produce a relatively high-resolution image of geological units with different electrical properties. AMT was applied because it has the potential to look considerably deeper than the other methods, is useful for confirming depth to bedrock, and can be useful in identifying deep seated faults. SP is a passive electrical method that measures the electrical streaming potential in the subsurface that responds to the movement of ground water. SP surveys were conducted at low pool and high pool conditions in order to look for evidence of seepage below the existing dam. In this paper, we summarize these techniques, present their results at Success Dam, and discuss general application of these techniques for investigating dams and their foundations.
Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said
2014-01-01
The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621
Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said
2014-01-01
The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.
Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.
2017-02-01
Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.
Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation
NASA Astrophysics Data System (ADS)
Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.
2018-04-01
This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.
2013-08-01
Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to the improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.
NASA Technical Reports Server (NTRS)
Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.
2015-01-01
A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.
NASA Astrophysics Data System (ADS)
Carey, A. M.; Paige, G. B.; Miller, S. N.; Carr, B. J.; Holbrook, W. S.
2014-12-01
In semi-arid rangeland environments understanding how surface and subsurface flow processes and their interactions are influenced by watershed and rainfall characteristics is critical. However, it is difficult to resolve the temporal variations between mechanisms controlling these processes and challenging to obtain field measurements that document their interactions. Better insight into how these complex systems respond hydrologically is necessary in order to refine hydrologic models and decision support tools. We are conducting field studies integrating high resolution, two-dimensional surface electrical resistivity imaging (ERI) with variable intensity rainfall simulation, to quantify real-time partitioning of rainfall into surface and subsurface response. These studies are being conducted at the hillslope scale on long-term runoff plots on four different ecological sites in the Upper Crow Creek Watershed in southeastern Wyoming. Variable intensity rainfall rates were applied using the Walnut Gulch Rainfall Simulator in which intensities were increased incrementally from 49 to 180 mm hr-1 and steady-state runoff rates for each intensity were measured. Two 13.5 m electrode arrays at 0.5 m spacing were positioned on the surface perpendicular to each plot and potentials were measured at given time intervals prior to, during and following simulations using a dipole-dipole array configuration. The configuration allows for a 2.47 m depth of investigation in which magnitude and direction of subsurface flux can be determined. We used the calculated steady state infiltration rates to quantify the variability in the partial area runoff response on the ecological sites. Coupling this information with time-lapse difference inversions of ERI data, we are able to track areas of increasing and decreasing resistivity in the subsurface related to localized areas of infiltration during and following rainfall events. We anticipate implementing this method across a variety of ecological sites in the Upper Crow Creek in order to characterize the variable hydrologic response of this complex rangeland watershed. This information is being used to refine current physically based hydrologic models and watershed assessment tools.
Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.
1998-01-01
Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.
NASA Astrophysics Data System (ADS)
Kibria, Golam
Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of undisturbed soil samples, resistivity decreased as much as sixteen fold (49.4 to 3.2 Ohm-m) for an increase of saturation from 31 to 100%. Furthermore, the resistivity results were different for the specimens at a specific degree of saturation because of varied surface activity and isomorphous substitution of clayey soils. In addition to physical properties, compressibility of clays was correlated with electrical conductivity. Based on the investigation, it was determined that the electrical conductivity vs. pressure curves followed similar trends as e vs. logp curves. Multiple linear regression (MLR) models were developed for compacted and undisturbed samples using statistical analysis software SAS (2009). During model development, degree of saturation and CEC were selected as independent variables. The proposed models were validated using experimental results on a different set of samples. Moreover, the applicability of the models in the determination of degrees of saturation was evaluated using field RI tests.
NASA Technical Reports Server (NTRS)
Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.;
2015-01-01
Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.
NASA Astrophysics Data System (ADS)
Sharma, S. P.; Biswas, A.
2012-12-01
South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.
3D electrical conductivity tomography of volcanoes
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.
2018-05-01
Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in interpreting electrical conductivity tomograms. That said, new experimental data provide evidence regarding the strong role of alteration in the vicinity of preferential fluid flow paths including magmatic conduits and hydrothermal vents.
Detection of underground voids in Ohio by use of geophysical methods
Munk, Jens; Sheets, R.A.
1997-01-01
Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio, where coal was mined under the site at a depth of about 50 feet. Interference from overhead powerlines, the field vehicle, and guardrails complicated an interpretation of the radar records where the depth of penetration was estimated to be less than 5 feet. Along State Route 33, in Logan County, Ohio, bedding planes and structures possibly associated with dissolution of limestone were profiled with ground-penetrating radar. Depth of penetration was estimated to be greater than 50 feet.
NASA Astrophysics Data System (ADS)
Lauro, S. E.; Mattei, E.; Cosciotti, B.; Di Paolo, F.; Arcone, S. A.; Viccaro, M.; Pettinelli, E.
2017-07-01
Ground-penetrating radar (GPR) is a well-established geophysical terrestrial exploration method and has recently become one of the most promising for planetary subsurface exploration. Several future landing vehicles like EXOMARS, 2020 NASA ROVER, and Chang'e-4, to mention a few, will host GPR. A GPR survey has been conducted on volcanic deposits on Mount Etna (Italy), considered a good analogue for Martian and Lunar volcanic terrains, to test a novel methodology for subsoil dielectric properties estimation. The stratigraphy of the volcanic deposits was investigated using 500 MHz and 1 GHz antennas in two different configurations: transverse electric and transverse magnetic. Sloping discontinuities have been used to estimate the loss tangents of the upper layer of such deposits by applying the amplitude-decay and frequency shift methods and approximating the GPR transmitted signal by Gaussian and Ricker wavelets. The loss tangent values, estimated using these two methodologies, were compared and validated with those retrieved from time domain reflectometry measurements acquired along the radar profiles. The results show that the proposed analysis, together with typical GPR methods for the estimation of the real part of permittivity, can be successfully used to characterize the electrical properties of planetary subsurface and to define some constraints on its lithology of the subsurface.
NASA Astrophysics Data System (ADS)
Metwaly, Mohamed; El-Qady, Gad; Massoud, Usama; El-Kenawy, Abeer; Matsushima, Jun; Al-Arifi, Nasser
2010-09-01
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.
NASA Astrophysics Data System (ADS)
Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.
2018-05-01
At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to convert the imaging results from bulk conductivity to water conductivity. The geophysical models were actively used for supporting the geological modelling and the imaging of hydraulic permeability and water conductivity allowed for a better discrimination of the clay/lignite lithology from the pore water conductivity. Furthermore, high water electrical conductivity values were found in a deep confined aquifer, which is separated by a low-permeability clay layer from a shallow aquifer. No contamination was expected in this part of the confined aquifer, and confirmation wells were drilled in the zone of increased water electrical conductivity derived from the geophysical results. Water samples from the new wells showed elevated concentrations of inorganic compounds responsible for the increased water electrical conductivity in the confined aquifer and high concentrations of xenobiotic organic contaminants such as chlorinated ethenes, sulfonamides and barbiturates.
NASA Astrophysics Data System (ADS)
Newman, Gregory A.; Commer, Michael
2009-07-01
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.
Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements
NASA Astrophysics Data System (ADS)
Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.
1999-09-01
MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.
NASA Astrophysics Data System (ADS)
Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.
2013-12-01
Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and IP surveys are performed regularly to monitor the stimulated biodegradation and progress of remediation until soil cleanup. Microbial activity is characterized by CO2 production increase and δ13C isotopic deviation, in the produced CO2 measured by infrared laser spectroscopy, and by an evolution of electrical conductivity and IP responses in correlation with microbiological and chemical analyses.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
NASA Astrophysics Data System (ADS)
Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.
2017-12-01
In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.
NAPL detection with ground-penetrating radar (Invited)
NASA Astrophysics Data System (ADS)
Bradford, J. H.
2013-12-01
Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency dependent attenuation analysis, and 5) reflectivity inversion. Examples are taken from a variety of applications that include oil spills on the ocean, oil spills on and under sea ice, and both LNAPL and DNAPL contaminated groundwater systems. Many factors conspire to complicate field data analysis, yet careful analysis and integration of multiple techniques has proven robust. Use of these methods in practical application has been slow to take root. Nonetheless, a best practices working model integrates geophysics from the outset and mirrors the approach utilized in hydrocarbon exploration. This model ultimately minimizes site characterization and remediation costs.
Wellhead with non-ferromagnetic materials
Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX
2009-05-19
Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.
Johnson, Timothy C.; Versteeg, Roelof J.; Ward, Andy; Day-Lewis, Frederick D.; Revil, André
2010-01-01
Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics for characterizing the electrical properties of the subsurface and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Presently, multichannel and multielectrode data collections systems can collect large data sets in relatively short periods of time. Practitioners, however, often are unable to fully utilize these large data sets and the information they contain because of standard desktop-computer processing limitations. These limitations can be addressed by utilizing the storage and processing capabilities of parallel computing environments. We have developed a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polar-ization (IP) data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We have tested the corresponding parallel code in three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, Washington, U.S.A., (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy, and (3) resistivity and IP monitoring of biostimulation at a Superfund site in Brandywine, Maryland, U.S.A. Inverse analysis of each of these data sets would be limited or impossible in a standard serial computing environment, which underscores the need for parallel high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.
Wijesekara, Hasintha Rangana; De Silva, Sunethra Nalin; Wijesundara, Dharani Thanuja De Silva; Basnayake, Bendict Francis Antony; Vithanage, Meththika Suharshini
2015-01-01
This study presents the use of direct current resistivity techniques (DCRT) for investigation and characterization of leachate-contaminated subsurface environment of an open solid waste dumpsite at Kandy, Sri Lanka. The particular dumpsite has no liner and hence the leachate flows directly to the nearby river via subsurface and surface channels. For the identification of possible subsurface flow paths and the direction of the leachate, DCRT (two-dimensional, three-dimensional and vertical electrical sounding) have been applied. In addition, the physico-chemical parameters such as pH, electrical conductivity (EC), alkalinity, hardness, chloride, chemical oxygen demand (COD) and total organic carbon (TOC) of leachate collected from different points of the solid waste dumping area and leachate drainage channel were analysed. Resistivity data confirmed that the leachate flow is confined to the near surface and no separate plume is observed in the downstream area, which may be due to the contamination distribution in the shallow overburden thickness. The stratigraphy with leachate pockets and leachate plume movements was well demarcated inside the dumpsite via low resistivity zones (1-3 Ωm). The recorded EC, alkalinity, hardness and chloride contents in leachate were averaged as 14.13 mS cm⁻¹, 3236, 2241 and 320 mg L⁻¹, respectively, which confirmed the possible causes for low resistivity values. This study confirms that DCRT can be effectively utilized to assess the subsurface characteristics of the open dumpsites to decide on corridor placement and depth of permeable reactive barriers to reduce the groundwater contamination.
Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface
NASA Technical Reports Server (NTRS)
Burt, D. M.; Knauth, L. P.
2003-01-01
If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.
2016-12-01
An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of time-domain Green's function by regularized, linear least squares methods.
NASA Astrophysics Data System (ADS)
Feskova, Tatiana; Dietrich, Peter
2015-04-01
Hydrological conditions in a catchment depend on many factors such as climatic, geological, geomorphological, biological and human, which interact with each other and influence water balance in a catchment. This interaction leads to the subordination in the landscape structure, namely the weak elements subordinate to the powerful elements. Thereby, geological and geomorphological factors play an essential role in catchment development and organization. A hillslope consequently can be allocated to one class of the representative units because the important flow processes run at the hillslope. Moreover, a hillslope can be subdivided into stratigraphic subsurface units and significant hillslope areas based on the lithological change of contrasting interfaces. The knowledge of subsurface structures is necessary to understand and predicate complex hydrological processes in a catchment. Geophysical techniques provide a good opportunity to explore the subsurface. A complete geophysical investigation of subsurface in a catchment with difficult environmental conditions never will be achieved because of large time effort in the field, equipment logistic, and ambiguity in the data interpretation. The case study demonstrates how a catchment can be investigated using geophysical methods in an effective manner in terms of characterization of representative units with respect to a functional role in the catchment. This case study aims to develop combined resistivity and seismic velocity hillslope subsurface models for the distinction of representative functional units. In order to identify the contrasting interfaces of the hillslope, to localize significant hillslope areas, and to address the ambiguity in the geophysical data interpretation, the case study combined resistivity surveys (vertical electrical soundings and electrical resistivity tomography) with refraction seismic method, and conducted these measurements at one single profile along the hillslope transect and perpendicular to this transect. The measurements along the hillslope transect deliver the two-dimensional hillslope section of resistivity and seismic velocity distribution with contrasting stratigraphic interfaces, whereas the measurements perpendicular to the hillslope transect obtained from vertical electrical soundings survey localize significant hillslope areas indicating existence of two-dimensional features in the subsurface. To demonstrate the suitability of the suggested approach, resistivity and refraction seismic measurements were carried out at the forested gently inclined hillslope in the Weierbach catchment, which belongs to the hydrological observatory Attert Basin locating in the mid-western part of the Grand-Duchy of Luxembourg. This hillslope is characterized by Pleistocene periglacial slope deposits, which plays an important role in the ecosystem functioning. The obtained resistivity and seismic hillslope models of the Weierbech catchment complement well one another. The hillslope models identify three significant hillslope areas along the hillslope called as elementary functional units, and four electrical vertical stratigraphic units and two seismic vertical stratigraphic units that agree with lithological stratigraphy of this study site. In conclusions, the suggested geophysical approach is suitable to characterise a hillslope as the representative unit only at a single transect in the efficient manner in contrast to the expensive 3D-measurements.
Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.
1996-01-01
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.
Ramirez, A.L.; Cooper, J.F.; Daily, W.D.
1996-02-27
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
Measuring the electrical properties of soil using a calibrated ground-coupled GPR system
Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.
2008-01-01
Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.
An Estimation Of The Geoelectric Features Of Planetary Shallow Subsurfaces With TAPIR Antennae
NASA Astrophysics Data System (ADS)
Le Gall, A.; Reineix, A.; Ciarletti, V.; Jean-Jacques, B.; Ney, R.; Dolon, F.; Corbel, C.
2005-12-01
Exploring the interior of Mars and searching for water reservoirs, either in the form of ice or of liquid water, was one of the main scientific objectives of the NETLANDER project. In that frame, the CETP (Centre d'Etude des Environnements Terrestre et Planetaires) has developed an imaging ground penetrating radar (GPR), called TAPIR (Terrestrial And Planetary Investigation by Radar). Operating from a fixed position and at low frequencies (from 2 to 4MHz), this instrument allows to retrieve not only the distance but also the inclination of deep subsurface reflectors by measuring the two horizontal electrical components and the three magnetic components of the reflected waves. In 2004, ground tests have been successfully carried out on the Antarctic Continent; the bedrock, lying under a thick layer of ice (until 1200m), was detected and part of its relief was revealed. Yet, knowing the electric parameters of the close subsurface is required to correctly process the measured electric and magnetic components of the echoes and deduce their propagation vector. In addition, these electric parameters can bring a very interesting piece of information on the nature of the material in the shallow underground. We have therefore looked for a possible method (appropriate for a planetary mission) to evaluate them using a special mode of operation of the radar. This method relies on the fact that the electrical characteristics of the transmitting electric antennas (current along the antenna, driving-point impedance.) depend on the nature of the ground on which the radar is lying. If this dependency is significant enough, geological parameters of the subsurface can be deduced from the analysis of specific measurements. We have thus performed a detailed experimental and theoretical study of the TAPIR resistively loaded electrical dipoles to get a precise understanding of the radar transmission and assess the role of the electric parameters of the underground. In this poster, we will analytically prove the sensitivity of TAPIR antennae to subsurface nature. Besides, a numerical code, based on the FDTD method, has been built to simulate with accuracy radar operation and its coupling with the environment. Results from simulations will be then compared to in-situ measurements collected in three different sites. Eventually, we will see that the inferred geoelectrical values characterize only a thin layer of the subsurface.
Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona
NASA Astrophysics Data System (ADS)
Pool, D. R.; Callegary, J. B.; Groom, R. W.
2006-12-01
Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and gravity, seismic, direct-current resistivity, and transient-electromagnetic information from ground-based geophysical surveys. Results of the surveys will be used along with available subsurface information to describe the spatial extent of the alluvial aquifers and the general lithologic distribution within the alluvial aquifers.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
Modelling of EISS GPR's electrical and magnetic antennas for ExoMars mission
NASA Astrophysics Data System (ADS)
Biancheri-Astier, M.; Ciarletti, V.; Reineix, A.; Corbel, C.; Dolon, F.; Simon, Y.; Caudoux, C.; Lapauw, L.; Berthelier, Jj.; Ney, R.
2009-04-01
Despite several past and present missions to Mars, very little information is available on its subsurface. One of the scientific objectives of the European ExoMars mission (ESA) is to characterize the water / geochemical environment as a function of depth and investigate the planet subsurface to better understand the evolution and habitability of the planet. The electromagnetic survey of subsurface will provide a nondestructive way to probe the subsurface and look for potential deep liquid water reservoirs. The LATMOS (ex CETP) is currently developing a ground penetrating radar (GPR) called EISS "Electromagnetic Investigation of the Sub Surface", which is a enhanced version of the TAPIR "Terrestrial and Planetary Imaging Radar", developed in the frame of the Netlander mission cancelled in 2004. The GPR main objective is to perform sounding of the sub-surface down to kilometric depth. EISS is an impulse GPR operating, from the Martian surface, at HF frequencies (~ 2-4MHz) with a wide bandwidth (100kHz-5MHz). EISS can operate in four modes: impedance measurement, mono and bi-static survey, passive mode. The EISS innovative concept is based on the use of the fixed station (Lander) and mobile rover to conduct subsurface surveys of the area visited by the Rover. The work at HF frequencies, EISS uses a half-wave resistively loaded dipole electrical antenna i.e. two monopoles 35 meters long each to transmit (and also receive in mono-static mode) the signal. The resistive profile of the antenna follows a Wu-King profile which is optimized to transmit the pulse without noticeable distortion and avoid ringing. The two monopoles will be deployed in roughly opposite directions on the surface of Mars. The exact value of the direction of deployment for each monopole will be chosen in order to minimize the contact with the Lander structure, avoid obstacles and the solar panels still ensuring a good coverage of the whole area. In bi-static mode, the signal is received with a small magnetic sensor accommodated on the Rover. As a consequence, since the direction that the rover will follow after its egress will not be know until the Lander is on Mars, it is essential to chose a configuration that will result in a radiation pattern compatible with bi-static measurements whatever the direction of the rover is (within a distance of 1 kilometer). Studies based on electromagnetic simulations have been performed to check the impact of the angle between the two monopoles on the radiation pattern. Study of EISS performances is ongoing using numerical modeling and experimental verifications. We use numerical simulation (FDTD code), analytical models and data processing algorithms to determine the performances of each operating mode and to prepare data interpretation. The subsurface survey requires knowledge of the permittivity of the studied sub-surface layers to convert the measured propagation delay into distance. Access to electrical characteristics of ground without return samples and in situ analysis is unusual in space missions and aroused great interest. Results will be presented about different ways EISS can provide estimation of the electrical properties of the shallow subsurface. Simulations that highlight the impact of the chosen resistive profile and of the angle between the two deployed monopoles will be shown. The presentation will mainly be focused on the bi-static mode that greatly improves the 3D representation of subsurface structure and on the associated instrumental requirements such as the perfect synchronization of the two part of the instrument. A method to retrieve the direction of arrival for each detected echo will be presented that allows a more accurate sub-surface mapping. Only the three magnetic field components are required to implement it, which makes the EISS configuration particularly interesting. This method is based on the orthogonality between the propagation vector and the polarization plane.
Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements
NASA Astrophysics Data System (ADS)
Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.
2017-12-01
Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.
NASA Astrophysics Data System (ADS)
Litt, Guy Finley
As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.
NASA Astrophysics Data System (ADS)
Izzaty Riwayat, Akhtar; Nazri, Mohd Ariff Ahmad; Hazreek Zainal Abidin, Mohd
2018-04-01
In recent years, Electrical Resistivity Imaging (ERI) has become part of important method in preliminary stage as to gain more information in indicate the hidden water in underground layers. The problem faces by engineers is to determine the exact location of groundwater zone in subsurface layers. ERI seen as the most suitable tools in exploration of groundwater as this method have been applied in geotechnical and geo-environment investigation. This study was conducted using resistivity at UTHM campus to interpret the potential shallow aquifer and potential location for borehole as observation well. A Schlumberger array was setup during data acquisition as this array is capable in imaging deeper profile data and suitable for areas with homogeneous layer. The raw data was processed using RES2DINV software for 2D subsurface image. The result obtained indicate that the thickness of shallow aquifer for both spread line varies between 7.5 m to 15 m. The analysis of rest raw data using IP showed that the chargeability parameter is equal to 0 which strongly indicated the presence of groundwater aquifer in the study area.
A Glimpse in the Third Dimension for Electrical Resistivity Profiles
NASA Astrophysics Data System (ADS)
Robbins, A. R.; Plattner, A.
2017-12-01
We present an electrode layout strategy designed to enhance the popular two-dimensional electrical resistivity profile. Offsetting electrodes from the traditional linear layout and using 3-D inversion software allows for mapping the three-dimensional electrical resistivity close to the profile plane. We established a series of synthetic tests using simulated data generated from chosen resistivity distributions with a three-dimensional target feature. All inversions and simulations were conducted using freely-available ERT software, BERT and E4D. Synthetic results demonstrate the effectiveness of the offset electrode approach, whereas the linear layout failed to resolve the three-dimensional character of our subsurface feature. A field survey using trench backfill as a known resistivity contrast confirmed our synthetic tests. As we show, 3-D inversions of linear layouts for starting models without previously known structure are futile ventures because they generate symmetric resistivity solutions with respect to the profile plane. This is a consequence of the layout's inherent symmetrical sensitivity patterns. An offset electrode layout is not subject to the same limitation, as the collective measurements do not share a common sensitivity symmetry. For practitioners, this approach presents a low-cost improvement of a traditional geophysical method which is simple to use yet may provide critical information about the three dimensional structure of the subsurface close to the profile.
Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method
NASA Astrophysics Data System (ADS)
Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng
2017-03-01
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.
Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott
2012-11-01
Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.
Mobile geophysical study of peat deposits in Fuhrberger Field, Germany
NASA Astrophysics Data System (ADS)
Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.
2012-04-01
In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (<10 mS/m) due to the mainly sandy subsurface. For this medium, both methods are expected to penetrate down to 3-5 m depth. GPR radargrams, time slices of GPR reflection energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Moorkamp, M.; Jones, A. G.
2014-12-01
Most electromagnetic (EM) geophysical methods focus on the electrical conductivity of rocks and sediments to determine the geological structure of the subsurface. Electric conductivity itself is measured in the laboratory with a wide range of instruments and techniques. These measurements seldom return a compatible result. The presence of partially-interconnected random pathways of electrically conductive materials in resistive hosts has been studied for decades, and recently with increasing interest. To comprehend which conductive mechanism scales from the microstructures up to field electrical conductivity measurements, two main branch of studies have been undertaken: statistical probability of having a conductive pathways and mixing laws. Several numerical approaches have been tested to understand the effects of interconnected pathways of conductors at field scale. Usually these studies were restricted in two ways: the sources are considered constant in time (i.e., DC) and the domain is, with few exception, two-dimensional. We simulated the effects of time-varying EM sources on the conductivity measured on the surface of a three-dimensional randomly generated body embedded in an uniform host by using electromagnetic induction equations. We modelled a two-phase mixture of resistive and conductive elements with the goal of comparing the conductivity measured on field scale with the one proper of the elements constituting the random rock, and to test how the internal structures influence the directionality of the responses. Moreover, we modelled data from randomly generated bodies characterized by coherent internal structures, to check the effect of the named structures on the anisotropy of the effective conductivity. We compared these values with the electrical conductivity limits predicted by Hashin-Shtrikman bounds and the effective conductivity predicted by the Archie's law, both cast in its classic form and in an updated that allow to take in account two materials. The same analysis was done for both the resistive and the conductive conductivity values for the anisotropic case.
NASA Astrophysics Data System (ADS)
Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine
2017-10-01
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
Non-ferromagnetic overburden casing
Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy
2010-09-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.
Magnetically-driven oceans on Jovian satellites
NASA Astrophysics Data System (ADS)
Gissinger, C.; Petitdemange, L.
2017-12-01
During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.
Electrical Resistance Tomography Field Trials to Image CO2 Sequestration
NASA Astrophysics Data System (ADS)
Newmark, R.
2003-12-01
If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition, telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.
Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment
NASA Technical Reports Server (NTRS)
Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard
2004-01-01
Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of 7 km on 1) an ocean and 2) a layer of bedrock. Knowledge of the ionospheric contributions to the time delay of the low-frequency subsurface radar is shown to be important in obtaining accurate depth information.
Oh, Myounghak; Seo, Min Woo; Lee, Seunghak; Park, Junboum
2008-02-19
The grid-net system estimating the electrical conductivity changes was evaluated as a potential detection system for the leakage of diesel fuel and landfill leachate. Aspects of electrical conductivity changes were varied upon the type of contaminant. The electrical conductivity in the homogeneous mixtures of soil and landfill leachate linearly increased with the ionic concentration of pore fluid, which became more significant at higher volumetric water contents. However, the electrical conductivity in soil/diesel fuel mixture decreased with diesel fuel content and it was more significant at lower water contents. The electrode spacing should be determined by considering the type of contaminant to enhance the electrode sensitivity especially when two-electrode sensors are to be used. The electrode sensitivity for landfill leachate was constantly maintained regardless of the electrode spacings while that for the diesel fuel significantly increased at smaller electrode spacings. This is possibly due to the fact that the insulating barrier effect of the diesel fuel in non-aqueous phase was less predominant at large electrode spacing because electrical current can form the round-about paths over the volume with relatively small diesel fuel content. The model test results showed that the grid-net detection system can be used to monitor the leakage from waste landfill and underground storage tank sites. However, for a successful application of the detection system in the field, data under various field conditions should be accumulated.
Method of Mapping Anomalies in Homogenous Material
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2016-01-01
An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.
Identification and characterization of natural pipe systems in forested tropical soils
NASA Astrophysics Data System (ADS)
Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel
2017-04-01
Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.
NASA Astrophysics Data System (ADS)
McClymont, Alastair F.; Hayashi, Masaki; Bentley, Laurence R.; Christensen, Brendan S.
2013-09-01
our current understanding of permafrost thaw in subarctic regions in response to rising air temperatures, little is known about the subsurface geometry and distribution of discontinuous permafrost bodies in peat-covered, wetland-dominated terrains and their responses to rising temperature. Using electrical resistivity tomography, ground-penetrating radar profiling, and thermal-conduction modeling, we show how the land cover distributions influence thawing of discontinuous permafrost at a study site in the Northwest Territories, Canada. Permafrost bodies in this region occur under forested peat plateaus and have thicknesses of 5-13 m. Our geophysical data reveal different stages of thaw resulting from disturbances within the active layer: from widening and deepening of differential thaw features under small frost-table depressions to complete thaw of permafrost under an isolated bog. By using two-dimensional geometric constraints derived from our geophysics profiles and meteorological data, we model seasonal and interannual changes to permafrost distribution in response to contemporary climatic conditions and changes in land cover. Modeling results show that in this environment (1) differences in land cover have a strong influence on subsurface thermal gradients such that lateral thaw dominates over vertical thaw and (2) in accordance with field observations, thaw-induced subsidence and flooding at the lateral margins of peat plateaus represents a positive feedback that leads to enhanced warming along the margins of peat plateaus and subsequent lateral heat conduction. Based on our analysis, we suggest that subsurface energy transfer processes (and feedbacks) at scales of 1-100 m have a strong influence on overall permafrost degradation rates at much larger scales.
Visualizing geoelectric - Hydrogeological parameters of Fadak farm at Najaf Ashraf by using 2D spa
NASA Astrophysics Data System (ADS)
Al-Khafaji, Wadhah Mahmood Shakir; Al-Dabbagh, Hayder Abdul Zahra
2016-12-01
A geophysical survey achieved to produce an electrical resistivity grid data of 23 Schlumberger Vertical Electrical Sounding (VES) points distributed across the area of Fadak farm at Najaf Ashraf province in Iraq. The current research deals with the application of six interpolation methods used to delineate subsurface groundwater aquifer properties. One example of such features is the delineation of high and low groundwater hydraulic conductivity (K). Such methods could be useful in predicting high (K) zones and predicting groundwater flowing directions within the studied aquifer. Interpolation methods were helpful in predicting some aquifer hydrogeological and structural characteristics. The results produced some important conclusions for any future groundwater investment.
Surface electrical properties experiment study phase, volume 2
NASA Technical Reports Server (NTRS)
1973-01-01
The choice of an antenna for a subsurface radio sounding experiment is discussed. The radiation properties of the antennas as placed on the surface of the medium is examined. The objective of the lunar surface electrical properties experiment is described. A numerical analysis of the dielectric permittivity and magnetic permeability of a subsurface domain is developed. The application of electromagnetic field measurements between one or more transmitting antennas and a roving receiving station is explained.
Advances in interpretation of subsurface processes with time-lapse electrical imaging
Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.
2015-01-01
Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.
Advances in interpretation of subsurface processes with time-lapse electrical imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.
2015-03-15
Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.
Influence of plant roots on electrical resistivity measurements of cultivated soil columns
NASA Astrophysics Data System (ADS)
Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah
2016-04-01
Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed. Reference Lobet G, Hachez C, Chaumont F, Javaux M, Draye X. Root water uptake and water flow in the soil-root domain. In: Eshel A and Beeckman T, editors. Plant Roots. The Hidden Half. Boca Raton (US):CRC Press,2013. p. 24-1 - 24-13.
Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques
NASA Astrophysics Data System (ADS)
Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis
2014-08-01
Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.
Montes, Rubén Vidal; Martínez-Graña, Antonio Miguel; Martínez Catalán, José Ramón; Arribas, Puy Ayarza; Sánchez San Román, Francisco Javier; Zazo, Caridad
2017-11-10
The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.
Montes, Rubén Vidal; Sánchez San Román, Francisco Javier; Zazo, Caridad
2017-01-01
The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures. PMID:29125556
Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
NASA Astrophysics Data System (ADS)
Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini
2016-05-01
The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett
2016-08-01
Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.
Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett
2016-08-25
Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.
Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett
2016-01-01
Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer. PMID:27557803
NASA Astrophysics Data System (ADS)
Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.
2015-12-01
Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.
Thompson, Sarah S; Kulessa, Bernd; Benn, Douglas I; Mertes, Jordan R
2017-04-20
Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.
Delineation of voided and hydrocarbon contaminated regions with REDEM and STI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteley, B.
1997-10-01
Undetected voids and cavernous regions at shallow depth are a significant geotechnical and environmental hazard if they are filled or act as conduits for pollutants, particularly for LNAPL and DNAPL contaminants. Such features are often difficult to locate with drilling and conventional geophysical methods including resistivity, electromagnetics, microgravity, seismic and ground penetrating radar when they occur in industrial or urban areas where electrical and vibrational interference can combine with subsurface complexity due to human action to severely degrade geophysical data quality. A new geophysical method called Radiowave Diffraction Electromagnetics (RDEM) has proved successful for rapid screening of difficult sites andmore » for the delineation of buried sinkholes, cavities and hydrocarbon plumes. RDEM operates with a null coupled coil configuration at about 1.6 MHZ and is relatively insensitive to electrical interference and surrounding metal objects. It responds to subsurface variations in both conductivity and dielectric constant. Voided and contaminated regions can be more fully detailed when RDEM is combined with Seismic Tomographic Imaging (STI) from follow-up boreholes. Case studies from sites in Australia and South East Asia demonstrate the application of RDEM and STI and the value in combining both methods.« less
NASA Astrophysics Data System (ADS)
Thompson, Sarah S.; Kulessa, Bernd; Benn, Douglas I.; Mertes, Jordan R.
2017-04-01
Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.
Thompson, Sarah S.; Kulessa, Bernd; Benn, Douglas I.; Mertes, Jordan R.
2017-01-01
Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100–15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk. PMID:28425458
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
Wireless sensors for measuring sub-surface processes in firn
NASA Astrophysics Data System (ADS)
Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe
2017-04-01
Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.
NASA Astrophysics Data System (ADS)
Gurk, M.; Bosch, F. P.; Tougiannidis, N.
2013-04-01
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.
Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini
2017-01-01
We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.
Graham, Garth E.; Deszcz-Pan, Maria; Abraham, Jared E.; Kelley, Karen D.
2011-01-01
No drilling has taken place at the Drenchwater occurrence, so alternative data sources (for example, geophysics) are especially important in assessing possible indicators of mineralization. Data from the 2005 electromagnetic survey define the geophysical character of the rocks at Drenchwater and, in combination with geological and surface-geochemical data, can aid in assessing the possible shallow (up to about 50 m), subsurface lateral extent of base-metal sulfide accumulations at Drenchwater. A distinct >3-km-long electromagnetic conductive zone (observed in apparent resistivity maps) coincides with, and extends further westward than, mineralized shale outcrops and soils anomalously high in Pb concentrations within the Kuna Formation; this conductive zone may indicate sulfide-rich rock. Models of electrical resistivity with depth, generated from inversion of electromagnetic data, which provide alongflight-line conductivity-depth profiles to between 25 and 50 m below ground surface, show that the shallow subsurface conductive zone occurs in areas of known mineralized outcrops and thins to the east. Broader, more conductive rock along the western ~1 km of the geophysical anomaly does not reach ground surface. These data suggest that the Drenchwater deposit is more extensive than previously thought. The application of inversion modeling also was applied to another smaller geochemical anomaly in the Twistem Creek area. The results are inconclusive, but they suggest that there may be a local conductive zone, possibly due to sulfides.
NASA Astrophysics Data System (ADS)
Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.
2016-12-01
Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the SP method is a suitable tool for the monitoring of seasonal water flow dynamics at high-mountain permafrost sites. Current work is directed towards an improved field setup, as well as the quantitative analysis of the SP data based on laboratory calibration measurements.
Modelisations et inversions tri-dimensionnelles en prospections gravimetrique et electrique
NASA Astrophysics Data System (ADS)
Boulanger, Olivier
The aim of this thesis is the application of gravity and resistivity methods for mining prospecting. The objectives of the present study are: (1) to build a fast gravity inversion method to interpret surface data; (2) to develop a tool for modelling the electrical potential acquired at surface and in boreholes when the resistivity distribution is heterogeneous; and (3) to define and implement a stochastic inversion scheme allowing the estimation of the subsurface resistivity from electrical data. The first technique concerns the elaboration of a three dimensional (3D) inversion program allowing the interpretation of gravity data using a selection of constraints such as the minimum distance, the flatness, the smoothness and the compactness. These constraints are integrated in a Lagrangian formulation. A multi-grid technique is also implemented to resolve separately large and short gravity wavelengths. The subsurface in the survey area is divided into juxtaposed rectangular prismatic blocks. The problem is solved by calculating the model parameters, i.e. the densities of each block. Weights are given to each block depending on depth, a priori information on density, and density range allowed for the region under investigation. The present code is tested on synthetic data. Advantages and behaviour of each method are compared in the 3D reconstruction. Recovery of geometry (depth, size) and density distribution of the original model is dependent on the set of constraints used. The best combination of constraints experimented for multiple bodies seems to be flatness and minimum volume for multiple bodies. The inversion method is tested on real gravity data. The second tool developed in this thesis is a three-dimensional electrical resistivity modelling code to interpret surface and subsurface data. Based on the integral equation, it calculates the charge density caused by conductivity gradients at each interface of the mesh allowing an exact estimation of the potential. Modelling generates a huge matrix made of Green's functions which is stored by using the method of pyramidal compression. The third method consists to interpret electrical potential measurements from a non-linear geostatistical approach including new constraints. This method estimates an analytical covariance model for the resistivity parameters from the potential data. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Malet, J. P.; Gance, J.; Lajaunie, M.; Gallistl, J.; Denchik, N.; Flores Orozco, A.; Ottowitz, D.; Supper, R.; Sailhac, P.; Gautier, S.; Schmutz, M.
2017-12-01
Imaging water flows in landslides is of critical importance as the distribution of pore-fluid pressures controls the dynamics (acceleration, deceleration) of the material. Detecting and imaging water is a difficult task, not only because of the complex topography and the small dimensions of the geological structures, but also because the landslide material consists of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. Further, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the sub-surface hydrological properties. In order to image water in landslide bodies, we propose to combine multi-frequency electrical and electromagnetic measurements using campaigns or permanent instruments, and surface/boreole investigations, installed on several unstable slopes in France. To evaluate the information gained from electrical properties for different geological conditions, we discuss electrical and electro-magnetic imaging results for data collected at four different landslides located in France (Super-Sauze and La Valette in the South East Alps, Lodève lin the southern border of the Massif Central Massif, and Séchilienne in the North French Alps). Time-lapse electrical DC resistivity observations, complex electrical conductivity (conduction and polarization/chargeability) measured by IP imaging methods, and controlled-source electromagnetic (CS-AMT) methods are discussed. Imaging results demonstrate an improved lithological characterization of the landslide structures (delineation of the sliding planes, identification of the fractures, discrimination of clay lenses with enhanced resolution); further, water infiltration within the soil matrix and/or the fractures is discriminated allowing better modelling of the hydrological regime of the landslides at the slope scale. This research is conducted in the frame of the project HYDROSLIDE - Hydrogeophysical Monitoring of Clay-Rich Landslides funded by the Austrian Science Fund (FWF) and the French Research Agency (ANR).
NASA Astrophysics Data System (ADS)
Vargemezis, George; Diamanti, Nectaria; Tsourlos, Panagiotis; Fikos, Ilias
2014-05-01
A geophysical survey was carried out in the Petrified Forest of Evros, the northernmost regional unit of Greece. This collection of petrified wood has an age of approximately 35 million years and it is the oldest in Greece (i.e., older than the well-known Petrified Forest of Lesvos island located in the North Aegean Sea and which is possibly the largest of the petrified forests worldwide). Protection, development and maintenance projects still need to be carried out at the area despite all fears regarding the forest's fate since many petrified logs remain exposed both in weather conditions - leading to erosion - and to the public. This survey was conducted as part of a more extensive framework regarding the development and protection of this natural monument. Geophysical surveying has been chosen as a non-destructive investigation method since the area of application is both a natural ecosystem and part of cultural heritage. Along with electrical resistivity tomography (ERT), ground penetrating radar (GPR) surveys have been carried out for investigating possible locations of buried fossilized tree trunks. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the subsurface. Two and three dimensional subsurface geophysical images of the surveyed area have been constructed, pointing out probable locations of petrified logs. Regarding ERT, petrified trunks have been detected as high resistive bodies, while lower resistivity values were more related to the surrounding geological materials. GPR surveying has also indicated buried petrified log locations. As these two geophysical methods are affected in different ways by the subsurface conditions, the combined use of both techniques enhanced our ability to produce more reliable interpretations of the subsurface. After the completion of the geophysical investigations of this first stage, petrified trunks were revealed after a subsequent excavation at indicated locations. Moreover, we identified possible buried petrified targets at locations yet to be excavated.
NASA Astrophysics Data System (ADS)
Deceuster, J.; Kaufmann, O.; van Camp, M. J.; Lecocq, T.
2010-12-01
Permanent monitoring of changes in soil properties is of increasing interest in many engineering applications such as management of groundwater contamination, landslide and sinkhole risks prevention, detection of saline water intrusion, comprehension of charge and discharge processes of subsurface aquifer. As geophysical investigations allow detecting contrasts in physical properties of the subsurface, field and lab experiments have been conducted for a few years to assess the reliability of these methods to monitor temporal changes in soil properties. Among the methods available, DC resistivity tomography is recognized as one of the most promising techniques. In order to assess the efficiency of electrical resistivity in monitoring charge and discharge processes of subsurface aquifer, and also to better model hydrological effects on the gravity measurements, an on-going field experiment is conducted at the Membach station located in the eastern part of Belgium. This geophysical station is equipped with an accelerometer, seismometers and a superconducting gravimeter, installed at the end of a 130 m long tunnel excavated in a low-porosity argillaceous sandstone mount at 48.5 m depth. Continuous gravimetric observations have been taken since August 1995. Since 2004 rainfall and soil moisture changes are measured in situ. In July 2010, an automated permanent geoelectrical acquisition system was installed to monitor subsurface resistivity variations during a test period of about 6 months. The aim of this experiment is to better understand charge and discharge processes of the subsurface aquifer, which are expected to be mainly due to rainfall variations. This aquifer is localized at the top of the weathered bedrock at a depth of 4 to 5 meters. The acquisition system consists in a straight profile of 48 buried electrodes (with a 2 meters spacing) connected to a Syscal R1 resistivimeter which is automatically controlled by a computer. Resistivity measurements are taken at least twice a day at fixed hours using a combination of dipole-dipole and Wenner-Schlumberger arrays. Acquired data are filtered in order to reject faulty measures. Time-lapse inversion (Loke (1999)) is then carried out to reconstruct a 2D model of resistivity changes. Preliminary results obtained during July show changes in inverted resistivities of about 30% in the first 4 to 5 meters layer. These observations are consistent with changes in measured gravimetric water content. This seems to indicate that subsurface aquifer charge and discharge processes are mainly due to rainfall, as expected. However, inversion errors remain high even after data filtering. This could be a consequence of weather occurring in July, leading to a poor contact between the electrodes and dry host soils near the surface. This problem should not happen anymore as the rest of the monitoring experiment is conducted during the wet season. Acknowledgments This work is conducted under the auspices of the Walloon Region Ministry under the First Spin-Off program (visa n° 916974).
Three-phase heaters with common overburden sections for heating subsurface formations
Vinegar, Harold J [Bellaire, TX
2012-02-14
A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.
Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT
NASA Astrophysics Data System (ADS)
Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier
2017-04-01
Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.
Hydraulic and thermal soil Parameter combined with TEM data at quaternary coastal regions
NASA Astrophysics Data System (ADS)
Grabowski, Ima; Kirsch, Reinhard; Scheer, Wolfgang
2014-05-01
In order to generate a more efficient method of planning and dimensioning small- and medium sized geothermal power plants at quaternary subsurface a basic approach has been attempted. Within the EU-project CLIWAT, the coastal region of Denmark, Germany, Netherlands and Belgium has been investigated and air borne electro magnetic data was collected. In this work the regional focus was put on the isle of Föhr. To describe the subsurface with relevant parameters one need the information from drillings and geophysical well logging data. The approach to minimize costs and use existing data from state agencies led the investigation to the combination of specific electrical resistivity data and hydraulic and thermal conductivity. We worked out a basic soil/hydraulic conductivity statistic for the isle of Föhr by gathering all well logging data from the island and sorted the existing soil materials to associated kf -values. We combined specific electrical resistivity with hydraulic soil properties to generate thermal conductivity values by extracting porosity. Until now we generated a set of rough data for kf - values and thermal conductivity. The air borne TEM data sets are reliable up to 150 m below surface, depending on the conductivity of the layers. So we can suppose the same for the differentiated parameters. Since this is a very rough statistic of kf -values, further more investigation has to be made. Although the close connection to each area of investigation either over existing logging data or laboratory soil property values will remain necessary. Literature: Ahmed S, de Marsily G, Talbot A (1988): Combined Use of Hydraulic and Electrical Properties of an Aquifer in a Geostatistical Estimation of Transmissivity. - Groundwater, vol. 26 (1) Burschil T, Scheer W, Wiederhold H, Kirsch R (2012): Groundwater situation on a glacially affected barrier island. Submitted to Hydrology and Earth System Sciences - an Interactive Open Access Journal of the European Geosciences Union Burval Working Group (2006) Groundwater Resources in buried valleys- a challenge for Geosciences. - Leibniz-Institut für Angewandte Geophysik, Hannover Scheer W, König B, Steinmann F (2012): Die Grundwasserverhältnisse von Föhr. - In: Der Untergrund von Föhr: Geologie, Grundwasser und Erdwärme - Ergebnisse des INTERREG-Projektes CLIWAT. - Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Flintbek
NASA Astrophysics Data System (ADS)
Mesbah, Hany S.; Morsy, Essam A.; Soliman, Mamdouh M.; Kabeel, Khamis
2017-06-01
This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS) and Ground Penetrating Radar (GPR) for outlining and investigating of surface springing out (flow) of groundwater to the base of an service building site, and determining the reason(s) for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES) survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form), are easily clarifying the direction of groundwater flow toward the studied building.
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.
2013-12-01
Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.
NASA Astrophysics Data System (ADS)
Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.
2013-12-01
Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.
NASA Astrophysics Data System (ADS)
Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar
2016-05-01
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.
NASA Astrophysics Data System (ADS)
Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.
2014-12-01
The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.
Electrical resistivity surveys in Prospect Gulch, San Juan County, Colorado
McDougal, Robert R.
2006-01-01
Prospect Gulch is a major source of naturally occurring and mining related metals to Cement Creek, a tributary of the upper Animas River in southwestern Colorado. Efforts to improve water quality in the watershed have focused on Prospect Gulch because many of its abandoned mines and are located on federal lands. Information on sources and pathways of metals, and related ground-water flow, will be useful to help prioritize and develop remediation strategies. It has been shown that the occurrence of sulfate, aluminum, iron, zinc and other metals associated with historical mining and the natural weathering of pyritic rock is substantial. In this study, direct current resistivity surveys were conducted to determine the subsurface resistivity distribution and to identify faults and fractures that may act as ground-water conduits or barriers to flow. Five lines of resistivity data were collected in the vicinity of Prospect Gulch, and cross-section profiles were constructed from the field data using a two-dimensional inversion algorithm. The conductive anomalies in the profiles are most likely caused by wet or saturated rocks and sediments, clay rich deposits, or high TDS ground water. Resistive anomalies are likely bedrock, dry surficial and sub-surface deposits, or deposits of ferricrete.
Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data
NASA Astrophysics Data System (ADS)
Xie, Chengliang; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Zhang, Letian; Dong, Hao; Yin, Yaotian
2017-10-01
In the southern Tibetan plateau, which is considered to be the ongoing India-Eurasia continental collision zone, tracing of the Indian crustal front beneath Tibet is still controversial. We conducted deep subsurface electrical modeling in southern Tibet and discuss the geometry of the front of the Indian crust. Three areas along the Yarlung-Zangbo river zone for which previous magnetotelluric (MT) data are available were inverted independently using a three-dimensional MT inversion algorithm ModEM. Electrical horizontal slices at different depths and north-south oriented cross sections at different longitudes were obtained to provide a geoelectrical perspective for deep processes beneath the Tethyan Himalaya and Lhasa terrane. Horizontal slices at depths greater than - 15 km show that the upper crust is covered with resistive layers. Below a depth of - 20 km, discontinuous conductive distributions are primarily concentrated north of the Yarlung-Zangbo sutures (YZS) and could be imaged from mid- to lower crust. The results show that the maximum depth to which the resistive layers extend is over - 20 km, while the mid- to lower crustal conductive zones extend to depths greater than - 50 km. The results indicate that the conductive region in the mid- to lower crust can be imaged primarily from the YZS to south of the Bangong-Nujiang sutures in western Tibet and to 31°N in eastern Tibet. The northern front of the conductive zones appears as an irregular barrier to the Indian crust from west to east. We suggest that a relatively less conductive subsurface in the northern portion of the barrier indicates a relatively cold and strong crust and that the front of the Indian crust might be halted in the south of the barrier. We suggest that the Indian crustal front varies from west to east and has at least reached: 33.5°N at 80°E, 31°N at 85°E, and 30.5°N at 87°E and 92°E.[Figure not available: see fulltext.
Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics
NASA Astrophysics Data System (ADS)
Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.
2014-12-01
Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.
Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez
2012-01-01
Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
A series of interference and radiation patterns are presented for radio interferometry in subsurface probing. The interference patterns are due both to a vertical magnetic dipole and to a horizontal electric dipole. Mode solutions are also presented for layer thickness equal to 1 wavelength, as well as for thin layers.
NASA Astrophysics Data System (ADS)
Che-Alota, V.; Atekwana, E. A.; Sauck, W. A.; Nolan, J. T.; Slater, L. D.
2007-12-01
Previous geophysical investigations (1996, 1997, 2003, and 2004) conducted at the decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) showed a clearly defined high conductivity anomaly associated with hydrocarbon contaminants in the vadose zone and ground water near the source area. The source of the geophysical anomalies was attributed to biogeochemical modifications of the contaminated zone resulting from intrinsic bioremediation. During these previous surveys, ground penetrating radar (GPR) data showed a zone of attenuated GPR reflections extending from the vadose zone to below the water table. Self potential data (SP) data defined a positive anomaly coincident with the hydrochemically defined plume, while electrical resistivity data showed anomalously high conductivity within the zone of impact. In 2007, another integrated geophysical study of the site was conducted. GPR, SP, electrical resistivity, and induced polarization surveys were conducted with expectations of achieving similar results as the past surveys. However, preliminary assessment of the data shows a marked decrease in electrical conductivity and SP response over the plume. GPR data still showed the attenuated signals, but the zone of attenuation was only observed below the water table. We attribute the attenuation of the observed geophysical anomalies to ongoing soil vapor extraction initiated in 2003. Significant removal of the contaminant mass by the vapor extraction system has altered the subsurface biogeochemical conditions and these changes were documented by the 2007 geophysical and geochemical data. The results of this study show that the attenuation of the contaminant plume is detectable with geophysical methods.
Buscheck, Thomas A.; Bielicki, Jeffrey M.; Edmunds, Thomas A.; ...
2016-05-05
We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic carbon dioxide (CO 2) storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as excess energy on electric grids. Captured CO 2 is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide a supplemental working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells create a hydraulic mound to store pressure, CO 2, and thermal energy. This energy storage canmore » take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded and thus enable higher penetration of variable renewable energy technologies (e.g., wind, solar). CO 2 stored in the subsurface functions as a cushion gas to provide enormous pressure-storage capacity and displace large quantities of brine, some of which can be treated for a variety of beneficial uses. Geothermal power and energy-storage applications may generate enough revenues to compensate for CO 2 capture costs. While our approach can use nitrogen (N 2), in addition to CO 2, as a supplemental fluid, and store thermal energy, this study focuses using CO 2 for geothermal energy production and grid-scale energy storage. We conduct a techno-economic assessment to determine the levelized cost of electricity of using this approach to generate geothermal power. We present a reservoir pressure-management strategy that diverts a small portion of the produced brine for beneficial consumptive use to reduce the pumping cost of fluid recirculation, while reducing the risk of seismicity, caprock fracture, and CO 2 leakage.« less
Electrical Resistivity Imaging
Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...
Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures
NASA Astrophysics Data System (ADS)
James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.
2017-12-01
It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Keating, Kristina; Revil, Andre
2015-04-01
Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets was also observed. These results will provide a basis for understanding the effect of microbes within geologic media on SIP and low-field NMR measurements. This research suggests that both SIP and NMR have the potential to monitor microbial growth and activities in the subsurface and could provide spatiotemporal variations in bacterial abundance in porous media.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Astrophysics Data System (ADS)
Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser
2016-12-01
As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low electrical resistivity; and (4) superior imaging of the horizontal continuity of structures with low electrical resistivity. These advantages offer new opportunities for the MT method by making the results from a MT profile in a 3-D environment more convincing, supporting the possibility of high-resolution studies in 3-D areas without expending a large amount of economical and computational resources, and also offering better resolution of targets with high electrical resistivity.
Optimal joule heating of the subsurface
Berryman, James G.; Daily, William D.
1994-01-01
A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Rey, M.; Donostia International Physics Center; Tremblay, J. C.
2015-04-21
Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emergemore » from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.« less
The DESMEX Project - Deep Electromagnetic Sounding for Mineral EXploration
NASA Astrophysics Data System (ADS)
Meyer, U.; Becken, M.; Stolz, R.; Nittinger, C.; Cherevatova, M.; Siemon, B.; Martin, T.; Petersen, H.; Steuer, A.
2017-12-01
The DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration) aims to develop independent semi-airborne frequency domain systems for mineral exploration down to depths of 1 km and deeper. Two different helicopter-towed systems are being designed and tested using source installations on ground. One system uses among other equipment conventional three axis induction coils, a 3D-fluxgate and a high precision inertial motion unit. The use of the two different magnetometers allows to record data in a broad frequency range from 1 Hz to 10 kHz. The second system uses a newly developed SQUID-based sensing system of a similar frequency range and a self made inertial motion unit. Horizontal electric dipole transmitters provided by the Leibniz Institute for Applied Geophysics in Hannover and the Institute of Geophysics and Meteorology of the University in Cologne are used as ground based sources. First system tests showed a good performance of both systems with general noise levels below 50 pT/root(Hz). Test flights above the common survey area proved that the desired depth of investigation can be achieved and that the data is consistent with the subsurface conductivity structures. In order to verify the data acquired from the newly developed system at shallow depths and to provide a better starting model for later inversion calculations helicopter borne frequency domain electromagnetics has been acquired and fully processed over the test site Schleiz - Greiz in Germany. To further relate the subsurface conductivity models to the subsurface geology and mineralogy, petrophysical investigations have been performed on rock samples from the site of investigation and analogue samples.
Microbial community assembly patterns under incipient conditions in a basaltic soil system
NASA Astrophysics Data System (ADS)
Sengupta, A.; Stegen, J.; Alves Meira Neto, A.; Wang, Y.; Chorover, J.; Troch, P. A. A.; Maier, R. M.
2017-12-01
In sub-surface environments, the biotic components are critically linked to the abiotic processes. However, there is limited understanding of community establishment, functional associations, and community assembly processes of such microbes in sub-surface environments. This study presents the first analysis of microbial signatures in an incipient terrestrial basalt soil system conducted under controlled conditions. A sub-meter scale sampling of a soil mesocosm revealed the contrasting distribution patterns of simple soil parameters such as bulk density and electrical conductivity. Phylogenetic analysis of 16S rRNA gene indicated the presence of a total 40 bacterial and archaeal phyla, with high relative abundance of Actinobacteria on the surface and highest abundance of Proteobacteria throughout the system. Community diversity patterns were inferred to be dependent on depth profile and average water content in the system. Predicted functional gene analysis suggested mixotrophy lifestyles with both autotrophic and heterotrophic metabolisms, likelihood of a unique salt tolerant methanogenic pathway with links to novel Euryarchea, signatures of an incomplete nitrogen cycle, and predicted enzymes of extracellular iron (II) to iron (III) conversion followed by intracellular uptake, transport and regulation. Null modeling revealed microbial community assembly was predominantly governed by variable selection, but the influence of the variable selection did not show systematic spatial structure. The presence of significant heterogeneity in predicted functions and ecologically deterministic shifts in community composition in a homogeneous incipient basalt highlights the complexity exhibited by microorganisms even in the simplest of environmental systems. This presents an opportunity to further develop our understanding of how microbial communities establish, evolve, impact, and respond in sub-surface environments.
The use of FDEM in hydrogeophysics: A review
NASA Astrophysics Data System (ADS)
Boaga, Jacopo
2017-04-01
Hydrogeophysics is a rapidly evolving discipline emerging from geophysical methods. Geophysical methods are nowadays able to illustrate not only the fabric and the structure of the underground, but also the subsurface processes that occur within it, as fluids dynamic and biogeochemical reactions. This is a growing wide inter-disciplinary field, specifically dedicated to revealing soil properties and monitoring processes of change due to soil/bio/atmosphere interactions. The discipline involves environmental, hydrological, agricultural research and counts application for several engineering purposes. The most frequently used techniques in the hydrogeophysical framework are the electric and electromagnetic methods because they are highly sensitive to soil physical properties such as texture, salinity, mineralogy, porosity and water content. Non-invasive techniques are applied in a number of problems related to characterization of subsurface hydrology and groundwater dynamic processes. Ground based methods, as electrical tomography, proved to obtain considerable resolution but they are difficult to extend to wider exploration purposes due to their logistical limitation. Methods that don't need electrical contact with soil can be, on the contrary, easily applied to broad areas. Among these methods, a rapidly growing role is played by frequency domain electro-magnetic (FDEM) survey. This is due thanks to the improvement of multi-frequency and multi-coils instrumentation, simple time-lapse repeatability, cheap and accurate topographical referencing, and the emerging development of inversion codes. From raw terrain apparent conductivity meter, FDEM survey is becoming a key tool for 3D soil characterization and dynamics observation in near surface hydrological studies. Dozens of papers are here summarized and presented, in order to describe the promising potential of the technique.
NASA Astrophysics Data System (ADS)
Mohamed, N. E.; Yaramanci, U.; Kheiralla, K. M.; Abdelgalil, M. Y.
2011-07-01
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest-southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.
NASA Astrophysics Data System (ADS)
Anomohanran, Ochuko; Ofomola, Merrious Oviri; Okocha, Fredrick Ogochukwu
2017-05-01
Groundwater study involving the application of geophysical logging and vertical electrical sounding (VES) methods was carried out in parts of Ndokwa area of Delta State, Nigeria. The objective was to delineate the geological situation and the groundwater condition of the area. The geophysical logging of a drilled well and thirty VESs of the Schlumberger configuration were executed in this study using the Abem SAS 1000/4000 Terrameter. The result of the lithological study from the drilled well showed that the subsurface formation consist of lateritic topsoil, very fine sand, clayey fine sand, fine and medium grain sand, coarse sand, medium coarse sand and very coarse sand. The interpretation of the vertical electrical sounding data using a combination of curve matching and Win Resist computer iteration showed a close correlation with the well record. The result revealed the presence of four geoelectric layers with the aquifer identified to be in the fourth layer and having resistivity which ranged from 480 to 11,904 Ωm, while the depth ranged between 17.8 and 38.8 m. The analysis of the geophysical logging revealed that the average value of the electrical conductivity and the total dissolved solid of the groundwater in the aquifer were obtained as 229 μS/cm and 149 mg/cm3 respectively. These results indicate that the groundwater is within the permissible limit set by the Standard Organization of Nigeria for potable water which is 1000 μS/cm for electrical conductivity and 500 mg/cm3 for total dissolved solid. The fourth layer was therefore identified as the potential non conductive zone suitable for groundwater development in the study area.
NASA Astrophysics Data System (ADS)
Lajaunie, Myriam; Sailhac, Pascal; Malet, Jean-Philippe; Larnier, Hugo; Gance, Julien; Gautier, Stéphanie; Pierret, Marie-Claire
2017-04-01
Imaging water flows in mountainous watersheds is a difficult task, not only because of the topography and the dimensions of the existing structures, but also because the soils and rocks consist of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. In addition, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the subsurface hydrological properties. In order to image water flows, we consider measurements of the complex electrical conductivity (conduction and polarization/chargeability effects) which translate into a frequency dependance of the conductivity at the sample scale. We further discuss the combined use of electromagnetic (CS-AMT) and electric (DC and IP) measurements at the slope scale. The solving of processing, calibration and modelling issues allows the estimation of hydrological properties (i.e. permeability, soil humidity) giving master constraints for slope-scale hydrological modelling. We illustrate the application of these methods for the identification of the hydrological role of weathered structures of granitic catchments (e.g. Strengbach, Vosges mountains, ca. 80 km from Strasbourg, North East France) where new AMT processing has been developed in the AMT dead band to improve DC electrical imaging. We also illustrate the use of these methods to document the seasonal regime of the groundwater of the Lodève landslide (unstable slope located at Pégairolles, foot of the Cévennes mountain, ca. 80 km from Montpellier, South of France) where a new detailed time-lapse DC and IP setup (surface and borehole) is being tested. The works are supported by the research projects HYDROCRISZTO and HYDROSLIDE, and the large infrastructure project CRITEX.
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
NASA Astrophysics Data System (ADS)
Swaminathan, Srinivasan; Ko, Yoon Seok; Lee, Young-Su; Kim, Dong-Ik
2017-11-01
Two Fe-22 wt% Cr ferritic stainless steels containing varying concentrations of La (0.14 or 0.52 wt%), Cu (0.17 or 1.74 wt%) and B (48 or 109 ppm) are investigated with respect to oxidation behavior and high temperature area specific resistance (ASR) of the surface oxide scales. To determine the oxidation resistance of developed steels, continuous isothermal oxidation is carried out at 800 °C in air, for 2000 h, and their thermally grown oxide scale is characterized using dynamic SIMS, SEM/EDX, XRD and GI-XRD techniques. To assess their electrical performance, the ASR measurement by four-point probe method is conducted at 800 °C in air, for 400 h. In higher La content steel, the La-oxides at the scale/alloy interface promotes the oxygen transport which resulted in sub-surface oxidation of Mn, Cr, Ti and Al. Moreover, the inward growth of oxides contributes to increase of Fe-Cr alloy protrusions within the scale, which reduced the ASR. In contrast, sub-surface oxidation is reduced in high Cu-alloyed steel by segregated Cu at the scale/alloy interface. Thus, addition of Cu is effective to oxidation resistance and also to better electrical performance. However, no obvious impact of B on the scale sequence and/or ASR is observed.
Resistivity structures across the Humboldt River basin, north-central Nevada
Rodriguez, Brian D.; Williams, Jackie M.
2002-01-01
Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, S J
Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had alsomore » used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring.« less
Optimal joule heating of the subsurface
Berryman, J.G.; Daily, W.D.
1994-07-05
A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Growth of semimetallic ErAs films epitaxially embedded in GaAs
NASA Astrophysics Data System (ADS)
Crook, Adam M.; Nair, Hari P.; Lee, Jong H.; Ferrer, Domingo A.; Akinwande, Deji; Bank, Seth R.
2011-10-01
We present models for the growth and electrical conductivity of ErAs films grown with the nanoparticle-seeded film growth technique. This growth mode overcomes the mismatch in rotational symmetry between the rocksalt ErAs crystal structure and the zincblende GaAs crystal structure. This results in films of ErAs grown through a thin film of GaAs that preserves the symmetry of the substrate. The conductivity of the films, as a function of film thickness, are investigated and a surface roughness model is used to explain observed trends. Transmission electron micrographs confirm the suppression of anti-phase domains. A simple diffusion model is developed to describe the diffusion and incorporation of surface erbium into subsurface ErAs layers and predict potential failure mechanisms of the growth method.
Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun
2018-03-03
Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.
Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...
NASA Astrophysics Data System (ADS)
Herring, T.; Cey, E. E.; Pidlisecky, A.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wei, Wenbo; Ye, Gaofeng; Jin, Sheng; Jing, Jianen; Zhang, Letian; Dong, Hao; Xie, Chengliang; Omisore, Busayo O.; Guo, Zeqiu
2017-09-01
The approximately north-south trending Cenozoic Yadong-Gulu rift (YGR) in the eastern Lhasa block is an ideal location to investigate the extensional kinematic mechanism of the upper crust and the deformation characteristics of the Indian lithospheric slab in southern Tibet. The magnetotelluric (MT) method has been widely used in probing subsurface structures at lithospheric scale and is sensitive to high electrically conductive body (conductor). A three-dimensional (3-D) inversion of MT data was conducted to derive the east-west electrical structures across the northern segment of the YGR. The result reveals that the conductors in the middle crust are not continuous in the east-west direction. The deep conductor underneath the YGR is interpreted to result from the tearing of the Indian lithospheric slab. The upper crust to the east of the YGR is significantly intruded by underlying conductors. Based on the features of the 3-D inversion result from this study and other geophysical observations, the formation of the YGR is most likely caused by tearing of the Indian lithospheric slab through the pull of mid-lower crustal conductors that have locally weak strength beneath the YGR.
Tetracycline Resistance in the Subsurface of a Poultry Farm: Influence of Poultry Wastes
NASA Astrophysics Data System (ADS)
You, Y.; Ball, W. P.; Ward, M. J.; Hilpert, M.
2007-12-01
Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoir of antibiotic resistant bacteria. Using the electromagnetic induction (EMI) method of geophysical characterization, we measured the apparent subsurface electrical conductivity (ECa) at a CAFO site in order to assess the movement of pollutants associated with animal waste. The map of ECa and other available data suggest that (1) soil surrounding a poultry litter storage shed is contaminated by poultry waste, (2) a contamination plume in the subsurface emanates from that shed, and (3) the development of that plume is due to groundwater flow. We focused on understanding the spread of tetracycline resistance (Tc\\tiny R), because tetracycline is one of the most frequently used antibiotics in food animal production and therefore probably used at our field site. Microbiological experiments show the presence of Tc\\tiny R bacteria in the subsurface and indicate higher concentrations in the top soil than in the aquifer. Environmental DNA was extracted to identify CAFO- associated Tc\\tiny R genes and to explore a link between the presence of Tc\\tiny R and CAFO practices. A "shot-gun" cloning approach is under development to target the most prevalent Tc\\tiny R gene. This gene will be monitored in future experiments, in which we will study the transmission of Tc\\tiny R to naive E.~coli under selective pressure of Tc. Experimental results will be used to develop a mathematical/numerical model in order to describe the transmission process and to subsequently make estimates regarding the large-scale spread of antibiotic resistance.
Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...
2016-05-01
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less
NASA Astrophysics Data System (ADS)
Nguyen, F.; Benoit, S.; Gommers, K.; Ghysels, G.; Hermans, T.; Huysmans, M.
2017-12-01
Hydraulic conductivity of river sediments ranges from values smaller than 10-9 m/s to values higher than 10-2 m/s, with a dominance in values between 10-7 m/s and 10-3 m/s. Both horizontal hydraulic conductivity and vertical hydraulic conductivity show spatial variation in a riverbed. The spatial variation in hydraulic conductivity is due to the influence of the sedimentary and geomorphological environment as well as the method of determination, including scale, size and imprecision of the applied method. The characterization of the spatial variability of hydraulic conductivity in riverbeds is important because of its effect on the interaction between river and groundwater. These river - groundwater interactions influence water resource management, water quality and functioning of the riparian ecosystem. It is necessary in the simulation of 3D flow between river and aquifer near the interface and thus, it also determines contaminant transport and biogeochemical modelling in this riparian or hyporheic zone. Different processes occur in this specific zone such as transport, degradation, transformation, precipitation and sorption of substances, all dependent on hydraulic conductivity. Several methods exist to determine the hydraulic conductivity in river beds, both direct and indirect methods, from field to laboratory experiments or numerical modelling, but the uncertainty on obtained K values is often large because of the large variability of K. In the recent years, research has been performed on the usefulness of geophysical methods on rivers, in particular Electrical Resistivity Tomography (ERT) and Induced Polarization (IP). The implementation of ERT and IP in rivers provides a continuous image of the resistivity and chargeability of the subsurface, respectively, and can be used in several applications as proxies for hydraulic conductivity. This work reports and investigate a correlation between hydraulic conductivity measured by slug tests at an experimental site, and electrical resistivity, chargeability and normalized chargeability for riverbeds sediments.
NASA Astrophysics Data System (ADS)
Inauen, C.; Green, A.; Rabenstein, L.; Greenhalgh, S.; Kinzelbach, W.; Doetsch, J.; Hertrich, M.; Smoorenburg, M.; Volze, N.
2012-04-01
Understanding the relationships between precipitation volumes, surface runoff and subsurface storage, drainage and flow processes on mountain slopes is critical for flood management in alpine regions. In the Schächen catchment (central Switzerland) an unexpectedly delayed and heavy flood reaction to a long duration rainfall event was observed in 2005. It is believed that the steep creeping landmass slopes with thick soils were responsible for the delay. To better comprehend and visualise water infiltration and runoff formation we conducted a 3D time-lapse ERT experiment during a water sprinkling and injection experiment on the side of a hill in the Schächental region presumed representative of soil and other conditions associated with the delayed flood. Constant sprinkling at a rate of about 10mm/h was applied to a plot of area 30m x 5m. The electrical conductivity of the sprinkled water was approximately that of the pore water (25mS/m). A total of 33 consecutive ERT data sets, each comprising 3521 measured electrode configurations, were recorded with a 96-electrode array over an area of 27.5m x 14m, which included two thirds of the sprinkled area. Each electrode configuration was measured at a repeat interval of 2 to 2.8 hours. The entire 3D ERT monitoring experiment was divided into two separate time intervals: (1) the initial 25 hour period involving only freshwater sprinkling, until steady state was reached, (2) the following 35 hour period during which, in addition to the sprinkling, salt water was injected in two boreholes at a depth of 1m (unsaturated zone). The salt water injections were separated by 17 hours, and monitored until 14 hours after sprinkling stopped. During the first interval all changes in the subsurface resistivity are caused by changes in the water saturation and the temperature of the fluid, whereas in the second interval they are mainly due to changes in salt concentration of the pore fluid. Supplementary measurements of water table elevation and fluid electric conductivity were made in several boreholes. To image the subsurface resistivity changes, we inverted the ratios of time-lapse resistances to their background (pre-sprinkling) values. The sprinkling during time interval 1 allowed us to examine near-surface infiltration. Even from the first time window, the emergence of a shallow wetting front could be observed in the inverted depth sections as a decrease in bulk resistivity. Both salt water plumes during interval 2 were found to move laterally as well as vertically through the soil into a zone of fissured Flysch. Below the water table, the plume could be tracked further as a weaker ERT signal, which shows a flow component parallel to the water table in the downslope direction where it eventually breaks the surface. 3D ERT monitoring has proven to be a powerful tool to monitor water sprinkling and injection experiments. Due to its advantageous ability to resolve changes, both in time and in space, it captured most of the soil moisture and flow dynamics. Processes, such as infiltration and drainage, which are important for the understanding of runoff formation, could be readily visualized.
NASA Astrophysics Data System (ADS)
Paul, D.; Khan, I.; Sinha, R.
2016-12-01
Climatic changes and active tectonic movements in the northwestern plains of India during the Late Quaternary have led to the migration and abandonment of drainage systems and formation of a large number of palaeochannels. It has been postulated by previous workers that the Yamuna was flowing along the present-day dry palaeochannels of Ghaggar-Hakra riverbed >120 Ka ago and was relocated to its current position only during the Late Quaternary. However, till date, no conclusive evidence has been provided as to when and why the Yamuna avulsion occurred. This study aims to establish sub-surface existence of buried channels of paleo-Yamuna as possible courses of the paleo-Ghaggar river. Geo-electric studies using vertical electrical resistivity soundings (1D-VES), multi electrode electrical resistivity tomography (2D-ERT) and multi probe well log surveys have been carried out in one of the paleochannels of the Yamuna to map the large-scale geometry and architecture of the palaeochannel system in the subsurface. The main objective is to reconstruct the shallow subsurface stratigraphy and alluvial architecture of the interfluve between the modern Yamuna and Sutlej Rivers, in particular the linkage of the paleocourses of the Yamuna River to the drainage network of the northwestern alluvial plains. The geophysical signatures recorded as VES on two transects trending NW-SE in Karnal and Kaithal districts of Haryana at 9 and 13 locations respectively along with continuous ERT reveals the presence of subsurface fine to coarse sand bodies (20 to 30m thick) interbedded with silty clay layers that are laterally stacked. The occurrence of thick and wide subsurface sand bodies in the subsurface implies that these are the deposits of a large river system and suggests that the Yamuna was connected to the paleo-Ghaggar River as hypothesized by earlier workers based on remote sensing techniques. However, detailed sedimentological and chronological constraints are required to establish such links to unravel the stratigraphic manifestation of the buried channels, their sediment provenance and paleoclimatic conditions during the period when these river systems were active.
NASA Astrophysics Data System (ADS)
Hauck, C.; Bach, M.; Hilbich, C.
2007-12-01
Based on recent observational evidence of climate change in permafrost regions, it is now recognised that a detailed knowledge of the material composition of the subsurface in permafrost regions is required for modelling of the future evolution of the ground thermal regime and an assessment of the hazard potential due to degrading permafrost. However, due to the remote location of permafrost areas and the corresponding difficulties in obtaining high-quality data sets of the subsurface, knowledge about the material composition in permafrost areas is scarce. In frozen ground subsurface material may consist of four different phases: rock/soil matrix, unfrozen pore water, ice and air-filled pore space. Applications of geophysical techniques for determining the subsurface composition are comparatively cheap and logistically feasible alternatives to the single point information from boreholes. Due to the complexity of the subsurface a combination of complementary geophysical methods (e.g. electrical resistivity tomography (ERT) and refraction seismic tomography) is often favoured to avoid ambiguities in the interpretation of the results. The indirect nature of geophysical soundings requires a relation between the measured variable (electrical resistivity, seismic velocity) and the rock-, water-, ice- and air content. In this contribution we will present a model which determines the volumetric fractions of these four phases from tomographic electrical and seismic data sets. The so-called 4-phase model is based on two well-known geophysical mixing rules using observed resistivity and velocity data as input data on a 2-dimensional grid. Material properties such as resistivity and P- wave velocity of the host rock material and the pore water have to be known beforehand. The remaining free model parameters can be determined by a Monte-Carlo approach, the results of which are used additionally as indicator for the reliability of the model results. First results confirm the good model performance for various field cases in permafrost research. Especially the 2- dimensional monitoring and detection of ground ice and air cavities in the blocky surface layer was substantially improved. Validation of the model results was obtained using borehole and energy balance data from different permafrost sites.
NASA Astrophysics Data System (ADS)
Helaly, Ahmad Sobhy
2017-12-01
Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.
Filonovich, Sergej Alexandrovich; Águas, Hugo; Busani, Tito; Vicente, António; Araújo, Andreia; Gaspar, Diana; Vilarigues, Marcia; Leitão, Joaquim; Fortunato, Elvira; Martins, Rodrigo
2012-01-01
We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20 nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film. PMID:27877504
Coal Layer Identification using Electrical Resistivity Imaging Method in Sinjai Area South Sulawesi
NASA Astrophysics Data System (ADS)
Ilham Samanlangi, Andi
2018-03-01
The purpose of this research is to image subsurface resistivity for coal identification in Panaikang Village, Sinjai, South Sulawesi.Resistivity measurements were conducted in 3 lines of length 400 meters and 300 meter using resistivity imaging, dipole-dipole configuration. Resistivity data was processed using Res2DInv software to image resistivity variation and interpret lithology. The research results shown that coal resistivity in Line is about 70-200 Ωm, Line 2 is about 70-90 Ωm, and Line 3 is about 70-200 Ωm with average thickness about 10 meters and distributed to the east of research area.
Imaging hydrological processes in headwater riparian seeps with time-lapse electrical resistivity
USDA-ARS?s Scientific Manuscript database
The activation of subsurface seepage in response to precipitation events represents a potentially important pathway of nitrogen (N) delivery to streams in agricultural catchments. We used electrical resistivity imaging (ERI) and shallow piezometers to elucidate how seep and non-seep areas within the...
NASA Astrophysics Data System (ADS)
Lo, H.-C.; Hsu, S.-M.; Jeng, D.-I.; Ku, C.-Y.
2009-04-01
Taiwan is an island located at a tectonically active collision zone between the Eurasian Plate and the Pacific Plate. Also, the island is in the subtropical climate region with frequent typhoon events that are always accompanied by intense rainfalls within a short period of time. These seismic and climatic elements frequently trigger, directly or indirectly, natural disasters such as landslides on the island with casualties and property damages. Prompted by the urge for minimizing the detrimental effects of such natural disasters, Taiwan government has initiated and funded a series of investigations and studies aimed at better understanding the causes of the natural disasters that may lead to the formulation of more effective disaster contingency plans and possibly some forecasts system. The hydrogeology of a landslide site can help unveil the detention condition of storm water entering the aquifer system of the slope as well as its groundwater condition which, in turn, plays a critical role in slope stability. In this study, a hydrogeologic investigation employing a series of subsurface exploration technologies was conducted at an active landslide site in the vicinity of Hwa Yuan Village in northern Taiwan. The site, which covers an area of approximately 0.14 km2 (35 acres) and generally ranges between 25 to 36 degree in slope, was initially investigated with ground resistivity image profiling (RIP) and electrical logging in order to determine the lithology and possibly the water-bearing capacity of the geologic units beneath the slope surface. Subsequently, both acoustic and optical borehole loggings were then applied to identify potentially significant fracture features at depth and their hydrogeologic implications. In addition, flowmeter loggings and hydraulic packer tests were conducted to further characterize the hydrogeologic system of the site and quantitatively determine the hydraulic properties of major hydrogeologic units. According to the ground resistivity profiles combined with rock core data, the geologic units can be primarily categorized into colluvium and weathered rock at depths of 4-23 m and 23-80 m, respectively. An approximately 20 m shear zone at depths of 45-65 m was found based on the detection outcome of low electrical resistance. Also, according to the borehole electrical logging, the layer of sandstone was identified in the interval of 48-59 m and 68.5-74 m and showed low water-bearing capacity. In addition, the electrical logging identified the layer of shale was in the interval of 59-68.5 m, which possessed a high water-bearing capacity. The velocity profile along the borehole was obtained from the flowmeter logging. A relatively high velocity zone (1.36~2.23 m/min) was measured in the interval of sandstone and relatively low velocity zone (0.12~0.78 m/min) was measured in the interval of shale, which is similar to those found in electrical logging. Moreover, 198 discontinuity planes were identified from the borehole image logging. The orientations of all discontinuities were calculated and compiled to draw a stereographic projection diagram. Judging from the discontinuity clusters on the stereographic projection diagram, a plane failure may possibly occur based on Hoek and Brown's criteria. This is a good demonstration that slope failure geometry and type can be determined by stereographic projection diagram analysis. The borehole images also clearly showed the structures of discontinuities at depth. They not only helped to characterize the results of the above investigation technologies but also provided useful indication in selecting specific geologic intervals for packer tests. The packer tests were conducted and the intervals were isolated based on the results of borehole and flowmeter logging. They indicated that the hydraulic conductivities of the shale and sandstone intervals are respectively 1.37Ã-10-8 m/sec and 2.68Ã-10-5-3.76Ã-10-5 m/sec, which are in good accordance with the hydraulic characteristics inferred by flowmeter logging. The aforementioned investigation results, including the geology units and water-bearing capacity categorized by RIP and electrical logging, velocity and hydraulic conductivity obtained from flowmeter logging and packer test, and discontinuity structures recorded by borehole image logging, were used to clarify the complexity of the subsurface environment and to establish the hydrogeologic conceptual model of the landslide site.
Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study.
Brown, Sally; Svendsen, Alex; Henry, Chuck
2009-01-01
A field study was conducted to test the ability of biosolids (BS) and different types of lime to increase soil pH, neutralize subsoil acidity, and restore a vegetative cover to alluvial mine tailings in Leadville, CO. The tailings had soil pH of 5.2 and total Cd, Pb, and Zn of 75+/-20, 2600+/-1100, and 6700+/-1900 mg kg(-1). Types of lime included agricultural lime (AL), sugar beet lime (SBL), and lime kiln dust (LKD) applied at 224 Mg ha(-1) calcium carbonate equivalent. Plots were established in 2000 and monitored intermittently through 2007. All amendments increased pH in surface and subsurface depths, with LKD, LKD+BS, and SBL+BS being the most effective. Amendments also reduced 0.01 mol L(-1) Ca(NO3)2 extractable Zn and Cd compared to the control. Plant growth was sparse on all treatments with limited yield for three of four harvests. Poor growth may have been related to elevated electrical conductivity (EC). All amendments except LKD alone (5.79 dS m(-1)) increased EC compared to the control treatment (5.28 dS m(-1)). Electrical conductivity was highest in 2002 which had the lowest summer rainfall. In 2005 EC in all treatments except the SBL+BS was similar in the surface soil. Aboveground plant tissue concentrations of Zn and Cd were also elevated. Limited precipitation and high electrical conductivity may be responsible for poor plant growth. Higher rainfall for the last sampling period resulted in significant growth in the LKD+BS, SBL+BS, and LKD alone treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.
2007-09-16
To predict the long-term fate of low- and high-level waste forms in the subsurface over geologic time scales, it is important to understand the behavior of the corroding waste forms under conditions the mimic to the open flow and transport properties of a subsurface repository. Fluidized bed steam reformation (FBSR), a supplemental treatment technology option, is being considered as a waste form for the immobilization of low-activity tank waste. To obtain the fundamental information needed to evaluate the behavior of the FBSR waste form under repository relevant conditions and to monitor the long-term behavior of this material, an accelerated weatheringmore » experiment is being conducted with the pressurized unsaturated flow (PUF) apparatus. Unlike other accelerated weathering test methods (product consistency test, vapor hydration test, and drip test), PUF experiments are conducted under hydraulically unsaturated conditions. These experiments are unique because they mimic the vadose zone environment and allow the corroding waste form to achieve its final reaction state. Results from this on-going experiment suggest the volumetric water content varied as a function of time and reached steady state after 160 days of testing. Unlike the volumetric water content, periodic excursions in the solution pH and electrical conductivity have been occurring consistently during the test. Release of elements from the column illustrates a general trend of decreasing concentration with increasing reaction time. Normalized concentrations of K, Na, P, Re (a chemical analogue for 99Tc), and S are as much as 1 × 104 times greater than Al, Cr, Si, and Ti. After more than 600 days of testing, the solution chemistry data collected to-date illustrate the importance of understanding the long-term behavior of the FBSR product under conditions that mimic the open flow and transport properties of a subsurface repository.« less
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Predicting Fluid Flow in Stressed Fractures: A Quantitative Evaluation of Methods
NASA Astrophysics Data System (ADS)
Weihmann, S. A.; Healy, D.
2015-12-01
Reliable estimation of fracture stability in the subsurface is crucial to the success of exploration and production in the petroleum industry, and also for wider applications to earthquake mechanics, hydrogeology and waste disposal. Previous work suggests that fracture stability is related to fluid flow in crystalline basement rocks through shear or tensile instabilities of fractures. Our preliminary scoping analysis compares the fracture stability of 60 partly open (apertures 1.5-3 cm) and electrically conductive (low acoustic amplitudes relative to matrix) fractures from a 16 m section of a producing zone in a basement well in Bayoot field, Yemen, to a non-producing zone in the same well (also 16 m). We determine the Critically Stressed Fractures (CSF; Barton et al., 1995) and dilatation tendency (Td; Ferrill et al., 1999). We find that: 1. CSF (Fig. 1) is a poor predictor of high fluid flow in the inflow zone; 88% of the fractures are predicted to be NOT critically stressed and yet they all occur within a zone of high fluid flow rate 2. Td (Fig. 2) is also a poor predictor of high fluid flow in the inflow zone; 67% of the fractures have a LOW Td(< 0.6) 3. For the non-producing zone CSF is a very reliable predictor (100% are not critically stressed) whereas the values of Tdare consistent with their location in non-producing interval (81% are < 0.6) (Fig. 3 & 4). In summary, neither method correlates well with the observed abundance of hydraulically conductive fractures within the producing zone. Within the non-producing zone CSF and Td make reasonably accurate predictions. Fractures may be filled or partially filled with drilling mud or a lower density and electrically conductive fill such as clay in the producing zone and therefore appear (partly) open. In situ stress, fluid pressure, rock properties (friction, strength) and fracture orientation data used as inputs for the CSF and Td calculations are all subject to uncertainty. Our results suggest that scope exists to systematically quantify and explore the impacts of these uncertainties for better predictions of geomechanical stability and fluid conductivity in the subsurface.
Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R.
The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) tomore » insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated that electron conduction along pili is a better strategy for Fe(III) oxide reduction under conditions found in the subsurface than producing an electron shuttle. The role of pili in uranium reduction was also elucidated. Our results are the first example of metallic-like conductivity in a biological protein and represent a paradigm shift in the understanding of long-range biological electron transport. The results are of importance not only for understanding subsurface microbial processes involved in the mobility of metal contaminants and carbon cycling, but also make a basic contribution to microbiology and the emerging field of bioelectronics.« less
Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.
2014-12-01
The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.
A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets
NASA Astrophysics Data System (ADS)
JafarGandomi, Arash; Binley, Andrew
2013-09-01
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.
Petrophysical Effects during karstification
NASA Astrophysics Data System (ADS)
Mai, Franziska; Kirsch, Reinhard; Rücker, Carsten; Börner, Frank
2017-04-01
Sinkholes are depression or collapse structures caused by dissolution in the subsurface or subrosion processes and occur in a vast variety of geological settings. They pose a considerable threat to people's safety and can cause severe economic loss, especially in highly populated areas. Commonly, sinkholes are linked to anomalies in groundwater flow and to the heterogeneities in the soluble sediment. To develop an early recognition system of sinkhole instability, unrest and collapse it is necessary to obtain a better understanding of sinkhole generation. With this intent the joint project "SIMULTAN" studies sinkholes applying a combination of structural, geophysical, petrophysical, and hydrological mapping methods, accompanied by sensor development, and multi-scale monitoring. Studying the solution process of gypsum and limestone as well as the accompanying processes and their relation to hydrologic mechanisms from a petrophysical point of view is essential to understand geophysically detected anomalies related to sinkholes. The focus lies on measurements of the complex, frequency dependent electrical conductivity, the self potential and the travel time of elastic waves. First, systematic laboratory measurements of the complex electrical conductivity were conducted on samples consisting of unconsolidated sand. The fully saturated samples differed in the ionic composition of their pore water (e.g. calcium sulfate and/or sodium chloride). The results indicate that it is possible to detect effects of higher gypsum concentration in the ground- or pore-water using electrical conductivity. This includes both the karstificable sediments as well as the adjacent, non-soluble sediments like e.g. clean sand or shaly sand. To monitor karstification and subrosion processes on a field scale, a stationary measuring system was installed in Münsterdorf, Schleswig-Holstein in northern Germany, an area highly at risk of sinkhole development. The complex electrical conductivity is measured in two boreholes, located 5 meters apart. The results of these measurements are used to investigate possible solution of the subterranean chalk.
Imaging the Antarctic Ice Sheet Subsurface with the HF GPR TAPIR
NASA Astrophysics Data System (ADS)
Le Gall, A.; Ciarletti, V.; Berthelier, J.; Reineix, A.; Ney, R.; Bonaimé, S.; Corbel, C.
2006-12-01
An HF impulse polarimetric Ground Penetrating Radar (GPR) operating at very low frequencies (ranging from ~2 to 8MHz) has been developed in the frame of the NetLander mission. This instrument, named TAPIR (Terrestrial And Planetary Investigation by Radar), was designed to probe the Martian subsurface down to kilometric depth and search for potential water reservoirs. Although the NetLander mission was cancelled in 2003, the interest on the exploration of Martian subsurface was recently enhanced by the promising observations of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board of the ESA Mars Express orbiter. In particular, MARSIS detected the base of the North Polar Layered Deposits, penetrating up to ~1.8km the ice-rich upper layer of the underground. Such results suggest that TAPIR, which operates in the same frequency range as MARSIS and can performed a higher number of coherent integrations, is able to reach deeper structures. Yet, in contrast with classical GPRs, TAPIR can not move onto the surface and thus won't provide 2D or 3D scan of the subsurface. To retrieve, in spite of this NetLander restraint, the 3D distribution of the reflecting facets of the underground, the instrument was equipped with two electrical dipoles and a rotating magnetic sensor. These antennas allow to derive, from the measured values of 5 components of the wave field, the direction of arrival of the reflected waves hence the inclination of the buried reflectors. The first validation of this innovative concept was carried out during the RANETA (RAdar of NEtlander in Terre Adélie) campaign organized by the Institute Paul-Emile Victor in January-February 2004. This campaign took place on the Antarctic ice sheet close to the French-Italian Cap Prudhomme station. 8 soundings of the ice shelf were performed on various sites corresponding to different altitudes above the sea level (ranging from ~285m to ~1100m). We shall provide a detailed description of the principle of operation of the radar and of the method of analysis of the observations. The ice-bedrock interface was detected in all of the soundings with clear signals on both electric and magnetic antennas. The measured ice thicknesses show that up to ~ 45 km from the coast the bed-rock stays at an altitude close to the sea level. In several occasions several echoes have been detected and a dedicated data processing algorithm allows to disentangle the various echoes and determine the location of the reflecting facets of the bed-rock. In support to the data analysis, numerical simulations have been conducted using a FDTD method and reproduce the actual observations. These numerical simulations are also used to interpret the frequency profile of the electric antenna and obtain the electromagnetic characteristics of the upper layer of the ice.
Detecting Underground Mine Voids Using Complex Geophysical Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.
2006-12-01
In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filledmore » with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.« less
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.
2009-12-01
The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
NASA Astrophysics Data System (ADS)
Codd, A. L.; Gross, L.
2018-03-01
We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.
Geometry and surface damage in micro electrical discharge machining of micro-holes
NASA Astrophysics Data System (ADS)
Ekmekci, Bülent; Sayar, Atakan; Tecelli Öpöz, Tahsin; Erden, Abdulkadir
2009-10-01
Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.
Multi-step heater deployment in a subsurface formation
Mason, Stanley Leroy [Allen, TX
2012-04-03
A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.
NASA Astrophysics Data System (ADS)
Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.
2008-12-01
Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e.g. in Florida, Brazil, Mauritius and Australia's Great Barrier Reef lagoon. From shore-parallel transects along the Central Great Barrier Reef coastline, numerous processes and locations of SGD were identified, including terrestrially-derived fresh SGD and the recirculation of seawater in mangrove forests, as well as riverine sources. From variations in the inverse relationship of the two tracers radon and salinity, some aspects of regional freshwater input into the lagoon during the tropical wet season could be assessed. Such surveys on coastal scales can be a useful tool to obtain an overview of locations and processes of SGD on an unknown coastline.
NASA Astrophysics Data System (ADS)
Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.
2011-12-01
Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.
NASA Astrophysics Data System (ADS)
Tapias, Josefina C.; Lovera, Raúl; Himi, Mahjoub; Gallardo, Helena; Sendrós, Alexandre; Marguí, Eva; Queralt, Ignasi; Casas, Albert
2014-05-01
Actually, there are over 300 golf courses and more than three thousand licensed players in Spain. For this reason golf cannot be considered simply a hobby or a sport, but a very significant economic activity. Considered as one of the most rapidly expanding land-use and water demanding business in the Mediterranean, golf course development generates controversy. In the recent years there has been a considerable demand for golf courses to adopt environmentally sustainable strategies and particularly water authorities are forcing by law golf managers to irrigate with alternative water resources, mainly reclaimed wastewater. Watering practices must be based on soil properties that are characterized by samples removed from the different zones of the golf course and submitted to an accredited physical soil testing laboratory. Watering schedules are critical on greens with poor drainage or on greens with excessively high infiltration rates. The geophysical survey was conducted over the greens of the Girona Golf Club. Eighteen electrical resistivity tomographies were acquired using a mixed Wenner-Schlumberger configuration with electrodes placed 0.5 meter apart. Small stainless-steel nails were used as electrodes to avoid any damage in the fine turfgrass of greens The resistivity meter was set for systematically and automatically selects current electrodes and measurement electrodes to sample apparent resistivity values. Particle size analysis (PSA) has been performed on soil materials of any putting green. The PSA analysis has been composed of two distinct phases. The first has been the textural analysis of the soils for determining the content of sand, silt, and clay fraction via the use of a stack of sieves with decreasing sized openings from the top sieve to the bottom. Subsequently, the hydraulic conductivity of the substrates has been evaluated by means of Bredding and Hazen empirical relationships. The results of this research show that the electrical resistivity tomography is a non-invasive and cost-effective technique for high resolution characterizing the subsurface below golf course greens. The obtained models have provided detailed information on the lateral and vertical variability of each the subsurface and from an empirical correlation between the values of electrical resistivity and hydraulic permeability to assess the preferred areas of drainage that could pose in risk to the vulnerability of the underlying aquifers.
NASA Astrophysics Data System (ADS)
Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun
2001-12-01
Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.
IP Subsurface Imaging in the Presence of Buried Steel Infrastructure
NASA Astrophysics Data System (ADS)
Smart, N. H.; Everett, M. E.
2017-12-01
The purpose of this research is to explore the use of induced polarization to image closely-spaced steel columns at a controlled test site. Texas A&M University's Riverside Campus (RELLIS) was used as a control test site to examine the difference between actual and remotely-sensed observed depths. Known borehole depths and soil composition made this site ideal. The subsurface metal structures were assessed using a combination of ER (Electrical Resistivity) and IP (Induced Polarization), and later processed using data inversion. Surveying was set up in reference to known locations and depths of steel structures in order to maximize control data quality. In comparing of known and remotely-sensed foundation depths a series of questions is raised regarding how percent error between imaged and actual depths can be lowered. We are able to draw questions from the results of our survey, as we compare them with the known depth and width of the metal beams. As RELLIS offers a control for us to conduct research, ideal survey geometry and inversion parameters can be met to achieve optimal results and resolution
Adaptive Wavelet Modeling of Geophysical Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.
2009-12-01
Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
Subsurface damage detection in non-ferrous systems using 3D synchronous magnetic inspection
NASA Astrophysics Data System (ADS)
Gray, David; Berry, David
2018-04-01
Prime Photonics is developing a non-destructive inspection (NDI) technology, 3-D synchronous magnetic imaging system (3-D SMIS), that uses synchronous detection of magnetic signatures resulting from ultrasonic excitation to measure both surface and subsurface flaws in conductive structures. 3-D SMIS is showing promise in a wide range of NDI/NDE uses including characterizing surface-breaking cracks in ferrous and non-ferrous materials, locating and characterizing subsurface cracks within nonferrous conductive materials (Ti 6-4 and carbon fiber composites), and characterization of subsurface residual stresses. The technology offers a non-contact, high resolution inspection technique that does not require austere environments, and can accommodate non-planar specimen geometries.
NASA Astrophysics Data System (ADS)
Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander
2017-02-01
Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose-YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by -26 mV and -42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.
Bistatic GPR Measurements in the Egyptian Western Desert - Measured and Simulated data
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Le Gall, A.; Berthelier, J.; Ney, R.; Corbel, C.; Dolon, F.
2006-12-01
The TAPIR (Terrestrial And Planetary Investigation Radar) instrument has been designed at CETP (Centre d'etude des Environnements Terrestre et Planetaires) to explore the deep Martian subsurface (down to a few kilometers) and to detect liquid water reservoirs. TAPIR is an impulse ground penetrating radar operating at central frequencies ranging from 2 to 4 MHz operating from the surface. In November 2005, an updated version of the instrument working either in monostatic or in bi-static mode was tested in the Egyptian Western Desert. The work presented here focuses on the bi-static measurements performed on the Abou Saied plateau which shows a horizontally layered sub-surface. The electromagnetic signal was transmitted using one of the two orthogonal 70 m loaded electrical dipole antennas of the transmitting GPR. A second GPR, 50 or 100 meters apart, was dedicated to the signal reception. The received waves were characterized by a set of 5 measurements performed on the receiving GPR : the two horizontal components of the electric field and the three composants of the magnetic field. They were used to compute the direction of arrival of the incoming waves and to retrieve more accurately their propagation path and especially to discriminate between waves due to some sub-surface reflecting structure and those due to interaction with the surface clutter. A very efficient synchronization between the two radars enabled us to perform coherent additions up to 2^{31} which improves dramatically the obtained signal to noise ratio. Complementary electromagnetic measurements were conducted on the same site by the LPI (Lunar and Planetary Institute) and the SwRI (Southwest Research Institute). They provided independent information which helped the interpretation of the TAPIR data. Accurate simulations obtained by FDTD taking into account the information available are presented and used for both the interpretation of the measured data and the validation of the instrument.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.
2017-12-01
Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and connectivity of the landscape is being transferred to larger regions using aerial imaging and will be used to constrain multi-scale, multi-physics hydro-biogeochemical simulations of the East River watershed response to hydrological perturbations.
Subsurface banding poultry litter impacts greenhouse gas emissions
USDA-ARS?s Scientific Manuscript database
The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...
1976-02-01
Transition from Specular Reflection to Diffuse Scattering. . . 10 Composition of the Electric-Field Vector as Seen at the Radar...r t (16) R • FIGURE P COMPOSITION OF THE ELECTRIC-FIELD VECTOR AS SEEN AT THE RADAR, R, IN FIG. 2. The electric field at the radar, E, is the sum...wavelengths in the VHP and UHF ranges even subsurface characteristics can be important. So in a field experiment one must be careful to measure
NASA Astrophysics Data System (ADS)
Schmoldt, Jan-Philipp; Jones, Alan G.
2013-12-01
The key result of this study is the development of a novel inversion approach for cases of orthogonal, or close to orthogonal, geoelectric strike directions at different depth ranges, for example, crustal and mantle depths. Oblique geoelectric strike directions are a well-known issue in commonly employed isotropic 2-D inversion of MT data. Whereas recovery of upper (crustal) structures can, in most cases, be achieved in a straightforward manner, deriving lower (mantle) structures is more challenging with isotropic 2-D inversion in the case of an overlying region (crust) with different geoelectric strike direction. Thus, investigators may resort to computationally expensive and more limited 3-D inversion in order to derive the electric resistivity distribution at mantle depths. In the novel approaches presented in this paper, electric anisotropy is used to image 2-D structures in one depth range, whereas the other region is modelled with an isotropic 1-D or 2-D approach, as a result significantly reducing computational costs of the inversion in comparison with 3-D inversion. The 1- and 2-D versions of the novel approach were tested using a synthetic 3-D subsurface model with orthogonal strike directions at crust and mantle depths and their performance was compared to results of isotropic 2-D inversion. Structures at crustal depths were reasonably well recovered by all inversion approaches, whereas recovery of mantle structures varied significantly between the different approaches. Isotropic 2-D inversion models, despite decomposition of the electric impedance tensor and using a wide range of inversion parameters, exhibited severe artefacts thereby confirming the requirement of either an enhanced or a higher dimensionality inversion approach. With the anisotropic 1-D inversion approach, mantle structures of the synthetic model were recovered reasonably well with anisotropy values parallel to the mantle strike direction (in this study anisotropy was assigned to the mantle region), indicating applicability of the novel approach for basic subsurface cases. For the more complex subsurface cases, however, the anisotropic 1-D inversion approach is likely to yield implausible models of the electric resistivity distribution due to inapplicability of the 1-D approximation. Owing to the higher number of degrees of freedom, the anisotropic 2-D inversion approach can cope with more complex subsurface cases and is the recommended tool for real data sets recorded in regions with orthogonal geoelectric strike directions.
Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site
NASA Astrophysics Data System (ADS)
Rucker, D. F.; Levitt, M. T.
2006-12-01
The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.
NASA Astrophysics Data System (ADS)
Goebel, M.; Knight, R. J.; Pidlisecky, A.
2016-12-01
Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.
Turning Noise into Signal: Utilizing Impressed Pipeline Currents for EM Exploration
NASA Astrophysics Data System (ADS)
Lindau, Tobias; Becken, Michael
2017-04-01
Impressed Current Cathodic Protection (ICCP) systems are extensively used for the protection of central Europe's dense network of oil-, gas- and water pipelines against destruction by electrochemical corrosion. While ICCP systems usually provide protection by injecting a DC current into the pipeline, mandatory pipeline integrity surveys demand a periodical switching of the current. Consequently, the resulting time varying pipe currents induce secondary electric- and magnetic fields in the surrounding earth. While these fields are usually considered to be unwanted cultural noise in electromagnetic exploration, this work aims at utilizing the fields generated by the ICCP system for determining the electrical resistivity of the subsurface. The fundamental period of the switching cycles typically amounts to 15 seconds in Germany and thereby roughly corresponds to periods used in controlled source EM applications (CSEM). For detailed studies we chose an approximately 30km long pipeline segment near Herford, Germany as a test site. The segment is located close to the southern margin of the Lower Saxony Basin (LSB) and part of a larger gas pipeline composed of multiple segments. The current injected into the pipeline segment originates in a rectified 50Hz AC signal which is periodically switched on and off. In contrast to the usual dipole sources used in CSEM surveys, the current distribution along the pipeline is unknown and expected to be non-uniform due to coating defects that cause current to leak into the surrounding soil. However, an accurate current distribution is needed to model the fields generated by the pipeline source. We measured the magnetic fields at several locations above the pipeline and used Biot-Savarts-Law to estimate the currents decay function. The resulting frequency dependent current distribution shows a current decay away from the injection point as well as a frequency dependent phase shift which is increasing with distance from the injection point. Electric field data were recorded at 45 stations located in an area of about 60 square kilometers in the vicinity to the pipeline. Additionally, the injected source current was recorded directly at the injection point. Transfer functions between the local electric fields and the injected source current are estimated for frequencies ranging from 0.03Hz to 15Hz using robust time series processing techniques. The resulting transfer functions are inverted for a 3D conductivity model of the subsurface using an elaborate pipeline model. We interpret the model with regards to the local geologic setting, demonstrating the methods capabilities to image the subsurface.
USDA-ARS?s Scientific Manuscript database
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff, compared to the conventional surface broadcast application. Little in situ research has been conducted to determine effects of surface broadcast application and subsurfac...
Shah, Sachin D.; Kress, Wade H.; Legchenko, Anatoly
2007-01-01
The U.S. Geological Survey, in cooperation with the Texas Water Development Board, used surface geophysical methods at the Texas A&M University Brazos River Hydrologic Field Research Site near College Station, Texas, in a pilot study, to characterize the hydrostratigraphic properties of the Brazos River alluvium aquifer and determine the effectiveness of the methods to aid in generating an improved ground-water availability model. Three non-invasive surface geophysical methods were used to characterize the electrical stratigraphy and hydraulic properties and to interpret the hydrostratigraphy of the Brazos River alluvium aquifer. Two methods, time-domain electromagnetic (TDEM) soundings and two-dimensional direct-current (2D-DC) resistivity imaging, were used to define the lateral and vertical extent of the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the underlying Yegua Formation. Magnetic resonance sounding (MRS), a recently developed geophysical method, was used to derive estimates of the hydrologic properties including percentage water content and hydraulic conductivity. Results from the geophysics study demonstrated the usefulness of combined TDEM, 2D-DC resistivity, and MRS methods to reduce the need for additional boreholes in areas with data gaps and to provide more accurate information for ground-water availability models. Stratigraphically, the principal finding of this study is the relation between electrical resistivity and the depth and thickness of the subsurface hydrostratigraphic units at the site. TDEM data defined a three-layer electrical stratigraphy corresponding to a conductor-resistor-conductor that represents the hydrostratigraphic units - the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the Yegua Formation. Sharp electrical boundaries occur at about 4 to 6 and 20 to 22 meters below land surface based on the TDEM data and define the geometry of the more resistive Brazos River alluvium aquifer. Variations in resistivity in the alluvium aquifer range from 10 to more than 175 ohm-meters possibly are caused by lateral changes in grain size. Resistivity increases from east to west along a profile away from the Brazos River, which signifies an increase in grain size within the alluvium aquifer and therefore a more productive zone with more abundant water in the aquifer. MRS data can help delineate the subsurface hydrostratigraphy and identify the geometric boundaries of the hydrostratigraphic units by identifying changes in the free water content, transmissivity, and hydraulic conductivity. MRS data indicate that most productive zones of the alluvium aquifer occur between 12 and 25 meters below land surface in the western part of the study area where the hydraulic conductivity can be as high as 250 meters per day. Hydrostratigraphically, individual hydraulic conductivity values derived from MRS were consistent with those from aquifer tests conducted in 1996 in the study area. Average hydraulic conductivity values from the aquifer tests range from about 61 to 80 meters per day, whereas the MRS-derived hydraulic conductivity values range from about 27 to 97 meters per day. Interpreting an interpolated profile of the hydraulic conductivity values and individual values derived from MRS can help describe the hydrostratigraphic framework of an area and constrain ground-water models for better accuracy.
An analysis of a mixed convection associated with thermal heating in contaminated porous media.
Krol, Magdalena M; Johnson, Richard L; Sleep, Brent E
2014-11-15
The occurrence of subsurface buoyant flow during thermal remediation was investigated using a two dimensional electro-thermal model (ETM). The model incorporated electrical current flow associated with electrical resistance heating, energy and mass transport, and density dependent water flow. The model was used to examine the effects of heating on sixteen subsurface scenarios with different applied groundwater fluxes and soil permeabilities. The results were analyzed in terms of the ratio of Rayleigh to thermal Peclet numbers (the buoyancy ratio). It was found that when the buoyancy number was greater than unity and the soil permeability greater than 10(-12) m(2), buoyant flow and contaminant transport were significant. The effects of low permeability layers and electrode placement on heat and mass transport were also investigated. Heating under a clay layer led to flow stagnation zones resulting in the accumulation of contaminant mass and transport into the low permeability layer. The results of this study can be used to develop dimensionless number-based guidelines for site management during subsurface thermal activities. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Fares, Walid
2016-06-01
The present study is aimed at characterizing the subsurface geological and tectonic structure in Deir El-Adas area, by using Vertical Electrical Sounding survey (VES) and hydrogeological investigations, in order to determine the causes of the failure for the majority of the wells drilled in the area. The survey data was treated in three different approaches including direct VES inversion, pseudo-2D method and horizontal profiling, in order to maximize the reliability of the data interpretation. The results revealed the presence of a local faulted anticline structure at the top of the Paleogene formation, underneath the basaltic outcrops where Deir El-Adas village is situated. The appearance of this subsurface anticline structure has complicated the local hydro-geological situation, and most likely led to limitation of the groundwater recharge in the area. Moreover, the performed piezometric and discharge maps indicated the presence of a notable groundwater watershed, in addition to feeble water productivity of the wells drilled adjacent to Deir El-Adas, mostly related to the subsurface geological and tectonic settings in the area.
NASA Astrophysics Data System (ADS)
Casas, Albert; Himi, Mahjoub; Estévez, Esmeralda; Lovera, Raúl; Sendrós, Alexandre; Palacios-Díaz, M. Pino; Tapias, Josefina C.; Cabrera, M. Carmen
2015-04-01
The characterization of the preferential areas of water infiltration through the vadose zone is of paramount importance to assess the pollution vulnerability of the underlying aquifers. Nevertheless, geometry and the hydraulic conductivity of each geological unit which constitute the unsaturated zone are difficult to study from traditional techniques (samples from trenches) and normally do not go beyond a meter depth from of the surface. On the other hand, boreholes are expensive and provide only local information not always representative of the whole unsaturated zone. For this reason, geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where basaltic rocks, pyroclastic and volcanic ash-fall deposits have a wide range of values. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria Island), irrigated with reclaimed wastewater, a detailed electrical resistivity tomography survey has been carried out. This technique has allowed to define the geometry of the existing geological formations by their high electrical resistivity contrast. Subsequently, in representative outcrops the value of resistivity of each of these lithologies has been measured and simultaneously undisturbed samples have been taken measuring the hydraulic conductivity in the laboratory. Finally a statistical correlation between both variables has been established for evaluating the vulnerability to groundwater pollution at different zones of the golf course.
Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield
Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.
2001-01-01
Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.
NASA Astrophysics Data System (ADS)
Emmert, Adrian; Kneisel, Christof
2017-04-01
Uertsch rockglacier (46.61° N, 9.84°E, ca. 2500m asl.) is a tongue-shaped 300m x 100m landform at the head of a small high mountain valley in the Eastern Swiss Alps. Located at the lower end of possible permafrost existence, the rockglacier shows indications of permafrost decay although borehole temperature measurements exhibit an at least partly occurrence of permanently frozen subsurface conditions. To delimit the extent of the frozen area and to characterize subsurface structures, we performed three adjacent 3-D Electrical Resistivity Imaging (ERI) surveys consisting of data from altogether 138 merged 2-D profiles, covering nearly the entire rockglacier by an investigation area of more than 2.5 ha. More than 47000 data points of Wenner-Schlumberger and Dipol-Dipol electrode arrays grant sufficient data coverage. Ground-truthing was achieved through borehole temperature measurements and multiple comparative ground-penetrating radar (GPR) and seismic refraction tomography (SRT) surveys. Results show that the rockglacier today lacks a consistent permafrost table and only shows a patchy permafrost distribution. Several structures differing in geometry and electric resistivity show a complex pattern of ice-rich, ice-poor and ice-free areas. We could identify glacial influence in the root zone of the rockglacier, where a 3200m2 perennial surface ice field is visible. In a downslope direction, a shallow layer of high resistivity values, which is limited to the shallow subsurface, follows the ice field and indicates a genesis by refreezing meltwater. The central part of the rockglacier also shows traces of glacial interaction by the occurrence of a several meters thick buried ice patch in the shallow subsurface at a marginal position. Next to this position, in an area where longitudinal surface ridges are exposed, modelled resistivity values indicate frozen conditions with relatively low ice content, limited to the shallow subsurface. We assume that these structures are likely connected to permafrost creep processes. The frontal part of the rockglacier is affected by a strong ridge-and-furrow topography with arcuate ridge structures. Frozen conditions within these structures indicate an increase of ice content by thickening through compressive flow. Our study reflects the complexity of landform evolution for Uertsch rockglacier, where glacial and periglacial processes occur in close proximity. This emphasize the value of comprehensive 3-D investigations to assess the geometry and characteristics of larger subsurface structures.
Geophysical Signitures From Hydrocarbon Contaminated Aquifers
NASA Astrophysics Data System (ADS)
Abbas, M.; Jardani, A.
2015-12-01
The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole and 3D geophysical measurements coupled to biological and chemical surface phase experiments in order to monitor the bioremediation processes.
Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.
Pidlisecky, A; Moran, T; Hansen, B; Knight, R
2016-03-01
We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south. © 2015, National Ground Water Association.
NASA Technical Reports Server (NTRS)
1996-01-01
Topic considered include: survey objectives; technologies for non-Invasive imaging of subsurface; cost; data requirements and sources; climatic condition; hydrology and geology; chemicals; magnetometry; electrical(resistivity, potential); optical-style imaging; reflection/refraction seismics; gravitometry; photo-acoustic activation;well drilling and borehole analysis; comparative assessment matrix; ground sensors; choice of the neutron sources; logistic of operations; system requirements; health and safety plans.
NASA Astrophysics Data System (ADS)
Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim
2017-11-01
Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.
NASA Astrophysics Data System (ADS)
Chave, Alan D.; Mattsson, Johan; Everett, Mark E.
2017-11-01
In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire sub-seafloor resistivity structure with the sea surface. The Fréchet derivatives are dominated by preferential sensitivity to the vertical conductivity in the reservoir layer and overburden at short offsets. The horizontal conductivity Fréchet derivatives are weaker than to comparable to the vertical derivatives at long offsets in the substrate. This means that the sensitivity to the horizontal conductivity is present in the shallow parts of the subsurface. In the presence of transverse anisotropy, it is necessary to go to higher frequencies to sense the horizontal conductivity in the overburden as compared to an isotropic model with the same horizontal conductivity. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
NASA Astrophysics Data System (ADS)
Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.
2011-12-01
In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.
Advanced Borehole Radar for Hydrogeology
NASA Astrophysics Data System (ADS)
Sato, M.
2014-12-01
Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.
H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell
2010-01-01
Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
Detectability of Wellbore CO2 Leakage using the Magnetotelluric Method
NASA Astrophysics Data System (ADS)
Yang, X.; Buscheck, T. A.; Mansoor, K.; Carroll, S.
2016-12-01
We assessed the effectiveness of the magnetotelluric (MT) method in detecting CO2 and brine leakage through a wellbore, which penetrates a CO2 storage reservoir, into overlying aquifers, 0 to 1720 m in depth, in support of the USDOE National Risk Assessment Partnership (NRAP) monitoring program. Synthetic datasets based on the Kimberlina site in the southern San Joaquin Basin, California were created using CO2 storage reservoir models, wellbore leakage models, and groundwater/geochemical models of the overlying aquifers. The species concentrations simulated with the groundwater/geochemical models were converted into bulk electrical conductivity (EC) distributions as the MT model input. Brine and CO2 leakage into the overlying aquifers increases ion concentrations, and thus results in an EC increase, which may be detected by the MT method. Our objective was to estimate and maximize the probability of leakage detection using the MT method. The MT method is an electromagnetic geophysical technique that images the subsurface EC distribution by measuring natural electric and magnetic fields in the frequency range from 0.01 Hz to 1 kHz with sensors on the ground surface. The ModEM software was used to predict electromagnetic responses from brine and CO2 leakage and to invert synthetic MT data for recovery of subsurface conductivity distribution. We are in the process of building 1000 simulations for ranges of permeability, leakage flux, and hydraulic gradient to study leakage detectability and to develop an optimization method to answer when, where and how an MT monitoring system should be deployed to maximize the probability of leakage detection. This work was sponsored by the USDOE Fossil Energy, National Energy Technology Laboratory, managed by Traci Rodosta and Andrea McNemar. This work was performed under the auspices of the USDOE by LLNL under contract DE-AC52-07NA27344. LLNL IM release number is LLNL-ABS-699276.
Ren, Shuting; Yan, Bei; Zainal Abidin, Ilham Mukriz; Wang, Yi
2017-01-01
A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size. PMID:28758985
Li, Yong; Ren, Shuting; Yan, Bei; Zainal Abidin, Ilham Mukriz; Wang, Yi
2017-07-31
A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.
Geophysical exploration with audio frequency magnetic fields
NASA Astrophysics Data System (ADS)
Labson, V. F.
1985-12-01
Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.
NASA Astrophysics Data System (ADS)
Ghimire, H.; Bhusal, U. C.; Khatiwada, B.; Pandey, D.
2017-12-01
Geophysical investigation using two dimensional electrical resistivity tomography (2D-ERT) method plays a significant role in determining the subsurface resistivity distribution by making measurement on the ground surface. This method was carried out at Dudhkoshi-II (230 MW) Hydroelectric Project, lies on Lesser Himalayan region of the Eastern Nepal to delineate the nature of the subsurface geology to assess its suitability for the construction of dam, desanding basin and powerhouse. The main objective of the proposed study consists of mapping vertical as well as horizontal variations of electrical resistivity to enable detection of the boundaries between unconsolidated materials and rocks of the different resistivity, possible geologic structures, such as possible presence of faults, fractures, and voids in intake and powerhouse area. For this purpose, the (WDJD-4 Multi-function Digital DC Resistivity/IP) equipment was used with Wenner array (60 electrodes). To fulfill these objectives of the study, the site area was mapped by Nine ERT profiles with different profile length and space between electrodes was 5 m. The depth of the investigation was 50 m. The acquired data were inverted to tomogram sections using tomographic inversion with RES2DINV commercial software. The Tomography sections show that the subsurface is classified into distinct geo-electric layers of dry unconsolidated overburden, saturated overburden, fractured rock and fresh bedrock of phyllites with quartzite and gneiss with different resistivity values. There were no voids and faults in the study area. Thickness of overburden at different region found to be different. Most of the survey area has bedrock of phyllites with quartzite; gneiss is also present in some location at intake area. Bedrock is found at the varies depth of 5-8 m at dam axis, 20-32 m at desanding basin and 3-10 m at powerhouse area. These results are confirmed and verified by using several boreholes data were drilled on the survey area. The results obtained from the study showed that the site is suitable for the construction of the proposed dam, desanding basin and powerhouse.
Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw
Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre
2014-01-01
A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM) data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake-talik formation. Numerical modeling scenarios are evaluated that consider non-isothermal hydrologic responses to variable forcing from different lake depths and for different hydrologic gradients. A novel physical property relationship connects the dynamic distribution of electrical resistivity to ice saturation and temperature outputs from the SUTRA groundwater simulator with freeze–thaw physics. The influence of lithology on electrical resistivity is controlled by a surface conduction term in the physical property relationship. Resistivity models, which reflect changes in subsurface conditions, are used as inputs to simulate AEM data in order to explore the sensitivity of geophysical observations to permafrost thaw. Simulations of sublacustrine talik formation over a 1000-year period are modeled after conditions found in the Yukon Flats, Alaska. Synthetic AEM data are analyzed with a Bayesian Markov chain Monte Carlo algorithm that quantifies geophysical parameter uncertainty and resolution. Major lithological and permafrost features are well resolved by AEM data in the examples considered. The subtle geometry of partial ice saturation beneath lakes during talik formation cannot be resolved using AEM data, but the gross characteristics of sub-lake resistivity models reflect bulk changes in ice content and can identify the presence of a talik. A final synthetic example compares AEM and ground-based electromagnetic responses for their ability to resolve shallow permafrost and thaw features in the upper 1–2 m below ground outside the lake margin.
NASA Astrophysics Data System (ADS)
Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel
2014-05-01
Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").
Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind
2013-04-05
The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.
NASA Astrophysics Data System (ADS)
Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.
2018-04-01
Both electrical resistivity and seismic refraction profiling has become a common method in pre-investigations for visualizing subsurface structure. The encouragement to use these methods is that combined of both methods can decrease the obscure inherent to the distinctive use of these methods. Both method have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was exists and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both method by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the material deposits of impact crater. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis shows the deposit material start from ground surface to 20 meter depth which the class separation clearly separate the deposit material.
Electrical Methods: Self-Potential (SP) Method
Various potentials are produced in native ground or within the subsurface altered by our actions. Natural potentials occur about dissimilar materials, near varying concentrations of electrolytic solutions, and due to the flow of fluids.
Geophysical assessment of karst activity
DOT National Transportation Integrated Search
2008-02-01
MST proposes to acquire electrical resistivity data within a pipeline/roadway ROW. These geophysical data will be processed, analyzed and interpreted with the objective of locating and mapping any subsurface voids that might compromise the integrity ...
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project
2010-12-01
The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk flow velocities over 1 m/h, presumably due to the existing downslope macroporosity network. These observations are being used to estimate macroporosity network properties and constrain hydrologic model parameters in different land uses. These results show that these non-invasive tests are a useful tool to determine the distribution of downslope lateral flow generated from pit and surface-applied saline solutions. ERT experimental results from a hillslope-scale experiment in central Panama, showing change in electrical conductivity from 30-minutes to 330-minutes after continuous injection of salinity contrast at x=0.
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.
2010-08-01
Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W
2017-02-01
The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.
Electrical Resistivity Imaging of Saltwater and Freshwater Along the Coast of Monterey Bay
NASA Astrophysics Data System (ADS)
Knight, R. J.; Pidlisecky, A.; Moran, T.; Goebel, M.
2014-12-01
A coastal region represents a dynamic interface where the processes of saltwater intrusion and freshwater flow create complex spatial and temporal changes in water chemistry. These changes in water chemistry affect both human use of coastal groundwater aquifers and the functioning of coastal ecosystems. Mapping out the subsurface distribution of saltwater and freshwater is a critical step in predicting, and managing, changes in water chemistry in coastal regions. Our research is focused on California's Monterey Bay region where agriculturally-intensive land meets the sensitive marine environment of the Monterey Bay National Marine Sanctuary. Along the coast of Monterey Bay extensive groundwater extraction (groundwater provides more than 80% of the area's water supply) has led to saltwater intrusion into aquifers at various locations. To date, the mapping of saltwater intrusion has relied on measurements of changing water chemistry in monitoring wells. But it is challenging with wells to capture the spatially complex hydrostratigraphy resulting from changing depositional environments and numerous faulting events. We suggest that geophysical methods be used to map and monitor the distribution of saltwater and freshwater by acquiring non-invasive, high-resolution continuous images of the subsurface. In a pilot study conducted over the past four years, we used electrical resistivity imaging to successfully identify regions of saltwater and freshwater 150 m below sea level along a 7 km stretch of the southern Monterey Bay coast. We employed large-offset electrical resistance tomography using a 96-electrode system with an overall array length of 860 m. The results showed excellent agreement with measurements in nearby monitoring wells. The large-scale image provided by the geophysical measurements revealed the hydrostratigraphic controls on the spatial distribution of the saltwater/freshwater interface. In October 2014 we will expand this study, using large-offset electrical resistance tomography to image to a depth of 300 m along a 40 km stretch of the Monterey Bay coast. The acquisition of this continuous dataset will provide an improved understanding of the biophysical and human factors controlling the processes of saltwater intrusion and freshwater flow in this coastal region.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.
2014-12-01
Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.
NASA Astrophysics Data System (ADS)
Johnson, T. C.
2016-12-01
Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Coil design considerations for a high-frequency electromagnetic induction sensing instrument
NASA Astrophysics Data System (ADS)
Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon
2016-05-01
Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...
Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H
2013-09-01
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.
2015-12-01
An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng
2017-10-25
Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.
NASA Astrophysics Data System (ADS)
Casas, Albert; Cosentino, Pietro L.; Fiandaca, Gianluca; Himi, Mahjoub; Macias, Josep M.; Martorana, Raffaele; Muñoz, Andreu; Rivero, Lluís; Sala, Roger; Teixell, Imma
2018-04-01
An integrated geophysical survey has been conducted at the Tarragona's Cathedral (Catalonia, NE Spain) with the aim to confirm the potential occurrence of archaeological remains of the Roman Temple dedicated to the Emperor Augustus. Many hypotheses have been proposed about its possible location, the last ones regarding the inner part of the Cathedral, which is one of the most renowned temples of Spain (twelfth century) evolving from Romanesque to Gothic styles. A geophysical project including electrical resistivity tomography (ERT) and ground probing radar (GPR) was planned over 1 year considering the administrative and logistic difficulties of such a project inside a cathedral of religious veneration. Finally, both ERT and GPR have been conducted during a week of intensive overnight surveys that provided detailed information on subsurface existing structures. The ERT method has been applied using different techniques and arrays, ranging from standard Wenner-Schlumberger 2D sections to full 3D electrical imaging with the advanced Maximum Yield Grid array. Electrical resistivity data were recorded extensively, making available many thousands of apparent resistivity data to obtain a complete 3D image after a full inversion. In conclusion, some significant buried structures have been revealed providing conclusive information for archaeologists. GPR results provided additional information about shallowest structures. The geophysical results were clear enough to persuade religious authorities and archaeologists to conduct selected excavations in the most promising areas that confirmed the interpretation of geophysical data. In conclusion, the significant buried structures revealed by geophysical methods under the cathedral were confirmed by archaeological digging as the basement of the impressive Roman Temple that headed the Provincial Forum of Tarraco, seat of the Concilium of Hispania Citerior Province.
NASA Astrophysics Data System (ADS)
Um, W.; Rod, K. A.; Strickland, C. E.
2016-12-01
Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media, and the X-curve, commonly used to depict the relative permeability of fractures. Relative permeability measurements from the cores containing a higher degree of fracturing showed a better fit to X-curve, while data from the minimally fractured cores were better described by fitting to the Corey-curve.
Mofettes - Investigation of Natural CO2 Springs - Insights and Methods applied
NASA Astrophysics Data System (ADS)
Lübben, A.; Leven, C.
2014-12-01
The quantification of carbon dioxide concentrations and fluxes leaking from the subsurface into the atmosphere is highly relevant in several research fields such as climate change, CCS, volcanic activity, or earthquake monitoring. Many of the areas with elevated carbon dioxide degassing pose the problem that under the given situation a systematic investigation of the relevant processes is only possible to a limited extent (e.g. in terms of spatial extent, accessibility, hazardous conditions). The upper Neckar valley in Southwest Germany is a region of enhanced natural subsurface CO2 concentrations and mass fluxes of Tertiary volcanic origin. At the beginning of the twentieth century several companies started industrial mining of CO2. The decreasing productivity of the CO2 springs led to the complete shutdown of the industry in 1995 and the existing boreholes were sealed. However, there are evidences that the reservoir, located in the deposits of the Lower Triassic, started to refill during the last 20 years. The CO2 springs replenished and a variety of different phenomena (e.g. mofettes and perished flora and fauna) indicate the active process of large scale CO2 exhalation. This easy-to-access site serves as a perfect example for a natural analog to a leaky CCS site, including abandoned boreholes and a suitable porous rock reservoir in the subsurface. During extensive field campaigns we applied several monitoring techniques like measurements of soil gas concentrations, mass fluxes, electrical resistivity, as well as soil and atmospheric parameters. The aim was to investigate and quantify mass fluxes and the effect of variations in e.g. temperature, soil moisture on the mass flux intensity. Furthermore, we investigated the effect of the vicinity to a mofette on soil parameters like electrical conductivity and soil CO2 concentrations. In times of a changing climate due to greenhouse gases, regions featuring natural CO2 springs demand to be intensively investigated. Our results serve as a contribution to the development of site-specific monitoring networks at CCS sites, as well as a step forward to unravel the share of natural CO2 springs in the global carbon cycle.
NASA Astrophysics Data System (ADS)
Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.
2014-04-01
Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.
OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION
NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...
Measurements of Low-Frequency Acoustic Attenuation in Soils.
1994-10-13
Engineering Research Laboratory to design an acoustic subsurface imaging system, a set of experiments was conducted in which the attenuation and the velocity...support of the U.S. Army Construction Engineering Research Laboratory’s efforts to design an acoustic subsurface imaging system which would ideally be...of acoustic waves such as those generated by a subsurface imaging system. An experiment reported in the literature characterized the acoustic
Solid-State Multimission Magnetometer (SSM(3)): Application to Groundwater Exploration on Mars
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
2002-01-01
This report describes work to develop solid-state magnetometers using magnetoresistive thin films, low-frequency electric-field measurements, and methods for electromagnetic detection of water and ice in the subsurface of Mars.
NASA Astrophysics Data System (ADS)
Kanda, Wataru; Tanaka, Yoshikazu; Utsugi, Mitsuru; Takakura, Shinichi; Hashimoto, Takeshi; Inoue, Hiroyuki
2008-11-01
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Wainwright, H. M.; Gangodagamage, C.; Kholodov, A. L.; Kneafsey, T. J.
2013-12-01
Improvement in parameterizing Arctic process-rich terrestrial models to simulate feedbacks to a changing climate requires advances in estimating the spatiotemporal variations in active layer and permafrost properties - in sufficiently high resolution yet over modeling-relevant scales. As part of the DOE Next-Generation Ecosystem Experiments (NGEE-Arctic), we are developing advanced strategies for imaging the subsurface and for investigating land and subsurface co-variability and dynamics. Our studies include acquisition and integration of various measurements, including point-based, surface-based geophysical, and remote sensing datasets These data have been collected during a series of campaigns at the NGEE Barrow, AK site along transects that traverse a range of hydrological and geomorphological conditions, including low- to high- centered polygons and drained thaw lake basins. In this study, we describe the use of galvanic-coupled electrical resistance tomography (ERT), capacitively-coupled resistivity (CCR) , permafrost cores, above-ground orthophotography, and digital elevation model (DEM) to (1) explore complementary nature and trade-offs between characterization resolution, spatial extent and accuracy of different datasets; (2) develop inversion approaches to quantify permafrost characteristics (such as ice content, ice wedge frequency, and presence of unfrozen deep layer) and (3) identify correspondences between permafrost and land surface properties (such as water inundation, topography, and vegetation). In terms of methods, we developed a 1D-based direct search approach to estimate electrical conductivity distribution while allowing exploration of multiple solutions and prior information in a flexible way. Application of the method to the Barrow datasets reveals the relative information content of each dataset for characterizing permafrost properties, which shows features variability from below one meter length scales to large trends over more than a kilometer. Further, we used Pole- and Kite-based low-altitude aerial photography with inferred DEM, as well as DEM from LiDAR dataset, to quantify land-surface properties and their co-variability with the subsurface properties. Comparison of the above- and below-ground characterization information indicate that while some permafrost characteristics correspond with changes in hydrogeomorphological expressions, others features show more complex linkages with landscape properties. Overall, our results indicate that remote sensing data, point-scale measurements and surface geophysical measurements enable the identification of regional zones having similar relations between subsurface and land surface properties. Identification of such zonation and associated permafrost-land surface properties can be used to guide investigations of carbon cycling processes and for model parameterization.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
Geophysical imaging of root-zone, trunk, and moisture heterogeneity.
Attia Al Hagrey, Said
2007-01-01
The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.
NASA Astrophysics Data System (ADS)
Mansour, Khamis; Omar, Khaled; Ali, Kamal; Abdel Zaher, Mohamed
2018-06-01
The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults) notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m) is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES's) were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area.
Influence of bedrock topography on the runoff generation under use of ERT data
NASA Astrophysics Data System (ADS)
Kiese, Nina; Loritz, Ralf; Allroggen, Niklas; Zehe, Erwin
2017-04-01
Subsurface topography has been identified to play a major role for the runoff generation in different hydrological landscapes. Sinks and ridges in the bedrock can control how water is stored and transported to the stream. Detecting the subsurface structure is difficult and laborious and frequently done by auger measurements. Recently, the geophysical imaging of the subsurface by Electrical Resistivity Tomography (ERT) gained much interest in the field of hydrology, as it is a non-invasive method to collect information on the subsurface characteristics and particularly bedrock topography. As it is impossible to characterize the subsurface of an entire hydrological landscape using ERT, it is of key interest to identify the bedrock characteristics which dominate runoff generation to adapt and optimize the sampling design to the question of interest. For this study, we used 2D ERT images and auger measurements, collected on different sites in the Attert basin in Luxembourg, to characterize bedrock topography using geostatistics and shed light on those aspects which dominate runoff generation. Based on ERT images, we generated stochastic bedrock topographies and implemented them in a physically-based 2D hillslope model. With this approach, we were able to test the influence of different subsurface structures on the runoff generation. Our results highlight that ERT images can be useful for hydrological modelling. Especially the connection from the hillslope to the stream could be identified as important feature in the subsurface for the runoff generation whereas the microtopography of the bedrock seemed to be less relevant.
Temperature limited heaters using phase transformation of ferromagnetic material
Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN
2009-10-06
Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.
Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.
1997-01-14
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.
Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.
1997-01-01
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.
Mapping subsurface in proximity to newly-developed sinkhole along roadway.
DOT National Transportation Integrated Search
2013-02-01
MS&T acquired electrical resistivity tomography profiles in immediate proximity to a newly-developed sinkhole in Nixa Missouri : The sinkhole has closed a well-traveled municipal roadway and threatens proximal infrastructure. The intent of this inves...
NASA Technical Reports Server (NTRS)
Latorraca, G. A.; Bannister, L. H.
1974-01-01
Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Eberle, Detlef; Bastian, Dennis; Ebel, Norbert; Schwarz, Rüdiger
2017-01-01
During the past 150 years, most of the modern day creeks were the target of miners roaming the Cariboo Mountains, British Columbia, in the search for placer gold. In these days, the probability to locate new placer gold occurrence in recent river beds is therefore substantially reduced. New, promising exploration targets appear to be channels mostly buried under alluvial cover sediments. It is airborne geophysical methods that can reveal hidden channels fast and cost-effectively as these penetrate the sub-surface contactless and reflect physical properties of the sub-surface, such as electric conductivity and magnetic susceptibility or magnetization, respectively. We applied the airborne geophysical exploration approach on four exploration areas in the Cariboo gold district. Helicopter-borne transient electromagnetic (TEM) and magnetic data were flown using the SkyTEM system. To our knowledge, it has been innovatory to apply high resolution, high density airborne geophysics in the search for placer gold deposited in pre-Holocene sedimentary channel fills of the Cariboo Mountains. A particular effort of our studies aimed at the Mary creek claims which straddle the boundary of the Quesnel and Kootenay terranes of the Canadian Cordillera and include the dormant Toop mine situated in the Mary creek area known for many finds of coarse nugget from the pre-glacial buried Toop channel. Our objective was to locate the southbound extension of the channel buried in Pleistocene sediments of the Toop plateau. Careful analysis of the airborne geophysical data sets provided indications from both the TEM and magnetic data sets favouring the existence of a hidden channel beneath the plateau. The evaluation of seven reverse circulation (RC) drill holes sunk into a promising elongated narrow conductor beneath the plateau was not conclusive as not clearly showing the sedimentary pattern of a channel with gravels typically at its bottom. Only electric conductivity-depth sections compiled from the airborne TEM and 2D direct current (DC) multi-electrode resistivity ground survey data enabled the interpretation of the airborne TEM and magnetic responses recorded over the Toop plateau. The sections suggest that the electric conductor is generated by an upwarp of a conductive layer extending at the bottom of the Pleistocene sediments. Another feature separated by ≤ 100 m from the conductor line is reflected by low electric conductivity, but is rarely prominent through its neat magnetic signature. Fine accumulations of black minerals, i.e. magnetite grains, in sediments of the area are frequently met when panning material from the creeks. We therefore interpret this low conductivity, magnetic feature as expression of a gravel lense hosting accumulations of magnetite grains and possibly indicating the southbound extension of the Toop channel beneath the plateau. Careful analysis of the airborne magnetic data set led to the result in that magnetite is not only wide-spread in present day rivers and creeks, but also in buried channels and palaeo precipitation run-off paths. Magnetic data proved to be very helpful in this project with regard of pursuing not only present day, but buried valleys and channels, in particular. Our experience made on the Mary creek claims is summarized in a straightforward exploration concept for hidden, possibly gold-bearing channels in the Cariboo gold district.
Modeling subsurface stormflow initiation in low-relief landscapes
NASA Astrophysics Data System (ADS)
Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.
2015-04-01
Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.
Seepage investigation using geophysical techniques at Coursier Lake Dam, B.C., Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirles, P.
1997-10-01
Subsurface seepage flow at Coursier Lake Dam was identified by onshore and offshore self-potential surveys, and electrical resistivity profiles and soundings during a Deficiency Investigation by BChydro. For typical seepage investigations baseline geophysical data are collected at {open_quotes}low-pool{close_quotes} level and the measurements are repeated when high hydraulic gradient conditions exist. At Coursier Lake Dam a rather unanticipated outcome of the low-pool surveys was that significant seepage beneath the structure was detected. The low-pool results were conclusive enough that, when combined with visual inspection and observation of sinkholes on the embankment, an immediate restriction was placed on the pool elevation. Thus,more » because of the identified potential hazard, the remaining geophysical investigations were conducted under a {open_quotes}minimum-pool{close_quotes} reservoir level in order to complete the comparative study. Therefore, the dam was studied under low- and minimum-pool reservoir conditions in the spring and fall of 1993, respectively. Low-pool data indicated very high resistivities (3000 to 5000 ohm-m) throughout the embankment indicating a coarse-average grain size, probably unsaturated sands and gravels. Higher resistivities (>5000 ohm-m) were obtained within the foundation deposits along the downstream toe indicating a combination of lower moisture content, coarser average grain size and higher porosity than the embankment. These electrical data indicate the subsurface conditions in the embankment and the foundation to be conducive to seepage. Results from low-pool SP surveys, performed both on-shore and offshore, indicate a dispersed or sheet flow seepage occurring nearly 1100 feet upstream of the intake. Therefore, apparently the seepage source begins far upstream of the embankment within the foundation deposits.« less
NASA Astrophysics Data System (ADS)
Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.
DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES
Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...
Models Show Subsurface Cracking May Complicate Groundwater Cleanup at Hazardous Waste Sites
Chlorinated solvents like trichloroethylene contaminate groundwater at numerous sites nationwide. This modeling study, conducted at the Air Force Institute of Technology, shows that subsurface cracks, either natural or due to the presence of the contaminant itself, may result in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Joseph
2017-04-20
Mapping permeability distributions in geothermal reservoirs is essential for reducing the cost of geothermal development. To avoid the cost and sampling bias of measuring permeability directly through drilling, we require remote methods of imaging permeability such as geophysics. Electrical resistivity (or its inverse, conductivity) is one of the most sensitive geophysical properties known to reflect long range fluid interconnection and thus the likelihood of permeability. Perhaps the most widely applied geophysical methods for imaging subsurface resistivity is magnetotellurics (MT) due to its relatively great penetration depths. A primary goal of this project is to confirm through ground truthing at existingmore » geothermal systems that MT resistivity structure interpreted integratively is capable of revealing permeable fluid pathways into geothermal systems.« less
Henderson, Rory; Unthank, Michael D.; Zettwoch, Douglas D.; Lane, John W.
2010-01-01
The potable water system at Fort Knox is threatened by brine contamination from improperly abandoned natural gas exploration wells. The Fort Knox well field is located near the town of West Point, Kentucky, in the flood plain of the Ohio River. At the site, unconsolidated sediments approximately 30 – 40 m thick, overlie shale and porous limestone. Brine is believed to flow vertically from the underlying formations to the unconsolidated aquifer through damaged or leaky well casings under a high hydraulic gradient from the artificially pressurized porous limestone, which is utilized for natural gas storage by a regional energy company. Upon reaching the unconsolidated aquifer, brinecontaminated groundwater enters water supply production wells under the pumping‐induced gradient. As part of the Fort Knox remediation strategy to reduce the impact of brine contamination, electrical resistivity tomography (ERT) and borehole electromagnetic (EM) logs are being collected annually to detect gross changes in subsurface conductivity. The 2009 ERT data show areas of high conductivity on the western (contaminated) side of the site with conductivities more than an order of magnitude higher than on the eastern (uncontaminated) side of the site. The areas of high conductivity are interpreted as brine contamination, consistent with known regions of brine contamination. Conductivities from the EM logs are consistent with the results from the ERT inversions. The EM logs show little change between 2008 and 2009, except for some small changes in the brine distribution in well PZ1. Yearly ERT surveys will be continued to detect new areas of brine contamination and monitor the remediation effort.
Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan
2016-09-01
Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.
2012-12-01
Spectral Electrical Impedance Tomography (EIT) allows obtaining images of the complex electrical conductivity for a broad frequency range (mHz to kHz). It has recently received increased interest in the field of near-surface geophysics and hydrogeophysics because of the relationships between complex electrical properties and hydrogeological and biogeochemical properties and processes observed in the laboratory with Spectral Induced Polarization (SIP). However, these laboratory results have also indicated that a high phase accuracy is required for surface and borehole EIT measurements because many soils and sediments are only weakly polarizable and show phase angles between 1 and 20 mrad. In the case of borehole EIT measurements, long cables and electrode chains (>10 meters) are typically used, which leads to undesired inductive coupling between the electric loops for current injection and potential measurement and capacitive coupling between the electrically conductive cable shielding and the soil. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurement to the mHz to Hz range. The aim of this study is i) to develop correction procedures for these coupling effects to extend the applicability of EIT to the kHz range and ii) to validate these corrections using controlled laboratory measurements and field measurements. In order to do so, the inductive coupling effect was modeled using electronic circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 2 mrad in the frequency range up to 10 kHz was achieved. In a field demonstration using a 25 m borehole chain with 8 electrodes with 1 m electrode separation, the corrections were also applied within a 1D inversion of the borehole EIT measurements. The results show that the correction methods increased the measurement accuracy considerably.
4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment
NASA Astrophysics Data System (ADS)
Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.
2016-12-01
Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.
Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity
NASA Astrophysics Data System (ADS)
Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.
2016-07-01
We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.
3-D interpretation of short-period magnetotelluric data at Furnas Volcano, Azores Islands
NASA Astrophysics Data System (ADS)
Hogg, C.; Kiyan, D.; Rath, V.; Byrdina, S.; Vandemeulebrouck, J.; Revil, A.; Viveiros, F.; Carmo, R.; Silva, C.; Ferreira, T.
2018-04-01
Accurate geophysical imaging of shallow subsurface features provides crucial constraints on understanding the dynamics of volcanic systems. At Furnas Volcano (Azores), intense circulation of volcanic fluids at depth leading to high CO2 outgassing and flank destabilization poses considerable threat to the local population. Presented is a novel 3-D electrical resistivity model developed from 39 magnetotelluric soundings that images the hydrothermal system of the Furnas Volcano to a depth of 1 km. The resistivity model images two conductive zones, one at 100 m and another at 500 m depth, separated by a resistive layer. The shallow conductor has conductivity less than 1 S m-1, which can be explained by clay mineral surface conduction with a mass fraction of at least 20 per cent smectite. The deeper conductor extends across the majority of the survey area. This deeper conductor is located at depths where smectite is generally replaced by chlorite and we interpret it as aqueous fluids near the boiling point and infer temperatures of at least 240 °C. The less conductive layer found between these conductors is probably steam-dominated, and coincides within the mixed-clay zone found in many volcanic hydrothermal systems.
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of themore » electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.« less
NASA Astrophysics Data System (ADS)
Haggar, K. S.; Nelson, H. R., Jr.; Berent, L. J.
2017-12-01
The Barite Hills/Nevada Gold Fields mines are in Late Proterozoic and early Paleozoic rocks of the gold and iron sulfides rich Carolina slate belt. The mines were active from 1989 to1995. EPA and USGS site investigations in 2003 resulted in the declaration of the waste pit areas as a superfund site. The USGS and private consulting firms have evaluated subsurface water flow paths, faults & other groundwater-related features at this superfund site utilizing 2-D conductivity & 3-D electromagnetic (EM) surveys. The USGS employed conductivity to generate instantaneous 2-D profiles to evaluate shallow groundwater patterns. Porous regolith sediments, contaminated water & mine debris have high conductivity whereas bedrock is identified by its characteristic low conductivity readings. Consulting contractors integrated EM technology, magnetic & shallow well data to generate 3-D images of groundwater flow paths at given depths across the superfund site. In so doing several previously undetected faults were identified. Lighting strike data was integrated with the previously evaluated electrical and EM data to determine whether this form of natural-sourced EM data could complement and supplement the more traditional geophysical data described above. Several lightning attributes derived from 3-D lightning volumes were found to correlate to various features identified in the previous geophysical studies. Specifically, the attributes Apparent Resistivity, Apparent Permittivity, Peak Current & Tidal Gravity provided the deepest structural geological framework & provided insights into rock properties & earth tides. Most significantly, Peak Current showed remarkable coincidence with the preferred groundwater flow map identified by one of the contractors utilizing EM technology. This study demonstrates the utility of robust integrated EM technology applications for projects focused on hydrology, geohazards to dams, levees, and structures, as well as mineral and hydrocarbon exploration.
Interpretation of electrical resistivity data acquired at the Aurora plant site
DOT National Transportation Integrated Search
2008-02-01
MST proposes to acquire high-resolution reflection seismic data at the Knight Hawk Coal Company construction site. These geophysical data will be processed, analyzed and interpreted with the objective of locating and mapping any subsurface voids that...
Assessment of karst activity at Springfield Route 60 study site
DOT National Transportation Integrated Search
2008-02-01
MST proposes to acquire electrical resistivity data within a roadway ROW. These geophysical data will be processed, analyzed and interpreted with the objective of locating and mapping any subsurface voids that might compromise the integrity of the pi...
Evaluating Lake Superior nearshore offshore gradients using autonomous gliders
Slocum electric gliders are autonomous vehicles capable of continuously mapping subsurface conditions at high resolution for months at a time. During the 2016 CSMI in Lake Superior, seven glider deployments were undertaken through a partnership between University of Minnesota Dul...
EFFECT OF FENTON'S REAGENT ON SUBSURFACE MICROBIOLOGY AND BIODEGRADATION CAPACITY
Microcosm studies were conducted to determine the effect of Fenton's reagent on subsurface microbiology and biodegradation capacity in a DNAPL (PCE/TCE) contaminated aquifer previously treated with the reagent. Groundwater pH declined from 5 to 2.4 immediately after the treatmen...
Method of producing strained-layer semiconductor devices via subsurface-patterning
Dodson, Brian W.
1993-01-01
A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.
2017-12-01
A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.
Percolation induced heat transfer in deep unsaturated zones
Lu, N.; LeCain, G.D.
2003-01-01
Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Ingwersen, J.; Sangchan, W.; Sukvanachaikul, Y.; Duffner, A.; Uhlenbrook, S.; Streck, T.
2014-02-01
Land-use change in the mountainous parts of northern Thailand is reflected by an increased application of agrochemicals, which may be lost to surface and groundwater. The close relation between flow paths and contaminant transport within hydrological systems requires recognizing and understanding the dominant hydrological processes. To date, the vast majority of studies on runoff generation have been conducted in temperate regions. Tropical regions suffer from a general lack of data, and little is known about runoff generation processes. To fill this knowledge gap, a three-component hydrograph separation based on geochemical tracers was carried out in a steep, remote and monsoon-dominated study site (7 km2) in northern Thailand. Silica and electrical conductivity (EC) were identified as useful tracers and were applied to calculate the fractions of groundwater (similar to pre-event water), shallow subsurface flow and surface runoff on stormflow. K+ was a useful indicator for surface runoff dynamics, and Ca2+ provided insights into groundwater behaviour. Nevertheless, neither measure was applicable for the quantification of runoff components. Cl- and further parameters (e.g. Na+, K+, and Mg2+) were also not helpful for flow path identification, nor were their concentrations distinguishable among the components. Groundwater contributed the largest fractions to stormflow (62-80%) throughout all events, followed by shallow subsurface flow (17-36%) and surface runoff (2-13%). Our results provide important insights into the dynamics of the runoff processes in the study area and may be used to assess the transport pattern of contaminants (i.e. agrochemicals) here.
3-D decoupled inversion of complex conductivity data in the real number domain
NASA Astrophysics Data System (ADS)
Johnson, Timothy C.; Thomle, Jonathan
2018-01-01
Complex conductivity imaging (also called induced polarization imaging or spectral induced polarization imaging when conducted at multiple frequencies) involves estimating the frequency-dependent complex electrical conductivity distribution of the subsurface. The superior diagnostic capabilities provided by complex conductivity spectra have driven advancements in mechanistic understanding of complex conductivity as well as modelling and inversion approaches over the past several decades. In this work, we demonstrate the theory and application for an approach to 3-D modelling and inversion of complex conductivity data in the real number domain. Beginning from first principles, we demonstrate how the equations for the real and imaginary components of the complex potential may be decoupled. This leads to a description of the real and imaginary source current terms, and a corresponding assessment of error arising from an assumption necessary to complete the decoupled modelling. We show that for most earth materials, which exhibit relatively small phases (e.g. less than 0.2 radians) in complex conductivity, these errors become insignificant. For higher phase materials, the errors may be quantified and corrected through an iterative procedure. We demonstrate the accuracy of numerical forward solutions by direct comparison to corresponding analytic solutions. We demonstrate the inversion using both synthetic and field examples with data collected over a waste infiltration trench, at frequencies ranging from 0.5 to 7.5 Hz.
USDA-ARS?s Scientific Manuscript database
Transport of pathogenic bacteria in soils primarily occurs through soil mesopores and macropores (e.g., biopores and cracks). Field research has demonstrated that biopores and subsurface drains can be hydraulically connected. This research was conducted to investigate the importance of surface conne...
2011-01-01
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229
Meyer, M.T.; Fine, J.M.
1997-01-01
As part of the U.S. Geological Survey's Resource Conservation and Recovery Act, Facilities Investigations at Fort Bragg, North Carolina, selected geophysical techniques were evaluated for their usefulness as assessment tools for determining subsurface geology, delineating the areal extent of potentially contaminated landfill sites, and locating buried objects and debris of potential environmental concern. Two shallow seismic-reflection techniques (compression and shear wave) and two electromagnetic techniques (ground-penetrating radar and terrain conductivity) were evaluated at several sites at the U.S. Army Base. The electromagnetic techniques also were tested for tolerance to cultural noise, such as nearby fences, vehicles, and power lines. For the terrain conductivity tests, two instruments were used--the EM31 and EM34, which have variable depths of exploration. The shallowest reflection event was 70 feet below land surface observed in common-depth point, stacked compression-wave data from 24- and 12-fold shallow-seismic-reflection surveys. Several reflection events consistent with clay-sand interfaces between 70 and 120 feet below land surface, along with basement-saprolite surfaces, were imaged in the 24-fold, common- depth-point stacked data. 12-fold, common-depth-point stacked data set contained considerably more noise than the 24-fold, common-depth-point data, due to reduced shot-to-receiver redundancy. Coherent stacked reflection events were not observed in the 24-fold, common-depth-point stacked shear-wave data because of the partial decoupling of the shear- wave generator from the ground. At one site, ground-penetrating radar effectively delineated a shallow, 2- to 5-foot thick sand unit bounded by thin (less than 1 foot) clay layers. The radar signal was completely attenuated where the overlying and underlying clay units thickened and the sand unit thinned. The pene- tration depth of the radar signal was less than 10 feet below land surface. A slight increase in electromagnetic conductivity across shallow sampling EM31 and EM34 profiles provided corroborative evidence of the shallow, thickening clay units. Plots of raw EM31 and EM34 data provided no direct interpretable information to delineate sand and clay units in the shallow subsurface. At two sites, the ground-penetrating radar effectively delineated the lateral continuity of surficial sand units 5 to 25 feet in thickness and the tops of their underlying clay units. The effective exploration depth of the ground-penetrating radar was limited by the proximity of clay units to the subsurface and their thickness. The ground-penetrating radar delineated the areal extent and depth of cover at a previously unrecognized extension of a trench-like landfill underlying a vehicle salvage yard. Attenuation of the radar signal beneath the landfill cover and the adjacent subsurface clays made these two mediums indistinguishable by ground-penetrating radar; however, EM31 data indicated that the electrical conductivity of the landfill was higher than the subsurface material adjacent to the landfill. The EM31 and EM34 conductivity surveys defined the areal extent of a landfill whose boundaries were inaccurately mapped, and also identified the locations of an old dumpsite and waste incinerator site at another landfill. A follow-up ground-penetrating radar survey of the abandoned dumpsite showed incongruities in some of the shallow radar reflections interpreted as buried refuse dispersed throughout the landfill. The ground-penetrating radar and EM31 effectively delineated a shallow buried fuel-oil tank. Of the three electromagnetic instruments, the ground-penetrating radar with the shielded 100-megahertz antenna was the least affected by cultural noise followed, in order, by the EM31 and EM34. The combination of terrain- conductivity and ground-penetrating radar for the site assessment of the landfill provided a powerful means to identify the areal extent of the landfill, potenti
NASA Astrophysics Data System (ADS)
Mecchia, Marco; Sauro, Francesco; Piccini, Leonardo; De Waele, Jo; Sanna, Laura; Tisato, Nicola; Lira, Jesus; Vergara, Freddy
2014-04-01
In situ measurements of discharge, pH, electric conductivity (EC), temperature, and SiO2 content have been carried out during five expeditions in the last 20 years on the summit plateaus, inside caves and along the rivers of the surrounding lowlands of three tepui massifs in Venezuela (Auyan, Roraima, and Chimanta). Additionally, detailed chemical analyses were performed on waters sampled in a newly discovered extensive quartz-sandstone cave system on the Auyan Tepui. Rock samples of the quartz-sandstone bedrock from different locations have been analysed to obtain their chemical composition with a wavelength dispersive X-ray fluorescence spectrometer. These data show that the majority of silica present in surface and subsurface water comes from dissolution of quartz and only in minor amount from hydrolysis of other silicate minerals. Probably the presence of a hardened crust of iron hydroxides limits the dissolution of silica on the top surface of tepuis. Dissolution in the subsurface, instead, is more significant and causes, in the long term, the “arenisation” of the quartz-sandstone and its subsequent removal by mechanical erosion. On the other hand, waters flowing on the arkosic rock outcropping on the lowland below the tepuis obtain their high dissolved silica content mainly from hydrolysis of silicates. The morphological evolution of these table mountains appears thus to be controlled mainly by the underground weathering of the quartz-sandstone, with the opening of deep fractures (grietas) and the collapse of large underground horizontal cave systems. Scarp retreat, instead, seems to be related to the higher weathering rate of the more arkosic formations underlying the quartz-sandstones.
Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry
Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.
2013-01-01
Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.
Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks
NASA Astrophysics Data System (ADS)
Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.
2015-12-01
Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.
Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization
NASA Astrophysics Data System (ADS)
Morency, C.
2017-12-01
Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Drip irrigation research update at NPRL
USDA-ARS?s Scientific Manuscript database
Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...
We conducted research on the Willamette River in western Oregon (USA) to determine the ecological functions of off-channel habitats (OCH). OCHs have declined in our 70 km study reach of the active floodplain since European settlement. Surface and subsurface connectivity between...
Yield response and economics of shallow subsurface drip irrigation systems
USDA-ARS?s Scientific Manuscript database
Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...
MT data inversion and sensitivity analysis to image electrical structure of Zagros collision zone
NASA Astrophysics Data System (ADS)
Layegh Haghighi, T.; Montahaei, M.; Oskooi, B.
2018-01-01
Magnetotelluric (MT) data from 46 stations on a 470-km-long profile across the Zagros fold-thrust belt (ZFTB) that marks the Arabia-Eurasia collision zone were inverted to derive 2-D electrical resistivity structure between Busher on the coast of Persian Gulf and Posht-e-Badam, 160 km north east of Yazd. The model includes prominent anomalies in the upper and lower crust, beneath the brittle-ductile transition depth and mostly related to the fluid distribution and sedimentary layers beneath the profile. The conductivities and dimensions of the fault zone conductors (FZCs) and high conductivity zones (HCZs) as the major conductive anomalies in a fault zone conceptual model vary significantly below the different faults accommodated in this region. The enhanced conductivity below the site Z30 correlates well with the main Zagros thrust (MZT), located at the western boundary of Sanandaj-Sirjan zone (SSZ) and known as the transition between the two continents. The depth extent of the huge conductor beneath the south west of the profile, attributed to the thick sedimentary columns of the Arabian crust, cannot be resolved due to the smearing effect of the smoothness constraint employed in the regularized inversion procedure and the sensitivity of MT data to the conductance of the subsurface. We performed different tests to determine the range of 2-D models consistent with the data. Our approach was based on synthetic studies, comprising of hypothesis testing and the use of a priori information throughout the inversion procedure as well as forward modeling. We conclude that the minimum depth extent of the conductive layer beneath the southwest of the profile can be determined as approximately deeper than 15 km and also the screening effect of the conductive overburden is highly intense in this model and prevents the deep structures from being resolved properly.
Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations
Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.
2016-01-01
BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.
Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model
NASA Astrophysics Data System (ADS)
Vrettas, Michail D.; Fung, Inez Y.
2017-06-01
The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths of the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains ˜30% of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.
Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System
NASA Astrophysics Data System (ADS)
Ulrich, C.; Hubbard, S.; Delaney, C.; Seymour, D.; Blom, K.; Black, W.
2013-12-01
An evaluation is underway at the Goat Rock State Beach, which is located at the mouth of the Russian River near Jenner, CA. The study focuses on quantifying the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the potential major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding or enhancing subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. Results of the assessment will enable the Sonoma County Water Agency to understand how the jetty affects formation of the barrier beach and water surface elevations within the estuary. As one aspect of the evaluation, we are using geophysical methods to monitor seepage through the jetty as well as through the beach berm. We are using multiple surface geophysical methods, including: electrical resistivity, seismic refraction, ground penetrating radar, and electromagnetic methods. In general, seismic data are being used to characterize deeper bedrock controls on beach barrier functioning such as, channeling of estuarine water beneath the barrier beach. Electrical and electromagnetic methods are being used to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure. Time-lapse electrical and electromagnetic data are being used to monitor moisture changes and mixing of saline and fresh water within the beach berm. Ground penetrating radar data are being used to delineate the geometry of the (often buried) jetty. All data are being integrated with topography, tidal and hydrological information, and electrical conductivity and temperature data from monitoring wells. These results are expected to improve the overall understanding of the jetty's effects on beach permeability and will better improve the understanding of the jetty's influence on estuary habitats and flood risk.
Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity
Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; ...
2014-12-31
We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less
Imaging the magmatic system of Mono Basin, California with magnetotellurics in three--dimensions
Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Ponce, David A.
2015-01-01
A three–dimensional (3D) electrical resistivity model of Mono Basin in eastern California unveils a complex subsurface filled with zones of partial melt, fluid–filled fracture networks, cold plutons, and regional faults. In 2013, 62 broadband magnetotelluric (MT) stations were collected in an array around southeastern Mono Basin from which a 3D electrical resistivity model was created with a resolvable depth of 35 km. Multiple robust electrical resistivity features were found that correlate with existing geophysical observations. The most robust features are two 300 ± 50 km3 near-vertical conductive bodies (3–10 Ω·m) that underlie the southeast and north-eastern margin of Mono Craters below 10 km depth. These features are interpreted as magmatic crystal–melt mush zones of 15 ± 5% interstitial melt surrounded by hydrothermal fluids and are likely sources for Holocene eruptions. Two conductive east–dipping structures appear to connect each magma source region to the surface. A conductive arc–like structure (< 0.9 Ω·m) links the northernmost mush column at 10 km depth to just below vents near Panum Crater, where the high conductivity suggests the presence of hydrothermal fluids. The connection from the southernmost mush column at 10 km depth to below South Coulée is less obvious with higher resistivity (200 Ω·m) suggestive of a cooled connection. A third, less constrained conductive feature (4–10 Ω·m) 15 km deep extending to 35 km is located west of Mono Craters near the eastern front of the Sierra Nevada escarpment, and is coincident with a zone of sporadic, long–period earthquakes that are characteristic of a fluid-filled (magmatic or metamorphic) fracture network. A resistive feature (103–105 Ω·m) located under Aeolian Buttes contains a deep root down to 25 km. The eastern edge of this resistor appears to structurally control the arcuate shape of Mono Craters. These observations have been combined to form a new conceptual model of the magmatic system beneath Mono Craters to a depth of 30 km.
Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Bartel, L. C.; Knox, H. A.
2013-12-01
Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common in industrial environments (borehole casing, pipes, railroad tracks). Present efforts are oriented toward calculating the EM responses of these objects via a First Born Approximation approach. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Schmoldt, J.; Jones, A. G.; Muller, M. R.; Kiyan, D.; Hogg, C.; Rosell, O.
2010-12-01
Two-dimensional (2D) inversions of magnetotelluric (MT) data are presently far more commonly used than three-dimensional (3D) inversions as they still significantly outperform 3D inversions in terms of speed, thus allowing for much better resolution of the subsurface through a larger feasible number of grid cells. The suitability of 2D inversion needs thereby to be tested for cases where the electric resistivity structure of the subsurface is potentially 3D to some extent. One particular case of a 3D subsurface structure consists of lateral interfaces with varying orientations at crustal and mantle depths. Such a case might emerge, for instance, where crustal faulting, originating from present day tectonics, is situated above a mantle where structures are dominated by earlier or current plate tectonic processes. Those plate tectonic processes could comprise continental collision from an oblique direction, or lattice preferred orientation in the lithosphere-asthenosphere transition zone due to an oblique relative motion between lithosphere and asthenosphere. Whereas recovery of crustal structures can usually be achieved in a straightforward manner by confining the modelled frequency range to the crustal depths, deriving mantle structures is more challenging. Different approaches for this case have been investigated here using synthetic model studies as well as inversion of a real MT dataset collected in southern Spain as part of the PICASSO fieldwork campaign. The PICASSO project intends to enhance knowledge about the geological setting of the Alboran Domain beneath the western Mediterranean Sea and its surrounding regions, and through that knowledge to understand processes related to continent-continent collision. The Iberian Peninsula is the focus of the first phase of DIAS’s PICASSO efforts, and comprised a magnetotelluric profile crossing the Tajo Basin and Betics Cordillera. Analyses of MT responses and seismic tomography data indicate varying geologic strike direction with depth and along the profile. Geoelectric strike direction in the Tajo Basin crust is approximately NW-SE, coinciding with the direction of the Iberian Range and Neogene faults, whereas at mantle depths a dominant NNE-SSW direction is determined; the Betics region on the contrary exhibits a highly 3D structure originating from its complex tectonic orogeny. This circumstance motivated separate inversions for crustal and mantle structures of the Tajo Basin, as well as for the Betics region. Inversion results of the Tajo Basin subsurface indicate a relatively conducting upper crust underlain by more resistive structures in the lower crust and mantle. The most noticeable features of the models are the apparent upward extension of an electrical resistive lower crustal layer beneath the centre of the basin and the presence of a resistive mantle region that coincides with an area of low seismic velocity. The later indicates an unusual geological situation since typical causes for decreased seismic velocity, e.g. higher temperature, fluids, and less depleted rock chemistry, are commonly thought to decrease electric resistivity.
NASA Astrophysics Data System (ADS)
Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.
2017-12-01
The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.
Geoelectrical image of the subsurface for CO2 geological storage in the Changhua site, Taiwan
NASA Astrophysics Data System (ADS)
Chiang, C. W.; Chiao, C. H.; Yang, M. W.; Yu, C. W.; Yang, C. H.; Chen, C. C.
2016-12-01
Global warming has recently become an important worldwide issue. Reduction of carbon dioxide (CO2) emission is recommended by Intergovernmental Panel on Climate Change, which geological storage is one of possible way to reduce the CO2 issue. The Taichung Power Plant is a coal-fired power plant operated by the Taiwan Power Company in Taichung, Taiwan, which is the largest coal-fired power station in the world. The power plant emits approximately 40 million tons annually which is also the world's largest CO2 emitter. Geophysical techniques are presented as the most useful tool to characterize the reservoir. The electrical resistivity tool was carried out applying audio-magnetotelluric (AMT) method, which could provide the depth resolution for evaluating the subsurface. A first survey of 20 AMT soundings was acquired to study the viability of the method to characterize the subsurface. Stations were deployed at approximately 500 m intervals and the data were recorded in the frequency range of 104-100 Hz. The dimensionality analysis proved the validity of the 1-D or 2-D assumption. The visualized model shows a layered electrical resistivity structure from shallow to depth of 3000 m. The preliminary result corresponds to seismic reflection and geological investigations that suggests a simple geological structure without complex geological processes in the area. It could be a suitable site for geological storage.
New temperature model of the Netherlands from new data and novel modelling methodology
NASA Astrophysics Data System (ADS)
Bonté, Damien; Struijk, Maartje; Békési, Eszter; Cloetingh, Sierd; van Wees, Jan-Diederik
2017-04-01
Deep geothermal energy has grown in interest in Western Europe in the last decades, for direct use but also, as the knowledge of the subsurface improves, for electricity generation. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. The knowledge of the temperature subsurface, together with the available flow from the reservoir, is an important factor that can determine the success of a geothermal energy project. To support the development of deep geothermal energy system in the Netherlands, we have made a first assessment of the subsurface temperature based on thermal data but also on geological elements (Bonté et al, 2012). An outcome of this work was ThermoGIS that uses the temperature model. This work is a revision of the model that is used in ThermoGIS. The improvement from the first model are multiple, we have been improving not only the dataset used for the calibration and structural model, but also the methodology trough an improved software (called b3t). The temperature dataset has been updated by integrating temperature on the newly accessible wells. The sedimentary description in the basin has been improved by using an updated and refined structural model and an improved lithological definition. A major improvement in from the methodology used to perform the modelling, with b3t the calibration is made not only using the lithospheric parameters but also using the thermal conductivity of the sediments. The result is a much more accurate definition of the parameters for the model and a perfected handling of the calibration process. The result obtain is a precise and improved temperature model of the Netherlands. The thermal conductivity variation in the sediments associated with geometry of the layers is an important factor of temperature variations and the influence of the Zechtein salt in the north of the country is important. In addition, the radiogenic heat production in the crust shows a significant impact. From the temperature values, also identify in the lower part of the basin, deep convective systems that could be major geothermal energy target in the future.
NASA Astrophysics Data System (ADS)
Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Roshan K.; Bage, Ashish K.
2017-06-01
Electrical resistivity tomography (ERT) is a useful tool to map near-surface conducting anomalies. The detailed ERT survey was taken over an already defined conducting zone on a regional scale through a magnetotelluric (MT) survey, in order to provide better resolution of the subsurface structure within the study area. The survey lines were carried out crossing the delineated conducting zone through MT giving a dense coverage over the area. The ERT survey were carried out along 15 lines covering an area of ~1 km2 with a line spacing of ~50 m in the northern fringe of the Dalma volcanics (DVs). The study utilised the 61-channel cum 64-electrode resistivity equipment, FlashRES-Universal ERT multi-electrode data acquisition system, developed by ZZ Resistivity Imaging, Australia. Data has been acquired both through conventional arrays i.e. Wenner, Schlumberger and ZZ unconventional arrays. Inversion of the data set have been performed using 2.5D finite element conjugate gradient algorithm after performing the quality check. Resistivity models along all the lines were obtained using Wenner, Schlumberger and combination of Wenner, Schlumberger and ZZ arrays. Resistivity models resolved four major zones: (1) resistivity less than 1 Ωm (2) resistivity 1-10 Ωm (3) resistivity 10-100 Ωm and (4) resistivity more than 100 Ωm . The resistivity results corroborate well with the geological succession from the drilling data. The conducting zones with resistivity values ranging from 1-10 Ωm correlates with the Lower Dalma volcanics while the Upper Dalma volcanics corresponds to the regions with resistivity values of less than 1 Ωm. The Upper Dalma volcanics corresponds to the metallogeny while the depth to the top of the ore body is ~25 m.
Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.
2017-02-08
Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells installed onsite for monitoring flow in the channel deposits. Estimates of the cross-sectional area of channel deposits from DC resistivity pseudosections can provide critical input for groundwater-flow models designed to simulate river seepage and evaluate seepage-management alternatives.
Yield and economics of shallow subsurface drip irrigation (S3DI) and furrow diking
USDA-ARS?s Scientific Manuscript database
A shallow subsurface drip irrigation (S3DI) was installed yearly in conjunction with furrow diking to document yield and economic benefit of these techniques on peanut (Arachis hypogaea L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.). This research was conducted for three years from 2005...
CSAMT method for determining depth and shape of a sub-surface conductive object
Lee, David O.; Montoya, Paul C.; Wayland, Jr., J. Robert
1986-01-01
The depth to and size of an underground object may be determined by sweeping a CSAMT signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented.
Ward, Stanley H.
1989-01-01
Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D
Cable, William; Romanovsky, Vladimir
2014-03-31
Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.
NASA Astrophysics Data System (ADS)
Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.
2011-12-01
Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally, immobile porosity was added along with adsorption and cation exchange reactions. Although the model revealed the existence of chemical and biological gradients within the columns that were not discernable as changes in effluent concentrations, none of the chemical reactions or gradients could explain the measured σb increases in either column. This result is not consistent with chemical gradients within the column reactor causing the measured changes in σb. To test the alternate hypothesis that microbial biofilms are electrically conductive, we used the output from PHREEQC to calculate the amount of biomass produced within the column reactors. If biofilm causes the σb changes, our model is consistent with an electrical conductivity for biomass in the iron-reducing column between 2.75 and 220 S/m. The model is also consistent with an electrical conductivity for biomass in the nitrate-reducing column between 350 and 35,000 S/m. These estimates of biomass electrical conductivity are poorly constrained but represent a first step towards understanding the electrical properties associated with respiring biofilms.
Anatomical and morphogenetic analysis of seismoelectric conversion patterns at geological units
NASA Astrophysics Data System (ADS)
Kröger, B.; Kemna, A.
2012-04-01
Characterisation of the hydraulic properties of a reservoir, such as porosity and permeability, and their spatial distribution plays an important role in many subsurface geophysical investigations. A fully developed seismoelectric exploration method is very appealing since it would offer the potential to directly determine these parameters in field-scale applications. In fluid-saturated rocks, seismic waves can generate electromagnetic fields, due to electrokinetic coupling mechanisms at the fluid-mineral interface. Using numerical modelling, we investigated the spatio-temporal occurrence and evolution of the seismoelectric effects that occur in spatially confined lithological units. Such geometries may represent clay lenses embedded in an aquifer or petroleum deposits in a host rock. For the modelling, we use a simplified time-domain formulation of the coupled physical problem and its efficient implementation in a 2D finite-element framework. Two occurring seismoelectric phenomena are investigated: (1) the co-seismic field associated with the seismic displacement at each point and (2) the interface response generated at layer boundaries. To gain insight into the morphogenetic field behaviour of the seismoelectric effects, we run numerical simulations using several material parameter set-ups for various target geometries. Accordingly, we varied both the thickness of the confined units and the value of the electrical bulk conductivity in the considered media. The analysis of the seismoelectric effects revealed an important difference in the generation of the interface response at either electrically conductive or resistive units. We find that the contrast in the electrical bulk conductivity between the host rock and the target geological unit controls the shape and structure of the seismoelectric conversion patterns. Our results show that the seismoelectric interface response captures both the petrophysical and geometrical characteristics of the converting geological unit. The considered models indicate the general potential of using the seismoelectric interface response for reservoir characterisation in hydrogeological or hydrocarbon exploration studies.
NASA Astrophysics Data System (ADS)
Love, J. J.
2016-12-01
Magnetic-storm induction of geoelectric fields in the Earth's electrically conducting crust, lithosphere, mantle, and ocean can interfere with the operations of electric-power grid systems. The future occurrence of an extremely intense magnetic storm might even result in continental-scale failure of electric-power distribution. Such an event would entail significant deleterious consequence for the economy and international security. Building on a project established by the President's National Science and Technology Council and the Office of Science and Technology Policy for assessing space-weather induction hazards, we develop a series of geoelectric hazard maps. These are constructed using an empirical parameterization of induction: local estimates of Earth-surface impedance, obtained from EarthScope and USGS magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades magnetic observatory data. Geoelectric hazard maps are constructed for both north-south and east-west geomagnetic variation, and for both 240-s and 1200-s sinusoidal variation -- periods of interest to the power-grid industry. The maps cover about half of the continental United States. They depict the threshold level that geoelectric amplitude can be expected to exceed, on average, once per century at discrete geographic sites in response to extreme-intensity geomagnetic activity. Of the regions where magnetotelluric data are available, the greatest induction hazards are found in Minnesota, Wisconsin, and Iowa - this being the result of both high-latitude geomagntic activity and complex subsurface conductivity structure. At some sites in the continental United States, once-per-century geoelectric amplitudes can exceed the 1.7 V/km realized in Quebec during the March 1989 storm. This work highlights the importance of geophysical surveys and ground-level monitoring data for assessing space-weather induction hazards.
Sheets, R.A.; Dumouchelle, D.H.
2009-01-01
Three geophysical profiling methods were tested to help characterize subsurface materials at selected transects along the Great Miami River, in southwestern Ohio. The profiling methods used were continuous seismic profiling (CSP), continuous resistivity profiling (CRP), and continuous electromagnetic profiling (CEP). Data were collected with global positioning systems to spatially locate the data along the river. The depth and flow conditions of the Great Miami River limited the amount and quality of data that could be collected with the CSP and CRP methods. Data from the CSP were generally poor because shallow reflections (less than 5 meters) were mostly obscured by strong multiple reflections and deep reflections (greater than 5 meters) were sparse. However, modeling of CRP data indicated broad changes in subbottom geology, primarily below about 3 to 5 meters. Details for shallow electrical conductivity (resistivity) (less than 3 meters) were limited because of the 5-meter electrode spacing used for the surveys. For future studies of this type, a cable with 3-meter electrode spacing (or perhaps even 1-meter spacing) might best be used in similar environments to determine shallow electrical properties of the stream-bottom materials. CEP data were collected along the entire reach of the Great Miami River. The CRP and CEP data did not correlate well, but the CRP electrode spacing probably limited the correlation. Middle-frequency (3,510 hertz) and high-frequency (15,030 hertz) CEP data were correlated to water depth. Low-frequency (750 hertz) CEP data indicate shallow (less than 5-meter) changes in electrical conductivity. Given the variability in depth and flow conditions on a river such as the Great Miami, the CEP method worked better than either the CSP or CRP methods.
NASA Astrophysics Data System (ADS)
Darrh, A.; Downs, C. M.; Poppeliers, C.
2017-12-01
Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.
NASA Astrophysics Data System (ADS)
Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.
2014-04-01
This work shows the result of an electrical resistivity tomography (ERT) survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (northern Italy) earthquake that occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno River in the urban areas of San Carlo and Mirabello (southwestern portion of Ferrara Province). In total, six electrical resistivity tomographies were performed and calibrated with surface geological surveys, exploratory boreholes and aerial photo interpretations. This was one of first applications of the electrical resistivity tomography method in investigating coseismic liquefaction.
Ward, S.H.
1989-10-17
Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth. 30 figs.
Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar
NASA Astrophysics Data System (ADS)
Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael
2015-08-01
Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.
A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...
Method for determining depth and shape of a sub-surface conductive object
NASA Astrophysics Data System (ADS)
Lee, D. O.; Montoya, P. C.; Wayland, J. R., Jr.
1984-06-01
The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak.
USDA-ARS?s Scientific Manuscript database
Whether yield reduction risk of cotton fertilized with fall-applied poultry litter in regions with warm fall or winter months can be minimized by applying the litter in subsurface bands in conjunction with winter cover crop is unknown. A field study was conducted in Mississippi to test whether litte...
A one-dimensional model of subsurface hillslope flow
Jason C. Fisher
1997-01-01
Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...
NASA Astrophysics Data System (ADS)
Akintorinwa, O. J.; Oluwole, S. T.
2018-06-01
For several decades, geophysical prospecting method coupled with geotechnical analysis has become increasingly useful in evaluating the subsurface for both pre and post engineering investigations. Shallow geophysical tool is often used alongside geotechnical method to evaluate subsurface soil for engineering study to obtain information which may include the subsurface lithology and their thicknesses, competence of the bedrock and depths to its upper interface, and competence of the material that make up the overburden, especially the shallow section which serves as host for foundations of engineering structures (Aina et al., 1996; Adewumi and Olorunfemi, 2005; and Idornigie et al., 2006). This information helps the engineers to correctly locate and design the foundation of engineering structures. The information also serves as guide to the choice of design and suitable materials needed for road construction (Akinlabi and Adeyemi, 2014). Lack of knowledge of the properties of subsurface may leads to the failure of most engineering structures. Therefore, it is of great importance to carry out a pre-construction investigation of a proposed site in order to ascertain the fitness of the host earth material.
Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick
2016-10-01
A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain H.; Kouzes, Richard T.
Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less
Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model
Vrettas, Michail D.; Fung, Inez Y.
2017-05-04
The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths ofmore » the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains math formula of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.« less
NASA Astrophysics Data System (ADS)
Adeniji, A. E.; Omonona, O. V.; Obiora, D. N.; Chukudebelu, J. U.
2014-04-01
Bwari is one of the six municipal area councils of the Federal Capital Territory (FCT), Abuja with its attendant growing population and infrastructural developments. Groundwater is the main source of water supply in the area, and urbanization and industrialization are the predominant contributors of contaminants to the hydrological systems. In order to guarantee a continuous supply of potable water, there is a need to investigate the vulnerability of the aquifers to contaminants emanating from domestic and industrial wastes. A total of 20 vertical electrical soundings using Schlumberger electrode array with a maximum half current electrodes separation of 300 m was employed. The results show that the area is characterized by 3-6 geoelectric subsurface layers. The measured overburden thickness ranges from 1.0 to 24.3 m, with a mean value of 7.4 m. The resistivity and longitudinal conductance of the overburden units range from 18 to 11,908 Ωm and 0.047 to 0.875 mhos, respectively. Areas considered as high corrosivity are the central parts with ρ < 180 Ωm. The characteristic longitudinal unit conductance was used to classify the area into zones of good (0.7-4.49 mhos), moderate (0.2-0.69 mhos), weak (0.1-0.19 mhos), and poor (<0.1) aquifer protective capacity. Zones characterized by materials of moderate to good protective capacity serve as sealing potential for the underlying hydrogeological system in the area. This study is aimed at delineating zones that are very prone to groundwater contamination from surface contaminants and subsurface soils that are corrosive to utility pipes buried underground. Hence the findings of this work will constitute part of the tools for groundwater development and management and structural/infrastructural development planning of the area.
NASA Astrophysics Data System (ADS)
Aksoy, A.; Lee, J. H.; Kitanidis, P. K.
2016-12-01
Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.
NASA Astrophysics Data System (ADS)
Paillou, P.; Grandjean, G.; Heggy, E.; Farr, T.
2004-05-01
For several years, we have conducted a quantitative study of radar penetration performances in various desert arid environments. This study combines both SAR (Synthetic Aperture Radar) imaging from orbital and airborne platforms and in situ GPR (Ground Penetrating Radar) measurements. Laboratory characterization of various minerals and rocks are used as input to electromagnetic models such as IEM (Integral Equation Model) and FDTD (Finite Difference Time Domain) that describe the subsurface scattering process for inversion purposes. Several test sites were explored, mainly the Sahara. Our first experiment was realized in Republic of Djibouti, an arid volcanic area which is a good analog to Mars. We observed a very little radar penetration there because of the presence of iron oxides and salts in the subsurface that make the soil conductive [Paillou et al., GRL, 2001]. A more favorable site for radar penetration was then explored in southern Egypt: the Bir Safsaf area where buried river channels were discovered using orbital SAR images. We showed how to combine SAR and GPR in order to obtain a complete description of subsurface geology down to several meters [Paillou et al., IEEE TGRS, 2003]. Such field experiments were the basis for more systematic laboratory measurements of the electromagnetic properties of various rocks and minerals which were used in numerical models in order to simulate the performances of future Martian radars, e.g. MARSIS and NETLANDER low frequency radars [Heggy et al., Icarus, 2001; Berthelier et al., JGR, 2003; Heggy et al., JGR, 2003]. More recently, new explorations were conducted in Mauritania in order to demonstrate radar capacities for geologic mapping [Grandjean et al., Coll. Afr. Geol., 2004] and in Libya where radar discovered a double impact crater in the southern desert [Paillou et al., C.R. Geoscience, 2003]. More local radar experiments were also conducted on a test site located in France, the Pyla sand dune, where we observed and modeled a radar signature of subsurface water [Grandjean et al., IEEE TGRS, 2001; Paillou et al., IGARSS'03, 2003]. All of these results shall be used in the context of "terrestrial analogs to Mars" studies in order to prepare for future Mars exploration using radars [Farr et al., Planet. Dec. Study, 2002; Paillou et al., 35th LPSC, 2004]: it concerns both GPR instruments onboard rovers and landers devoted to the exploration of the deep subsurface [Berthelier at al., ESA Pasteur, 2003] and SAR imaging systems onboard orbital platforms for global mapping of the shallow subsurface geology [Paillou et al., Conf. Water Mars, 2001].
NASA Astrophysics Data System (ADS)
Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.
2017-12-01
In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.
Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil
NASA Astrophysics Data System (ADS)
Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.
2012-12-01
An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R
2012-05-01
Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less
NASA Astrophysics Data System (ADS)
Soupios, P. M.; Loupasakis, C.; Vallianatos, F.
2008-06-01
Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51-62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately.
Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.
NASA Astrophysics Data System (ADS)
Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.
2015-12-01
Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.
NASA Astrophysics Data System (ADS)
Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry
2014-05-01
Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.
Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F
2014-07-01
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo
2015-04-01
The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and seismic data coupled with TDEM measurements provides a robust constraint to the Piano di Pezza fault cumulative offset. Our data are useful for better reconstructing the deep structural setting of the Piano di Pezza basin and assessing the role played by extensional tectonics in its Quaternary evolution.
Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobecky, Patricia A.
2015-04-06
In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Areamore » 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.« less
The hydrogeological conditions in Sahel Hasheesh, Eastern Desert, Eg
NASA Astrophysics Data System (ADS)
Abdalla, Mohamed A.; Mekhemer, Hatem M.; Mabrou, Walid Abdallah
2016-06-01
The groundwater development in Egypt in the present time is of a vital importance than in past few years. A comprehensive plan for new land reclamation projects has been recently established. To achieve these plans new sources of water must be available. This has been done by conducting a number of VES'S where interpreted by a comparison with the existing drilled borehole soil samples. The optimum resistivity model is obtained by matching method using "IPI2Win" Moscow State University 2000 software computer programs for resistivity interpretation. The results of the quantitative interpretation of the resistivity curves has been represented as geoelectric sections, showing the thickness and true electric resistivity values of the different geoelectric layers. The results of quantitative interpretation of the vertical electrical soundings show subsurface five geoelectric units and the aquifer system belongs to lower Miocene and the total salinity of 2451.2 ppm. The depth to water surface is 88.05 m and the total dissolved solids are 2451.2 ppm (Mekhemer well). The salt assemblages in Sahel Hasheesh are NaCl, MgCl2, MgSO4, CaSO4, Ca(HCO3)2. This marine water is of brackish sodium chloride water type (NaCl).
Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia
2011-01-01
This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.
Smith, Bruce D.; Abraham, Jared D.; Cannia, James C.; Steele, Gregory V.; Hill, Patricia L.
2008-01-01
This report is a digital data release for a helicopter electromagnetic and magnetic survey that was conducted during March 2007 in three 93-square-kilometer (36-square-mile) areas of eastern Nebraska as part of a joint State of Nebraska and U.S. Geological Survey study. The objective of the survey is to improve the understanding of the relationship between surface-water and ground-water systems critical to developing water resource management programs. The electromagnetic equipment consisted of six different coil-pair orientations that measured electrical resistivity at separate frequencies from about 400 hertz to about 115,000 hertz. The electromagnetic data were converted to electrical resistivity geo-referenced grids and maps, each representing different approximate depths of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow aquifers. The three areas selected for the study, Ashland, Firth, and Oakland, have glacial terrains and bedrock that typify different hydrogeologic settings for surface water and ground water in eastern Nebraska. The geophysical and hydrologic information from U.S. Geological Survey studies are being used by resource managers to develop ground-water resource plans for the area.
Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska
Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.
2016-01-01
Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.
Horizontal-to-vertical spectral ratio variability in the presence of permafrost
NASA Astrophysics Data System (ADS)
Kula, Damian; Olszewska, Dorota; Dobiński, Wojciech; Glazer, Michał
2018-07-01
Due to fluctuations in the thickness of the permafrost active layer, there exists a seasonal seismic impedance contrast in the permafrost table. The horizontal-to-vertical spectral ratio (HVSR) method is commonly used to estimate the resonant frequency of sedimentary layers on top of bedrock. Results obtained using this method are thought to be stable in time. The aim of the study is to verify whether seasonal variability in the permafrost active layer influences the results of the HVSR method. The research area lies in the direct vicinity of the Polish Polar Station, Hornsund, which is located in Southern Spitsbergen, Svalbard. Velocity models of the subsurface are obtained using the HVSR method, which are juxtaposed with electrical resistivity tomography profiles conducted near the seismic station. Survey results indicate that the active layer of permafrost has a major influence on the high-frequency section of the HVSR results. In addition, the depth of the permafrost table inferred using the HVSR method is comparable to the depth visible in electrical resistivity tomography results. This study proves that, in certain conditions, the HVSR method results vary seasonally, which must be taken into account in their interpretation.
NASA Astrophysics Data System (ADS)
Salas-Romero, Silvia; Malehmir, Alireza; Snowball, Ian; Lougheed, Bryan C.; Hellqvist, Magnus
2014-05-01
The study of quick clay landslides in Nordic countries, such as Sweden and Norway, is wide and varied. However, the occurrence of catastrophes like those in Munkedal, Sweden, in 2006, demands a more complete characterization of these materials and their extensiveness. The objectives of this research are mainly focused on obtaining information about the properties and behavior of quick clays in an area prone to landslides in southwestern Sweden. Two fieldwork campaigns were carried out in 2011 and 2013, using methods such as 2D and 3D P-wave and S-wave seismic, geoelectrics, controlled-source and radio-magnetotellurics, ground gravity, as well as downhole geophysics (measuring fluid temperature and conductivity, gamma radiation, sonic velocity and resistivity) performed in three boreholes located in the study area. Drill cores recovered using the SONIC technique provided samples for paleontological information, as well as laboratory measurements of physical properties of the subsurface materials to a maximum subsurface depth of about 60 m. The laboratory measurements included grain size analysis, mineral magnetic properties, electric conductivity, pH, salinity, total dissolved solids, x-ray fluorescence (XRF), and a reconnaissance study of the fossil content. A correlation study of the downhole geophysical measurements, 2D seismic sections located at the intersection with the boreholes and the sample observations indicated that the presence of quick clays is associated with contacts with coarse-grained materials. Although the PVC casing of the boreholes interferes with the sonic and resistivity measurements, the perforated parts of the PVC casing show significant changes. The most important variations in magnetic susceptibility and conductivity mostly coincide with these coarse-grained layers, supporting the seismic data. Coarse-grained layers are characterized by enhanced magnetic susceptibility and conductivity. Grain size analysis results on subsamples from the deepest borehole (the one closer to the river) correlate with changes in the natural gamma measurements. Overall, the fine sediments dominate over the coarser ones, and clay and fine silt are found to be the most abundant. The preliminary paleontological observations indicate that the most of the sediments were formed in a glaciomarine environment. Additionally, XRF measurements were performed on subsamples from the deepest borehole, indicating high Cl/V values (a good salinity indicator) in the thickest coarse-grained layer. In conclusion, all the collected data show a comprehensive description of the subsurface in the area. The characteristics of the observed quick clays will offer more information about these materials in Sweden, expanding our knowledge about them and assisting in risk assessments in similar areas where similar geohazards are present. Future work will be geared towards processing of the data collected in 2013, including a seismic line across the river, which will complement and extend the study area. New fieldwork campaigns and inversion of surface wave data will improve the interpretation of the shallow subsurface. Furthermore, geotechnical data from the site, obtained by the Swedish Geotechnical Institute, will be used to define and support the presence of quick clays in the area. Acknowledgements: GWB-SEG, Formas, SGU, LIAG, SGI, PAN and graduate and undergraduate students from Uppsala University for their fieldwork contribution.
NASA Astrophysics Data System (ADS)
Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.
2017-11-01
Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.
Smith, Bruce D.; Thamke, Joanna N.; Tyrrell, Christa
2014-01-01
Areas of high electrical conductivity in shallow aquifers in the East Poplar oil field area were delineated by the U.S. Geological Survey (USGS), in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to interpret areas of saline-water contamination. Ground, airborne, and borehole geophysical data were collected in the East Poplar oil field area from 1992 through 2005 as part of this delineation. This report presents borehole geophysical data for thirty-two wells that were collected during, 1993, 2004, and 2005 in the East Poplar oil field study area. Natural-gamma and induction instruments were used to provide information about the lithology and conductivity of the soil, rock, and water matrix adjacent to and within the wells. The well logs were also collected to provide subsurface controls for interpretation of a helicopter electromagnetic survey flown over most of the East Poplar oil field in 2004. The objective of the USGS studies was to improve understanding of aquifer hydrogeology particularly in regard to variations in water quality.
Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa
2009-04-15
Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.
NASA Astrophysics Data System (ADS)
George, N. J.; Obiora, D. N.; Ekanem, A. M.; Akpan, A. E.
2016-10-01
The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.
Assessment of the geothermal resources of the Socialist Republic of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, T.; Tien, Phan Cu; Schochert, D.
1997-12-31
More than 125 thermal springs, with temperatures greater than 30{degrees}C have been identified and catalogued by the General Department of Geology of Vietnam. Subsurface data are limited and fewer than 10 areas have been identified, on the basis of chemical geothermometers, as capable of supporting electric power production. Six sites in south-central Vietnam have recently been selected for exploration to determine their development potential for electrical power generation. Selected criteria included surface features, chemical geothermometers, proximity to regional faults trends, and regional requirements for electric power. Site visits were conducted to a total of eight areas in south central Vietnammore » where collateral economic developments suggest the need for a local, reliable source of electricity. Physical and visual information on geothermal springs and wells in Vietnam was compared to Nevada`s geothermal resources. Surface geothermal manifestations in Vietnam appear remarkably similar to those in Nevada. Outcrops adjacent to the geothermal areas indicate that Mesozoic-age granites are the most likely basement rocks. Quaternary basalts mapped throughout the study area may be responsible for the thermal anomaly. Initial exploration efforts will focus on three of the six sites, which together may be able to produce 40 to 60 MWe. A cooperative research program with selected Vietnamese governmental agencies includes geologic mapping, surface geophysical and geochemical surveys, and a graduated schedule of drilling programs, ranging in depth from 100 to 1,000 m. Results will be used to define a detailed, deep drilling and testing program at the three prime sites. Development of geothermal power in this region will boost local economic recovery and add stability to the national electric grid.« less
A new technology for determining transport parameters in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, J.L.; Wright, J.
The UFA Method can directly and rapidly measure transport parameters for any porous medium over a wide range of water contents and conditions. UFA results for subsurface sediments at a mixed-waste disposal site at the Hanford Site in Washington State provided the data necessary for detailed hydrostratigraphic mapping, subsurface flux and recharge distributions, and subsurface chemical mapping. Seven hundred unsaturated conductivity measurements along with pristine pore water extractions were obtained in only six months using the UFA. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies.
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.
2004-05-01
Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI results were obtained along the Sand Coulee and Onoway transects where the contrast between the bedrock and valley-fill was large and the surficial sediment was homogeneous. The effects of decreasing reliability with depth, 3-D anomalies, principles of equivalence and suppression, and surface inhomogeneity on the image quality are discussed.
Method for determining depth and shape of a sub-surface conductive object
Lee, D.O.; Montoya, P.C.; Wayland, Jr.
1984-06-27
The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.
Bonding and electronics of the MoTe2/Ge interface under strain
NASA Astrophysics Data System (ADS)
Szary, Maciej J.; Michalewicz, Marek T.; Radny, Marian W.
2017-05-01
Understanding the interface formation of a conventional semiconductor with a monolayer of transition-metal dichalcogenides provides a necessary platform for the anticipated applications of dichalcogenides in electronics and optoelectronics. We report here, based on the density functional theory, that under in-plane tensile strain, a 2H semiconducting phase of the molybdenum ditelluride (MoTe2) monolayer undergoes a semiconductor-to-metal transition and in this form bonds covalently to bilayers of Ge stacked in the [111] crystal direction. This gives rise to the stable bonding configuration of the MoTe2/Ge interface with the ±K valley metallic, electronic interface states exclusively of a Mo 4 d character. The atomically sharp Mo layer represents therefore an electrically active (conductive) subsurface δ -like two-dimensional profile that can exhibit a valley-Hall effect. Such system can develop into a key element of advanced semiconductor technology or a novel device concept.
NASA Technical Reports Server (NTRS)
Mcgill, J. W.; Glass, C. E.; Sternberg, B. K.
1990-01-01
The ultimate goal is to create an extraterrestrial unmanned system for subsurface mapping and exploration. Neural networks are to be used to recognize anomalies in the profiles that correspond to potentially exploitable subsurface features. The ground penetrating radar (GPR) techniques are likewise identical. Hence, the preliminary research focus on GPR systems will be directly applicable to seismic systems once such systems can be designed for continuous operation. The original GPR profile may be very complex due to electrical behavior of the background, targets, and antennas, much as the seismic record is made complex by multiple reflections, ghosting, and ringing. Because the format of the GPR data is similar to the format of seismic data, seismic processing software may be applied to GPR data to help enhance the data. A neural network may then be trained to more accurately identify anomalies from the processed record than from the original record.
NASA Astrophysics Data System (ADS)
Chave, Alan D.; Everett, Mark E.; Mattsson, Johan; Boon, James; Midgley, Jonathan
2017-02-01
In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
NASA Astrophysics Data System (ADS)
Sirhan, Asal; Hamidi, Mohammad O.
2012-09-01
Multi-electrode geo-electrical and transient electromagnetic surveys were carried out to characterize the nature of the subsurface infiltration zones (5 to 20 m) related to a series of groundwater outlets, and to reveal the geometry of the different aquifers at Bani-Naim, in the south-eastern foothills of the Hebron area, West Bank, Palestine. The purpose of the surveys was to understand the link between water storage/transfer and the characteristics of the geological formations. The strata in this semi-arid region are composed of alternate layers of chalky limestone, hard limestone, marl and chalk. A total of 30 ERT and 15 TDEM were conducted at Bani Naim-Jahir and Bani Naim-Birein. A correlation between the results indicates various infiltration pathways: fractures, feature heterogeneities, and porous chalk. The local heterogeneity on the eastern side were the major pathways for the water infiltration, whereas the thick marl layer underneath acts as a natural impermeable barrier preventing water from infiltrating deeper. A combination of the different geophysical results identified conductive features that correspond to the infiltration zones supplying the dug wells with water. Furthermore, it was established that the fractured chalk and porous chalky limestone act as an aquifer. A three-dimensional visualization of the resistivity allowed a useful reconstruction of the shallow hydrogeological system. Consequently, these studies contribute to regional sustainable development projects in this semi-arid region.
Power systems utilizing the heat of produced formation fluid
Lambirth, Gene Richard [Houston, TX
2011-01-11
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
NASA Astrophysics Data System (ADS)
Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.
2017-09-01
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological-thermal dynamics.
NASA Astrophysics Data System (ADS)
Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.
2013-10-01
This work shows the result of an Electrical Resistivity Tomography survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (North Italy) earthquake occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno river in the urban areas of San Carlo, a hamlet of Sant'Agostino municipality, and of Mirabello (south-western portion of the Ferrara Province). Totally, six Electrical Resistivity Tomography were performed and calibrated with surface geological surveys, exploratory borehole and aerial photo interpretations. This was one of the first applications of the Electrical Resistivity Tomography method in investigating coseismic liquefaction.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-01-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
NASA Astrophysics Data System (ADS)
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-10-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
Evaluation of field methods for vertical high resolution aquifer characterization
NASA Astrophysics Data System (ADS)
Vienken, T.; Tinter, M.; Rogiers, B.; Leven, C.; Dietrich, P.
2012-12-01
The delineation and characterization of subsurface (hydro)-stratigraphic structures is one of the challenging tasks of hydrogeological site investigations. The knowledge about the spatial distribution of soil specific properties and hydraulic conductivity (K) is the prerequisite for understanding flow and fluid transport processes. This is especially true for heterogeneous unconsolidated sedimentary deposits with a complex sedimentary architecture. One commonly used approach to investigate and characterize sediment heterogeneity is soil sampling and lab analyses, e.g. grain size distribution. Tests conducted on 108 samples show that calculation of K based on grain size distribution is not suitable for high resolution aquifer characterization of highly heterogeneous sediments due to sampling effects and large differences of calculated K values between applied formulas (Vienken & Dietrich 2011). Therefore, extensive tests were conducted at two test sites under different geological conditions to evaluate the performance of innovative Direct Push (DP) based approaches for the vertical high resolution determination of K. Different DP based sensor probes for the in-situ subsurface characterization based on electrical, hydraulic, and textural soil properties were used to obtain high resolution vertical profiles. The applied DP based tools proved to be a suitable and efficient alternative to traditional approaches. Despite resolution differences, all of the applied methods captured the main aquifer structure. Correlation of the DP based K estimates and proxies with DP based slug tests show that it is possible to describe the aquifer hydraulic structure on less than a meter scale by combining DP slug test data and continuous DP measurements. Even though correlations are site specific and appropriate DP tools must be chosen, DP is reliable and efficient alternative for characterizing even strongly heterogeneous sites with complex structured sedimentary aquifers (Vienken et al. 2012). References: Vienken, T., Leven, C., and Dietrich, P. 2012. Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization — a field study. Canadian Geotechnical Journal, 49(2): 197-206. Vienken, T., and Dietrich, P. 2011. Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 400(1-2): 58-71.
NASA Astrophysics Data System (ADS)
André, F.; Lambot, S.; Moghadas, D.; Vereecken, H.
2009-04-01
Electromagnetic induction (EMI) has been widely used since the 70s to retrieve soil physico-chemical properties through the measurement of soil electrical conductivity. Soil electrical conductivity integrates several factors, mainly soil water content, salinity, clay content and temperature, and to a lesser extent, mineralogy, porosity, structure, cation exchange capacity, organic matter and bulk density. EMI has been shown to be useful for a wide range of environmental applications. EMI is non invasive and individual measurements are almost instantaneous, which permits to characterise large areas with fine spatial and/or temporal resolutions. Nevertheless, current EMI systems present some limitations. First, EMI usually operates at a single or at a limited number of fixed frequencies, which limits the information that can be retrieved from the subsurface. In addition, the calibration of existing commercial sensors is generally rather empirical and not accurate, which reduces the reliability of the data. Finally, the data processing techniques that are used to retrieve the soil electrical properties from EMI data often rely on strong simplifying assumptions with respect to wave propagation through the antenna-air-soil system. Performing EMI measurements with Vector Network Analyzer (VNA) technology would overcome a part of these limitations, allowing to work simultaneously at a wide range of frequencies and to readily perform robust calibrations, which are defined as an international standard. On that basis, we have developed a new algorithm for off-ground, zero-offset, frequency domain EMI based on full-waveform inverse modelling. The EMI forward model is based on a linear system of complex transfer functions for describing the loop antenna and its interactions with soil and an exact solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The approach has been validated in laboratory conditions for measurements at different heights above a perfect electric conductor (copper sheet). Although VNA technology has a relatively wide dynamic range, regular loop antennas do not have a sufficient efficiency to ensure enough sensitivity to the soil electrical conductivity in zero-offset, off-ground mode. For higher efficiency, we have designed a specific transmitting antenna based on two coils in series together with a variable capacitor to modify the resonant frequency. The two coils have different diameters and are placed in the same plane, centred on the same point. The current in the inner coil is travelling in opposite direction compared to the outer coil, leading to two magnetic fields with opposite polarity. This produces a magnetic cavity in the middle of the coils (the magnetic field tends to zero), where a regular receiving coil is situated. This set up permits to strongly decrease direct coupling between the antennas, thereby increasing the dynamic range of the system. In addition, a wideband amplifier is used to further strengthen the received wave. The results obtained with this new method show great promise for quantitative and accurate characterization of the soil electrical conductivity with EMI.
NASA Astrophysics Data System (ADS)
Cosans, C.; Moore, J.; Harman, C. J.
2017-12-01
Located in the deeply weathered Piedmont in Maryland, Pond Branch has a rich legacy of hydrological and geochemical research dating back to the first geochemical mass balance study published in 1970. More recently, geophysical investigations including seismic and electrical resistivity tomography have characterized the subsurface at Pond Branch and contributed to new hypotheses about critical zone evolution. Heterogeneity in electrical resistivity in the shallow subsurface may suggest disparate flow paths for recharge, with some regions with low hydraulic conductivity generating perched flow, while other hillslope sections recharge to the much deeper regolith boundary. These shallow and deep flow paths are hypothesized to be somewhat hydrologically and chemically connected, with the spatially and temporally discontinuous connections resulting in different hydraulic responses to recharge and different concentrations of weathering solutes. To test this hypothesis, we combined modeling and field approaches. We modeled weathering solutes along the hypothesized flow paths using PFLOTRAN. We measured hydrologic gradients in the hillslopes and riparian zone using piezometer water levels. We collected geochemical data including major ions and silica. Weathering solute concentrations were measured directly in the precipitation, hillslope springs, and the riparian zone for comparison to modeled concentration values. End member mixing methods were used to determine contributions of precipitation, hillslopes, and riparian zone to the stream. Combining geophysical, geochemical, and hydrological methods may offer insights into the source of stream water and controls on chemical weathering. Previous hypotheses that Piedmont critical zone architecture results from a balance of erosion, soil, and weathering front advance rates cannot account for the inverted regolith structure observed through seismic investigations at Pond Branch. Recent alternative hypotheses including weathering along tectonically-induced fractures and weathering front advance have been proposed, but additional data are needed to test them. Developing a thorough, nuanced understanding of the geochemical and hydrological behavior of Pond Branch may help test and refine hypotheses for Piedmont critical zone evolution.
NASA Astrophysics Data System (ADS)
Grimm, R. E.
2002-09-01
Detection of subsurface, liquid water is an overarching objective of the Mars Exploration Program (MEP) because of its impacts on life, climate, geology, and preparation for human exploration. Although planned orbital radars seek to map subsurface water, methods with more robust depth-penetration, discrimination, and characterization capabilities are necessary to "ground truth" any results from such radars. Low-frequency electromagnetic (EM) methods exploit induction rather than wave propagation and are sensitive to electrical conductivity rather than dielectric constant. Saline martian groundwater will be a near-ideal EM target, especially as the overburden is likely very dry. The Naiades Mars Scout - named for the Greek mythological nymphs of springs, rivers, lakes, and fountains - comprise twin Landers directed to a high-priority region for groundwater investigation. Broadband measurements of natural EM fields will be used to perform passive soundings. If natural sources are weak, active soundings will be performed using a small transmitter. The two Landers are positioned within several tens of kilometers of each other so that coherence techniques can improve data quality; useful data can, however, be acquired by a single Lander. Additional mission objectives include detection of ground ice, characterization of natural EM fields, measurement of electrical properties, constraints on planetary heat flow, measurement of crustal magnetism, characterization of seismicity, seismic imaging of the interior, and assessment of landing-site geomorphology. A short-period seismometer and a wide-angle camera complete the payload to achieve these objectives. The Naiades mission strongly resonates with the main "Follow the Water" theme of the MEP, but in ways that are not currently within the its scope or that of international partners. The combination of established terrestrial methods for groundwater exploration, robust flight systems, and cost effectiveness proposed for the Naiades is a relatively low-risk approach to answering key questions about water on Mars within the Scout framework
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
Reconciling the MOLA, TES, and Neutron Observations of the North Polar CO2 Mass Budget on Mars
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Mattingly, B.; Titus, T. N.
2003-01-01
There are now three independent observations of the CO2 polar cap mass budget of Mars' north polar cap. The first is based elevation changes detected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS). The second is based on MGS Thermal Emission Spectrometer (TES) broadband observations of the solar and infrared radiation fields at the top of the atmosphere. The third is based on neutron counts measured by the neutron spectrometer (NS) on Odyssey. The TES data are based on an energy balance. The net radiative loss (gain) in a column is balanced by latent heating due condensation (sublimation) of CO2. In calculating the mass budget, the other main energy sources, atmospheric heat transport and subsurface conduction, were neglected. At the pole, atmospheric heat transport is indeed a small term. However, subsurface heat conduction can be significant because at the North Pole water ice, which has a high thermal conductivity compared to bare soil, is a dominant component of the subsurface. Thus, heat conducted down into the ice during summer will slowly bleed back out during fall and winter reducing the amount of CO2 that condenses on the pole. We have taken a first cut at quantifying this effect by fitting a curve to Paige's estimates of the conducted energy flux in his analysis of Viking IRTM data.
Detection in subsurface air of radioxenon released from medical isotope production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christine; Biegalski, Steven; Haas, Derek
Abstract Under the Comprehensive Nuclear-Test-Ban Treaty, an On-Site Inspection (OSI) may be conducted to clarify whether a nuclear explosion has been carried out in violation of Article I of the Treaty. A major component of an OSI is the measurement of subsurface gases in order to detect radioactive noble gases that are produced in a nuclear explosion, particularly radioxenon and radioargon. In order to better understand potential backgrounds of these gases, a sampling campaign was performed near Canadian Nuclear Laboratories in the Ottawa River Valley, a major source of environmental radioxenon. First of their kind measurements of atmospheric radioxenon imprintedmore » into the shallow subsurface from an atmospheric pressure driven force were made using current OSI techniques to measure both atmospheric and subsurface gas samples which were analyzed for radioxenon. These measurements indicate that under specific sampling conditions, on the order of one percent of the atmospheric radioxenon concentration may be measured via subsurface sampling.« less
Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09
Payne, Jason; Teeple, Andrew
2011-01-01
Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model inversions. The TDEM data collected were considered good results on the basis of root mean square errors calculated after inversion modeling, comparisons with borehole geophysical logging, and repeatability.
NASA Astrophysics Data System (ADS)
Daily, W.; Ramirez, A.
1995-04-01
Electrical resistance tomography was used to monitor in-situ remediation processes for removal of volatile organic compounds from subsurface water and soil at the Savannah River Site near Aiken, South Carolina. This work was designed to test the feasibility of injecting a weak mixture of methane in air as a metabolic carbon source for natural microbial populations which are capable of trichloroethylene degradation. Electrical resistance tomograms were constructed of the subsurface during the test to provide detailed images of the process. These images were made using an iterative reconstruction algorithm based on a finite element forward model and Newton-type least-squares minimization. Changes in the subsurface resistivity distribution were imaged by a pixel-by-pixel subtraction of images taken before and during the process. This differential tomography removed all static features of formation resistivity but clearly delineated dynamic features induced by remediation processes. The air-methane mixture was injected into the saturated zone and the intrained air migration paths were tomographically imaged by the increased resistivity of the path as air displaced formation water. We found the flow paths to be confined to a complex three-dimensional network of channels, some of which extended as far as 30 m from the injection well. These channels were not entirely stable over a period of months since new channels appeared to form with time. Also, the resistivity of the air injection paths increased with time. In another series of tests, resistivity images of water infiltration from the surface support similar conclusions about the preferential permeability paths in the vadose zone. In this case, the water infiltration front is confined to narrow channels which have a three-dimensional structure. Here, similar to air injection in the saturated zone, the water flow is controlled by local variations in formation permeability. However, temporal changes in these channels are minor, indicating that the permeable paths do not seem to be modified by continued infiltration.
Shipitalo, Martin J; Malone, Robert W; Ma, Liwang; Nolan, Bernard T; Kanwar, Rameshwar S; Shaner, Dale L; Pederson, Carl H
2016-06-01
Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA). The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4-5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of the parent compound into the soil. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Lacombe, Pierre
1986-01-01
Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)
Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun
2017-01-01
Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507
NASA Astrophysics Data System (ADS)
Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan
2017-04-01
Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.
NASA Astrophysics Data System (ADS)
Piqueux, Sylvain Loic Lucien
The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions <5% per volume are consistent with Martian thermal inertia data previously hypothesized to correspond to a global duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahnood, Arman, E-mail: arman.ahnood@unimelb.edu.au; Ganesan, Kumaravelu; Stacey, Alastair
Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamondmore » nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm{sup −2}, charge injection capacity of 0.01 mC cm{sup −2} is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.« less
Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution
NASA Astrophysics Data System (ADS)
Ahnood, Arman; Simonov, Alexandr N.; Laird, Jamie S.; Maturana, Matias I.; Ganesan, Kumaravelu; Stacey, Alastair; Ibbotson, Michael R.; Spiccia, Leone; Prawer, Steven
2016-03-01
Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm-2, charge injection capacity of 0.01 mC cm-2 is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.
Zhu, J.; Currens, J.C.; Dinger, J.S.
2011-01-01
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.
Energy as a Constraint on Habitability in the Subsurface
NASA Astrophysics Data System (ADS)
Hoehler, T.
2008-12-01
All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.
Novel approaches for an enhanced geothermal development of residential sites
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas
2015-04-01
An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.
Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods
NASA Astrophysics Data System (ADS)
Aborn, L.; Jacob, R. W.; Mucelli, A.
2016-12-01
Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most effective method for detecting defects within a soil-bentonite cutoff wall.
Hort, Ryan D; Revil, André; Munakata-Marr, Junko
2014-09-01
Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Ground-Coupled Heating-Cooling Systems in Urban Areas: How Sustainable Are They?
ERIC Educational Resources Information Center
Younger, Paul L.
2008-01-01
Ground-coupled heating-cooling systems (GCHCSs) exchange heat between the built environment and the subsurface using pipework buried in trenches or boreholes. If heat pumps in GCHCSs are powered by "green electricity," they offer genuine carbon-free heating-cooling; for this reason, there has been a surge in the technology in recent…
NASA Astrophysics Data System (ADS)
Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.
2017-12-01
Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.
Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation
NASA Astrophysics Data System (ADS)
Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.
2017-12-01
We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
Thermal treatment of low permeability soils using electrical resistance heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udell, K.S.
1996-08-01
The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies ofmore » electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Dietrich, Peter; Vienken, Thomas
2016-04-01
A sustainable thermal exploitation of the shallow subsurface requires a precise understanding of all relevant heat transport processes. Currently, planning practice of shallow geothermal systems (especially for systems < 30 kW) focuses on conductive heat transport as the main energy source while the impact of groundwater flow as the driver for advective heat transport is neglected or strongly simplified. The presented study proves that those simplifications of complex geological and hydrogeological subsurface characteristics are insufficient for a precise evaluation of site-specific energy extraction rates. Based on synthetic model scenarios with varying subsurface conditions (groundwater flow velocity and aquifer thickness) the impact of advection on induced long term temperature changes in 5 and 10 m distance of the borehole heat exchanger is presented. Extending known investigations, this study enhances the evaluation of shallow geothermal energy extraction rates by considering conductive and advective heat transport under varying aquifer thicknesses. Further, it evaluates the impact of advection on installation lengths of the borehole heat exchanger to optimize the initial financial investment. Finally, an evaluation approach is presented that classifies relevant heat transport processes according to their Péclet number to enable a first quantitative assessment of the subsurface energy regime and recommend further investigation and planning procedures.
NASA Astrophysics Data System (ADS)
Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel
2014-11-01
We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.
NASA Astrophysics Data System (ADS)
Schwartz, N.; Huisman, J. A.; Furman, A.
2012-12-01
In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition, direct evidence showed that the organic cation was adsorbed on the soil surface and exchanged with inorganic ions that usually exist in soil. This experiment confirmed that adsorption to the soil surface and the associated release of inorganic ions is the main mechanism affecting the complex conductivity of the contaminated porous media. Furthermore, our results show that adsorption of organic ions to the soil surface resulted in a decrease of the soil polarization. Using a chemical complexation model of the soil surface and a model for the polarization of the Stern layer, we were able to show that the decrease in the polarization of the soil can be related to the decrease in the surface site density of inorganic ions, and that the contribution of the soil-organic complexes to the polarization of the soil is negligible. We attribute this to the strong interaction between polar organic compounds and soil which results in a significant decrease in the mobility of the organic compounds in the Stern layer. The results of this work are essential to better interpret SIP signatures of soil contaminated with organic contaminants.
Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2
NASA Astrophysics Data System (ADS)
Kuo, C. W.; Song, S. R.
2014-12-01
A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and injection rates, heat source, fractures, and all the relevant parameters are performed to evaluate their effects on temperature distribution of reservoir for 30 years. Through these sensitivity studies, we can design the better geothermal system in I-Lan area and reduce the risk of exploitation.
On the effects of subsurface parameters on evaporite dissolution (Switzerland)
NASA Astrophysics Data System (ADS)
Zidane, Ali; Zechner, Eric; Huggenberger, Peter; Younes, Anis
2014-05-01
Uncontrolled subsurface evaporite dissolution could lead to hazards such as land subsidence. Observed subsidences in a study area of Northwestern Switzerland were mainly due to subsurface dissolution (subrosion) of evaporites such as halite and gypsum. A set of 2D density driven flow simulations were evaluated along 1000 m long and 150 m deep 2D cross sections within the study area that is characterized by tectonic horst and graben structures. The simulations were conducted to study the effect of the different subsurface parameters that could affect the dissolution process. The heterogeneity of normal faults and its impact on the dissolution of evaporites is studied by considering several permeable faults that include non-permeable areas. The mixed finite element method (MFE) is used to solve the flow equation, coupled with the multipoint flux approximation (MPFA) and the discontinuous Galerkin method (DG) to solve the diffusion and the advection parts of the transport equation.
Baseline hydraulic performance of the Heathrow constructed wetlands subsurface flow system.
Richter, K M; Margetts, J R; Saul, A J; Guymer, I; Worrall, P
2003-01-01
A constructed wetland treatment system has been commissioned by BAA (formerly the British Airports Authority) in order to attenuate airfield runoff contaminated with de-icant and other potentially polluting materials from Heathrow Airport. Airfield runoff containing de-icants has the potential to impose significant oxygen demands on water bodies. The site consists of a number of integrated treatment systems, including a 1 ha rafted reed bed canal system and a 2 ha sub-surface flow gravel reed bed. This research project is concerned with the performance of the subsurface flow reed beds, though attention will be paid in this paper to the operation of the whole system. Prior to the planting of the subsurface flow reed beds, flow-tracing experiments were carried out on the three different types of subsurface flow beds, so that the baseline performance of the system could be quantified. In association, data regarding the soil organic matter content was also collected prior to the planting of the beds. As expected, soil organic matter content is observed to be negligible within the bed, though a small amount of build up was observed in localised areas on the surface of the beds. This was attributed to the growth of algae in depressions where standing water persisted during the construction phase. Few studies exist which provide detailed measurements into the cause and effect of variations in hydraulic conductivity within an operational reed bed system. The data presented here form the baseline results for an ongoing study into the investigation of the change in hydraulic conductivity of an operational reed bed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver
2013-10-01
3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.
NASA Astrophysics Data System (ADS)
Gusyev, Maksym; Yamazaki, Yusuke; Morgenstern, Uwe; Stewart, Mike; Kashiwaya, Kazuhisa; Hirai, Yasuyuki; Kuribayashi, Daisuke; Sawano, Hisaya
2015-04-01
The goal of this study is to estimate subsurface water transit times and volumes in headwater catchments of Hokkaido, Japan, using the New Zealand high-accuracy tritium analysis technique. Transit time provides insights into the subsurface water storage and therefore provides a robust and quick approach to quantifying the subsurface groundwater volume. Our method is based on tritium measurements in river water. Tritium is a component of meteoric water, decays with a half-life of 12.32 years, and is inert in the subsurface after the water enters the groundwater system. Therefore, tritium is ideally suited for characterization of the catchment's responses and can provide information on mean water transit times up to 200 years. Only in recent years has it become possible to use tritium for dating of stream and river water, due to the fading impact of the bomb-tritium from thermo-nuclear weapons testing, and due to improved measurement accuracy for the extremely low natural tritium concentrations. Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments and estimating subsurface water volume. While many tritium transit time studies have been conducted in New Zealand, only a limited number of tritium studies have been conducted in Japan. In addition, the meteorological, orographic and geological conditions of Hokkaido Island are similar to those in parts of New Zealand, allowing for comparison between these regions. In 2014, three field trips were conducted in Hokkaido in June, July and October to sample river water at river gauging stations operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). These stations have altitudes between 36 m and 860 m MSL and drainage areas between 45 and 377 km2. Each sampled point is located upstream of MLIT dams, with hourly measurements of precipitation and river water levels enabling us to distinguish between the snow melt and baseflow contributions to the river discharge. For the June sampling, the tritium and stable isotope results indicate below normal river discharges with a strong contribution of snow melt at some sampling points, and relatively short groundwater transit times. The tritium concentration results are used to interpret mean transit times (MTTs) for each sampling point using a tritium input curve constructed from historical International Atomic Energy Agency and available Japanese data, and subsurface volumes are estimated from the MTTs and measured river discharges.
High resolution aquifer characterization using crosshole GPR full-waveform tomography
NASA Astrophysics Data System (ADS)
Gueting, N.; Vienken, T.; Klotzsche, A.; Van Der Kruk, J.; Vanderborght, J.; Caers, J.; Vereecken, H.; Englert, A.
2016-12-01
Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here, we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross-sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.
NASA Astrophysics Data System (ADS)
Akip Tan, S. N. Mohd; Edy Tonnizam, M.; Saad, R.; Dan, M. F. Md; Nordiana, M. M.; Hazreek, Z. A. M.; Madun, A.
2018-04-01
Electrical resistivity survey and the geotechnical SPT blow counts (N-value) were carried out simultaneously on the tropically weathered sedimentary rock mass for an excavation project at Nusajaya, Johor, Malaysia. This study aims to determine subsurface profile by using 2D-resistivity methods and correlate with N-value derived from boring works. Four boreholes were investigated in five survey lines that revealed the site is underlain by moderately to completely weathered sandstone, clay, silt and shale. Data analysis from 2D-resistivity image shows that zones with high resistivity value generally have high N-value, and vice versa. Five zones have inversed the proportional relation between N-value and resistivity Ωm value due to different types of soil lithology. It indicates that 2D-resistivity is significance to detect bodies of anomalous materials or estimating the depth of bedrock. As a conclusion, the integration of geophysical and geotechnical analysis provides a promise approach to understand some relationship concerning the subsurface subsurface ground through the combination of 2D-resistivity and N-value.
NASA Astrophysics Data System (ADS)
Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.
2017-12-01
As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.
NASA Astrophysics Data System (ADS)
Muttamara, Apiwat; Kanchanomai, Chaosuan
2016-06-01
Electrical discharge machining (EDM) is a popular non-traditional machining technique that is usually performed in kerosene. Carbon from the kerosene is mixed into the recast layer during EDM, increasing its hardness. EDM can be performed in deionized water, which causes decarburization. We studied the effects of carbon in the dielectric fluid and workpiece on the characteristics of recast layers. Experiments were conducted using gray cast iron and mild steel workpieces in deionized water or kerosene under identical operating conditions. Scanning electron microscopy revealed that the recast layer formed on gray iron was rougher than that produced on mild steel. Moreover, the dispersion of graphite flakes in the gray iron seemed to cause subsurface cracks, even when EDM was performed in deionized water. Dendritic structures and iron carbides were found in the recast layer of gray iron treated in deionized water. Kerosene caused more microcracks to form and increased surface roughness compared with deionized water. The microcrack length per unit area of mild steel treated in deionized water was greater than that treated in kerosene, but the cracks formed in kerosene were wider. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.
Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward
NASA Astrophysics Data System (ADS)
Daley, T. M.
2012-12-01
The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.
AIDA - from Airborne Data Inversion to In-Depth Analysis
NASA Astrophysics Data System (ADS)
Meyer, U.; Goetze, H.; Schroeder, M.; Boerner, R.; Tezkan, B.; Winsemann, J.; Siemon, B.; Alvers, M.; Stoll, J. B.
2011-12-01
The rising competition in land use especially between water economy, agriculture, forestry, building material economy and other industries often leads to irreversible deterioration in the water and soil system (as salinization and degradation) which results in a long term damage of natural resources. A sustainable exploitation of the near subsurface by industry, economy and private households is a fundamental demand of a modern society. To fulfill this demand, a sound and comprehensive knowledge on structures and processes of the near subsurface is an important prerequisite. A spatial survey of the usable underground by aerogeophysical means and a subsequent ground geophysics survey targeted at special locations will deliver essential contributions within short time that make it possible to gain the needed additional knowledge. The complementary use of airborne and ground geophysics as well as the validation, assimilation and improvement of current findings by geological and hydrogeological investigations and plausibility tests leads to the following key questions: a) Which new and/or improved automatic algorithms (joint inversion, data assimilation and such) are useful to describe the structural setting of the usable subsurface by user specific characteristics as i.e. water volume, layer thicknesses, porosities etc.? b) What are the physical relations of the measured parameters (as electrical conductivities, magnetic susceptibilities, densities, etc.)? c) How can we deduce characteristics or parameters from the observations which describe near subsurface structures as ground water systems, their charge, discharge and recharge, vulnerabilities and other quantities? d) How plausible and realistic are the numerically obtained results in relation to user specific questions and parameters? e) Is it possible to compile material flux balances that describe spatial and time dependent impacts of environmental changes on aquifers and soils by repeated airborne surveys? In order to follow up these questions raised the project aims to achieve the following goals: a) Development of new and expansion of existent inversion strategies to improve structural parameter information on different space and time scales. b) Development, modification, and tests for a multi-parameter inversion (joint inversion). c) Development of new quantitative approaches in data assimilation and plausibility studies. d) Compilation of optimized work flows for fast employment by end users. e) Primary goal is to solve comparable society related problems (as salinization, erosion, contamination, degradation etc.) in regions within Germany and abroad by generalization of project results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GANDER MJ; LEARY KD; LEVITT MT
2011-01-14
Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) ofmore » wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the vadose zone (i.e., 79 m [260 ft] bgs) within the footprint of the Crib, and (b) 15 to 30 m (50 to 100 ft) east of the Crib footprint, where contaminants are inferred to have migrated through relatively permeable soils. Confirmation of the presence of contamination in historic boreholes correlates well with mapping from the 2010 survey, and serves as a basis to site future characterization boreholes that will likely intersect contamination both laterally and at depth.« less
Explosion proof vehicle for tank inspection
Zollinger, William T [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Bauer, Scott G [Idaho Falls, ID
2012-02-28
An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.
2017-09-06
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid watermore » content, temperature and electrical resistivity tomography (ERT) data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological–thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface–subsurface, deterministic–stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological–thermal dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid watermore » content, temperature and electrical resistivity tomography (ERT) data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological–thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface–subsurface, deterministic–stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological–thermal dynamics.« less
Schmidt, Matthew W; Chang, Ping; Parker, Andrew O; Ji, Link; He, Feng
2017-11-13
Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhi; Zhang, Mingli; Ma, Wei
Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less
Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test
NASA Astrophysics Data System (ADS)
Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.
2015-06-01
Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.
NASA Astrophysics Data System (ADS)
Adams, Ryan Frye
The ACME Superfund site is one of many Superfund sites in Northern Illinois. This 20 acre (8.1 ha) site was contaminated by various volatile organic compounds (VOC's) and heavy metals during the 1960-1980s. To more fully understand the potential extent of the karst system and its interaction with contaminants, both surface and borehole geophysics including seismic refraction tomography, frequency domain electromagnetics, electrical resistivity, ground penetrating radar, as well as natural gamma and electromagnetic well logs, were undertaken over an approximately 3,000 square meter grid in a field immediately south of the ACME site. Seismic refraction tomography provided information on lithology and fluctuations in the bedrock surface in the depth range 6 to 8 m. Refraction, combined with electromagnetic conductivity, also allowed mapping of potential soil pipes and/or filled sinkholes in the overlying soils. These could channel surface waters into the karst conduit system. Frequency domain electromagnetics proved to be the most successful tool for the identifying possible karst conduits below the bedrock surface. Zones of reduced conductivity suggest a series of interconnected solutionally enlarged fractures in an orthogonal pattern at a depth of approximately 8 m immediately south of the ACME site.
NASA Astrophysics Data System (ADS)
Tapias, J. C.; Himi, M.; Lovera, R.; Blasco, R.; Folch, M.; Casas, A.
2012-04-01
Constructed wetlands are widely used for removing pollutants from wastewater in small communities because their simplicity and low operation costs. Nevertheless, with time the cleaning process can result in gradual clogging of the porous layer by suspended solids, bacterial film, chemical precipitates and compactation. The clogging development causes decrease of hydraulic conductivity, reduced oxygen supply and further leads to a rapid decrease of the treatment performance. As the investment involved in reversing clogging can represent a substantial fraction of the cost of a new system it is essential to assess in advance the evolution of clogging process and detect potential failures in the system. Since there is a lack of experiences for monitoring the functionality of constructed wedlands a combination of non-destructive geophysical methods have been tested in this study. With this purpose electrical resistivity tomography, induced polarisation, frequency domain EM and ground probing radar have been conducted at different horizontal subsurface flow municipal wastewater treatment wetlands of Catalonia (Spain). The obtained results have shown that the applied geophysical techniques may delineate the clogging expansion and help take the preventive measures for enlarge the lifetime of the treatment system.
NASA Astrophysics Data System (ADS)
Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina
2010-05-01
The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth profile was N-S direction and the length of this profile was 950 m. Two different layers were recognized along this profile. The fifth profile was located N-S with length about 340 m. Two layers were recognized from this profile. The sixth profile was located N-S direction and the length about 575 m. Three layers were recognized from this profile. The direction of the seventh profile was N-S with a length of about 235 m. two different layers were recognized the top layer was unconsolidated alluvium. The profile number 8 was located N-S with length about 232 m. two layers were conducted from this profile. The direction of ninth profile was NW-SE with length about 565 m. two layers were conducted along this profile. The length of the tenth profile was 235 m and the direction was N-S. Two layers with a different velocities were detected along this profile. Profile number eleven was located SW-NE with length about 475 m. two layers were recognized from this profile. The length of the last profile was 375 m with direction SE-NW. Two layers were conducted from this profile. It was found that the shallow aquifers exist at a depths ranging from 4 to 19 m and the relatively deep aquifers from 24 to 60 m below the ground surface. Keywords: Vertical electrical sounding, Aqaba, Resistivity, Groundwater, Layer depth, Geoelectrical.
Magnetotelluric investigation of the geothermal anomaly in Hailin, Mudanjiang, northeastern China
NASA Astrophysics Data System (ADS)
Zhang, Lili; Hao, Tianyao; Xiao, Qibin; Wang, Jie; Zhou, Liang; Qi, Min; Cui, Xiangpan; Cai, Ningxiao
2015-07-01
To study the occurrence conditions and locations of geothermal bodies in Hailin, Mudanjiang, northeastern China, we conducted a magnetotelluric investigation to delineate the electrical conductivity structure of the area on three parallel profiles. The area to the west of the Mudanjiang Fault lies in the Hailang sag of the Ning'an Basin. The data were processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Moreover, a modified anisotropic-diffusion-based method was used to suppress noise for the magnetotelluric time series data. This method retains the advantages of conventional anisotropic diffusion and is superior in its discrimination ability. The method is characteristic not only of the inherited features such as intra-region smoothing and edge preservation, but also of the adaptive selection of the diffusion coefficient. Data analysis revealed that the electrical resistivity structure can be approximated by a two-dimensional characterization. Two-dimensional inversion and rendering visualization show that a highly resistive granite basement is covered with conductive sedimentary layers and that a relatively low-resistivity anomalous structure with a resistivity of approximately 100-600 Ω·m is imbedded in the high-resistivity background. The anomalous structure has a narrow top and a wide bottom (the bottom depth is at least 3500 m). The shape and electrical features of the structure indicate favorable storage space for hot subsurface water. Fault activities and magma intrusion may result in the fractures of the basement, which are filled with hot water and thus produce the relatively low resistivity. Based on a comprehensive analysis, we infer that the structure is indicative of a geothermal reservoir. An exploratory well drilled near the structure confirms the occurrence of high temperatures. Several geological factors (cap rock, basement, and major faults) determine the favorable geothermal conditions of the reservoir. Large areas of granite form the major thermal source for the study area. The Mudanjiang and Hailang River Faults and their subsidiary faults provide another heat source and movement channels.
Biodegradability of pentachlorophenol in the environment: A literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakles, D.
1993-04-01
Pentachlorophenol has been widely used as a wood preserving agent for over 50 years to treat millions of electrical utility poles and crossarms. Treatment of poles with pentachlorophenol has in some cases resulted in contamination of soils, groundwater, and surface water. Environmental releases are a concern because of the potential toxicity of pentachlorophenol and its stringent regulation. Microbiological degradation of pentachlorophenol in environmental media has been demonstrated in numerous cases. The potential for pentachlorophenol to be biologically degraded is of interest to the electrical utility industry for two reasons. First, it is a factor in understanding the probable fate ofmore » pentachlorophenol where it has been released into the environment, and second, its biodegradability can potentially result in effective and economical treatment strategies for soils, water, and subsurface environments. The objective of this literature review is to collect a baseline of information on the biodegradability of pentachlorophenol in soils, surface water, and groundwater for the electric utility industry. The focus of the electric utility industry's interest in the environmental management and control of pentachlorophenol is primarily in the management of environmental media, particularly soils, that may have become incidentally contaminated with pentachlorophenol in association with the treatment, storage, or use of utility poles and crossarms. The review of the literature has found that [open quotes]unassisted[close quotes] biodegradation of pentachlorophenol in aquatic, soil, and subsurface environments may occur, presumably if there is an acclimated microbial population of sufficient density. Aerobic conditions appear to be most conducive to biodegradation in these cases. Several studies have shown that with an acclimated, mixed culture and conventional wastewater treatment approaches, pentachlorophenol can be effectively treated in water.« less
Biodegradability of pentachlorophenol in the environment: A literature review. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakles, D.
1993-04-01
Pentachlorophenol has been widely used as a wood preserving agent for over 50 years to treat millions of electrical utility poles and crossarms. Treatment of poles with pentachlorophenol has in some cases resulted in contamination of soils, groundwater, and surface water. Environmental releases are a concern because of the potential toxicity of pentachlorophenol and its stringent regulation. Microbiological degradation of pentachlorophenol in environmental media has been demonstrated in numerous cases. The potential for pentachlorophenol to be biologically degraded is of interest to the electrical utility industry for two reasons. First, it is a factor in understanding the probable fate ofmore » pentachlorophenol where it has been released into the environment, and second, its biodegradability can potentially result in effective and economical treatment strategies for soils, water, and subsurface environments. The objective of this literature review is to collect a baseline of information on the biodegradability of pentachlorophenol in soils, surface water, and groundwater for the electric utility industry. The focus of the electric utility industry`s interest in the environmental management and control of pentachlorophenol is primarily in the management of environmental media, particularly soils, that may have become incidentally contaminated with pentachlorophenol in association with the treatment, storage, or use of utility poles and crossarms. The review of the literature has found that {open_quotes}unassisted{close_quotes} biodegradation of pentachlorophenol in aquatic, soil, and subsurface environments may occur, presumably if there is an acclimated microbial population of sufficient density. Aerobic conditions appear to be most conducive to biodegradation in these cases. Several studies have shown that with an acclimated, mixed culture and conventional wastewater treatment approaches, pentachlorophenol can be effectively treated in water.« less
The microwave spectrum and nature of the subsurface of Mars.
NASA Technical Reports Server (NTRS)
Cuzzi, J. N.; Muhleman, D. O.
1972-01-01
Expected microwave spectra of Mars are computed using an improved thermal model and accurate aspect geometry. It is found that when seasonal polar cap effects are included in the calculations, the observable spectrum of Mars is flat from 0.1-21 cm to within the accuracy of present data. The spectra obtained from this model are consistent with all the data and are obtainable from a relatively simple model (homogeneous, dry, smooth dielectric sphere). This result differs from that predicted by the analytical theory in common use which is in apparent conflict with the observed spectra. A range of electrical loss tangents, covering the extreme limits for likely dry particulate geological materials, is employed. The case of a lunar-like subsurface is completely consistent with all present data.
Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter
2017-10-15
Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrical power systems for Mars
NASA Technical Reports Server (NTRS)
Giudici, Robert J.
1986-01-01
Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.
Electrical power systems for Mars
NASA Astrophysics Data System (ADS)
Giudici, Robert J.
1986-05-01
Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.
Sorption of imazaquin in soils with positive balance of charges.
Rocha, Wadson S D; Regitano, Jussara B; Alleoni, Luis R F; Tornisielo, Valdemar L
2002-10-01
The herbicide imazaquin has both an acid and a basic ionizable groups, and its sorption depends upon the pH, the electric potential (psi0), and the oxide and the organic carbon (OC) contents of the soil. Sorption and extraction experiments using 14C-imazaquin were performed in surface and subsurface samples of two acric oxisols (an anionic "rhodic" acrudox and an anionic "xanthic" acrudox) and one non-acric alfisol (a rhodic kandiudalf), treated at four different pH values. Imazaquin showed low to moderate sorption to the soils. Sorption decreased and aqueous extraction increased as pH increased. Up to pH 5.8, sorption was higher in subsurface than in surface layers of the acric soils, due to the positive balance of charges resulted from the high Fe and Al oxide and the low OC contents. It favored electrostatic interactions with anionic molecules of imazaquin. For the subsurface samples of these highly weathered soils, where psi0 was positive and OC was low, it was not possible to predict sorption just by considering imazaquin speciation and its hydrophobic partition to the organic domains of the soil. Moreover, if Koc measured for thesurface samples were assumed to represent the whole profile in predictive models for leaching potential, then it would result in underestimation of sorption potential in subsurface, and consequently result in overestimation of the leaching potential.
NASA Astrophysics Data System (ADS)
Bloem, E.; French, H. K.
2013-12-01
Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were also carried out during the monitoring period. We present a selection of results from the snowmelt experiments and how the combination of measurement techniques can help interpret and understand the relative importance of the various contributions to the bulk electrical conductivity during snowmelt and solute transport.
NASA Astrophysics Data System (ADS)
Hogg, Colin; Kiyan, Duygu; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Silva, Catarina; Viveiros, Maria FB; Ferreira, Teresa
2016-04-01
The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which forms the steep topography of more than 200 m in the measuring area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the Caldera and its vicinity. In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available. In 2015, a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data were collected along two profiles in the eastern part of Furnas caldera in order to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is extraordinary and first results indicate a general correlation between regions of elevated conductivity and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Tensor decomposition analysis using the Groom-Bailey approach produce a generalised geo-electric strike direction, 72deg East of North, for the AMT data compared to the surface geological strike derived from the major mapped fault crossing the profiles of 105deg. An analysis of the real induction arrows at certain frequencies (at depths greater than 350 m) infer that an extended conductor at depth does not exactly correspond to the degassing structures at the surface and extends outside the area of investigation. The geometry of the most conductive regions with electrical conductivities less then1 Ώm found at various depths differ from what was expected from earlier geologic and tectonic studies and possibly may not be directly related to the mapped fault systems at the surface. On the eastern profile, which seemed to be more appropriate for 2-D modelling with 72deg strike angle, a deep structure starting north of the major mapped fault crossing this profile can be found. It extends far to the south, with a top of approximately 150 m below the surface at the northern limit. A deeper conductive structure (top at about 300 m) is emerging at the southern end of the profile, though not fully resolved by the existing data. This work will focus on the processing, analysis and preliminary modelling results of the AMT data. A joint interpretation of the AMT results together with the ERT data covering the shallow regime with much higher resolution will be presented.
Sreeparvathy, Vijay; Kambhammettu, B V N P; Peddinti, Srinivasa Rao; Sarada, P S L
2018-03-22
Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. © 2018, National Ground Water Association.
Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau
NASA Astrophysics Data System (ADS)
Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu
2018-04-01
The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and the regional exploratory prospect of the deep resources.
Barr, G.L.
1993-01-01
Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.
NASA Astrophysics Data System (ADS)
Campanya, J. L.; Ogaya, X.; Jones, A. G.; Rath, V.; McConnell, B.; Haughton, P.; Prada, M.
2016-12-01
The Science Foundation Ireland funded project IRECCSEM project (www.ireccsem.ie) aims to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. One of the objectives of this component of IRECCSEM is to characterise the subsurface beneath the Loop Head Peninsula (part of Clare Basin, Co. Clare, Ireland), and identify major electrical resistivity structures that can guide an interpretation of the carbon sequestration potential of this area. During the summer of 2014, a magnetotelluric (MT) survey was carried out on the Loop Head Peninsula, and data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), and broadband magnetotelluric (BBMT). The dataset was used to generate shallow three-dimensional (3-D) electrical resistivity models constraining the subsurface to depths of up to 3.5 km. The three-dimensional (3-D) joint inversions were performed using three different types of electromagnetic data: MT impedance tensor (Z), geomagnetic transfer functions (T), and inter-station horizontal magnetic transfer-functions (H). The interpretation of the results was complemented with second-derivative models of the resulting electrical resistivity models, and a quantitative comparison with borehole data using multivariate statistical methods. Second-derivative models were used to define the main interfaces between the geoelectrical structures, facilitating superior comparison with geological and seismic results, and also reducing the influence of the colour scale when interpreting the results. Specific analysis was performed to compare the extant borehole data with the electrical resistivity model, identifying those structures that are better characterised by the resistivity model. Finally, the electrical resistivity model was also used to propagate some of the physical properties measured in the borehole, when a good relation was possible between the different types of data. The final results were compared with independent geological and geophysical data for a high-quality interpretation.
MuSET, A High Precision Logging Sensor For Downhole Spontaneous Electrical Potential.
NASA Astrophysics Data System (ADS)
Pezard, P. A.; Gautier, S.; Le Borgne, T.; Deltombe, J.
2008-12-01
MuSET has been designed by ALT and CNRS in the context of the EC ALIANCE research project. It is based on an existing multi-parameter borehole fluid sensor (p, T, Cw, pH, Eh) built by ALT. The new downhole geophysical tool aims to measure subsurface spontaneous electrical potentials (SP) in situ with great precision (< µV). For this, the device includes an unpolazirable Pb/PbCl2 electrode referred to a similar one at surface. Initial field testing in Montpellier (Languedoc, France), Ploemeur (Brittany, France) and Campos (Mallorca, Spain) took advantage of the set of field sites developed as part of ALIANCE then as part of the environmental research observatory (ORE) network for hydrogeology "H+". While Cretaceous marly limestone at Lavalette (Montpellier) proved to be almost exclusively the source of membrane potential, the clay-starved Miocene reefal carbonates of Campos generate a signal dominated by electrokinetic potential. This signal is generated due to nearby agricultural pumping, and associated strong horizontal flow. At the top of the salt to fresh water transtion, a discrepancy between the SP signal and the absence of vertical flow measured with a heat-pulse flowmeter hints at a capacity to detect the "fluid-junction", diffusion potential. At Ploemeur, the altered granite found in the vicinity of faults and fractures is also the source of a SP signal, mostly surface related while most fractures appear to be closed. In all, the MuSET demonstrates a capacity to identify several subsurface sources of natural electrical potential such as diffusion ones (membrane potential in the presence of clays, fickean processes due to pore fluid salinity gradients), or else the electrokinetic potential with pore fluid pressure gradients. While spontaneous electrical currents often loop out of the borehole, MuSET might be used as a radial electrical flowmeter once the diffusion components taken into account.
NASA Astrophysics Data System (ADS)
Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser
2018-04-01
The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT and ERT data particularly helps to improve the resolution of the resistivity models in areas where the profile traverses shallow water and land sections. Our modification of the joint inversion of RMT and ERT data improves the study of geological units underneath shallow water bodies where underground infrastructures are planned. Thus, it allows better planning and mitigating the risks and costs associated with conductive weakness zones.
Passive safety device and internal short tested method for energy storage cells and systems
Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad
2015-09-22
A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.
NASA Astrophysics Data System (ADS)
Burton, B. L.; Bern, C. R.; Sams, J. I., III; Veloski, G.; Minsley, B. J.; Smith, B. D.
2010-12-01
Coalbed natural gas (CBNG) production in the Powder River Basin (PRB) in northeastern Wyoming has increased rapidly since 1997. CBNG production involves the extraction of large amounts of water containing >2000 mg/L total dissolved solids, dominantly sodium bicarbonate. Subsurface drip irrigation (SDI) is a beneficial disposal method of produced waters, provided that waters and associated salts are managed properly. We are studying how water and solute distributions change in soils with progressive irrigation at two PRB sites using a combination of geophysical, geochemical, and mineralogical analyses. Perennial crops are grown at both sites, drip tapes are located at 92 cm depth, and water is applied year-round. The first SDI site is located at the confluence of Crazy Woman Creek and the Powder River. Baseline ground-based and helicopter-borne frequency domain electromagnetic induction (EMI) surveys were completed in 2007 and 2008, respectively, prior to the installation of the SDI system. Since installation, additional ground-based EMI, resistivity, and downhole geophysical log surveys have been completed along with soil geochemical and mineralogical analyses. Determining baseline physical, chemical, and electrical soil characteristics at this study site is an important step in linking the EMI measurements to the soil characteristics they are intended to assess. EMI surveys indicate that soil conductivity has generally increased with irrigation, but lateral migration of water away from the irrigated blocks is minimal. Median downhole electrical conductivity was positively correlated with soil mass wetness but not correlated with soil mineralogy. Soil-water extract results indicate existing salts are chemically heterogeneous throughout the site and in depth. The observed EMI conductivity variations are therefore primarily attributed to water content changes and secondarily to soil texture. The second SDI site, located northeast of Sheridan, WY, has been operating for six years and includes irrigated alfalfa and grass and adjacent non-irrigated grass fields. A single ground-based EMI survey was performed in Feb. 2010, which helped direct subsequent soil sampling. Gypsum distribution can be differentiated into two soil zones: an upper, gypsum-poor zone and a lower gypsum-rich zone. The break between zones is 30 cm deeper in the irrigated soil and is probably due to dissolution and displacement of gypsum by SDI waters infiltrating from the drip tape. Resistivity profiles were acquired in June 2010 over the soil sampling sites and are consistent with the EMI data, which show higher conductivity values in the irrigated fields. In the SDI alfalfa field, there is a strong negative correlation between mass wetness and resistivity with a 75% increase in mass wetness (0.2-0.35 g/g) at 3 m depth corresponding to a 30% resistivity decrease (15-10 ohm-m). When compared to the non-irrigated field profile, the SDI alfalfa field data show a 50% resistivity decrease (20-10 ohm-m) below 3 m depth, indicating a possible accumulation of irrigated waters below the SDI system.
Jackson, C. Rhett; Du, Enhao; Klaus, Julian; ...
2016-08-12
Interactions among hydraulic conductivity distributions, subsurface topography, and lateral flow are poorly understood. We applied 407 mm of water and a suite of tracers over 51 h to a 12 by 16.5 m forested hillslope segment to determine interflow thresholds, preferential pathway pore velocities, large-scale conductivities, the time series of event water fractions, and the fate of dissolved nutrients. The 12% hillslope featured loamy sand A and E horizons overlying a sandy clay loam Bt at 1.25 m average depth. Interflow measured from two drains within an interception trench commenced after 131 and 208 mm of irrigation. Cumulative interflow equaledmore » 49% of applied water. Conservative tracer differences between the collection drains indicated differences in flow paths and storages within the plot. Event water fractions rose steadily throughout irrigation, peaking at 50% sixteen h after irrigation ceased. Data implied that tightly held water exchanged with event water throughout the experiment and a substantial portion of preevent water was released from the argillic layer. Surface-applied dye tracers bypassed the matrix, with peak concentrations measured shortly after flow commencement, indicating preferential network conductivities of 864–2240 mm/h, yet no macropore flow was observed. Near steady-state flow conditions indicated average conductivities of 460 mm/h and 2.5 mm/h for topsoils and the Bt horizon, respectively. Low ammonium and phosphorus concentrations in the interflow suggested rapid uptake or sorption, while higher nitrate concentrations suggested more conservative transport. Lastly, these results reveal how hydraulic conductivity variation and subsurface topographic complexity explain otherwise paradoxical solute and flow behaviors.« less
Washington Geothermal Play Fairway Analysis Data From Potential Field Studies
Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William
2017-12-20
A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.
Evaluation of subsurface damage in concrete deck joints using impact echo method
Rickard, Larry; Choi, Wonchang
2016-01-01
Many factors can affect the overall performance and longevity of highway bridges, including the integrity of their deck joints. This study focuses on the evaluation of subsurface damage in deteriorated concrete deck joints, which includes the delamination and corrosion of the reinforcement. Impact echo and surface wave technology, mainly a portable seismic property analyzer (PSPA), were employed to evaluate the structural deficiency of concrete joints. Laboratory tests of core samples were conducted to verify the nondestructive test results. As a result, the primary advantage of the PSPA as a bridge assessment tool lies in its ability to assess the concrete’smore » modulus and to detect subsurface defects at a particular point simultaneously.« less
Theoretical relationship between elastic wave velocity and electrical resistivity
NASA Astrophysics Data System (ADS)
Lee, Jong-Sub; Yoon, Hyung-Koo
2015-05-01
Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.
Nde of Frp Wrapped Columns Using Infrared Thermography
NASA Astrophysics Data System (ADS)
Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.
2008-02-01
This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.
Subsurface phosphorus transport through a no-till field in the semi arid Palouse region
NASA Astrophysics Data System (ADS)
Norby, J. C.; Brooks, E. S.; Strawn, D. G.
2017-12-01
Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.
Near surface geophysical techniques on subsoil contamination: laboratory experiments
NASA Astrophysics Data System (ADS)
Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo
2016-04-01
Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of electrical properties of the subsoil at high depths and, in some cases, a detailed assessment of dynamic processes in the subsurface environment (Binley et al., 2002). Our study confirms the link between hydrocarbons contamination and geoelectrical signal and the capability of cross-hole electrical resistivity tomographies to realize a non-invasive characterization of LNAPL contamination of the media. Although, the electrical behaviour is much more complex and the relation with the contaminants depends also by time of investigation.
An Experimental Investigation of Infiltration in a Shallow Karst System
NASA Astrophysics Data System (ADS)
Bellin, A.; Becker, M. W.; Borsato, A.
2008-12-01
We present preliminary results of a field investigation of infiltration in a karst terrain in the Dolomiti del Brenta ridge, North-East Italy. A sub-horizontal cave 40 m deep drains a small catchment of about 6,000 m2 at the elevation of 2,600 m a.s.l. in a fractured triassic dolomite formation. The surface is characterized by a thin soil cover, vertical fractures, and karst collapse features (dolines). Water infiltrates through the dolines and vertical shafts which are connected to an unsaturated cave system. Within the cave, water discharge, temperature, and electric conductivity are recorded. Meterological conditions were measured at a weather station installed within the cave contributing area. Furthermore, in order to study residence time distribution in the summer 2007 we conducted a tracer experiment by injecting fluorescein in one of the dolines and recording its concentration within the cave. The recorded time series are statistically non-stationary with a wavelet spectrum strongly variable in time. However, a closer inspection of the water discharge wavelet spectrum reveals three periods in which the local power spectrum is nearly time invariant: November-April, April -July and August-October. In the first period we observe a slow exponential decline of the water discharge. The season is dominated by release of water from subsurface storage, in absence of surface input. In the second period, the system is dominated by snowmelt with a time lag that reduces from 9 hours to 1 hour through the melting season. The variation in time apparently corresponds with reduction in snowpack thickness. In the final period, the system is dominated by rainfall. The lag time in this period is on the order of 1 hour or less. These results suggest that in this hydrologic system the distribution of the residence time, and thus the transfer function relating input to output signals, is not state invariant, as typically assumed in applications. Rather, hydraulic residence time is seasonally variable and linked to both surface and subsurface hydrologic conditions.
A non-linear induced polarization effect on transient electromagnetic soundings
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel
2016-10-01
In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.
Ground penetrating radar antenna system analysis for prediction of earth material properties
Oden, C.P.; Wright, D.L.; Powers, M.H.; Olhoeft, G.
2005-01-01
The electrical properties of the ground directly beneath a ground penetrating radar (GPR) antenna very close to the earth's surface (ground-coupled) must be known in order to predict the antenna response. In order to investigate changing antenna response with varying ground properties, a series of finite difference time domain (FDTD) simulations were made for a bi-static (fixed horizontal offset between transmitting and receiving antennas) antenna array over a homogeneous ground. We examine the viability of using an inversion algorithm based on the simulated received waveforms to estimate the material properties of the earth near the antennas. Our analysis shows that, for a constant antenna height above the earth, the amplitude of certain frequencies in the received signal can be used to invert for the permittivity and conductivity of the ground. Once the antenna response is known, then the wave field near the antenna can be determined and sharper images of the subsurface near the antenna can be made. ?? 2005 IEEE.
A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies
Bedrosian, Paul A.; Schamper, Cyril; Auken, Esben
2016-01-01
The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near-surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.
NASA Astrophysics Data System (ADS)
Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola
2018-04-01
This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.
NASA Astrophysics Data System (ADS)
Moorkamp, M.; Jones, A. G.; Eaton, D. W.
2007-08-01
Joint inversion of different kinds of geophysical data has the potential to improve model resolution, under the assumption that the different observations are sensitive to the same subsurface features. Here, we examine the compatibility of P-wave teleseismic receiver functions and long-period magnetotelluric (MT) observations, using joint inversion, to infer one-dimensional lithospheric structure. We apply a genetic algorithm to invert teleseismic and MT data from the Slave craton; a region where previous independent analyses of these data have indicated correlated layering of the lithosphere. Examination of model resolution and parameter trade-off suggests that the main features of this area, the Moho, Central Slave Mantle Conductor and the Lithosphere-Asthenosphere boundary, are sensed to varying degrees by both methods. Thus, joint inversion of these two complementary data sets can be used to construct improved models of the lithosphere. Further studies will be needed to assess whether the approach can be applied globally.
APOLLO 17 - INFLIGHT Experiment Equipment
1972-11-28
S72-53950 (November 1972) --- The transmitter of the Surface Electrical Properties Experiment (S-204) in a deployed configuration. This experiment will be deployed at the Taurus-Littrow landing site by the Apollo 17 crewmen. The purpose of the SEP experiment is to obtain data about the electromagnetic energy transmission, absorption and reflection characteristics of the lunar surface and subsurface for use in the development of a geological model of the upper layers of the moon. The experiment is designed to determine layering in the lunar surface, to search for the presence of water below the surface, and to measure electrical properties of the lunar material in situ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R
2012-12-28
The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.
Geologic setting and chemical characteristics of hot springs in central and western Alaska
Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace
1973-01-01
The geologic and chemical data are too preliminary to make an estimate of the potential of the hot springs as a geothermal resource. The data suggest, however, that most of the hot springs of central and western Alaska have relatively low subsurface temperatures and limited reservoir capacities in comparison with geothermal areas presently being utilized for electrical power generation.
NASA Astrophysics Data System (ADS)
Tran, A. P.; Dafflon, B.; Hubbard, S.
2017-12-01
Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content will be evaluated by comparison with measurements from soil samples along the transect. Our study presents a new surface-subsurface, deterministic-stochastic hydrogeophysical inversion approach, as well as the benefit of including multiple types of data to estimate SOC and associated hydrological-thermal dynamics.
NASA Astrophysics Data System (ADS)
Molnar, I. L.; Krol, M.; Mumford, K. G.
2017-12-01
Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Walker, Sandra P.
2009-01-01
The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2008-01-15
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.
NASA Astrophysics Data System (ADS)
Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.
2015-12-01
Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.
A multi-scale experimental and simulation approach for fractured subsurface systems
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.
2017-12-01
Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.
Evaluation of positron emission tomography as a method to visualize subsurface microbial processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinsella K.; Schlyer D.; Kinsella, K.
2012-01-18
Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less
A field evaluation of subsurface and surface runoff. II. Runoff processes
Pilgrim, D.H.; Huff, D.D.; Steele, T.D.
1978-01-01
Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.
Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.
Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E
2016-12-01
The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.