Implementing Monitored Natural Attenuation and Expediting Closure at Fuel-Release Sites
2004-08-01
Center for Environmental Excellence AFCEE/ERS Air Force Center for Environmental Excellence/Science and Engineering Division AFRPA Air Force Real...auger, air - or mud- rotary , cable-tool) was and is dependent on the target drilling depths and the types of subsurface materials expected to be...95(2000) ASTM. 1995c. Guide for the use of direct air - rotary drilling for geoenvironmental exploration and installation of subsurface water quality
Sustainable environmental nanotechnology using nanoparticle surface modification.
Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...
NASA Astrophysics Data System (ADS)
Jacques, Diederik
2017-04-01
As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different environmental and geo-engineering applications. SeSBench will organize new workshops to add new benchmarks in a new special issue. Steefel, C. I., et al. (2015). "Reactive transport codes for subsurface environmental simulation." Computational Geosciences 19: 445-478.
SOIL-GAS AND GEOPHYSICAL TECHNIQUES FOR DETECTION OF SUBSURFACE ORGANIC CONTAMINATION
From 1985 through 1987, the Air Force Engineering and Services Center funded research at the U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory in Las Vegas, Nevada through an interagency agreement. The agreement provided for investigations of subsur...
NASA Astrophysics Data System (ADS)
Steefel, C. I.
2015-12-01
Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.
Assessing conceptual models for subsurface reactive transport of inorganic contaminants
Davis, James A.; Yabusaki, Steven B.; Steefel, Carl; Zachara, John M.; Curtis, Gary P.; Redden, George D.; Criscenti, Louise J.; Honeyman, Bruce D.
2004-01-01
In many subsurface situations where human health and environmental quality are at risk (e.g., contaminant hydrogeology petroleum extraction, carbon sequestration, etc.),scientists and engineers are being asked by federal agency decision-makers to predict the fate of chemical species under conditions where both reactions and transport are processes of first-order importance.In 2002, a working group (WG) was formed by representatives of the U.S. Geological Survey, Environmental Protection Agency, Department of Energy Nuclear Regulatory Commission, Department of Agriculture, and Army Engineer Research and Development Center to assess the role of reactive transport modeling (RTM) in addressing these situations. Specifically the goals of the WG are to (1) evaluate the state of the art in conceptual model development and parameterization for RTM, as applied to soil,vadose zone, and groundwater systems, and (2) prioritize research directions that would enhance the practical utility of RTM.
Evaluation of Subsurface Engineered Barriers at Waste Sites Volumes 1 and 2
This report provides the U.S. Environmental Protection Agency’s (EPA) waste programs with a national retrospective analysis of barrier field performance, as well as information that useful in developing guidance on the use and evaluation of barrier systems
Review on airflow in unsaturated zones induced by natural forcings
NASA Astrophysics Data System (ADS)
Kuang, Xingxing; Jiao, Jiu Jimmy; Li, Hailong
2013-10-01
Subsurface airflow in unsaturated zones induced by natural forcings is of importance in many environmental and engineering fields, such as environmental remediation, water infiltration and groundwater recharge, coastal soil aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere. This review synthesizes the published literature on subsurface airflow driven by natural forcings such as atmospheric pressure fluctuations, topographic effect, water table fluctuations, and water infiltration. The present state of knowledge concerning the mechanisms, analytical and numerical models, and environmental and engineering applications related to the naturally occurring airflow is discussed. Airflow induced by atmospheric pressure fluctuations is studied the most because of the applications to environmental remediation and transport of trace gases from soil to atmosphere, which are very important in understanding biogeochemical cycling and global change. Airflow induced by infiltration is also an extensively investigated topic because of its implications in rainfall infiltration and groundwater recharge. Airflow induced by water table fluctuations is important in coastal areas because it plays an important role in coastal environmental remediation and ecological systems. Airflow induced by topographic effect is studied the least. However, it has important applications in unsaturated zone gas transport and natural ventilation of mines and tunnels. Finally, the similarities and differences in the characteristics of the air pressure and airflow are compared and future research efforts are recommended.
NASA Astrophysics Data System (ADS)
Nordiana, M. M.; Azwin, I. N.; Saad, Rosli; Jia, Teoh Ying; Anderson, A. B.; Tonnizam, Edy; Taqiuddin Zakaria, Muhamad
2017-04-01
The role of geophysics in Environmental Earth Sciences and Engineering is considered. In the developing era, geophysics has mainly contributed in investigation of new constructions such as tunnels, road, dams and high-rise buildings. This study was carried out to assess the foundation depths around a construction site in the Southern Industrial & Logistics Clusters (SiLC), Nusajaya, Johor using 2-D resistivity method. The 2-D resistivity method was carried out with a view to characterize different subsurface geological and to provide the engineering and environmental geophysical characterization of the study area. Measurements of eight 2-D resistivity profile using Pole-dipole array with 2 m minimum electrode spacing was taken with the use of ABEM Terrameter SAS4000 and ES10-64C selector. The results are presented as inversion model resistivity with the outline of the survey line. The inversion model resistivity from L1-L8 obtained is characterized by resistivity range of 1-8000 ohm-m. This range indicates the occurrence of silt, clay, sandy clay and sand whose ranges are; 10-100 ohm-m, 1-100 ohm-m, 100-800 ohm-m and 100-3000 ohm-m respectively. However, there was a boulder with range of >5000 ohm-m and saturated zone (1-20 ohm-m) which may indicate the weak zones of the study area. The 2-D resistivity method is not intended to replace borings, except in specific cases where information gathered would be sufficient to address the intended engineering and environmental purpose.
Establishing sustainable strategies in urban underground engineering.
Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A
2004-07-01
Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.
Environmental projects. Volume 14: Removal of contaminated soil and debris
NASA Technical Reports Server (NTRS)
Kushner, Len
1992-01-01
Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.
The Idaho National Engineering & Environmental Lab (INEEL) was charged by DOE EM to develop a complex-wide science and technology roadmap for the characterization, modeling and simulation of the fate and transport of contamination in the vadose zone. Various types of hazardous, r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansley, Shannon Leigh
2002-02-01
The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering andmore » Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.« less
Clarens, Andres F.; Peters, Catherine A.
2016-01-01
Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695
Clarens, Andres F; Peters, Catherine A
2016-10-01
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.
Transmission mode acoustic time-reversal imaging for nondestructive evaluation
NASA Astrophysics Data System (ADS)
Lehman, Sean K.; Devaney, Anthony J.
2002-11-01
In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
Results from Field Testing the RIMFAX GPR on Svalbard.
NASA Astrophysics Data System (ADS)
Hamran, S. E.; Amundsen, H. E. F.; Berger, T.; Carter, L. M.; Dypvik, H.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Nunes, D. C.; Paige, D. A.; Plettemeier, D.; Russell, P.
2017-12-01
The Radar Imager for Mars' Subsurface Experiment - RIMFAX is a Ground Penetrating Radar being developed for NASÁs MARS 2020 rover mission. The principal goals of the RIMFAX investigation are to image subsurface structures, provide context for sample sites, derive information regarding subsurface composition, and search for ice or brines. In meeting these goals, RIMFAX will provide a view of the stratigraphic section and a window into the geological and environmental history of Mars. To verify the design an Engineering Model (EM) of the radar was tested in the field in the spring 2017. Different sounding modes on the EM were tested in different types of subsurface geology on Svalbard. Deep soundings were performed on polythermal glaciers down to a couple of hundred meters. Shallow soundings were used to map a ground water table in the firn area of a glacier. A combination of deep and shallow soundings was used to image buried ice under a sedimentary layer of a couple of meters. Subsurface sedimentary layers were imaged down to more than 20 meters in sand stone permafrost. This presentation will give an overview of the RIMFAX investigation, describe the development of the radar system, and show results from field tests of the radar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.; Fujita, Yoshiko; Ferris, F. Grant
2003-06-15
Radionuclide and metal contaminants such as 90Sr are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., 90Sr) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zonemore » systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the coprecipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less
NASA Astrophysics Data System (ADS)
Carr, T.
2017-12-01
The Appalachian basin with the Marcellus and Utica shale units is one of the most active unconventional resource plays in North America. Unconventional resource plays are critical and rapidly-growing areas of energy, where research lags behind exploration and production activity. There remains a poor overall understanding of physical, chemical and biological factors that control shale gas production efficiency and possible environmental impacts associated with shale gas development. We have developed an approach that works with local industrial partners and communities and across research organizations. The Marcellus Shale Energy and Environment Laboratory (MSEEL) consists of a multidisciplinary and multi-institutional team undertaking integrated geoscience, engineering and environmental studies in cooperation with the Department of Energy. This approach is being expanded to other sites and to the international arena. MSEEL consists of four horizontal production wells, which are instrumented, a cored and logged vertical pilot bore-hole, and a microseismic observation well. MSEEL has integrated geophysical observations (microseismic and surface), fiber-optic monitoring for distributed acoustic (DAS) and temperature sensing (DTS), well logs, core data and production logging and continued monitoring, to characterize subsurface rock properties, and the propagation pattern of induced fractures in the stimulated reservoir volume. Significant geologic heterogeneity along the lateral affects fracture stimulation efficiency - both completion efficiency (clusters that receive effective stimulation), and production efficiency (clusters effectively contributing to production). MSEEL works to develop new knowledge of subsurface geology and engineering, and surface environmental impact to identify best practices that can optimize hydraulic fracture stimulation to increase flow rates, estimated ultimate recovery in order to reduce the number of wells and environmental impact.
Measurements of Low-Frequency Acoustic Attenuation in Soils.
1994-10-13
Engineering Research Laboratory to design an acoustic subsurface imaging system, a set of experiments was conducted in which the attenuation and the velocity...support of the U.S. Army Construction Engineering Research Laboratory’s efforts to design an acoustic subsurface imaging system which would ideally be...of acoustic waves such as those generated by a subsurface imaging system. An experiment reported in the literature characterized the acoustic
Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview
NASA Astrophysics Data System (ADS)
Moo-Young, H.
2004-05-01
A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental cyber-infrastructure; 3) A Mechanism for multidisciplinary research and education activities designed to exploit the output of the instrumented sites and networked information technology, to formulate engineering and policy options directed toward the protection, remediation, and restoration of stressed environments and sustainability of environmental resources; and 4) A Collaboration among engineers, natural and social scientists, educators, policy makers, industry, non-governmental organizations, the public, and other stakeholders.
NASA Technical Reports Server (NTRS)
Bengelsdorf, I.
1988-01-01
In support of the national goal for the preservation of the environment and the protection of human health and safety, NASA, the Jet Propulsion Laboratory, and the Goldstone Deep Space Communications Complex have adopted the position that their operating installations shall maintain a high level of compliance in regard to regulations concerning environmental hazards. An investigation carried out by Engineering Science, Inc. focused on possible underground contamination that may have resulted from leaks and/or spills from storage facilities at the Goldstone Communications Complex. It also involved the cleanup of a non-hazardous waste dumpsite at the Mojave Base Site at the Goldstone complex. The report also includes details of the management duties and responsibilities needed to maintain compliance with environmental laws and regulations.
NASA Astrophysics Data System (ADS)
Akintorinwa, O. J.; Oluwole, S. T.
2018-06-01
For several decades, geophysical prospecting method coupled with geotechnical analysis has become increasingly useful in evaluating the subsurface for both pre and post engineering investigations. Shallow geophysical tool is often used alongside geotechnical method to evaluate subsurface soil for engineering study to obtain information which may include the subsurface lithology and their thicknesses, competence of the bedrock and depths to its upper interface, and competence of the material that make up the overburden, especially the shallow section which serves as host for foundations of engineering structures (Aina et al., 1996; Adewumi and Olorunfemi, 2005; and Idornigie et al., 2006). This information helps the engineers to correctly locate and design the foundation of engineering structures. The information also serves as guide to the choice of design and suitable materials needed for road construction (Akinlabi and Adeyemi, 2014). Lack of knowledge of the properties of subsurface may leads to the failure of most engineering structures. Therefore, it is of great importance to carry out a pre-construction investigation of a proposed site in order to ascertain the fitness of the host earth material.
This is the second in a series of reports concerning the environmental assessments of effluent extraction, energy conversion, and waste disposal in geothermal systems. This study involves the subsurface environmental impact of the Imperial Valley and The Geysers, California; Klam...
Groundwater and organic chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, H.E.
1995-12-01
Groundwater is a major source of drinking water for many communities. Unfortunately, organic chemicals such as dry cleaning fluids, solvent, fuels, and pesticides have contaminated groundwater in many areas, rendering the groundwater useless as a drinking water resource. In many cases, the groundwater cannot be cleaned up with current technologies, particularly if the groundwater has been contaminated with immiscible (low solubility) organic liquids. In this talk, I will describe the path I have followed from geologist to geochemist and finally to environmental engineer. As a geologist, I studied the chemistry of rock metamorphosis. As a geochemist, I explored for goldmore » and other metals. Now as an environmental engineer, I investigate the behavior of organic liquids in the subsurface. While these fields all appear very different, in reality I have always focused on the interaction of rocks or sediments with the fluids with which they come in contact.« less
Birak, P.S.; Miller, C.T.
2008-01-01
The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266
Hjorth, Rune; Coutris, Claire; Nguyen, Nhung H A; Sevcu, Alena; Gallego-Urrea, Juliàn Alberto; Baun, Anders; Joner, Erik J
2017-09-01
Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron ® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these. Copyright © 2017 Elsevier Ltd. All rights reserved.
Working Smarter Not Harder - Developing a Virtual Subsurface Data Framework for U.S. Energy R&D
NASA Astrophysics Data System (ADS)
Rose, K.; Baker, D.; Bauer, J.; Dehlin, M.; Jones, T. J.; Rowan, C.
2017-12-01
The data revolution has resulted in a proliferation of resources that span beyond commercial and social networking domains. Research, scientific, and engineering data resources, including subsurface characterization, modeling, and analytical datasets, are increasingly available through online portals, warehouses, and systems. Data for subsurface systems is still challenging to access, discontinuous, and varies in resolution. However, with the proliferation of online data there are significant opportunities to advance access and knowledge of subsurface systems. The Energy Data eXchange (EDX) is an online platform designed to address research data needs by improving access to energy R&D products through advanced search capabilities. In addition, EDX hosts private, virtualized computational workspaces in support of multi-organizational R&D. These collaborative workspaces allow teams to share working data resources and connect to a growing number of analytical tools to support research efforts. One recent application, a team digital data notebook tool, called DataBook, was introduced within EDX workspaces to allow teams to capture contextual and structured data resources. Starting with DOE's subsurface R&D community, the EDX team has been developing DataBook to support scientists and engineers working on subsurface energy research, allowing them to contribute and curate both structured and unstructured data and knowledge about subsurface systems. These resources span petrophysical, geologic, engineering, geophysical, interpretations, models, and analyses associated with carbon storage, water, oil, gas, geothermal, induced seismicity and other subsurface systems to support the development of a virtual subsurface data framework. The integration of EDX and DataBook allows for these systems to leverage each other's best features, such as the ability to interact with other systems (Earthcube, OpenEI.net, NGDS, etc.) and leverage custom machine learning algorithms and capabilities to enhance user experience, make access and connection to relevant subsurface data resources more efficient for research teams to use, analyze and draw insights. Ultimately, the public and private resources in EDX seek to make subsurface energy research more efficient, reduce redundancy, and drive innovation.
Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.
2016-12-01
Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
Hillslope hydrology and stability
Lu, Ning; Godt, Jonathan
2012-01-01
Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.
Reactive transport codes for subsurface environmental simulation
Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...
2014-09-26
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.
2004-12-01
Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zonemore » systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less
Scuffing of aluminum/steel contacts under dry sliding conditions
NASA Astrophysics Data System (ADS)
Sheiretov, Todor Konstantinov
Some typical applications where scuffing may occur are gear teeth, piston rings and cylinder pairs, cams and followers, splines, sleeve bearings, and parts of swash and wobble plate compressors. Unlike other tribology-related failures, scuffing occurs very fast, without any warning, and usually leads to the complete destruction of the sliding pair. Practical experience with steel has helped to outline safe ranges of operation for some components. Very little, however, is known about aluminum, which is the second most commonly used engineering metal. The aim of this study is to obtain a better understanding scuffing and seizure of aluminum/steel contacts. The research includes an experimental study of scuffing of aluminum/steel contacts under dry sliding conditions, a study of the physics of the scuffing process, evaluation of various hypotheses for scuffing, and modeling of scuffing. The experiments are conducted in a custom-designed tribometer, which provides accurate control of the environmental conditions. Special instrumentation, experimental procedures and software are developed as a part of the experimental program. These provide a reliable reproduction and identification of scuffing under laboratory conditions. The scuffing characteristics of five materials are obtained in air and refrigerant (R134a) environments. The effects of load, sliding velocity, mechanical strength, environmental temperature, specimen geometry, time, loading history, and type of environment are evaluated. The mechanisms leading to scuffing are studied by examination of surfaces, subsurfaces and wear debris of specimens in the process of scuffing. Quantitative measurements of subsurface plastic strain are also obtained. The theoretical part of the study includes the development of a finite element model for the contact of runned-in rough surfaces and several other models for subsurface stresses, temperatures, and strains. These models provide information about the local conditions in the subsurface. Based on the experimental observations and the scuffing models a new hypothesis for scuffing is proposed. According to this hypothesis, scuffing involves initiation of cracks due to subsurface plastic deformation, propagation of these cracks leading to the removal of the existing protective surface layers, and finally cold welding due to adhesion between bare metal surfaces.
Heterogeneous nucleation and growth of nanoparticles at environmental interfaces
Jun, Young -Shin; Kim, Doyoon; Neil, Chelsea W.
2016-08-11
Here, mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth’s crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolutionmore » of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.« less
Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W
2016-09-20
Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.
Microbial populations in contaminant plumes
Haack, S.K.; Bekins, B.A.
2000-01-01
Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.
Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.
'To provide increased knowledge of stress responses of indigenous microbes at contaminated sites as well as using microbes as molecular probes for monitoring the performance and effectiveness of bioremediation, the authors propose to identify the stress-inducible genes and promoters from two soil bacteria, Deinococcus radiodurans and Sphingomonas F199. These organisms represent two phylogenetically distinct groups of soil bacteria, each of which has specific features of interest for bioremediation. D. radiodurans exhibits high resistance to external stress; F199 is a deep subsurface (Savannah River Site) organism with unique degradative capabilities. Research Statement To realize the full potential of bioremediation, an understandingmore » of microbial community and individual bacterial responses to the stresses encountered at contaminated sites is needed. Knowledge about genetic responses of soil and subsurface bacteria to environmental stresses, which include low nutrients, low oxygen, and mixed pollutants, will allow extrapolation of basic principles to field applications either using indigenous bacteria or genetically engineered microorganisms. Defining bacterial responses to those stresses presents an opportunity for improving bioremediation strategies, and should contribute to environmental management and restoration actions that would reduce the cost and time required to achieve DOE''s cleanup goals.'« less
Nimmo, John R.; Rousseau, Joseph P.; Perkins, Kim S.; Stollenwerk, Kenneth G.; Glynn, Pierre D.; Bartholomay, Roy C.; Knobel, LeRoy L.
2004-01-01
Questions of major importance for subsurface contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL) include (i) travel times to the aquifer, both average or typical values and the range of values to be expected, and (ii) modes of contaminant transport, especially sorption processes. The hydraulic and geochemical framework within which these questions are addressed is dominated by extreme heterogeneity in a vadose zone and aquifer consisting of interbedded basalts and sediments. Hydraulically, major issues include diverse possible types of flow pathways, extreme anisotropy, preferential flow, combined vertical and horizontal flow, and temporary saturation or perching. Geochemically, major issues include contaminant mobility as influenced by redox conditions, the concentration of organic and inorganic complexing solutes and other local variables, the interaction with infiltrating waters and with the contaminant source environment, and the aqueous speciation of contaminants such as actinides. Another major issue is the possibility of colloid transport, which inverts some of the traditional concepts of mobility, as sorbed contaminants on mobile colloids may be transported with ease compared with contaminants that are not sorbed. With respect to the goal of minimizing aquifer concentrations of contaminants, some characteristics of the vadose zone are essentially completely favorable. Examples include the great thickness (200 m) of the vadose zone, and the presence of substantial quantities of fine sediments that can retard contaminant transport both hydraulically and chemically. Most characteristics, however, have both favorable and unfavorable aspects. For example, preferential flow, as promoted by several notable features of the vadose zone at the INEEL, can provide fast, minimally sorbing pathways for contaminants to reach the aquifer easily, but it also leads to a wide dispersal of contaminants in a large volume of subsurface material, thus increasing the opportunity for dilution and sorption.
THE ONSITE ON-LINE CALCULATORS AND TRAINING FOR SUBSURFACE CONTAMINANT TRANSPORT SITE ASSESSMENT
EPA has developed a suite of on-line calculators called "OnSite" for assessing transport of environmental contaminants in the subsurface. The purpose of these calculators is to provide methods and data for common calculations used in assessing impacts from subsurface contaminatio...
Sonar imaging of flooded subsurface voids phase I : proof of concept.
DOT National Transportation Integrated Search
2011-04-15
Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...
Magnetorheological finishing for removing surface and subsurface defects of fused silica optics
NASA Astrophysics Data System (ADS)
Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Cormont, Philippe; Maunier, Cedric; Lambert, Sebastien
2014-09-01
We investigate the capacity of magnetorheological finishing (MRF) process to remove surface and subsurface defects of fused silica optics. Polished samples with engineered surface and subsurface defects were manufactured and characterized. Uniform material removals were performed with a QED Q22-XE machine using different MRF process parameters in order to remove these defects. We provide evidence that whatever the MRF process parameters are, MRF is able to remove surface and subsurface defects. Moreover, we show that MRF induces a pollution of the glass interface similar to conventional polishing processes.
Model for the prediction of subsurface strata movement due to underground mining
NASA Astrophysics Data System (ADS)
Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan
2017-12-01
The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the proposed prediction model are thus validated.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... Groundwater and Soils (Subsurface Vapor Intrusion Guidance) AGENCY: Environmental Protection Agency (EPA... Pathway from Contaminated Groundwater and Soil (Subsurface Vapor Intrusion Guidance). A draft of the... Evaluating Vapor Intrusion to Indoor Air Pathway from Contaminated Groundwater and Soil (Subsurface Vapor...
ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS
An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...
We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Young -Shin; Kim, Doyoon; Neil, Chelsea W.
Here, mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth’s crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolutionmore » of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.« less
Radioactive waste management complex low-level waste radiological composite analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.
1998-05-01
The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consistsmore » of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.« less
Investigation of the near subsurface using acoustic to seismic coupling
USDA-ARS?s Scientific Manuscript database
Agricultural, hydrological and civil engineering applications have realized a need for information of the near subsurface over large areas. In order to obtain this spatially distributed data over such scales, the measurement technique must be highly mobile with a short acquisition time. Therefore, s...
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Astrophysics Data System (ADS)
Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.
2016-12-01
There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.
Yoshikoshi, Akihisa; Adachi, Itsu; Taniguchi, Tomomasa; Kagawa, Yuichi; Kato, Masahiro; Yamashita, Akio; Todokoro, Taiko; Taniguchi, Makoto
2009-04-15
The relationship between urban development and hydro-environmental change, particularly with regard to the subsurface environment is examined for three coastal cities affected by Asian monsoons (Tokyo and Osaka in Japan, and Bangkok in Thailand). Major differences in subsurface changes among these cities are closely related to city size, urban structure, and the timing, stage and extent of urbanization as well as the natural environment. The work shows that the urban development has not affected the Bangkok subsurface hydro-environment in the same way it has in Tokyo and Osaka. Three reasons for the difference account for this, (1) Bangkok's abundant annual rainfall, (2) Bangkok has the smallest ratio of impervious pavement surface area, meaning that surface water can more easily infiltrate underground., (3) the degree and extent of urbanization. Bangkok's subsurface hydro-environment has not been heavily affected because underground development has not yet reached deep subterranean areas. By researching yet more cities, at different stages of urbanization to that of Tokyo, Osaka and Bangkok, we plan to quantitatively examine urbanization and its influence on subsurface hydro-environments. This research will help limit damage to developing cities that are not yet experiencing subsurface failures but which are expected to confront these problems in the future.
Israde-Alcantara, Isabel; Buenrostro Delgado, Otoniel; Carrillo Chavez, Alejandro
2005-06-01
The landfill of Morelia, the capital city of the state of Michoacán in central-western Mexico, is located 12 km west of the city and has operated since 1997 without a structure engineered and designed to control the generation in situ of biogas and leachates. A geological evaluation of the landfill site is presented in this paper. The results indicate that the site lacks ideal impermeable subsurface strata. The subsurface strata consist of highly fractured basaltic lava flows (east-west fault and fracture system trend) and sand-size cineritic material with high permeability and porosity. Geochemical analysis of groundwater from Morelia's municipal aquifer shows a high concentration of heavy metals (Cd, Pb, As) exceeding the Mexican environmental regulations, along with the presence of some organic pollutants (phenols). Analyses of samples of the landfill's permanent leachate ponds show very high concentrations of the same contaminants. Samples were taken from the leachate pond and from nearby water-wells during the rainy season (summer 1997) and the dry season (spring 1997, 1998, and 1999). In all cases, the concentration of contaminants registered exceeded the standards for drinking water of the World Health Organization (American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 2000). Some metal contaminants could be leaching directly from the landfill.
Bakhshipour, Zeinab; Huat, Bujang B K; Ibrahim, Shaharin; Asadi, Afshin; Kura, Nura Umar
2013-01-01
This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems.
Bakhshipour, Zeinab; Huat, Bujang B. K.; Ibrahim, Shaharin; Asadi, Afshin
2013-01-01
This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems. PMID:24501583
The Science and Policy of the First Environmental Flows to the Colorado River Delta
NASA Astrophysics Data System (ADS)
Flessa, K. W.; Kendy, E.; Schlatter, K.
2014-12-01
The first transboundary flow of water for the environment was delivered to the Colorado River Delta in spring of 2014. This engineered mini-spring flood of 130 million cubic meters (105,000 acre-feet) was implemented as part of Minute 319, an addition to the 1944 U.S.-Mexico Water Treaty. Minute 319 is a temporary agreement, expiring in 2017. Teams of scientists from government agencies, universities, and environmental NGOs from both the U.S. and Mexico are measuring the surface flow rates, inundation, ground water recharge, ground water levels and subsurface flows, geomorphic change, recruitment, survival and health of vegetation, and avian response to the environmental flow. Monitoring includes on-the-ground observations and measurements and remote sensing. Surface water from the pulse flow reached restoration sites, prompted germination of both native and non-native vegetation, recharged groundwater and reached the Gulf of California - the first reconnection of the Colorado River and the sea in 16 years. People in local communities joyously welcomed the return of the river; extensive media coverage was overwhelmingly positive - despite widespread drought in the West. After about ten weeks, most of the pulse flow had infiltrated the subsurface, ponded in a few cut-off meanders, or run to the sea. The river no longer flows. Monitoring of seedling survival, groundwater, vegetation and wildlife will continue through 2017. Results of this landscape-scale experiment will play a role in negotiations to renew the agreement, help model and design future flows and guide the efficient use of water for restoration in semi-arid river systems.
SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT
This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.
GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION
Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...
Center for Subsurface Sensing & Imaging Systems (CenSSIS)
Contact Us Home Wavelets ALERT Center PROTECT Program Gordon Engineering Leadership Program Center Members Simon Pitts awarded 2015 Gordon Prize ALERT Center Director, Michael B. Silevitch and Gordon Engineering Leadership Director, Simon Pitts have been awarded the 2015 Bernard M. Gordon Prize for Engineering Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, L.K.; Wildung, R.E.
1993-03-01
The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less
Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C
2014-07-01
In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all relevant legislation and not only in environmental legislation. Other aspects to be considered are the reversibility of the impacts from subsurface activities and the abandonment of installations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.
2015-01-01
Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-04-11
At Pacific Northwest National Laboratory, we are a leader in subsurface science and remediation. We use our expertise in these areas to characterize subsurface contaminants and assess contaminant transport. We're also using our capabilities to restore the Hanford Site in southeastern Washington State to a safe, clean environment.
Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, L.K.
1993-03-01
The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less
Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.
1976-01-01
A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)
Asset management to support urban land and subsurface management.
Maring, Linda; Blauw, Maaike
2018-02-15
Pressure on urban areas increases by demographic and climate change. To enable healthy, adaptive and liveable urban areas different strategies are needed. One of the strategies is to make better use of subsurface space and its functions. Asset management of the Subsurface (AMS) contributes to this. Asset management provides transparency of trade-offs between performance, cost and risks throughout the entire lifecycle of these assets. AMS is based on traditional asset management methods, but it does not only take man-made assets in the subsurface into account. AMS also considers the natural functions that the subsurface, including groundwater, has to offer (ecosystem services). A Dutch community of practice consisting of national and municipal authorities, a consultancy-engineering and a research institute are developing AMS in practice in order to 1) enhance the urban underground space planning (using its benefits, avoiding problems) and 2) use, manage and maintain the (urban) subsurface and its functions. The method is currently still under development. Copyright © 2017 Elsevier B.V. All rights reserved.
UNDERSTANDING THE FATE OF PETROLEUM HYDROCARBONS IN THE SUBSURFACE ENVIRONMENT
Sinca a significant number of the two or more million underground storage tank (UST) systems used for petroleum products leak, their cleanup poses a major environmental challenge. Our understnading of the fate of petroleum hydrocarbons in the subsurface environment is critical t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.
2014-08-04
The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less
The collective processes that constitute the broadly used term Anatural attenuation,@ as it relates to subsurface remediation of contaminants, refer to the physical, chemical, and biological interactions that, without human intervention, reduce or contain contaminants in the sub...
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.
In-Tank Processing (ITP) Geotechnical Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumbest, R.J.
A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241-32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994.The purpose of the investigation is tomore » obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankme nts under and around the ITP. The geotechnical engineering objectives of the investigation are to: 1) define the subsurface stratigraphy, 2) obtain representative engineering properties of the subsurface materials, 3) assess the competence of the subsurface materials under static and dynamic loads, 4) derive properties for seismic soil-structure interaction analysis, 5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and 6) determine settlement at the foundation level of the tanks.« less
Winfield, Kari A.
2003-01-01
The subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL) is complex, comprised primarily of thick, fractured basalt flows interbedded with thinner sedimentary intervals. The unsaturated zone can be as thick as 200 m in the southwestern part of the INEEL. The Vadose Zone Research Park (VZRP), located approximately 10 km southwest of the Idaho Nuclear Technology and Engineering Center (INTEC), was established in 2001 to study the subsurface of a relatively undisturbed part of the INEEL. Waste percolation ponds for the INTEC were relocated to the VZRP due to concerns that perched water within the vadose zone under the original infiltration ponds (located immediately south of the INTEC) could contribute to migration of contaminants to the Snake River Plain aquifer. Knowledge of the spatial distribution of texture and hydraulic properties is important for developing a better understanding of subsurface flow processes within the interbeds, for example, by identifying low permeability layers that could lead to the formation of perched ground-water zones. Because particle-size distributions are easier to measure than hydraulic properties, particle size serves as an analog for determining how the unsaturated hydraulic properties vary both vertically within particular interbeds and laterally within the VZRP. As part of the characterization program for the subsurface at the VZRP, unsaturated and saturated hydraulic properties were measured on 10 core samples from six boreholes. Bulk properties, including particle size, bulk density, particle density, and specific surface area, were determined on material from the same depth intervals as the core samples, with an additional 66 particle- size distributions measured on bulk samples from the same boreholes. From lithologic logs of the 32 boreholes at the VZRP, three relatively thick interbeds (in places up to 10 m thick) were identified at depths of 35, 45, and 55 m below land surface. The 35-m interbed extends laterally over a distance of at least 900 m from the Big Lost River to the new percolation pond area of the VZRP. Most wells within the VZRP were drilled to depths less than 50 m, making it difficult to infer the lateral extent of the 45-m and 55-m interbeds. The 35-m interbed is uniform in texture both vertically and laterally; the 45-m interbed coarsens upward; and the 55-m interbed contains alternating coarse and fine layers. Seventy-one out of 90 samples were silt loams and 9 out of 90 samples were classified as either sandy loams, loamy sands, or sands. The coarsest samples were located within the 45-m and 55-m interbeds of borehole ICPP-SCI-V-215, located near the southeast corner of the new percolation pond area. At the tops of some interbeds, baked-zone intervals were identified by their oxidized color (yellowish red to red) compared to the color of the underlying non-baked material (pale yellow to brown). The average geometric mean particle diameter of baked-zone intervals was only slightly coarser, in some cases, than the underlying non-baked sediment. This is likely due to both depositional differences between the top and bottom of the interbeds and the presence of small basalt clasts in the sediment. Core sample hydraulic properties from baked zones within the different interbeds did not show effects from alteration caused during basalt deposition, but differed mainly by texture. Saturated hydraulic conductivities (Ksat) for the 10 core samples ranged from 10-7 to 10-4 cm/s. Low permeability layers, with Ksat values less than 10-7 cm/s, within the 35-m and 45-m interbeds may cause perched ground-water zones to form beneath the new percolation pond area, leading to the possible lateral movement of water away from the VZRP.
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R
2016-01-01
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface. PMID:26140532
3D Seismic Imaging over a Potential Collapse Structure
NASA Astrophysics Data System (ADS)
Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil
2016-04-01
The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.
Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R
2016-02-01
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.
Interpretation of Data from Uphole Refraction Surveys
1980-06-01
Seismic refraction Seismic refraction method Seismic surveys Subsurface exploration ""-. 20, AI0SrRACT -(CmtuamU 00MvaO eL If naaaaamr and Identlfyby...by the presence of subsurface cavities and large cavities are identifiable, the sensitivity of the method is marginal for practical use in cavity...detection. Some cavities large enough to be of engineering signifi- cance (e.g., a tunnel of h-m diameter) may be practically undetectable by this method
Subsurface Microbes Expanding the Tree of Life
Banfield, Jillian
2018-02-14
Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Instituteâs resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.
Ion Signature Technology, Inc. (IST) will develop and market a collection and analysis system that will retrieve soil-bound pollutants as well as soluble and non-soluble contaminants from groundwater as the probe is pushed by cone penetrometry of Geoprobe into the subsurface. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kwong-Kwok
In order to realize the full potential of bioremediation, an understanding of microbial community and individual bacterial responses to the stresses encountered at contaminated sites is needed. Knowledge about genetic responses of soil and subsurface bacteria to environmental stresses, which include low nutrients, low oxygen, and mixed pollutants, will allow extrapolation of basic principles to field applications, either using indigenous bacteria or genetically engineered microorganisms. Defining bacterial responses to those stresses presents an opportunity for improving bioremediation strategies, both with indigenous populations and genetically-engineered microbes, and should contribute to environmental management and restoration actions that would reduce the cost andmore » time required to achieve OEM's clean up goals. Stress-inducible genes identified in this project can be used as molecular probes for monitoring performance of indigenous bacteria as well as the effectiveness of bioremediation strategies being employed. Knowledge of survival and catabolic plasmid stability of indigenous bacteria will be needed for devising the most effective bioremediation strategy. In addition, stress-inducible regulatory elements identified in this project will be useful for creating genetically-engineered microorganisms which are able to degrade hazardous wastes under stress conditions at contaminated sites. One of the model organisms, Deinococcus radiodurans, is a stress-resistant bacterium. Thus, in addition to serving as a model for gene regulation in Gram-positive organisms, it may have specific application at aerobic DOE sites where combinations of contaminants produce a particularly stressful environment. Similarly, the use of Sphingomonas F199, isolated from a depth of 407 m at the Savannah River site (Fredrickson et al., 1991), may have relevance to deep subsurface bioremediation applications, where indigenous or engineered microorganisms adapted to the that environment are needed. In addition, F199 contains aromatic oxygenases that are relevant to degradation of contaminants at that site and is representative of a large class of similar organisms from Savannah River Identification of the genes responsive to different stresses encountered at contaminated sites will provide a basic understanding of stress responses in soil bacteria and can lead to improved strategies for bioremediation. Enhanced in situ removal of hazardous wastes by stimulating growth of indigenous bacteria with nutrients or electron acceptors such as oxygen has been demonstrated. However, how much and how often to apply these supplements has largely been determined empirically. As a result, a controlled, reproducible, and properly managed degradation of pollutants in the environment is difficult to achieve. Genes inducible by low nutrient and low oxygen conditions can serve as markers for determining the minimal amount of supplements needed. The disappearance and reappearance of such stress responses will determine how much and when nutrients and oxygen are needed to be applied or reapplied. Similar applications of stress-inducible markers are already being applied in bacterial cultures in solution (Selifonova and Eaton, 1996). Stress responses induced by pollutants also have potential use as a biological index for the performance of indigenous bacteria during bioremediation as well as a microbiological risk assessment index for environmental pollutants. For instance, measurement of the stress responses of contaminant-degrading microorganisms would provide information complementary to measurement of enzymatic activity. This more complete picture of the physiological state of the desired organisms can be used to predict their performance. Finally, prior knowledge of the stress responses of competing bacteria could be used to predict their environmental competitiveness. Promoters from stress inducible genes will facilitate the construction of genetically engineered microorganisms in which the expression of the catabolic genes is uncoupled from both microbial growth and the utilization of the pollutant as the carbon source. The application of genetically engineered organisms in bioremediation requires the design of gene expression systems that function under environmental conditions and are cost effective. The promoter, the genetic regulatory element that directs the use of the gene, plays the central role in gene expression systems. The ideal promoter for environmental applications should possess two qualities: (1) it does not require the addition of exogenous compounds for activation, and (2) it is active under nutrient-limited conditions and not dependent on cell growth for activity. Promoters that are expressed constitutively meet the first quality. However, such promoters usually require active cell growth for expression and thus incur the increased cost of constant nutrient addition.« less
NASA Astrophysics Data System (ADS)
Oliver, G. C. M.; Cario, A.; Rogers, K. L.
2015-12-01
A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.
Subsurface pollution is an environmental issue of great concern in the United States and around the world. Bioremediation has proven to be an effective and environmentally preferable treatment for biodegradable pollutants, such as methyl tertiary butyl ether, toluene, ethylbenze...
Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. M.; Sun, J. G.; Andrews, M. J.
2006-03-06
Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface withoutmore » the need for destructive fracture tests.« less
Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows
NASA Astrophysics Data System (ADS)
Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.
2014-12-01
The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.
NASA Astrophysics Data System (ADS)
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.
Mapping the spatial distribution of subsurface saline material in the Darling River valley
NASA Astrophysics Data System (ADS)
Triantafilis, John; Buchanan, Sam Mostyn
2010-02-01
In the Australian landscape larg stores of soluble salt are present naturally. In many cases it is attributable to salts entrapped as marine sediment in earlier geological time. At the district level, the need for information on the presence of saline subsurface material is increasing, particularly for its application to salinity hazard assessment and environmental management. This is the case in irrigated areas, where changes in hydrology can result in secondary salinisation. To reduce the expense, environmental studies use a regression relationship to make use of more readily observed measurements (e.g. electromagnetic (EM) data) which are strongly correlated with the variable of interest. In this investigation a methodology is outlined for mapping the spatial distribution of average subsurface (6-12 m) salinity (EC e — mS m - 1 ) using an environmental correlation with EM34 survey data collected across the Bourke Irrigation District (BID) in the Darling River valley. The EM34 is used in the horizontal dipole mode at coil configurations of 10 (EM34-10), 20 (EM34-20), and 40 (EM34-40). A multiple-linear regression (MLR) relationship is established between average subsurface EC e and the three EM34 signal data using a forward modeling stepwise linear modeling approach. The spatial distribution of average subsurface salinity generally reflects the known surface expression of point-source salinisation and provides information for future environmental monitoring and natural resource management. The generation of EM34 data on various contrived grids (i.e. 1, 1.5, 2. 2.5 and 3 km) indicates that in terms of accuracy, the data available on the 0.5 (RMSE = 188) and 1 km (RMSE = 283) grid are best, with the least biased predictions achieved using 1 (ME = - 1) and 2 km (ME = 12) grids. Viewing the spatial distribution of subsurface saline material showed that the 0.5 km spacing is optimal, particularly in order to account for short-range spatial variation between various physiographic units. The Relative Improvement (RI) shows that increasing EM grids from 1, 1.5, 2, 2.5 to 3 km gave RI of - 53, - 100%, - 107%, - 128% and - 140%, respectively. We conclude that at a minimum a 1 km grid is needed for reconnaissance EM34 surveying.
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
NASA Astrophysics Data System (ADS)
Wietsma, T. W.; Oostrom, M.; Foster, N. S.
2003-12-01
Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.
COST EFFECTIVE AND HIGH RESOLUTION SUBSURFACE CHARACTERIZATION USING HYDRAULIC TOMOGRAPHY
2017-08-01
FINAL REPORT Cost -Effective and High-Resolution Subsurface Characterization Using Hydraulic Tomography ESTCP Project ER-201212 AUGUST...This document has been cleared for public release Page Intentionally Left Blank This report was prepared under contract to the Department of...Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
..., and Cook Inlet Region, Inc. (CIRI), owns the subsurface estate of coal, oil, and gas in the project..., snowshoe hares, and numerous species of Neotropical birds, such as olive-sided flycatchers, myrtle warblers... received the subsurface oil, gas, and coal estate to nearly 200,000 acres within the Refuge as part of its...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
.... (CIRI), owns the subsurface estate of coal, oil, and gas in the project area. The project would be in... and brown bears, lynx, snowshoe hares, and numerous species of Neotropical birds, such as olive-sided... within the Refuge, portions of the subsurface estate, consisting of the oil, gas, and coal are owned by...
Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment
NASA Astrophysics Data System (ADS)
Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.
2017-12-01
The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.SAND2017-8198A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
This is the third volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.
NASA Astrophysics Data System (ADS)
Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.
2014-12-01
Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
Radioactive Waste Management Complex performance assessment: Draft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.
1990-06-01
A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Resultsmore » of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.« less
NASA Astrophysics Data System (ADS)
Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.
2010-12-01
The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
Nutrient transport through a Vegetative Filter Strip with subsurface drainage.
Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu
2009-04-01
The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.
Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S
2015-10-21
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.
Geophysical testing of rock and its relationships to physical properties
DOT National Transportation Integrated Search
2011-02-01
Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...
1991-10-01
an average concentration of 0.8 ppb. 2,4-D in surface soil ranges from 2.5 ppb to 281,330 ppb with an average of 49,986 ppb. 2,4,5-T in surface soil...ranges from 53 ppb to 237,155 ppb, with an average of 48,914 ppb. Approximately 25% of the site was sampled for subsurface TCDD in the 3-7 inch layer of...subsurface soil. Values ranged from 0.02 ppb to 207 ppb, with an average reading of 15 ppb. Approximately 2% of the site was sampled for subsurface
Detection in subsurface air of radioxenon released from medical isotope production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christine; Biegalski, Steven; Haas, Derek
Abstract Under the Comprehensive Nuclear-Test-Ban Treaty, an On-Site Inspection (OSI) may be conducted to clarify whether a nuclear explosion has been carried out in violation of Article I of the Treaty. A major component of an OSI is the measurement of subsurface gases in order to detect radioactive noble gases that are produced in a nuclear explosion, particularly radioxenon and radioargon. In order to better understand potential backgrounds of these gases, a sampling campaign was performed near Canadian Nuclear Laboratories in the Ottawa River Valley, a major source of environmental radioxenon. First of their kind measurements of atmospheric radioxenon imprintedmore » into the shallow subsurface from an atmospheric pressure driven force were made using current OSI techniques to measure both atmospheric and subsurface gas samples which were analyzed for radioxenon. These measurements indicate that under specific sampling conditions, on the order of one percent of the atmospheric radioxenon concentration may be measured via subsurface sampling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinsey, P.C.
2000-05-05
The U.S. Dept of Energy (DOE) Subsurface Microbial Culture Collection (SMCC) contains nearly 10,000 strains of microorganisms isolated from terrestrial subsurface environments. Many of the aerobic, gram-negative, chemoheterotrophs isolated from the DOE Savannah River Site (SRS) have previously been identified by phylogenetic analysis of 16S ribosomal RNA (rRNA) gene nucleotide sequences. These SMCC isolates are currently being examined using Biolog GN Microplates and the Biolog Microstation System in order to gain knowledge of their metabolic capabilities and to compare Biolog IDs with 16S IDs. To accommodate the particular needs of these subsurface isolates, which are often incapable of growing undermore » high-nutrient conditions, Biolog's recommendations for inoculating isolates into Biolog GN Microplates have been altered. The isolates are grown on low nutrient media, sodium thioglycolate (3mM) is added to the culture media to inhibit capsule formation, and a low density of bacteria is inoculated into the microplate. Using these altered inoculation criteria, 60 percent of these SMCC isolates have a Biolog genus ID that matches the 16S rRNA ID. These results indicate that the Biolog System can be a good means of identifying unusual environmental isolates, even when recommended inoculation procedures are altered to accommodate particular isolate needs.« less
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kwong-Kwok
The purpose of this project is to provide fundamental knowledge on environment stress response of subsurface bacteria and a radiation-resistant bacterium (Deinococcus radiodurans). This information will be particularly useful in the development of successful bioremediation strategies. These organisms represent two phylogenetically distinct groups of soil bacteria, each of which has specific features of interest for bioremediation. The subsurface bacteria, Sphingomonas spp (Savannah River Site), have unique degradative capabilities of organic waste. The study of subsurface bacteria will serve as a model for bioremediation using indigenous bacteria. D. radiodurans exhibits high resistance to external stress such as ionizing radiation and organicmore » solvent. The study of D. radiodurans will serve as a model for the use of genetically engineered bacteria for bioremediation.« less
The paper gives results of a study of civil engineering fabrics applied to fugitive dust problems. The fabrics, commonly used for ground stabilization, subsurface drainage, railroad construction and maintenance, sediment control, and erosion control, are available from Celanese, ...
Geophysical Methods for Monitoring Soil Stabilization Processes
Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...
Development of hand-held thermographic inspection technologies.
DOT National Transportation Integrated Search
2009-08-01
Subsurface deterioration in concrete structures presents a significant challenge for inspection and maintenance engineers. Cracking, delaminations and spalling that can occur as a result of corrosion of embedded reinforcing steel can lead to pot hole...
Earth Sciences Division annual report 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less
NASA Astrophysics Data System (ADS)
Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad
2017-07-01
Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.
NASA Astrophysics Data System (ADS)
Nelson, Kirk E.; Ginn, Timothy R.
2011-05-01
A new equation for the collector efficiency (η) of the colloid filtration theory (CFT) is developed via nonlinear regression on the numerical data generated by a large number of Lagrangian simulations conducted in Happel's sphere-in-cell porous media model over a wide range of environmentally relevant conditions. The new equation expands the range of CFT's applicability in the natural subsurface primarily by accommodating departures from power law dependence of η on the Peclet and gravity numbers, a necessary but as of yet unavailable feature for applying CFT to large-scale field transport (e.g., of nanoparticles, radionuclides, or genetically modified organisms) under low groundwater velocity conditions. The new equation also departs from prior equations for colloids in the nanoparticle size range at all fluid velocities. These departures are particularly relevant to subsurface colloid and colloid-facilitated transport where low permeabilities and/or hydraulic gradients lead to low groundwater velocities and/or to nanoparticle fate and transport in porous media in general. We also note the importance of consistency in the conceptualization of particle flux through the single collector model on which most η equations are based for the purpose of attaining a mechanistic understanding of the transport and attachment steps of deposition. A lack of sufficient data for small particles and low velocities warrants further experiments to draw more definitive and comprehensive conclusions regarding the most significant discrepancies between the available equations.
NASA Astrophysics Data System (ADS)
Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin
2018-04-01
This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.
Fleischer, Matthias; van Ree, Derk; Leven, Carsten
2014-01-01
Over the past decades, significant efforts have been invested in the development of push-in technology for site characterization and monitoring for geotechnical and environmental purposes and have especially been undertaken in the Netherlands and Germany. These technologies provide the opportunity for faster, cheaper, and collection of more reliable subsurface data. However, to maximize the technology both from a development and implementation point of view, it is necessary to have an overview of the areas suitable for the application of this type of technology. Such an overview is missing and cannot simply be read from existing maps and material. This paper describes the development of a map showing the feasibility or applicability of Direct Push/Cone Penetrometer Technology (DPT/CPT) in Europe which depends on the subsurface and its extremely varying properties throughout Europe. Subsurface penetrability is dependent on a range of factors that have not been mapped directly or can easily be inferred from existing databases, especially the maximum depth reachable would be of interest. Among others, it mainly depends on the geology, the soil mechanical properties, the type of equipment used as well as soil-forming processes. This study starts by looking at different geological databases available at the European scale. Next, a scheme has been developed linking geological properties mapped to geotechnical properties to determine basic penetrability categories. From this, a map of soil penetrability is developed and presented. Validating the output by performing field tests was beyond the scope of this study, but for the country of the Netherlands, this map has been compared against a database containing actual cone penetrometer depth data to look for possible contradictory results that would negate the approach. The map for the largest part of Europe clearly shows that there is a much wider potential for the application of Direct Push Technology than is currently seen. The study also shows that there is a lack of large-scale databases that contain depth-resolved data as well as soil mechanical and physical properties that can be used for engineering purposes in relation to the subsurface.
2012-09-01
with the WPAFB General Plan, sufficient space available to meet current capacity with additional room for future growth , minimal site preparation...demolition of F/20745, the site would be graded and seeded to grass and would not impact surface or subsurface soils. Land Use Facilities 30022 and...be graded and seeded to grass . There is no unique visual quality of the surrounding areas affected by implementing the CE consolidation project
Estimating groundwater recharge
Healy, Richard W.; Scanlon, Bridget R.
2010-01-01
Understanding groundwater recharge is essential for successful management of water resources and modeling fluid and contaminant transport within the subsurface. This book provides a critical evaluation of the theory and assumptions that underlie methods for estimating rates of groundwater recharge. Detailed explanations of the methods are provided - allowing readers to apply many of the techniques themselves without needing to consult additional references. Numerous practical examples highlight benefits and limitations of each method. Approximately 900 references allow advanced practitioners to pursue additional information on any method. For the first time, theoretical and practical considerations for selecting and applying methods for estimating groundwater recharge are covered in a single volume with uniform presentation. Hydrogeologists, water-resource specialists, civil and agricultural engineers, earth and environmental scientists and agronomists will benefit from this informative and practical book. It can serve as the primary text for a graduate-level course on groundwater recharge or as an adjunct text for courses on groundwater hydrology or hydrogeology.
NASA Astrophysics Data System (ADS)
Scovazzi, Guglielmo; Wheeler, Mary F.; Mikelić, Andro; Lee, Sanghyun
2017-04-01
The miscible displacement of one fluid by another in a porous medium has received considerable attention in subsurface, environmental and petroleum engineering applications. When a fluid of higher mobility displaces another of lower mobility, unstable patterns - referred to as viscous fingering - may arise. Their physical and mathematical study has been the object of numerous investigations over the past century. The objective of this paper is to present a review of these contributions with particular emphasis on variational methods. These algorithms are tailored to real field applications thanks to their advanced features: handling of general complex geometries, robustness in the presence of rough tensor coefficients, low sensitivity to mesh orientation in advection dominated scenarios, and provable convergence with fully unstructured grids. This paper is dedicated to the memory of Dr. Jim Douglas Jr., for his seminal contributions to miscible displacement and variational numerical methods.
Radioactive Waste Management Complex low-level waste radiological performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, S.J.; Rood, A.S.; Magnuson, S.O.
This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less
Advances in Multiphase Flow and Transport in the Subsurface Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
Advances in Multiphase Flow and Transport in the Subsurface Environment
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...
2018-03-04
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
PAVECHECK : training material updated user's manual including GPS.
DOT National Transportation Integrated Search
2009-01-01
PAVECHECK is a software package used to integrate nondestructive test data from various testing systems to provide the pavement engineer with a comprehensive evaluation of both surface and subsurface conditions. This User's Manual is intended to demo...
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface investigation and evaluation of different soil properties such as strength and deformation characteristics of the soil. This report focuses on the verif...
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface : investigation and evaluation of different soil properties such as strength and deformation characteristics of the : soil. This report focuses on the v...
Dynamics of Fluids and Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Biogeochemistry: Hexadecane decay by methanogenesis
Anderson, Robert T.; Lovely, Derek R.
2000-01-01
The potential for the biological conversion of long-chain saturated hydrocarbons to methane under anaerobic conditions has been demonstrated by using an enrichment culture of bacteria to degrade pure-phase hexadecane1. The formation of methane in hydrocarbon-rich subsurface zones could be explained if a similar conversion of long-chain alkanes to methane were to take place in subsurface environments. If this process could be stimulated in the subsurface, it could be used to enhance hydrocarbon recovery from petroleum reserves1, 2. Parkes2, however, questions the environmental significance of the enrichment-culture results1 on the grounds that alkane conversion to methane is very slow and because sulphate-reducing and methanogenic bacteria might both be necessary for even this slow process to occur, restricting the conversion to specialized, unusual zones in sediments. Here we show that, on the contrary, subsurface bacteria can adapt to convert hexadecane to methane rapidly and in the absence of sulphate-reducing bacteria.
Bayat, Ali Esfandyari; Junin, Radzuan; Shamshirband, Shahaboddin; Chong, Wen Tong
2015-09-16
Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd Arbogast; Steve Bryant; Clint N. Dawson
1998-08-31
This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications
Porter, Mark L.; Jiménez-Martínez, Joaquín; Martinez, Ricardo Martin; ...
2015-08-20
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. In this paper, we have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works inmore » both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. Finally, the experiments include fracture–matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO 2 (scCO 2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO 2–brine–oil.« less
Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...
Microbial community composition along a 50 000-year lacustrine sediment sequence
Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D
2018-01-01
Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, N.C.; Sarmiento, Z.F.
1986-07-01
After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.
NASA Astrophysics Data System (ADS)
Camporese, Matteo; Botto, Anna
2017-04-01
Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows us to integrate multisource observation data in modeling predictions and, in doing so, to reduce uncertainty. For this reason, data assimilation has been recently the focus of much attention also for physically-based integrated hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). One of the typical assumptions in these studies is that the measurement errors are uncorrelated, whereas in certain situations it is reasonable to believe that some degree of correlation occurs, due for example to the fact that a pair of sensors share the same soil type. The goal of this study is to show if and how the measurement error correlations between different observation data play a significant role on assimilation results in a real-world application of an integrated hydrological model. The model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope. The physical model, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m, and width of 2 m. The hillslope is equipped with sensors to monitor the pressure head and soil moisture responses to a series of generated rainfall events applied onto a 60 cm thick sand layer overlying a sandy clay soil. The measurement network is completed by two tipping bucket flow gages to measure the two components (subsurface and surface) of the outflow. By collecting data at a temporal resolution of 0.5 Hz (relatively high, compared to the hydrological dynamics), we can perform a comprehensive statistical analysis of the observations, including the cross-correlations between data from different sensors. We report on the impact of taking these correlations into account in a series of assimilation scenarios, where the EnKF is used to assimilate pressure head and/or soil moisture and/or subsurface outflow.
Hodges, Mary K.V.; Champion, Duane E.
2016-10-03
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt flows can be inferred if their flows are penetrated by several coreholes, by tracing the flows in the subsurface, and determining where the greatest thickness occurs.
NASA Astrophysics Data System (ADS)
Campbell, Diarmad; de Beer, Johannes; Lawrence, David; van der Meulen, Michiel; Mielby, Susie; Hay, David; Scanlon, Ray; Campenhout, Ignace; Taugs, Renate; Eriksson, Ingelov
2014-05-01
Sustainable urbanisation is the focus of SUB-URBAN, a European Cooperation in Science and Technology (COST) Action TU1206 - A European network to improve understanding and use of the ground beneath our cities. This aims to transform relationships between experts who develop urban subsurface geoscience knowledge - principally national Geological Survey Organisations (GSOs), and those who can most benefit from it - urban decision makers, planners, practitioners and the wider research community. Under COST's Transport and Urban Development Domain, SUB-URBAN has established a network of GSOs and other researchers in over 20 countries, to draw together and evaluate collective urban geoscience research in 3D/4D characterisation, prediction and visualisation. Knowledge exchange between researchers and City-partners within 'SUB-URBAN' is already facilitating new city-scale subsurface projects, and is developing a tool-box of good-practice guidance, decision-support tools, and cost-effective methodologies that are appropriate to local needs and circumstances. These are intended to act as catalysts in the transformation of relationships between geoscientists and urban decision-makers more generally. As a result, the importance of the urban sub-surface in the sustainable development of our cities will be better appreciated, and the conflicting demands currently placed on it will be acknowledged, and resolved appropriately. Existing city-scale 3D/4D model exemplars are being developed by partners in the UK (Glasgow, London), Germany (Hamburg) and France (Paris). These draw on extensive ground investigation (10s-100s of thousands of boreholes) and other data. Model linkage enables prediction of groundwater, heat, SuDS, and engineering properties. Combined subsurface and above-ground (CityGML, BIMs) models are in preparation. These models will provide valuable tools for more holistic urban planning; identifying subsurface opportunities and saving costs by reducing uncertainty in ground conditions. A key area of interest, and one of potential collaboration with COST Action TU1208, is in characterising and parameterising the very near urban subsurface, and especially the anthropogenic deposits, to assist decision-making by civil engineers, and others. Anthropogenic deposits may be many metres thick, are typically very heterogeneous, have complex histories of accumulation, and may including important archaeological assets. They display complex stratigraphies which are difficult to resolve using traditional methodologies, even with extensive invasive ground investigation. Ground Penetrating Radar, and other non-destructive methods of ground investigation hold considerable promise in greatly improving the resolution, understanding, and modelling, of these and other near-surface deposits in particular. This work is a contribution both to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" and to COST Action TU1206 "SUB-URBAN - A European network to improve understanding and use of the ground beneath our cities"
Volatile hydrocarbons and fuel oxygenates: Chapter 12
Cozzarelli, Isabelle M.
2014-01-01
Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.
Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
Evaluation of Cone Penetrometer Testing (CPT) for Use with Transportation Projects Phase 1
DOT National Transportation Integrated Search
2008-07-01
The ODOT Office of Geotechnical Engineering (OGE) currently uses conventional drilling methods (e.g., hollow stem auger, solid stem auger) to perform subsurface investigations in unconsolidated materials. These techniques have been used for decades a...
DOT National Transportation Integrated Search
2015-08-01
The seismic cone penetration test with pore pressure measurement (SCPTu) is a geotechnical investigation technique which : involves pushing a sensitized cone into the subsurface at a constant rate while continuously measuring tip resistance, sleeve :...
DOT National Transportation Integrated Search
2011-04-01
The ODOT Office of Geotechnical : Engineering (OGE) currently uses : conventional drilling methods (e.g., hollow : stem auger, solid stem auger) to perform : subsurface investigations in soil. These : techniques have been used for decades and : have ...
Control of Subsurface Contaminant Migration by Vertical Engineered Barriers
This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...
Linking Chaotic Advection with Subsurface Biogeochemical Processes
NASA Astrophysics Data System (ADS)
Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.
2017-12-01
This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.
Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.; Yabusaki, Steven B.
2006-12-29
The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processesmore » and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.« less
Habitable periglacial landscapes in martian mid-latitudes
NASA Astrophysics Data System (ADS)
Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.
2012-05-01
Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, Scott L.
2016-06-28
The Department of Energy’s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-lifemore » was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to either provide a reasonably good approximation to the peak concentration or was significantly conservative (pessimistic) for all parameter combinations considered.« less
In-Situ Groundwater Treatment Technology Using Biodegradation
1987-05-01
ice, Park Drive, P.O. Box 12297, Research Trianglc Pgrk: NC 1 ?770Q 17. . COSAI COOES IL. SUBJEC TERMS (Coas on MuWMz d1 naicnay &W MO uf by I I, a...OF TABLES v 1 . ABSTRACT 1 2. INTRODUCTION 2 3. SUBSURFACE MICROBIOLOGY 5 3.1 Subsurface Biological Activity 5 3.2 Environmental Factors 5 3.2.1...Sulfate during the First Five Months 30 5.2 Column 1 Effluent Versus Time Data for Carbon Tetrachloride, Bromodichloromethane, and Bromoform during the
Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands.
Ridley, Christina M; Voordouw, Gerrit
2018-06-01
Little is known about the microbial ecology of the subsurface oil sands in Northern Alberta, Canada. Biodegradation of low molecular weight hydrocarbons by indigenous microbes has enriched high molecular weight hydrocarbons, resulting in highly viscous bitumen. This extreme subsurface environment is further characterized by low nutrient availability and limited access to water, thus resulting in low microbial biomass. Improved DNA isolation protocols and increasingly sensitive sequencing methods have allowed an in-depth investigation of the microbial ecology of this unique subsurface environmental niche. Community analysis was performed on core samples (n = 62) that were retrieved from two adjacent sites located in the Athabasca Oil Sands at depths from 220 to 320 m below the surface. Microbial communities were dominated by aerobic taxa, including Pseudomonas and Acinetobacter. Only one core sample microbial community was dominated by anaerobic taxa, including the methanogen Methanoculleus, as well as Desulfomicrobium and Thauera. Although the temperature of the bitumen-containing subsurface is low (8°C), two core samples had high fractions of the potentially thermophilic taxon, Thermus. Predominance of aerobic taxa in the subsurface suggests the potential for in situ aerobic hydrocarbon degradation; however, more studies are required to determine the functional role of these taxa within this unique environment.
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
NASA Technical Reports Server (NTRS)
Fijany, Amir; Collier, James B.; Citak, Ari
1997-01-01
A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.
ENGINEERING CONCEPTS FOR IN SITU BIOREMEDIATION. (R825689C051)
Most organic materials that contaminate soil and the subsurface environment are readily degraded by natural biological processes. Thus, bioremediation can be thought of as a highly successful purification process. However, some organic molecules are naturally ...
NASA Astrophysics Data System (ADS)
Heilmann, B. Z.; Vallenilla Ferrara, A. M.
2009-04-01
The constant growth of contaminated sites, the unsustainable use of natural resources, and, last but not least, the hydrological risk related to extreme meteorological events and increased climate variability are major environmental issues of today. Finding solutions for these complex problems requires an integrated cross-disciplinary approach, providing a unified basis for environmental science and engineering. In computer science, grid computing is emerging worldwide as a formidable tool allowing distributed computation and data management with administratively-distant resources. Utilizing these modern High Performance Computing (HPC) technologies, the GRIDA3 project bundles several applications from different fields of geoscience aiming to support decision making for reasonable and responsible land use and resource management. In this abstract we present a geophysical application called EIAGRID that uses grid computing facilities to perform real-time subsurface imaging by on-the-fly processing of seismic field data and fast optimization of the processing workflow. Even though, seismic reflection profiling has a broad application range spanning from shallow targets in a few meters depth to targets in a depth of several kilometers, it is primarily used by the hydrocarbon industry and hardly for environmental purposes. The complexity of data acquisition and processing poses severe problems for environmental and geotechnical engineering: Professional seismic processing software is expensive to buy and demands large experience from the user. In-field processing equipment needed for real-time data Quality Control (QC) and immediate optimization of the acquisition parameters is often not available for this kind of studies. As a result, the data quality will be suboptimal. In the worst case, a crucial parameter such as receiver spacing, maximum offset, or recording time turns out later to be inappropriate and the complete acquisition campaign has to be repeated. The EIAGRID portal provides an innovative solution to this problem combining state-of-the-art data processing methods and modern remote grid computing technology. In field-processing equipment is substituted by remote access to high performance grid computing facilities. The latter can be ubiquitously controlled by a user-friendly web-browser interface accessed from the field by any mobile computer using wireless data transmission technology such as UMTS (Universal Mobile Telecommunications System) or HSUPA/HSDPA (High-Speed Uplink/Downlink Packet Access). The complexity of data-manipulation and processing and thus also the time demanding user interaction is minimized by a data-driven, and highly automated velocity analysis and imaging approach based on the Common-Reflection-Surface (CRS) stack. Furthermore, the huge computing power provided by the grid deployment allows parallel testing of alternative processing sequences and parameter settings, a feature which considerably reduces the turn-around times. A shared data storage using georeferencing tools and data grid technology is under current development. It will allow to publish already accomplished projects, making results, processing workflows and parameter settings available in a transparent and reproducible way. Creating a unified database shared by all users will facilitate complex studies and enable the use of data-crossing techniques to incorporate results of other environmental applications hosted on the GRIDA3 portal.
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.
2017-01-01
The potential present day habitability of solar system bodies beyond Earth is limited to subsurface environments, where the availability of energy in biologically useful form is a paramount consideration. Energy availability is commonly quantified in terms of molar Gibbs energy changes for metabolisms of interest, but this can provide an incomplete and even misleading picture. A second aspect of life's requirement for energy - the rate of delivery, or power - strongly influences habitability, biomass abundance, growth rates, and, ultimately, rates of evolution. We are developing an approach to quantify metabolic power, using a cell-scale reactive transport model in which physical and chemical environmental parameters are varied. Simultaneously, we evaluate cell-specific energy flux requirements and their dependence on environmental "extremes". Comparison of metabolic power supply and demand provides a constraint on how biomass abundance varies across a range of environmental parameters, and thereby a prediction of the relative habitability of different environments. We are evaluating the predictive capability of this approach through comparison to observed distributions of microbial abundance in a range of subsurface (predominantly serpentinizing) systems.
Subsurface agricultural irrigation drainage: the need for regulation.
Lemly, A D
1993-04-01
Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented.
UST CORRECTIVE ACTION TECHNOLOGIES: ENGINEERING DESIGN OF FREE PRODUCT RECOVERY SYSTEMS
The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. Procedures developed for estim...
DOT National Transportation Integrated Search
2016-04-01
The objectives of this research are: to establish a record of all major projects : where DOTD has used SUE services in the past (SUE quality levels depicted : in Figure 1), including : interviews with various : DOTD personnel, : utility companies, an...
Activities of Western Research Application Center
NASA Technical Reports Server (NTRS)
1972-01-01
Operations of the regional dissemination center for NASA technology collection and information transfer are reported. Activities include customized searches for engineering and scientific applications in industry and technology transfers to businesses engaged in manufacturing high energy physics devices, subsurface instruments, batteries, medical instrumentation, and hydraulic equipment.
Robertson, John B.
1976-01-01
Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)
Lunar and Martian Sub-surface Habitat Structure Technology Development and Application
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.
3D Geological Mapping - uncovering the subsurface to increase environmental understanding
NASA Astrophysics Data System (ADS)
Kessler, H.; Mathers, S.; Peach, D.
2012-12-01
Geological understanding is required for many disciplines studying natural processes from hydrology to landscape evolution. The subsurface structure of rocks and soils and their properties occupies three-dimensional (3D) space and geological processes operate in time. Traditionally geologists have captured their spatial and temporal knowledge in 2 dimensional maps and cross-sections and through narrative, because paper maps and later two dimensional geographical information systems (GIS) were the only tools available to them. Another major constraint on using more explicit and numerical systems to express geological knowledge is the fact that a geologist only ever observes and measures a fraction of the system they study. Only on rare occasions does the geologist have access to enough real data to generate meaningful predictions of the subsurface without the input of conceptual understanding developed from and knowledge of the geological processes responsible for the deposition, emplacement and diagenesis of the rocks. This in turn has led to geology becoming an increasingly marginalised science as other disciplines have embraced the digital world and have increasingly turned to implicit numerical modelling to understand environmental processes and interactions. Recent developments in geoscience methodology and technology have gone some way to overcoming these barriers and geologists across the world are beginning to routinely capture their knowledge and combine it with all available subsurface data (of often highly varying spatial distribution and quality) to create regional and national geological three dimensional geological maps. This is re-defining the way geologists interact with other science disciplines, as their concepts and knowledge are now expressed in an explicit form that can be used downstream to design process models structure. For example, groundwater modellers can refine their understanding of groundwater flow in three dimensions or even directly parameterize their numerical models using outputs from 3D mapping. In some cases model code is being re-designed in order to deal with the increasing geological complexity expressed by Geologists. These 3D maps contain have inherent uncertainty, just as their predecessors, 2D geological maps had, and there remains a significant body of work to quantify and effectively communicate this uncertainty. Here we present examples of regional and national 3D maps from Geological Survey Organisations worldwide and how these are being used to better solve real-life environmental problems. The future challenge for geologists is to make these 3D maps easily available in an accessible and interoperable form so that the environmental science community can truly integrate the hidden subsurface into a common understanding of the whole geosphere.
Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J C; Haut, R; Jahn, G
2010-02-19
An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations.more » Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.« less
NASA Astrophysics Data System (ADS)
Boddice, Daniel; Metje, Nicole; Tuckwell, George
2017-11-01
Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.
Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management
McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid
2016-02-17
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.
Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.
Subsurface water and clay mineral formation during the early history of Mars.
Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves
2011-11-02
Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.
2001-03-01
perchlorate bioremediation systems. The objective of this project is to identify the key environmental factors in subsurface environments that inhibit... environment . For the Health and Safety for Innovative Environmental Technologies subthrust, DoD is working to improve the health and safety of workers and...dilution of pollutants. Similarly, other relevant environments range from humid , forested landscapes to high, arid mountainous domains. In addition, DoD
Esfandyari Bayat, Ali; Junin, Radzuan; Shamshirband, Shahaboddin; Tong Chong, Wen
2015-01-01
Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness. PMID:26373598
Urban heat fluxes in the subsurface of Cologne, Germany
NASA Astrophysics Data System (ADS)
Zhu, K.; Bayer, P.; Blum, P.
2012-04-01
Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.
Is the genetic landscape of the deep subsurface biosphere affected by viruses?
Anderson, Rika E; Brazelton, William J; Baross, John A
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.
Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?
Anderson, Rika E.; Brazelton, William J.; Baross, John A.
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639
Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Unger, Andre A.J.
2004-02-18
The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less
A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations
NASA Astrophysics Data System (ADS)
Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance
2016-02-01
Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.
Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun
2018-04-01
The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.
Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces
2014-08-31
melting / recrystallization of the subsurface Ag/Cu interface. Observed the formation of a novel, lattice-mismatched interfacial microstruc- ture...calculations were converged within 1 × 10−4 Ryd with respect to wave function cutoff energy, energy density cutoff, and k- point sampling. The A-EAM
Development of specifications for surface and subsurface oceanic environmental data
NASA Technical Reports Server (NTRS)
Wolff, P. M.
1976-01-01
The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.
Norrman, Jenny; Volchko, Yevheniya; Hooimeijer, Fransje; Maring, Linda; Kain, Jaan-Henrik; Bardos, Paul; Broekx, Steven; Beames, Alistair; Rosén, Lars
2016-09-01
This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Boring Information and Subsurface Data Base Package User’s Guide.
1984-09-01
Army Engineer Waterways Experiment Station Computer Application in’ Ceotechnical Labor o y mue lctosi cia Geotechnical Engineering P0 Box 631...l F -3 7F - 2 1Y 1 U 3. T. 2 F1’--I F 4 -FEST- F,-1rE *~7 1 . ESTR - I -IL’’ 1 2 A. T F- E:7 * 7 T)*i ES l 2) 1-’E M 6FI- I; 2 6 .D L fO.W -ELLYV
EPA's Office of Research and Development is responsible to EPA's Office of Solid Waste to provide research and technical support for waste site closures and the development of technical guidance in support of environmental regulations and programmatic policies. ORD is also respo...
Mobility of multiwalled carbon nanotubes in porous media.
Liu, Xueying; O'Carroll, Denis M; Petersen, Elijah J; Huang, Qingguo; Anderson, C Lindsay
2009-11-01
Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz
2003-09-01
This source-term summary document is intended to describe the current understanding of contaminant source terms and the conceptual model for potential source-term release to the environment at the Idaho National Engineering and Environmental Laboratory (INEEL), as presented in published INEEL reports. The document presents a generalized conceptual model of the sources of contamination and describes the general categories of source terms, primary waste forms, and factors that affect the release of contaminants from the waste form into the vadose zone and Snake River Plain Aquifer. Where the information has previously been published and is readily available, summaries of the inventorymore » of contaminants are also included. Uncertainties that affect the estimation of the source term release are also discussed where they have been identified by the Source Term Technical Advisory Group. Areas in which additional information are needed (i.e., research needs) are also identified.« less
NASA Astrophysics Data System (ADS)
Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon
2015-04-01
Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.
Evaluation of airport subsurface materials
DOT National Transportation Integrated Search
1997-05-01
Pavement structures located in regions with seasonal changes encounter regular cycles of freezing and thawing. Such environmental factors must be considered so that it can be certain that the pavement can accommodate continuous aircraft loading. 11 s...
Detection of Silver Nanoparticles in Vadose Zone Environments using Complex ConductivityMeasurements
The emergence of engineered nano-materials (ENMs) in the global marketplace and their accidental introduction into the subsurface pose a potential risk to the environment and public health. There is a need for the development of techniques to detect their presence and transport i...
DOT National Transportation Integrated Search
1985-07-01
Subsurface soil in the New Orleans area is generally composed of peat and clay. The low bearing capacity of the soft natural soil has caused early deterioration of asphaltic concrete pavements which typically fail prior to carrying their designed loa...
In-Situ Air Sparaing: Engineering and Design
2008-01-31
Construction Materials. Although PVC casing is commonly used, flexible or rigid polyethylene pipe may be more efficient for certain excavation methods, such as...depth, etc.) Piping insulation/ heat tape installed Piping flushed/cleaned/pressure tested Subsurface as-built equipment...4-4 Figure 4-2 Pilot-Scale Piping and Instrumentation Diagram
Evaluation of Subsurface Engineered Barriers at Waste Sites
1998-08-01
28 3-4 MATRIX FOR EVALUATING BARRIER CQA/CQC AGAINST ACCEPTABLE INDSUTRY PRACTICES...STANDARDS................................................................. 66 4-2 MATRIX FOR EVALUATING CAP AGAINST ACCEPTABLE INDSUTRY PRACTICES...stated previously, the most widely used technique for containment is the soil-bentonite slurry wall. It is typically the most economical , utilizes low
Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time
USDA-ARS?s Scientific Manuscript database
Understanding the fate and transport of engineered nanoparticles (ENPs) in subsurface environments is required for developing the best strategy for waste management and disposal of these materials. In this study, the deposition and release of quantum dot (QD) nanoparticles were studied in saturated ...
Resource conservation program in terms of Vostokgazprom environmental policy
NASA Astrophysics Data System (ADS)
Tsibulnikova, M. R.; Nadyumov, S. V.; Adam, A. M.; Korotchenko, T. V.
2016-09-01
The article examines a number of key areas of environmental policy of Vostokgazprom. The Associated Petroleum Gas program is an important step within the resource conservation and environmental protection framework. In addition, the company undertakes the extensive work on emergency response programs, and carries out continuous protection of the subsurface and control over environmental safety in all production sites. Vostokgazprom continuously modernizes the basic industrial facilities and invests money in new projects. The study analyzes the steps being taken by the company within the energy saving policy that leads to significant costs cut.
Subsurface Noble Gas Sampling Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrigan, C. R.; Sun, Y.
2017-09-18
The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that allmore » sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.« less
Trends in Environmental Health Engineering
ERIC Educational Resources Information Center
Rowe, D. R.
1972-01-01
Reviews the trends in environmental health engineering and describes programs in environmental engineering technology and the associated environmental engineering courses at Western Kentucky University (four-year program), Wytheville Community College (two-year program), and Rensselaer Polytechnic Institute (four-year program). (PR)
Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.
2014-01-01
Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621
Contaminated environments in the subsurface and bioremediation: organic contaminants.
Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F
1997-07-01
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.
Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M
2010-01-01
Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.
Public health engineering education in India: current scenario, opportunities and challenges.
Hussain, Mohammad Akhtar; Sharma, Kavya; Zodpey, Sanjay
2011-01-01
Public health engineering can play an important and significant role in solving environmental health issues. In order to confront public health challenges emerging out of environmental problems we need adequately trained public health engineers / environmental engineers. Considering the current burden of disease attributable to environmental factors and expansion in scope of applications of public health / environmental engineering science, it is essential to understand the present scenario of teaching, training and capacity building programs in these areas. Against this background the present research was carried out to know the current teaching and training programs in public health engineering and related disciplines in India and to understand the potential opportunities and challenges available. A systematic, predefined approach was used to collect and assemble the data related to various teaching and training programs in public health engineering / environmental engineering in India. Public health engineering / environmental engineering education and training in the country is mainly offered through engineering institutions, as pre-service and in-service training. Pre-service programs include diploma, degree (graduate) and post-graduate courses affiliated to various state technical boards, institutes and universities, whereas in-service training is mainly provided by Government of India recognized engineering and public health training institutes. Though trainees of these programs acquire skills related to engineering sciences, they significantly lack in public health skills. The teaching and training of public health engineering / environmental engineering is limited as a part of public health programs (MD Community Medicine, MPH, DPH) in India. There is need for developing teaching and training of public health engineering or environmental engineering as an interdisciplinary subject. Public health institutes can play an important and significant role in this regard by engaging themselves in initiating specialized programs in this domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
43 CFR 3262.11 - What environmental requirements must I meet when drilling a well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... quality of surface and subsurface water, air, natural resources, wildlife, soil, vegetation, and natural... degradation of the lands. (b) You must remove or, with BLM's approval, properly store all equipment and...
43 CFR 3252.11 - What environmental requirements must I meet when conducting exploration operations?
Code of Federal Regulations, 2011 CFR
2011-10-01
... operations in a manner that: (1) Protects the quality of surface and subsurface waters, air, and other natural resources, including wildlife, soil, vegetation, and natural history; (2) Protects the quality of...
Environmental Engineering in the Slovak Republic
NASA Astrophysics Data System (ADS)
Stevulova, N.; Balintova, M.; Zelenakova, M.; Estokova, A.; Vilcekova, S.
2017-10-01
The fundamental role of environmental engineering is to protect human population and environment from impacts of human activities and to ensure environmental quality. It relates to achieving the environmental sustainability goals through advanced technologies for pollutants removing from air, water and soil in order to minimize risk in ecosystem and ensuring favourable conditions for life of humans and organisms. Nowadays, a critical analysis of the environment quality and innovative approaches to problem solving in order to achieve sustainability in environmental engineering, are necessary. This article presents an overview of the quality of the environment and progress in environmental engineering in Slovakia and gives information regarding the environmental engineering education at Faculty of Civil Engineering at Technical University in Kosice.
Zhang, Y Q; Sanati-Nezhad, A; Hejazi, S H
2018-01-16
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and...
Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Katz, Lee S.; Mariño-Ramírez, Leonardo; Jordan, I. King; Munk, Christine; Ivanova, Natalia; Mikhailova, Natalia; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Brooks, Scott C.
2012-01-01
We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated. PMID:22843592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Mary
Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.
NASA Astrophysics Data System (ADS)
Liolios, K.; Tsihrintzis, V.; Angelidis, P.; Georgiev, K.; Georgiev, I.
2016-10-01
Current developments on modeling of groundwater flow and contaminant transport and removal in the porous media of Horizontal Subsurface Flow Constructed Wetlands (HSF CWs) are first reviewed in a short way. The two usual environmental engineering approaches, the black-box and the process-based one, are briefly presented. Next, recent research results obtained by using these two approaches are briefly discussed as application examples, where emphasis is given to the evaluation of the optimal design and operation parameters concerning HSF CWs. For the black-box approach, the use of Artificial Neural Networks is discussed for the formulation of models, which predict the removal performance of HSF CWs. A novel mathematical prove is presented, which concerns the dependence of the first-order removal coefficient on the Temperature and the Hydraulic Residence Time. For the process-based approach, an application example is first discussed which concerns procedures to evaluate the optimal range of values for the removal coefficient, dependent on either the Temperature or the Hydraulic Residence Time. This evaluation is based on simulating available experimental results of pilot-scale units operated in Democritus University of Thrace, Xanthi, Greece. Further, in a second example, a novel enlargement of the system of Partial Differential Equations is presented, in order to include geothermal effects. Finally, in a third example, the case of parameters uncertainty concerning biodegradation procedures is considered and the use of upper and a novel approach is presented, which concerns the upper and the lower solution bound for the practical draft design of HSF CWs.
The use of FDEM in hydrogeophysics: A review
NASA Astrophysics Data System (ADS)
Boaga, Jacopo
2017-04-01
Hydrogeophysics is a rapidly evolving discipline emerging from geophysical methods. Geophysical methods are nowadays able to illustrate not only the fabric and the structure of the underground, but also the subsurface processes that occur within it, as fluids dynamic and biogeochemical reactions. This is a growing wide inter-disciplinary field, specifically dedicated to revealing soil properties and monitoring processes of change due to soil/bio/atmosphere interactions. The discipline involves environmental, hydrological, agricultural research and counts application for several engineering purposes. The most frequently used techniques in the hydrogeophysical framework are the electric and electromagnetic methods because they are highly sensitive to soil physical properties such as texture, salinity, mineralogy, porosity and water content. Non-invasive techniques are applied in a number of problems related to characterization of subsurface hydrology and groundwater dynamic processes. Ground based methods, as electrical tomography, proved to obtain considerable resolution but they are difficult to extend to wider exploration purposes due to their logistical limitation. Methods that don't need electrical contact with soil can be, on the contrary, easily applied to broad areas. Among these methods, a rapidly growing role is played by frequency domain electro-magnetic (FDEM) survey. This is due thanks to the improvement of multi-frequency and multi-coils instrumentation, simple time-lapse repeatability, cheap and accurate topographical referencing, and the emerging development of inversion codes. From raw terrain apparent conductivity meter, FDEM survey is becoming a key tool for 3D soil characterization and dynamics observation in near surface hydrological studies. Dozens of papers are here summarized and presented, in order to describe the promising potential of the technique.
Predicting on-site environmental impacts of municipal engineering works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu
2014-01-15
The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering projectmore » documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.« less
Undergraduate environmental engineering education in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Bero, B.N.
1999-07-01
In this paper, the development process, present situations, causes of improvement, and trends of higher education of environmental engineering in China are discussed. Several education modes in environmental engineering in China are also presented. The development process can be divided into three stages: the beginning stage, the expansion stage, and the modification stage. The 1970's and early 1980's wake of environmental consciousness and serious pollution situation in China resulted in about 20 universities setting up an environmental engineering specialty. The late 1980's and middle 1990's job opportunities for undergraduates in China resulted in many universities' creation of the environmental engineeringmore » specialty from specialties such as geography, geology, hydrology, mining engineering, and mineral separation engineering where job opportunities were stagnant. At present, adjustment and improvement of environmental engineering education are urgently required because of the excessive increase of undergraduate number, change of job opportunities and implementation of five-work-day system in China. Other problems include how to determine the ratio of social science courses to engineering science courses, how to determine the relationship of fundamental and applied courses, and how to determine the specialized direction. Hunan University, as a typical university conferring an accredited Bachelor degree in Environmental Engineering in four academic years in China, has been improving the instruction schedule for undergraduate education in environmental engineering. The curricula of the three phases for undergraduates of environmental engineering specialty at Hunan University are presented as a case study.« less
2011-02-02
who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology...nature or are collected at discrete points or localized areas in the system. The qualitative data includes, geology , large-scale stratigraphy and
Evaluation of the BioVapor Model
The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...
WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY
Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...
NASA Astrophysics Data System (ADS)
Günther, Andreas; Aziz Patwary, Mohammad Abdul; Bahls, Rebecca; Asaduzzaman, Atm; Ludwig, Rüdiger; Ashraful Kamal, Mohammad; Nahar Faruqa, Nurun; Jabeen, Sarwat
2016-04-01
Dhaka Metropolitan City (including Dhaka and five adjacent municipal areas) is one of the fastest developing urban regions in the world. Densely build-up areas in the developed metropolitan area of Dhaka City are subject to extensive restructuring as common six- or lower storied buildings are replaced by higher and heavier constructions. Additional stories are built on existing houses, frequently exceeding the allowable bearing pressure on the subsoil as supported by the foundations. In turn, newly developing city areas are projected in marshy terrains modified by extensive, largely unengineered landfills. In most areas, these terrains bear unfavorable building ground conditions within 30 meters. Within a collaborative technical cooperation project between Bangladesh and Germany, BGR supports GSB in the provision of geo-information for the Capital Development Authority (RAJUK). For general urban planning, RAJUK successively develops a detailed area plan (DAP) at scale 1 : 50000 for the whole Dhaka Metropolitan City area (approx. 1700 km2). Geo-information have not been considered in the present DAP. Within the project, geospatial information in form of a geomorphic map, a digital terrain model and a 3-D subsurface model covering the whole city area have been generated at a scale of 1 : 50000. An extensive engineering geological data base consisting of more than 2200 borehole data with associated Standard Penetration Testing (SPT) and lab data has been compiled. With the field testing (SPT) and engineering geological lab data, the 3-D subsurface model can be parameterized to derive important spatial subsurface information for urban planning like bearing capacity evaluations for different foundation designs or soil liquefaction potential assessments for specific earthquake scenarios. In conjunction with inundation potential evaluations for different flooding scenarios, comprehensive building ground suitability information can be derived to support risk-sensitive urban planning in Dhaka Metropolitan City area at the DAP scale
NASA Astrophysics Data System (ADS)
Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant
2018-03-01
In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily responsible for the strong subsurface warm bias over the EEIO. This study advocates the importance of understanding the ability of the models in representing the large scale air-sea interactions over the tropics and their impact on ocean biases for better monsoon forecast.
Considerations on Educating Engineers in Sustainability
ERIC Educational Resources Information Center
Boyle, Carol
2004-01-01
The teaching of sustainability to engineers will follow similar paths to that of environmental engineering. There is a strong feeling that environmental engineering is a discipline unto itself, requiring knowledge of chemistry, physics, biology, hydrology, toxicology, modelling and law. However, environmental engineering can also be encompassed…
Williams, Kenneth H; Bargar, John R; Lloyd, Jonathan R; Lovley, Derek R
2013-06-01
Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.
WISDOM GPR investigations in a Mars-analog environment during the SAFER rover operation simulation
NASA Astrophysics Data System (ADS)
Dorizon, S.; Ciarletti, V.; Plettemeier, D.; Vieau, A.-J.; Benedix, W.-S.; Mütze, M.; Hassen-Kodja, R.; Humeau, O.
2014-04-01
The WISDOM (Water Ice Subsurface Deposits Observations on Mars) Ground Penetrating Radar has been selected to be onboard the ExoMars 2018 rover mission [1]. This instrument will investigate the Martian shallow subsurface and provide the geological context of the mission, by characterizing the subsurface in terms of structure, stratigraphy and potential buried objects. It will also quantify the geoelectrical properties of the medium, which are directly related to its nature, its water or salts content and its hardness [2]. WISDOM data will provide important clues to guide the drilling operations to location of potential exobiological interest. A prototype available in LATMOS, France, is currently tested in a wide range of natural environments. In this context, the WISDOM team participated in the SAFER (Sample Acquisition Field Experiment with a Rover) field trial that occurred from 7th to 13th October 2013 in the Atacama Desert, Chile. Designed to gather together scientists and engineers in a context of a real Martian mission with a rover, the SAFER trial was the opportunity to use three onboard ExoMars instruments, namely CLUPI (Close- UP Imager), PANCAM (Panoramic Camera) and WISDOM, to investigate the chosen area. We present the results derived from WISDOM data acquired over the SAFER trial site to characterize the shallow subsurface of the area.
Environmental Engineering in Mining Engineering Education
ERIC Educational Resources Information Center
Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria
2005-01-01
In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…
NASA Astrophysics Data System (ADS)
Bense, Victor; de Kleijn, Christian; van Daal, Jonathan
2017-04-01
Atmospheric warming, urbanisation, land-use changes, groundwater abstraction and aquifer thermal energy storage can induce significant changes in the subsurface thermal regime. These need to better understood and monitored in order for humanity to make efficient use of the subsurface as a thermal reservoir, but also to understand how this space acts as a heat sink during the current warming of the climate. This work aims to improve our understanding of the relative importance, spatiotemporal characteristics and mechanisms of how various environmental processes and anthropogenic activities control changes in subsurface thermal regimes. Such changes are poignantly illustrated by temperature-depth profiles recently obtained in 30 boreholes upto several hundreds of meters deep that are present in the unconsolidated sedimentary aquifer system of the Veluwe area, Netherlands. A comparison to similar data collected in 1978-1980 shows that since then across the entire study area subsurface warming has occurred to depths upto 250 m. The availability of historic land-use maps, hydrogeological and meteorological data for this area allow for a detailed analysis of the observed subsurface warming patterns, which is aided by numerical models of coupled groundwater and heat flow. On a regional scale and across the entire first 100-150 m into the subsurface, the classic thermal signatures of variations in land-use, groundwater recharge and discharge fluxes, are increasingly overprinted by those of regional atmospheric warming and urbanisation. In the topographically higher, forested groundwater recharge areas groundwater is significantly cooler (upto 6 K) than in the open agricultural lands where groundwater is discharging. The presence of a thick (upto 30-40 m) unsaturated zone in the recharge area probably enhances this striking contrast in groundwater temperature in addition to the effects of groundwater recharge and the presence of forest. Locally and at larger depths, however, aquifer thermal storage activities and groundwater abstraction have a strong and probably more immediate role in altering the subsurface thermal regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, W.A.; McGraw, M.; Gustavson, T.C.
Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.
Site Characterization Report (Building 202). Volume 2. Appendicies A-H.
1996-04-01
Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and
Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.
2016-01-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260
Progression of methanogenic degradation of crude oil in the subsurface
Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I.
2005-01-01
Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6-8-m (20-26 ft)-deep water table. Oil saturation in the sediments ranges from 10-20% in the vadose zone to 30-70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2-8 m (6.6-26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
Ford, W; King, K; Williams, M; Williams, J; Fausey, N
2015-07-01
Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on dissolved reactive phosphorus (DRP) loadings from agricultural fields. However, tools that simulate both surface and subsurface DRP pathways are limited and have not been robustly evaluated in tile-drained landscapes. The objectives of this study were to test the ability of the Agricultural Policy/Environmental eXtender (APEX), a widely used field-scale model, to simulate surface and tile P loadings over management, hydrologic, biologic, tile, and soil gradients and to better understand the behavior of P delivery at the edge-of-field in tile-drained midwestern landscapes. To do this, a global, variance-based sensitivity analysis was performed, and model outputs were compared with measured P loads obtained from 14 surface and subsurface edge-of-field sites across central and northwestern Ohio. Results of the sensitivity analysis showed that response variables for DRP were highly sensitive to coupled interactions between presumed important parameters, suggesting nonlinearity of DRP delivery at the edge-of-field. Comparison of model results to edge-of-field data showcased the ability of APEX to simulate surface and subsurface runoff and the associated DRP loading at monthly to annual timescales; however, some high DRP concentrations and fluxes were not reflected in the model, suggesting the presence of preferential flow. Results from this study provide new insights into baseline tile DRP loadings that exceed thresholds for algal proliferation. Further, negative feedbacks between surface and subsurface DRP delivery suggest caution is needed when implementing DRP-based best management practices designed for a specific flow pathway. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review
Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their te...
BioVapor Model Evaluation (St. Louis, MO)
The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...
2018-01-08
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...
2018-01-08
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
NASA Astrophysics Data System (ADS)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; Dafflon, Baptiste; Yuan, Fengming; Romanovsky, Vladimir E.
2018-01-01
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ˜ 10 cm shallower and ˜ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ˜ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... a Public Teleconference of the Environmental Engineering Committee AGENCY: Environmental Protection... public teleconference of the SAB Environmental Engineering Committee (EEC) to receive briefings regarding... U.S.C., App. 2, notice is hereby given that the SAB Environmental Engineering Committee (EEC) will...
Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques
NASA Astrophysics Data System (ADS)
Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis
2014-08-01
Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.
2018-04-01
Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J; Carley, Jack; Corbin, Gail A; Carroll, Sue L; Watson, David B; Jardine, Phil M; Zhou, Jizhong; Criddle, Craig S; Fields, Matthew W
2009-01-01
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.
2013-09-19
environments. This can include the development of new and/or improved analytical and numerical models, rapid data-processing techniques, and new subsurface ... imaging techniques that include active and passive sensor modalities in a variety of rural and urban terrains. Of particular interest is the broadband
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 12 2011-01-01 2011-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
Water quality in organic systems
USDA-ARS?s Scientific Manuscript database
Non-point source contamination is a major water quality concern in the upper Midwestern USA, where plant nutrients, especially NO3-N, are susceptible to leaching due to extensive subsurface draining of the highly productive, but poorly drained, soils found in this region. Environmental impacts assoc...
Integration of real time kinematic satellite navigation with ground-penetrating radar surveys
USDA-ARS?s Scientific Manuscript database
Precision agriculture, environmental mapping, and construction benefit from subsurface imaging by revealing the spatial variability of underground features. Features surveyed of agricultural interest are bedrock depth, soil horizon thicknesses, and buried–object features such as drainage pipe. For t...
75 FR 81037 - Waste Confidence Decision Update
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... well beyond the current analysis that supports at least 60 years of post-licensed life storage with... environmental factors including surrounding population density, water resources, seismicity, subsurface geology... expiration of the 60-year post licensed life period, the Commission will revisit the Waste Confidence...
PROCEEDINGS OF THE CROSS DISCIPLINE ECOSYTEM MODELING AND ANALYSIS WORKSHOP
The complexity of environmental problems we face now and in the future is ever increasing. Process linkages among air, land, surface and subsurface water require interdisciplinary modeling approaches. The dynamics of land use change spurred by population and economic growth, ...
COMPLEX CONDUCTIVITY RESPONSE TO NANOMATERIALS IN A SAND MATRIX
Nano-scale metallic particles are being used with increasing frequency in a variety of industrial, medical, and environmental remediation applcations. The fate and transport of such materials in the subsurface is not fully understood, neither is the impact of these materials on ...
ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY
Potential for lasting negative environmental effects has clouded remediation programs using permanganate and other oxidants. A major concern about using In-Situ Chemical Oxidation (ISCO) for remediation of CVOCs is that application of strong oxidants to subsurface systems may pe...
EPA'S ON-LINE CALCULATORS AND TRAINING COURSE
EPA has developed a suite of on-line calculators called "OnSite" for assessing transport of environmental contaminants int the subsurface. The calculators are available on the Internet at http://www.epa.gov/athens/onsite, and are divided into four categories: Parameter Estimate...
TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS
Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...
OPTIMIZATION OF IN-SITU THERMAL REMEDIATION: THE LORING AFB STEAM INJECTION PROJECT EXAMPLE
Environmental remediation programs require that adequate planning be done before field work for characterization or remediation is undertaken. However, the heterogeneous nature of the subsurface can often thwart our best planning efforts. More recently, dynamic work plans which...
Environmental engineering education at Ghent University, Flanders (Belgium).
Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H
2004-01-01
Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.
2018-01-01
As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.
Environmental Electrokinetics for a sustainable subsurface.
Lima, A T; Hofmann, A; Reynolds, D; Ptacek, C J; Van Cappellen, P; Ottosen, L M; Pamukcu, S; Alshawabekh, A; O'Carroll, D M; Riis, C; Cox, E; Gent, D B; Landis, R; Wang, J; Chowdhury, A I A; Secord, E L; Sanchez-Hachair, A
2017-08-01
Soil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low permeability soils, has, for the last decade, been combined with more conventional techniques and can significantly enhance the performance of several of these remediation technologies, including ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in tandem with conventional remediation techniques, to achieve improved remediation performance. Furthermore, we highlight new EK applications that may come to play a role in the sustainable treatment of the contaminated subsurface. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Introduction to environmental engineering
NASA Astrophysics Data System (ADS)
Šalić, Anita; Zelić, Bruno
2018-02-01
Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.
Microbiological Transformations of Radionuclides in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.
2010-01-04
Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore,more » environmental behavior.« less
Biofiltration of Volatile Pollutants: Solubility Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davison, Brian H.; Barton, John W.
2001-06-15
This project investigates and collects fundamental partitioning data for a variety of sparingly soluble subsurface contaminants (e.g., TCE, etc.) between vapor, aqueous phase, and matrices containing substantial quantities of biomass and biomass components. Due to the difficulty of obtaining these measurements, environmental models have generally used solubility constants of chemicals in pure water or, in a few rare cases, simple linear models. Our prior EMSP work has shown that the presence of biological material can increase effective solubilities by an order of magnitude for sparingly soluble organics; therefore, the previous simple approaches are not valid and are extremely poor predictorsmore » of actual bio-influenced partitioning. It is likely that environmental contaminants will partition in a similar manner into high-biomass phases (e.g. biobarriers and plants) or humic soils. Biological material in the subsurface can include lipids, fatty acids, humic materials, as well a s the lumped and difficult to estimate 'biomass'. Our measurements include partition into these biological materials to allow better estimation. Fundamental data collected will be used in mathematical models predicting transport and sorption in subsurface environments, with the impacts on bioremediation being evaluated based on this new information. Our 2-D Win95/98 software program, Biofilter 1.0, developed as a part of our prior EMSP efforts for describing biofiltration processes with consideration given to both kinetic and mass transfer factors, will be extended to incorporate and use this information.« less
Biofiltration of Volatile Pollutants: Solubility Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davison, Brian H.; Barton, John W.
2002-06-15
This project investigates and collects fundamental partitioning data for a variety of sparingly soluble subsurface contaminants (e.g., TCE, etc.) between vapor, aqueous phase, and matrices containing substantial quantities of biomass and biomass components. Due to the difficulty of obtaining these measurements, environmental models have generally used solubility constants of chemicals in pure water or, in a few rare cases, simple linear models. Our prior EMSP work has shown that the presence of biological material can increase effective solubilities by an order of magnitude for sparingly soluble organics; therefore, the previous simple approaches are not valid and are extremely poor predictorsmore » of actual bio-influenced partitioning. It is likely that environmental contaminants will partition in a similar manner into high-biomass phases (e.g. biobarriers and plants) or humic soils. Biological material in the subsurface can include lipids, fatty acids, humic materials, as well as the lumped and difficult-to-estimate 'biomass'. Our measurements include partition into these biological materials to allow better estimation. Fundamental data collected will be used in mathematical models predicting transport and sorption in subsurface environments, with the impacts on bioremediation being evaluated based on this new information. Our 2-D Win95/98/XP software program, Biofilter 1.0, developed as a part of our prior EMSP efforts for describing biofiltration processes with consideration given to both kinetic and mass transfer factors, is being extended to incorporate and use this information.« less
Environmental engineering: A profession in transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackay, D.
1996-11-01
This 50th Industrial Waste Conference at Purdue gives one an opportunity and excuse to reflect on progress in Environmental Engineering and speculate on future changes. The author suggests that during this 50-year period Environmental Engineering has emerged as a discrete and creditable body of knowledge, practice, and academic study. In this review he presents a personal view of the evolution of Environmental Engineering and its present status. He also suggests some future directions and principles which may prove useful, especially in the academic world. The paper discusses the sphere of the environmental engineer, the social incentive, the academic curriculum, environmentalmore » engineers and society, the chlorine controversy, research, and the electronic revolution.« less
Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing.
Zheng, Z M; Zhang, T Q; Kessel, C; Tan, C S; O'Halloran, I P; Wang, Y T; Speranzini, D; Van Eerd, L L
2015-11-01
Phosphorus applied to soils in excess of crop requirement could create situations favorable to P enrichment in subsurface flow that contributes to eutrophication of surface water. This pathway of P loss can be more severe in muck (i.e., organic) soils where agricultural production is intensive. This study evaluated the suitability of various environmental and agronomic soil P tests initially designed for mineral soils to predict dissolved reactive P (DRP) in subsurface flow from organic soils. Intact soil columns were collected from 44 muck soils in Ontario to provide a wide range of soil test P levels. A lysimeter leaching study was conducted by evenly adding water in an amount equivalent to 5 mm of rainfall. The leachate DRP concentration was linearly related to soil water-extractable P and CaCl-extractable P with values of 0.90 and 0.93, respectively, and to Bray-1 P and FeO-impregnated filter paper extractable P in a split-line model with a change point. Mehlich-3 P and Olsen P, a method recommended for agronomic P calibration in Ontario, were not related to leachate DRP concentration. All P sorption index (PSI) based degree of P saturation (DPS) values were closely related to leachate DRP in split-line models, with the DPS indices expressed as Bray-1 P/PSI and FeO-P/PSI having the highest correlation with leachate DRP concentration. Because it is desirable from practical and economic standpoints that the environmental risk assessment shares the same soil test with agronomic P calibration, the two PSI-based DPS indices as presented can be considered as environmental risk indicators of DRP subsurface loss from organic soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Adar, E. M.; Rosenthal, E.; Issar, A. S.; Batelaan, O.
1992-08-01
This paper demonstrates the implementation of a novel mathematical model to quantify subsurface inflows from various sources into the arid alluvial basin of the southern Arava Valley divided between Israel and Jordan. The model is based on spatial distribution of environmental tracers and is aimed for use on basins with complex hydrogeological structure and/or with scarce physical hydrologic information. However, a sufficient qualified number of wells and springs are required to allow water sampling for chemical and isotopic analyses. Environmental tracers are used in a multivariable cluster analysis to define potential sources of recharge, and also to delimit homogeneous mixing compartments within the modeled aquifer. Six mixing cells were identified based on 13 constituents. A quantitative assessment of 11 significant subsurface inflows was obtained. Results revealed that the total recharge into the southern Arava basin is around 12.52 × 10 6m3year-1. The major source of inflow into the alluvial aquifer is from the Nubian sandstone aquifer which comprises 65-75% of the total recharge. Only 19-24% of the recharge, but the most important source of fresh water, originates over the eastern Jordanian mountains and alluvial fans.
DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.
Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...
ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS
The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...
Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...
Marine Mammal Habitat in Ecuador: Seasonal Abundance and Environmental Distribution
2010-06-01
derived macronutrients ) is enhanced by iron inputs derived from the island platform. The confluence of the Equatorial Undercurrent and Peru Current...is initiated by the subsurface derived macronutrients ) is enhanced by iron inputs derived from the island platform. The confluence of the Equatorial
Scaling in soils and other complex porous media
USDA-ARS?s Scientific Manuscript database
Scaling remains one of the most challenging topics in earth and environmental sciences, forming a basis for our understanding of process development across the multiple scales which make up the subsurface environment. Understanding and succinct representation of scaling properties can lead to the un...
Over the past decade, there has been an increasing array of commercially available products for the treatment of nonpoint source pollution from urban stormwater. These products incorporate various approaches to stormwater treatment such as: in-line subsurface treatment chambers...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to migration of waste constituents in the ground water or subsurface environment, considering: (1... for migration through soil, liners, or other containing structures; (2) The hydrologic and geologic... users; (6) The patterns of land use in the -region; (7) The potential for deposition or migration of...
Environmental Engineering Talent Demand and Undergraduate Education in China
ERIC Educational Resources Information Center
Zhang, Huan-zhen; Li, Jian-bo; Luo, Xiang-nan; Zhao, Bin-yan; Luo, Ren-ming; Wang, Qiao-ling
2004-01-01
In Chinese higher environmental education, undergraduate education of environmental engineering starts earliest and develops fastest. The undergraduate has been playing an important role in controlling pollution for more than twenty years. The setting and distribution of the environmental engineering major was analyzed, the conditions of the…
Environmental Engineering Curricula assessment in the global world
NASA Astrophysics Data System (ADS)
Caporali, Enrica; Catelani, Marcantonio; Manfrida, Giampaolo; Valdiserri, Juna
2014-05-01
Environmental engineers are technicians with specific expertise on the sustainability of human presence in the environment. Among other global dilemmas, to the environmental engineers it is often demanded to be able in developing systematic, innovative solutions in order to simultaneously meet water and energy needs, to build resilience to natural and technological disasters, to more accurately gauge and manage countries' greenhouse gas emissions. The general objectives of the Environmental Engineers are to establish actions of environmental sustainability as well as to verify progress toward global goals or international commitments. The globalization of challenges and problems to be faced, leads, in general, to the globalization of the engineering profession. In particular, since the environmental issues are without boundaries, and many and different are the involved professions and the competences, the environmental engineer must have a multidisciplinary and interdisciplinary approach to adequately answer to the demand of technical innovative knowledge at global scale. The environmental engineers, more and more, are involved in international projects were the effective collaboration requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. The Europe-based EUR ACE system, currently operated by ENAEE - European Network for Accreditation of Engineering Education, can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. In the global frame of the knowledge triangle: education-innovation-research, the accreditation and quality assurance of engineering curricula in Europe is discussed with reference to the Environmental engineering curricula, of the 1st and 2nd cycle, based on the European Credit Transfer System and in accordance with the Bologna Process, offered at School of Engineering, University of Firenze. The application of the accreditation model EUR-ACE to the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering is discussed. Particularly, the critical issues to guarantee the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences are examined. The expected learning outcomes of the quality assessment according the Dublin descriptors or the more engineering focused EUR-ACE skill descriptors, and at local and global scale are analysed. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is also assessed. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities, and in general in comparing the teaching profile with the actual needs of the technical workforce, is described. With the aim to promote the innovative aspects related with the environmental engineering education, the important role that science and technology could play is also taken into consideration.
NASA Astrophysics Data System (ADS)
Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.
2014-12-01
Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.
Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern
2015-04-01
Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems. Copyright © 2015. Published by Elsevier B.V.
Goldstein, F.J.; Weight, W.D.
1982-01-01
The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.
McNew, Coy P; LeBoeuf, Eugene J
2015-11-01
Attached phase soil and sediment organic matter is ubiquitous in the subsurface environment, with a tendency to strongly sorb contaminants, and therefore it may play an important role in contaminant transport. In this study, the deposition of C60 nanoparticles onto attached phase Harpeth Humic Acid and Harpeth Fulvic Acid (HHA and HFA) is explored by using a quartz crystal microbalance with dissipation monitoring and systematically varying thermal energy. By comparing the C60 attachment onto HHA and HFA surfaces to that of bare silica and DLVO predictions, we find that the HHA and HFA layers hinder attachment at low temperatures, while HHA enhances attachment at higher temperatures. Based on thermal characterization of the HHA and HFA layers compared to the corresponding attachment trends, the attachment efficiency is strongly correlated with hydration of the layer. Possible mechanisms explaining this phenomenon include water-assisted disruption of polar SOM contacts and hydration-induced swelling of the AP-SOM matrix. Since humic substances typically dominate subsurface organic matter, these results may prove crucial to understanding the complex interactions of engineered nanomaterials in both the natural and engineered environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detecting a subsurface cylinder by a Time Reversal MUSIC like method
NASA Astrophysics Data System (ADS)
Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni
2014-05-01
In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R. Solimene, 'Development Of New Methods For The Solution Of Inverse Electromagnetic Scattering Problems By Buried Structures: State of the Art and Open Issues ,'in COST ACTION TU1208: CIVIL ENGINEERING APPLICATIONS OF GROUND PENETRATING RADAR, Proceedings of first Action's General Meeting, 2013. ISBN: 978-88-548-6191-6. [2] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, G. Schettini, "Detection of subsurface metallic utilities by means of a SAP technique: Comparing MUSIC- and SVM-based approaches, Journal of Applied Geophysics, vol. 97, pp. 60-68, 2013. [3] E. A. Marengo, F. K. Gruber, F. Simonetti, 'Time-reversal MUSIC imaging of extended targets,' IEEE Trans Image Process. vol. 16, pp. 1967-84, 2007
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
2003-12-01
NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Combat Command,Environmental Flight,Avon Park Air Force Range...FL,33825 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11...Oscar Range are either Spodosols or Alfisols. Spodosols soils are characterized by a subsurface zone called a spodic ( organic ) horizon layer, whereas
Larson, Rebecca A; Safferman, Steven I
2012-01-01
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
The Consortium for Site Characterization Technology (CSCT) has established a formal program to accelerate acceptance and application of innovative monitoring and site characterization technologies that improve the way the nation manages its environmental problems. In 1995 the CS...
AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS
The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...
Corn response and soil nutrient concentration from subsurface application of poultry litter
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...
Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics
NASA Astrophysics Data System (ADS)
Weyer, K.
2013-12-01
Within engineering practice, the calculation of subsurface flow is dominated by the mathematical pseudo-physics of the engineer's adaptation of continuum methods to mechanics. Continuum mechanics rose to prominence in the 19th century in an successful attempt to solve practical engineering problems. To that end were put in place quite a number of simplifications in geometry and the properties of water and other fluids, as well as simplifications of Darcy's equation, in order to find reasonable answers to practical problems by making use of analytical equations. The proof of the correctness of the approach and its usefulness was in the practicability of results obtained. In the 1930s, a diametrically-opposed duality developed in the theoretical derivation of the laws of subsurface fluid flow between Muskat's (1937) velocity potential (engineering hydraulics) and Hubbert's (1940) force potential. The conflict between these authors lasted a lifetime. In the end Hubbert stated on one occasion that Muskat formulates a refined mathematics but does not know what it means in physical terms. In this author's opinion that can still be said about the application of continuum mechanics by engineers to date, as for example to CO2 sequestration, regional groundwater flow, oil sands work, and geothermal studies. To date, engineering hydraulics is best represented by Bear (1972) and de Marsily (1986). In their well-known textbooks, both authors refer to Hubbert's work as the proper way to deal with the physics of compressible fluids. Water is a compressible fluid. The authors then ignore, however, their own insights (de Marsily states so explicitly, Bear does not) and proceed to deal with water as an incompressible fluid. At places both authors assume the pressure gradients to be the main driving force for flow of fluids in the subsurface. That is not, however, the case. Instead the pressure potential forces are caused by compression initiated by unused gravitational energy not required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.
NASA Astrophysics Data System (ADS)
Helmig, R.; Becker, B.; Flemisch, B.
2015-12-01
The natural subsurface is gaining in importance for a variety of engineering applications related to energy supply. At the same time it is already utilized in many ways. On the one hand, the subsurface with its groundwater system represents the most important source of drinking water; on the other hand, it contains natural resources such as petroleum, natural gas and coal. In recent years, the subsurface has been gaining importance as a resource of energy and as an energy and waste repository. It can serve as a short-, medium- or long-term storage medium for energy in various forms, e.g. in the form of methane (CH4), hydrogen (H2) or compressed air. The subsurface is also attracting increasing interest as a natural source of energy, regarding, for instance, the extraction of fossil methane by hydraulic fracturing or the utilization of geothermal energy as a renewable energy source. As a result, with increasing exploitation, resource conflicts are becoming more and more common and complex. Modeling concepts for simulating multiphase flow that can reproduce the high complexity of the underlying processes in an efficient way need to be developed. The application of these model concepts is of great importance with respect to feasibility, risk analysis, storage capacity and sensitivity issues. This talk will give an overview on possible utilization conflicts in subsurface systems and how the groundwater is affected. It will focus on presenting fundamental properties and functions of a compositional multiphase system in a porous medium and introduce basic multiscale and multiphysics concepts as well as formulate conservation laws for simulating energy storage in the subsurface. Large-scale simulations that show the general applicability of the modeling concepts of such complicated natural systems, especially the impact on the groundwater of simultaneously using geothermal energy and storing chemical and thermal energy, and how such real large-scale systems provide a good environment for balancing the efficiency potential and possible weaknesses of the approaches will be discussed.
Environmental engineering education: examples of accreditation and quality assurance
NASA Astrophysics Data System (ADS)
Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.
2013-12-01
Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In particular, the accreditation models of the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering are discussed. The critical issues to assure the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences, according to the more engineering focused EUR-ACE skill descriptors as well as with respect to the Dublin descriptors, at local and global scale are also compared. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities is also described. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is in addition assessed. The promotion of innovative aspects related with the environmental engineering education, and of the role that science and technology could play in environmental engineering education is also taken into consideration.
NASA Technical Reports Server (NTRS)
1982-01-01
An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Zhong, Lirong; Li, Guanghe
Colloidal silica (fumed silica) suspensions are being tested as carriers for remedial amendment delivery in subsurface remediation and as media for underground contamination containment. The knowledge of the rheological behavior of the silica suspensions is lack in the literature while it is essential for the preparation and field injection of the suspensions. This contribution is focused on the rheological characteristics of colloidal silica suspensions under various environmental conditions relevant to amendment delivery for subsurface remediation. We investigated the influence of silica particle concentration, water source, ionic strength, pH, aging, amendment type and concentration, and subsurface sediment on the rheological behaviormore » of the suspensions. All tested suspension formulations exhibited shear thinning before gelation. Higher silica particle concentration and salinity (Na+ and K+) increased suspensions’ viscosity and the degree of shear thinning. The viscosity of suspensions increased with aging. The suspensions at natural pH exhibited the highest viscosity compared to the acidic and alkaline suspensions with the same silica concentration. Addition of KMnO4 amendment to aqueous silica suspensions increased viscosity, while addition of alcohol amendment decreased suspensions’ viscosity. The presence of amendment did not reduce shear thinning. The gelation rate of silica suspensions was increased with silica concentration and with the addition of sediments. The rheological characteristics of shear thinning aqueous fumed silica suspensions were compared to that of shear thinning solutions formed with organic polymer xanthan gum, which was applied for amendment delivery in subsurface remediation.« less
Survival in the hot subsurface: Hydrogen stress on hyperthermophilic heterotrophs and methanogens
NASA Astrophysics Data System (ADS)
Topcuoglu, B. D.; Holden, J. F.
2017-12-01
Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in hot subsurface environments such as hydrothermal vents, marine sediments, and oil reservoirs. This project aims to make fundamental advances in our understanding of interspecies microbe-microbe interactions in hot subsurface environments by integrating metabolic network modeling, transcriptomic analyses and continuous cultivation of hyperthermophiles and describe how heterotrophs and methanogens eliminate H2 stress. Some subsurface environments may lack alternative electron acceptors (e.g., S°) for the heterotroph and sufficient environmental flux rates to draw in fresh energy sources or remove excess metabolic products. We observed a decrease in growth rates for the H2-producer Thermococcus paralvinellae when grown with an aqueous H2 background of 65 µM relative to no added H2. Metabolite analysis showed increased formate production during H2 inhibition. Differential gene expression analyses coupled with metabolic network modeling showed that T. paralvinellae oxidized H2 and made formate by a formate hydrogenlyase to survive H2 inhibition. Low H2 concentrations (20 µM) also caused a decrease in growth and CH4 production rates for the H2-consuming methanogen Methanocaldococcus jannaschii. H2 stress in both organisms was ameliorated when the organisms were grown together syntrophically. CH4 was produced without any added H2 during syntrophic growth, and there was no formate produced by T. paralvinellae. These organisms may impact the biogeochemistry, especially natural gas production, in saline, organic-rich subsurface environments when both are present.
Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.
Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T
2016-01-01
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Harrison, B. K.; Bailey, J. V.
2013-12-01
Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
ERIC Educational Resources Information Center
Dyehouse, Melissa; Weber, Nicole; Fang, Jun; Harris, Constance; David, Ray; Hua, Inez; Strobel, Johannes
2017-01-01
Engineering professional associations identified environmental sustainability as a key responsibility of the educated engineer. Data from national surveys of the general public demonstrate low environmental knowledge levels and a high level of resistance when it comes to environmental behavior. The purpose of this study was to examine the…
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...
3D Acoustic Full Waveform Inversion for Engineering Purpose
NASA Astrophysics Data System (ADS)
Lim, Y.; Shin, S.; Kim, D.; Kim, S.; Chung, W.
2017-12-01
Seismic waveform inversion is the most researched data processing technique. In recent years, with an increase in marine development projects, seismic surveys are commonly conducted for engineering purposes; however, researches for application of waveform inversion are insufficient. The waveform inversion updates the subsurface physical property by minimizing the difference between modeled and observed data. Furthermore, it can be used to generate an accurate subsurface image; however, this technique consumes substantial computational resources. Its most compute-intensive step is the calculation of the gradient and hessian values. This aspect gains higher significance in 3D as compared to 2D. This paper introduces a new method for calculating gradient and hessian values, in an effort to reduce computational overburden. In the conventional waveform inversion, the calculation area covers all sources and receivers. In seismic surveys for engineering purposes, the number of receivers is limited. Therefore, it is inefficient to construct the hessian and gradient for the entire region (Figure 1). In order to tackle this problem, we calculate the gradient and the hessian for a single shot within the range of the relevant source and receiver. This is followed by summing up of these positions for the entire shot (Figure 2). In this paper, we demonstrate that reducing the area of calculation of the hessian and gradient for one shot reduces the overall amount of computation and therefore, the computation time. Furthermore, it is proved that the waveform inversion can be suitably applied for engineering purposes. In future research, we propose to ascertain an effective calculation range. This research was supported by the Basic Research Project(17-3314) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
Distance Teaching of Environmental Engineering Courses at the Open University.
ERIC Educational Resources Information Center
Porteous, Andrew; Nesaratnam, Suresh T.; Anderson, Judith
1997-01-01
Describes two integrated distance learning environmental engineering degree courses offered by the environmental engineering group of the Open University in Great Britain. Discusses admission requirements for courses, advantages offered by distance learning, professional accreditation, site visits, and tutors. (AIM)
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2017-04-01
Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.
NASA Astrophysics Data System (ADS)
Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.
2017-12-01
The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ residence times to match reaction timescales and conditions of interest.
Hyporheic exchange in mountain rivers I: Mechanics and environmental effects
Daniele Tonina; John M. Buffington
2009-01-01
Hyporheic exchange is the mixing of surface and shallow subsurface water through porous sediment surrounding a river and is driven by spatial and temporal variations in channel characteristics (streambed pressure, bed mobility, alluvial volume and hydraulic conductivity). The significance of hyporheic exchange in linking fluvial geomorphology, groundwater, and riverine...
2011-10-01
ground (subsurface) deposits. Examples of prehistoric archaeological resources include village sites, campsites, lithic scatters, burials, hearths ...or hearth features), processing sites, caves and rock shelters, and petroglyph and pictograph sites. Examples of historic archaeological resources
Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff
USDA-ARS?s Scientific Manuscript database
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...
Vapor intrusion is the movement of volatile chemicals in the subsurface that eventually contaminate the indoor air that people breathe in overlaying buildings. This often overlooked exposure pathway of hazardous chemicals is a significant environmental health hazard. The USEPA ...
Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These groundwater treatment systems use zero-valent iron filings to intercept an...
Ty Lepionka Uses Disposal System Model to Communicate With Public
ERIC Educational Resources Information Center
Vassey, Emuel E., III
1976-01-01
A sanitarian uses a model to demonstrate installation and operation of a subsurface disposal system. The model contains a septic tank, inlet and outlet T's, distribution box, and drain lines in various stages of construction. The model is used to inform mobile home owners about environmental health practices. (MR)
Corn yield and nutrient uptake response to subsurface-lateral bands application of poultry litter
USDA-ARS?s Scientific Manuscript database
Poultry litter is nutrient rich and traditionally land-applied by broadcast on the soil surface which can lead to potential environmental hazards. This application method leaves PL vulnerable to transport from the field to nearby water bodies and contributes significant amounts of greenhouse gases (...
No-till corn response and soil nutrient concentrations from subsurface banding of poultry litter
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...
43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?
Code of Federal Regulations, 2011 CFR
2011-10-01
... that: (1) Protects the quality of surface and subsurface waters, air, and other natural resources, including wildlife, soil, vegetation, and natural history; (2) Prevents unnecessary or undue degradation of the lands; (3) Protects the quality of cultural, scenic, and recreational resources; (4) Accommodates...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P; Czerwinski, Ken; Russell, Charles E
2010-07-13
This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P.; Bruckner, Jim; Fisher, Jen
2010-09-01
This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less
Energy as a Constraint on Habitability in the Subsurface
NASA Astrophysics Data System (ADS)
Hoehler, T.
2008-12-01
All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.
NASA Astrophysics Data System (ADS)
Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.
2017-04-01
By separating the surface and subsurface components of foliar hyperspectral signatures using polarization optics, it is possible to enhance the remote discrimination of different plant species and optimize the assessment of different factors associated with their health status. These initiatives, in turn, can lead to higher crop yield and lower environmental impact. It is important to consider, however, that the main varieties of crops, represented by C3 (e.g., soy) and C4 (e.g., maize) plants, have markedly distinct morphological characteristics. Accordingly, the influence of these characteristics on their interactions with impinging light may affect the selection of optimal probe wavelengths for specific applications making use of combined hyperspectral and polarization measurements. In this paper, we compare the sensitivity of the total (including surface and subsurface components) and subsurface reflectance responses of C3 and C4 plants to different spectral and geometrical light incidence conditions. This investigation is supported by measured biophysical data and predictive light transport simulations. The results of our comparisons indicate that the total and subsurface reflectance responses of C3 and C4 plants depict well-defined patterns of sensitivity for varying illumination conditions. We believe that these patterns should be considered in the design of high-fidelity crop discrimination and monitoring procedures.
Research on the Development and Enlightenment of Urban Environmental Engineering
NASA Astrophysics Data System (ADS)
Tian, Mingjing; Li, Guanglou; Zhang, Lu; Shou, Youping; Li, Yajuan; Ye, Wei; Xu, Jing
2018-04-01
In recent years, under the promotion of reform and opening up, China's economic development has greatly accelerated, urbanization is also gradually accelerated. In the process of urbanization, there are many problems. The development of environmental engineering is one of the most important points. While building our living environment; we should also pay attention to the implementation of sustainable development strategies. First of all, This paper describes basic situation of environmental engineering, and finally provided some measures to promote the strengthening of China's environmental engineering
Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.
2016-01-01
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705
Water security and services in the ocean-aquifer system
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2011-12-01
Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.
Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F
2016-01-01
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.
Strategies towards an optimized use of the shallow geothermal potential
NASA Astrophysics Data System (ADS)
Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.
2013-12-01
Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.
EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...
Using Notable Women in Environmental Engineering to Dispel Misperceptions of Engineers
ERIC Educational Resources Information Center
Hoh, Yin Kiong
2009-01-01
This paper describes an activity the author has carried out with 72 high school science teachers to enable them to overcome their stereotypical perceptions of engineers. The activity introduced them to notable women in environmental engineering, and raised their awareness of these female engineers' contributions to engineering and society. The…
Subsurface-water flow and solute transport: federal glossary of selected terms
Isensee, Alan R.; Johnson, Lynn; Thornhill, Jerry; Nicholson, Thomas J.; Meyer, Gerald; Vecchioli, John; Laney, Robert
1989-01-01
The definitions and conversion charts are from two principal sources provided herein. The first is the 11Glossary11 compiled by A. I. Johnson in the 1981 report by the American Society of Testing and Materials titled Permeability and Groundwater Contaminant Transport. The second is Manu a 1 40, 11Ground-water Management, 11 produced by the American Society of Civil Engineers in 1985.
EnviroTech: Enhancing Environmental Literacy and Technology Assessment Skills
ERIC Educational Resources Information Center
Rose, Mary Annette
2010-01-01
It is no coincidence that many of the "Grand Challenges for Engineering" (National Academy of Engineering, 2007-2010)--such as carbon sequestration--address environmental problems that were precipitated by human inventiveness and engineering achievements. Although people recognize their dependence upon environmental processes to provide…
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2013-01-01
Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo
2016-04-01
Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.
Experimental determination of methane dissolution from simulated subsurface oil leakages
NASA Astrophysics Data System (ADS)
Sauthoff, W.; Peltzer, E. T.; Walz, P. M.; Brewer, P. G.
2013-12-01
Subsurface oil leakages and increased offshore drilling efforts have raised concern over the fate of hydrocarbon mixtures of oil and gas in ocean environments. Recent wellhead and pipeline failures in the Gulf of Mexico are extreme examples of this problem. Understanding the mechanism and rate of vertical transport of hydrocarbon chemical species is necessary to predict the environmental impact of subsurface leakages. In a series of controlled experiments, we carried out a deep-sea field experiment in Monterey Canyon to investigate the behavior of a gas-saturated liquid hydrocarbon mass rising from the seafloor. Aboard the R/V Rachel Carson, we used the ROV Ventana to transport a laboratory prepared volume of decane (C10H22) saturated with methane gas (CH4) to mimic a subsurface seafloor discharge. We released the oil and gas mixture into a vertically oriented open bottom glass tube followed by methane loss rate measurements both at discrete depths, and during rapid, continuous vehicle ascent from 800 to 100 m water depth to monitor changes in dissolution and bubble nucleation. Using laser Raman techniques and HD video we quantified the chemical state of the hydrocarbon fluid, including rate of methane gas dissolution. The primary methane Raman peak was readily observable within the decane C-H stretching complex. Variation in the amount of gas dissolved in the oil greatly influences oil plume density and in turn oil plume vertical rise rate. Our results show that the rise rate of the hydrocarbon mass significantly exceeds the rate at which the excess methane was lost by dissolution. This result implies that vertical transport of methane in the saturated hydrocarbon liquid phase can greatly exceed a gas bubble plume ascending the water column from a seafloor source. These results and observations may be applicable to improved understanding of the composition, distribution, and environmental fate of leaked hydrocarbon mixtures and inform remediation efforts.
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.
2013-03-05
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux throughmore » Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.
2009-05-22
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterialmore » populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.« less
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.
Data collection and analysis software development for rotor dynamics testing in spin laboratory
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Arble, Daniel; Woike, Mark
2017-04-01
Gas turbine engine components undergo high rotational loading another complex environmental conditions. Such operating environment leads these components to experience damages and cracks that can cause catastrophic failure during flights. There are traditional crack detections and health monitoring methodologies currently being used which rely on periodic routine maintenances, nondestructive inspections that often times involve engine and components dis-assemblies. These methods do not also offer adequate information about the faults, especially, if these faults at subsurface or not clearly evident. At NASA Glenn research center, the rotor dynamics laboratory is presently involved in developing newer techniques that are highly dependent on sensor technology to enable health monitoring and prediction of damage and cracks in rotor disks. These approaches are noninvasive and relatively economical. Spin tests are performed using a subscale test article mimicking turbine rotor disk undergoing rotational load. Non-contact instruments such as capacitive and microwave sensors are used to measure the blade tip gap displacement and blade vibrations characteristics in an attempt develop a physics based model to assess/predict the faults in the rotor disk. Data collection is a major component in this experimental-analytical procedure and as a result, an upgrade to an older version of the data acquisition software which is based on LabVIEW program has been implemented to support efficiently running tests and analyze the results. Outcomes obtained from the tests data and related experimental and analytical rotor dynamics modeling including key features of the updated software are presented and discussed.
In Situ Bioremediation by Natural Attenuation: from Lab to Field Scale
NASA Astrophysics Data System (ADS)
Banwart, S. A.; Thornton, S.; Rees, H.; Lerner, D.; Wilson, R.; Romero-Gonzalez, M.
2007-03-01
In Situ Bioremediation is a passive technology to degrade soil and groundwater contamination in order to reduce environmental and human health risk. Natural attenuation is the application of engineering biotechnology principles to soil and groundwater systems as natural bioreactors to transform or immobilize contamination to less toxic or less bioavailable forms. Current advances in computational methods and site investigation techniques now allow detailed numerical models to be adequately parameterized for interpretation of processes and their interactions in the complex sub-surface system. Clues about biodegradation processes point to the dominant but poorly understood behaviour of attached growth microbial populations that exist within the context of biofilm formation. New techniques that combine biological imaging with non-destructive chemical analysis are providing new insights into attached growth influence on Natural Attenuation. Laboratory studies have been carried out in porous media packed bed reactors that physically simulate plume formation in aquifers. Key results show that only a small percentage of the total biomass within the plume is metabolically active and that activity is greatest at the plume fringe. This increased activity coincides with the zone where dispersive mixing brings dissolved O2 from outside the plume in contact with the contamination and microbes. The exciting new experimental approaches in lab systems offer tremendous potential to move Natural Attenuation and other in situ bioremediation approaches away from purely empirical engineering approaches, to process descriptions that are far more strongly based on first principles and that have a far greater predictive capacity for remediation performance assessment.
Hikita, Yasuyuki; Nishio, Kazunori; Seitz, Linsey C.; ...
2016-01-22
One of the crucial parameters dictating the efficiency of photoelectrochemical water-splitting is the semiconductor band edge alignment with respect to hydrogen and oxygen redox potentials. Despite the importance of metal oxides in their use as photoelectrodes, studies to control the band edge alignment in aqueous solution have been limited predominantly to compound semiconductors with modulation ranges limited to a few hundred mV. The ability to modulate the flat band potential of oxide photoanodes by as much as 1.3 V, using the insertion of subsurface electrostatic dipoles near a Nb-doped SrTiO 3/aqueous electrolyte interface is reported. Lastly, the tunable range achievedmore » far exceeds previous reports in any semiconductor/aqueous electrolyte system and suggests a general design strategy for highly efficient oxide photoelectrodes.« less
Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Baker
2006-01-01
Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along withmore » an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.« less
Environmental Ethics and Civil Engineering.
ERIC Educational Resources Information Center
Vesilind, P. Aarne
1987-01-01
Traces the development of the civil engineering code of ethics. Points out that the code does have an enforceable provision that addresses the engineer's responsibility toward the environment. Suggests revisions to the code to accommodate the environmental impacts of civil engineering. (TW)
April 2009 Abruzzo earthquake. Multisensor approach for the seismic rehabilitation of monuments
NASA Astrophysics Data System (ADS)
Masini, Nicola; Cifani, Giandomenico; Gabellone, Francesco; Geraldi, Edoardo; Gizzi, Fabrizio T.; Lapenna, Vincenzo; Liberatore, Domenico; Piscitelli, Sabatino; Pignatti, Stefano; Soldovieri, Francesco
2010-05-01
The widespread presence of movable and immoveable high cultural value assets make crucial the necessity of their protection, especially in order to mitigate the vulnerability to extreme environmental events, such as the seismic one. The latter represents the environmental risk factor which affect more than other environmental events the cultural heritage because of the big concentration of monuments and archaeological resources in several seismogenetic areas of the Mediterranean Basin, Middle East, South and Central America. Protecting monumental heritage, historical centres and archaeological sites from the effects of devastating earthquakes has been the focus of scientific and engineering endeavour for more than 50 years. Each earthquake not only provides additional information from the seismological point of view but it also stimulates effort to develop new and more advanced operative intervention strategies for the ready protection and restoration of damaged artefacts and structures of cultural value. Focusing our attention of Italian earthquakes, if the 1993 Umbria and Marche earthquake favoured a re-thinking of some repairing and rehabilitation techniques based on the use of reinforced concrete, the last earthquake occurred in Abruzzo on april 2009 allowed to improve the techniques for ready intervention and the procedures of evaluation of the seismic damage of churches and palaces. In such context, a significant effort has been undertaken in the experiencing of integrated approaches based on the use of different sensors and methods for the imaging of subsurface geological structures, the characterization of the mechanical behaviour of structures and the analysis of the state of decay of stone materials and frescoes. This papers deals with the results obtained by means of a multisensor approach performed to support effective and compatible interventions of restoration on a medieval architectural complex near L'Aquila. In particular, the following diagnostic methods have been used: i) Electrical Resistivity Tomography (ERT) used for obtaining 2D and 3D high-resolution images of subsurface geological structures; ii) laser scanner survey to obtain a digital model of the monument and to study deformations and collapse mechanisms; iii) infrared thermography for the survey of detachments and cracks on frescoed walls; iv) hyperspectral VNIR imagery for discriminating materials and for detecting moisture, organic content and salinity; v) georadar prospections and sonic tests to survey the inner structure of masonries and to detect cracks and voids; vi) finally, the analysis concerning the fundamental frequency peak of the foundation soil derived from microtremor data, which allowed to obtain insights about possible soil-structure resonance by comparing the dynamic features of the soil with the main building frequency.
Redmedial Action, Decision Document, Leaseback Area, Alabama Army Ammunition Plant
1988-02-01
Draft Report, Environmental Science and Engineering, Inc. (ESE), 1980. o Final Report for the Alabama Army Ammunition Plant, Leaseback Area...Requirements for the GSA and Leaseback Areas at the AAAP, Draft Report. Environmental Science and Engineering, Inc.(ESE), 1980. o Alabama Army...Ammunition Plant, Feasibility Study, Draft Report, Environmental Science and Engineering, Inc. (ESE), 1986. o Environmental Survey of Alabama Army Ammunition
Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi
2016-12-15
Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Kieft, Thomas L.; Kuloyo, Olukayode; Linage-Alvarez, Borja; van Heerden, Esta; Lindsay, Melody R.; Magnabosco, Cara; Wang, Wei; Wiggins, Jessica B.; Guo, Ling; Perlman, David H.; Kyin, Saw; Shwe, Henry H.; Harris, Rachel L.; Oh, Youmi; Yi, Min Joo; Purtschert, Roland; Slater, Greg F.; Ono, Shuhei; Wei, Siwen; Li, Long; Sherwood Lollar, Barbara; Onstott, Tullis C.
2016-01-01
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. PMID:27872277
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
Cultivation Of Deep Subsurface Microbial Communities
NASA Astrophysics Data System (ADS)
Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.
2018-01-01
The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.
Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.
2005-01-01
The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.
ERIC Educational Resources Information Center
Environmental Science and Technology, 1973
1973-01-01
Indicates that there will be a substantially increased demand for environmental engineers during the next few years, especially in the areas of water pollution control and sanitary engineering. Educators see the need for additional engineering graduates and for improved environmental training programs in schools. (JR)
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote sorption of hydrophobic organic compounds (HOC) and retard their migration. For example, cationic surfactants could be injected into an aquifer downgradient from a source of HOC conta...
DOT National Transportation Integrated Search
2002-05-01
Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...
USDA-ARS?s Scientific Manuscript database
Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on phosphorus (P) loadings from agricultural fields. However, tools that simulate both surface and subsurface P pathways are limited and have not been robustly evaluated in tile-drained...
USDA-ARS?s Scientific Manuscript database
Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern U.S. Tile drainage systems enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Donald M.; Lienert, Barry R.; Wallin, Erin L.
Our objectives for the current project were to develop an innovative inversion and analysis procedure for magnetotelluric field data and time variable self-potentials that will enable us to map not only the subsurface resistivity structure of a geothermal prospect but to also delineate the permeability distribution within the field. Hence, the ultimate objective were to provide better targeting information for exploratory and development drilling of a geothermal prospect. Field data were collected and analyzed from the Kilauea Summit, Kilauea East Rift Zone, and the Humuula Saddle between Mauna Loa and Mauna Kea volcanoes. All of these areas were known ormore » suspected to have geothermal activity of varying intensities. Our results provided evidence for significant long-term coordinated changes in spontaneous potential that could be associated with subsurface flows, significant interferences were encountered that arose from surface environmental changes (rainfall, temperature) that rendered it nearly impossible to unequivocally distinguish between deep fluid flow changes and environmental effects. Further, the analysis of the inferred spontaneous potential changes in the context of depth of the signals, and hence, permeability horizons, were unable to be completed in the time available.« less
Phytoforensics—Using trees to find contamination
Wilson, Jordan L.
2017-09-28
The water we drink, air we breathe, and soil we come into contact with have the potential to adversely affect our health because of contaminants in the environment. Environmental samples can characterize the extent of potential contamination, but traditional methods for collecting water, air, and soil samples below the ground (for example, well drilling or direct-push soil sampling) are expensive and time consuming. Trees are closely connected to the subsurface and sampling tree trunks can indicate subsurface pollutants, a process called phytoforensics. Scientists at the Missouri Water Science Center were among the first to use phytoforensics to screen sites for contamination before using traditional sampling methods, to guide additional sampling, and to show the large cost savings associated with tree sampling compared to traditional methods.
Harvey, R.W.; Lion, Leonard W.; Young, L.Y.; Leckie, J.O.
1982-01-01
The particle-laden surface layer (approx 150-370 mu m) and subsurface waters of a South San Francisco Bay salt marsh were sampled over 2 tidal cycles and analyzed for particle numbers and particulate-associated and total concentrations of Pb and bacteria. Laboratory studies examined the ability of a bacterial isolate from the surface layer and a bacterial 'film-former' to sorb Pb at environmentally significant concentrations in seawater. Degrees by which Pb concentrated in the surface layer relative to the subsurface strongly correlated with enrichments of surface layer bacteria (bacterioneuston). A significant fraction of the bacterioneuston and surface layer Pb were associated with particles. Particle-bound bacterioneuston may interact with Pb at particulate surfaces in this microenvironment.
Bishop, P L; Keener, T C; Kukreti, A R; Kowel, S T
2004-01-01
Environmental engineering education has rapidly expanded in recent years and new teaching methods are needed. Many professionals and educators believe that a MS degree in environmental engineering should be the minimum in order to practice the profession, along with practical training. This paper describes an innovative program being offered at the University of Cincinnati that combines an integrated BS in civil engineering and an MS in environmental engineering with extensive practical co-operative education (co-op) experience, all within a five-year period. The program includes distance learning opportunities during the co-op periods. The result is a well-trained graduate who will receive higher pay and more challenging career opportunities, and who will have developed professionalism and maturity beyond that from traditional engineering programs.
Evolution of Project-Based Learning in Small Groups in Environmental Engineering Courses
ERIC Educational Resources Information Center
Requies, Jesús M.; Agirre, Ion; Barrio, V. Laura; Graells, Moisès
2018-01-01
This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning--PBL) implemented on the course "Unit Operations in Environmental Engineering", within the bachelor's degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial…
FY90 R&D Project Descriptions ESL (Engineering & Services Laboratory) Environics Division
1989-07-01
and Development Support for Subsurface Monitoring Technology 15 19007048 Pumping and Purging Contaminants 16 19007049 Methods for Selecting In Situ...Decontamination 40 3788VW17 Treatment of Chlorinated Organics with Aboveground Bioreactors 41 3788VW18 Improved Methods for Monitoring Fuel Biodegradation 42 2...Fluoride (HF) Dispersion Model 63 21036093 Solvent Capacity Field Test Method 64 21037097 Volatile Organic Compound (VOC) Control Technology 65 21037102
1997-01-01
supplemented using established literature values for similar aquifer materials . The groundwater sampling activities and analytical results from both...subsurface materials recovered. Observed soil classification types compared very favorably to the soil classifications determined by the CPT tests. 0 2.1.5...other similar substances were handled in a manner consistent with accepted safety procedures and standard operating practices. Well completion materials
Pretest Predictions for Phase II Ventilation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yiming Sun
The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limitedmore » to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).« less
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate knowledge of the geology and the structures of the subsurface would assist engineers in the best way to carry out constructions to avoid building collapse. In this study, near surface seismic refraction method was used to determine the geotechnical parameters of the subsurface, the results obtained were correlated with the result of borehole data drilled in the study area. The results of seismic refraction method delineated mostly two distinct layers with the first layer having the lower geotechnical parameters. It was observed that in the first layer, the Young’s modulus ranged from 0.168 to 0.458 GPa, shear modulus ranged between 0.068 and 0.185 GPa, the bulk modulus ranged between 0.106 and 0.287 GPa while the bearing capacity ranged from 0.083 to 0.139 MPa. On the other hand, in the second layer, the Young’s modulus ranged between 3.717 and 7.018 GPa, shear modulus ranged from 1.500 to 2.830 GPa while the bulk modulus ranged from 2.383 to 4.449 GPa. Significantly, the formation of the second layer appeared to be more competent than the first layer, therefore engineering construction in this geological setting is recommended to be founded on the second layer at depth ranging between 7 and 16 m.
Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.
Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C
2016-11-01
Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ground-penetrating radar: use and misuse
NASA Astrophysics Data System (ADS)
Olhoeft, Gary R.
1999-10-01
Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.
Kimball, B.; Runkel, R.; Gerner, L.
2001-01-01
Historic mining in Little Cottonwood Canyon in Utah has left behind many mine drainage tunnels that discharge water to Little Cottonwood Creek. To quantify the major sources of mine drainage to the stream, synoptic sampling was conducted during a tracer injection under low flow conditions (September 1998). There were distinct increases in discharge downstream from mine drainage and major tributary inflows that represented the total surface and subsurface contributions. The chemistry of stream water determined from synoptic sampling was controlled by the weathering of carbonate rocks and mine drainage inflows. Buffering by carbonate rocks maintained a high pH throughout the study reach. Most of the metal loading was from four surface-water inflows and three subsurface inflows. The main subsurface inflow was from a mine pool in the Wasatch Tunnel. Natural attenuation of all the metals resulted in the formation of colloidal solids, sorption of some metals, and accumulation onto the streambed. The deposition on the streambed could contribute to chronic toxicity for aquatic organisms. Information from the study will help to make decisions about environmental restoration.
Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas
2017-01-01
ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community. PMID:28939599
Design Evolution Study - Aging Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. McDaniel
The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential agingmore » location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new subsurface area (high cost); surface aging in the complete waste package (risk to the waste package and impact on the Waste Handling Facility); and aging in the stainless steel liner (impact on the waste package design and new high risk operations added to the waste packaging process). The selection of a design basis for aging will be made in conjunction with the other design re-evaluation studies.« less
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.
2013-12-01
Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.
NASA Astrophysics Data System (ADS)
Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.
2012-12-01
Bioremediation has been considered as one of environmentally friendly and cost effective approaches for cleaning up the sites polluted by organic contaminants, such as chlorinated ethenes. Although bioremediation, in its widest sense, is not new, and many researches have been performed on bioremediation of different kinds of pollutants, an effective design and implication of in situ bioremediation still remains a challenging problem because of the complexity. Many factors may affect the applicability and efficiency of bioremediation of chlorinated ethenes in situ, which include the type and concentration of contaminants, biological, geological and hydro-geological conditions of the site, physical and chemical characteristics of groundwater and soils to be treated, as well as the constraints in engineering. In this presentation, an overview together with a detailed discussion on each factor will be provided. The influences of individual factors are discussed using the data obtained or cited from different sites and experiments, and thus under different environmental conditions. The results of this study illustrated that 1) the establishment of microbial consortium is of crucial importance for a complete degradation of chlorinated ethenes, 2) in situ control of favorable conditions for increasing microbial activities for bio-degradation through a designed pathway is the key to success, 3) the focus of a successful remediation system is to design an effective delivery process that is capable of producing adequate amendment mixing of contaminant-degrading bacteria, appropriate concentrations of electron acceptors, electron donors, and microbial nutrients in the subsurface treatment area.
Passive Gamma-Ray Emission for Underwater Sediment-Disturbance Detection
2017-07-18
Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative...solutions in civil and military engineering , geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense...Sediment-Disturbance Detection Jay L. Clausen U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering
NASA Astrophysics Data System (ADS)
Minto, J. M.; Hingerl, F.; Lunn, R. J.; Benson, S. M.
2016-12-01
ContextWe utilise the urea hydrolysing capability of soil bacteria Sporosarcina pasteurii to precipitate CaCO3 in a process termed Microbially Induced Carbonate Precipitation (MICP). MICP injection fluid properties are low particle size and low viscosity giving excellent grout penetrability. The CaCO3 grout has been shown to be effective at reducing permeability in porous and fractured media. MICP has consequently been proposed as an alternative to more traditional cement and chemical grouts, particularly in the fields of radioactive waste disposal and geological sequestration of CO2. This study investigates the role of fluid flow/CaCO3 feedback during precipitation and accelerated dissolution to better understand the longevity of an MICP grout under low pH environmental conditions such as found in a carbon sequestration reservoir. MethodsExperiments were conducted on a single Berea sandstone core in a high pressure core holder to characterise permeability, porosity and multiphase flow behaviour at sequestration reservoir temperature and pressure. Characterisation was carried out before MICP, after MICP, and after accelerated dissolution with hydrochloric acid. At each step the entire core was scanned in a medical x-ray CT scanner to spatially resolve (with a resolution of 0.5x0.5x1mm) the changes in porosity and saturation with CaCO3 precipitation and dissolution. Finally, the dried core was scanned with μ-CT at 30μm (full core) and 10μm (sub-volume) resolutions to investigate structural changes to the Berea at near pore scale. ResultsSix MICP treatment cycles over two days reduced core permeability from 886 mDarcy to 40 mDarcy with a greater reduction in porosity at the inlet. Dissolution with acid restored much of the porosity, but did not restore permeability to the same extent. Preferential flow paths formed during the dissolution step were visible in the first 4mm of the 100mm core, but did not extend further into the core. DiscussionThis study provides evidence that MICP can potentially produce a long lasting seal, even in challenging subsurface environments, provided that a thick enough layer of CaCO3 can be precipitated with a low initial permeability. Challenges remain for ensuring that such a barrier can be created in the subsurface and are the subject of further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouke, Bruce
An integrated research and teaching program was developed to provide cross--disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-scale Phase III CCS demonstration Illinois Basin - Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD ismore » under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO 2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-tier international peer-reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-term research in CCS-related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-on, applied learning experiences.« less
Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.
1982-05-01
The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses formore » workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Wellman, Dawn M.
2015-06-26
Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method ismore » implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.« less
Estimating and mapping ecological processes influencing microbial community assembly
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.
2015-01-01
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725
Meutia, A A
2001-01-01
Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
Munitions Test Area and Incendiary Drop Site, Site 36-2, Data Addendum, Phase 2.
1988-09-01
MUNITIONS TEST AREA AND INCENDIARY DROP SITE (NI September 1988 Contract Number DAAK11-84-D-0016 | • (Version 3.1) Environmental Science And Engineering, Inc...SITE, September 1988 Contract Number DAAK11-84-D-0016 (Version 3.1)I PREPARED BY ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. Harding Lawson Associates I...the Program Managers Office (PMO). Environmental Science and Engineering (ESE), Morrison-Knudsen Engineers (MKE), and Harding Lawson Associates (HLA
ERIC Educational Resources Information Center
Kuo, Shih-Yun; Jackson, Nancy L.
2014-01-01
Studies suggest that at engineering universities, where the percentage of males and engineering majors is high, pro-environmental attitudes are likely to be weak and may not change. The 15-item New Ecological Paradigm (NEP) scale was used to measure differences in student attitudes before and after an environmental studies course. Results revealed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less
Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; ...
2016-05-10
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less
NASA Astrophysics Data System (ADS)
Uchrin, Christoph; Krogmann, Uta; Gimenez, Daniel
2010-05-01
It is becoming increasingly apparent that environmental problems have become extremely complex, involving inter- and multidisciplinary expertise. Furthermore, the nature of environmental episodes requires practitioners who are flexible in designing appropriate solution approaches. As a result, there is a high demand for environmental engineering graduates in the professional sector as well as graduate schools. At Rutgers University, we have designed and are now delivering an undergraduate curriculum that melds a strong background in basic and applied sciences with a rigorous sequence of design oriented engineering courses, all focused on producing graduates who view the environment in a holistic sense, rather than a narrow, medium oriented manner. Since the implementation of the program in 2004 student numbers have doubled and half of the students graduate with honors. The undergraduate program is complemented by the new Environmental Engineering option of the Graduate Program in Environmental Sciences. The undergraduate program and the graduate option are served by a highly committed faculty of seven full-time members and one part-time member.
NASA Astrophysics Data System (ADS)
Martellato, E.; Foing, B. H.; Benkhoff, J.
2013-09-01
Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.
1981-01-01
A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.
NASA Astrophysics Data System (ADS)
Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.
2018-04-01
2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-10-14
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-01-01
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... of nationally and internationally recognized scientists and engineers with demonstrated expertise and..., invasive species, water chemistry, environmental engineering, environmental monitoring, and environmental...
ERIC Educational Resources Information Center
Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia
2014-01-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…
2010-03-01
FINAL ENVIRONMENTAL ASSESSMENT ADDRESSING CONSTRUCTION OF A NEW CIVIL ENGINEERING WORKSHOP AT BELLOWS AIR FORCE STATION , O‘AHU, HAWAI‘I...Minimize impacts on other Bellows AFS functions and environmental resources This alternative would be located in an area located near Building 546 and...Preparation of An Environmental Assessment for the Proposed Construction of New Civil Engineering Workshop at Bellows Air !Force Station Thank you
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
NASA Astrophysics Data System (ADS)
Balasubramanian, S.; Koloutsou-Vakakis, S.
2014-12-01
There is a need for environment engineers and sustainability managers to address global environmental, energy and health challenges. Environmental literacy programs at K-12 level provide a unique opportunity in motivating young minds in joining STEM and also provide additional value in learning about "saving planet earth". The Women in Engineering at the University of Illinois organize an annual week long camp, for female high school students with tracks corresponding to different fields of Engineering. The Environmental Engineering and Sustainability (EES) track is organized by faculty and graduate students of the Civil and Environmental Engineering department and introduces students to concepts in sustainability and systems thinking in connection with air and water quality, climate change and renewable energy. This study is a preliminary assessment of the relevance of the EES outreach track conducted in July 2014 in student learning. Specific goals include assessing (a) demographics of participants and their motivation to join this camp, (b) educational and enjoyability quotients of the modules and (c) learning and motivational outcomes using the Likert scale. A pre-camp survey indicated keen interest in learning about environmental engineering (4.56/5.0) and expected this camp to be a venue to learn about related career choices (4.9/5.0). Five days of instruction were divided thematically and included a mix of lectures, activity based learning, demonstrations and field visits. Overall modules were rated as educational (4.4/5.0) and enjoyable (4.5/5.0). Modules with hands-on learning were best received (4.67/5.0) and rated unique (4.7/5.0). Post camp, participants acknowledged the important contribution of environmental engineers to society (4.8/5.0) and could relate the different modules to the role engineer's play (4.06/5.0) for sustainability. On an average, the participants evinced interest in engineering as a career choice (4.0/5.0) but there was a broader range of responses regarding environmental engineering as their career choice (3.13/5.0).
A. Dennis Lemly
1994-01-01
This paper is a review of the major environmental problems associated with irrigated agriculture in the western United States. Freshwater wetlands are being contaminated by subsurface agricultural irrigation drainage in many locations. Historic freshwater inflows have been diverted for agricultural use, and remain- ing freshwater supplies are not sufficient to maintain...
USDA-ARS?s Scientific Manuscript database
In-situ determination of ice formation and thawing in soils is difficult despite its importance for many environmental processes. A sensible heat balance (SHB) method using a sequence of heat pulse probes has been shown to accurately measure water evaporation in subsurface soil, and it has the poten...
Design of an environmental field observatory for quantifying the urban water budget
Claire Welty; Andrew J. Miller; Kenneth T. Belt; James A. Smith; Lawrence E. Band; Peter M. Groffman; Todd M. Scanlon; Juying Warner; Robert J. Ryan; Robert J. Shedlock; Michael P. McGuire
2007-01-01
Quantifying the water budget of urban areas presents special challenges, owing to the influence of subsurface infrastructure that can cause short-circuiting of natural flowpaths. In this paper we review some considerations for data collection and analysis in support of determining urban water budget components, with a particular emphasis on groundwater, using Baltimore...
Discussion on teaching reform of environmental planning and management
NASA Astrophysics Data System (ADS)
Zhang, Qiugen; Chen, Suhua; Xie, Yu; Wei, Li'an; Ding, Yuan
2018-05-01
The curriculum of environmental planning and management is an environmental engineering major curriculum established by the teaching steering committee of environmental science and engineering of Education Ministry, which is the core curriculum of Chinese engineering education professional certification. It plays an important role in cultivating environmental planning and environmental management ability of environmental engineering major. The selection and optimization of the course teaching content of environmental planning and management were discussed which including curriculum teaching content updating and optimizing and teaching resource system construction. The comprehensive application of teaching method was discussed which including teaching method synthesis and teaching method. The final combination of the assessment method was also discussed which including the formative assessment normal grades and the final result of the course examination. Through the curriculum comprehensive teaching reform, students' knowledge had been broadened, the subject status and autonomy of learning had been enhanced, students' learning interest had been motivated, the ability of students' finding, analyzing and solving problems had been improved. Students' innovative ability and positive spirit had been well cultivated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory V. Lowry; Sara Majetich; Krzysztof Matyjaszewski
2006-12-27
Dense Non-Aqueous Phase Liquid (DNAPL) such as trichloroethylene act as long term sources of groundwater contaminants and are difficult and expensive to remediate. DNAPL-contaminated sites are a significant financial liability for the Department of Energy and the private sector. The objective of this study was to engineer reactive Fe-based nanoparticles with specialized polymeric coatings to make them mobile in the subsurface and to provide them with an affinity for the DNAPL/water interface. The synthesis, characterization, and reactivity/mobility of the engineered particles, and a molecular dynamic model that predicts their behavior at the DNPAL/water interface are described in this report.
Determination of near-saturated hydraulic conductivity by automated minidisk infiltrometer
NASA Astrophysics Data System (ADS)
Klipa, Vladimir; Snehota, Michal; Dohnal, Michal; Zumr, David
2013-04-01
Numerical models in surface and subsurface hydrology require knowledge of infiltration properties of soils for their routine use in the field of water management, environmental protection or agriculture. A new automated tension infiltration module has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. In the proposed infiltration module the amount of infiltrated water is registered via changes of buoyant force of stationary float attached to the load cell. Presented setup consists of six mini-disk infiltrometer modules held in the light aluminum frame and two Mariotte's bottles. Three infiltrometer modules connected to each Mariotte's bottle allow performing six simultaneous measurements at two different pressure heads. Infiltration modules are connected to the automatic data logging system and consist of: plastic cover with the integrated load cell and the float, reservoir tube (external diameter of 50 mm), and sintered stainless steel plate (diameter of 44.5 mm). The newly developed device was used for determination of near-saturated hydraulic conductivity of soils in experimental catchments Uhlirska (Jizera Mountains, Northern Bohemia) and Kopaninsky creek (Bohemian-Moravian Highlands). The acquired data show a good agreement with the data obtained from previous measurements.
A Framework for Debugging Geoscience Projects in a High Performance Computing Environment
NASA Astrophysics Data System (ADS)
Baxter, C.; Matott, L.
2012-12-01
High performance computing (HPC) infrastructure has become ubiquitous in today's world with the emergence of commercial cloud computing and academic supercomputing centers. Teams of geoscientists, hydrologists and engineers can take advantage of this infrastructure to undertake large research projects - for example, linking one or more site-specific environmental models with soft computing algorithms, such as heuristic global search procedures, to perform parameter estimation and predictive uncertainty analysis, and/or design least-cost remediation systems. However, the size, complexity and distributed nature of these projects can make identifying failures in the associated numerical experiments using conventional ad-hoc approaches both time- consuming and ineffective. To address these problems a multi-tiered debugging framework has been developed. The framework allows for quickly isolating and remedying a number of potential experimental failures, including: failures in the HPC scheduler; bugs in the soft computing code; bugs in the modeling code; and permissions and access control errors. The utility of the framework is demonstrated via application to a series of over 200,000 numerical experiments involving a suite of 5 heuristic global search algorithms and 15 mathematical test functions serving as cheap analogues for the simulation-based optimization of pump-and-treat subsurface remediation systems.
Operable Unit 7-13/14 in situ thermal desorption treatability study work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, P.; Nickelson, D.; Hyde, R.
1999-05-01
This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advancedmore » oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.« less
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; ...
2016-10-27
Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immisciblemore » phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO 2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.« less
Characterization of Reaerosolization in an Effort to Improve Sampling of Airborne Viruses
2008-04-01
financial support which helped me get through graduate school: Camp Dresser McKee for the CDM Fellowship; the UF Environmental Engineering Department...reservoir H um id ifi er /S at ur at or C ondenser THot TCold RH Figure A-1. BAU prototype schematic. A) Overview of system. B) Cross -sectional view of...degree in environmental engineering in August 2008 and entered the environmental engineering consulting industry with Camp Dresser McKee as an Engineer II in the Water/Wastewater Services Group.
Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.
2014-01-01
The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere. PMID:25429287
NASA Astrophysics Data System (ADS)
Fang, J.
2015-12-01
Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.
Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study
NASA Astrophysics Data System (ADS)
Krol, M.; Daemi, N.
2017-12-01
Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.
Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F
2014-07-01
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bayesian Model Selection in Geophysics: The evidence
NASA Astrophysics Data System (ADS)
Vrugt, J. A.
2016-12-01
Bayesian inference has found widespread application and use in science and engineering to reconcile Earth system models with data, including prediction in space (interpolation), prediction in time (forecasting), assimilation of observations and deterministic/stochastic model output, and inference of the model parameters. Per Bayes theorem, the posterior probability, , P(H|D), of a hypothesis, H, given the data D, is equivalent to the product of its prior probability, P(H), and likelihood, L(H|D), divided by a normalization constant, P(D). In geophysics, the hypothesis, H, often constitutes a description (parameterization) of the subsurface for some entity of interest (e.g. porosity, moisture content). The normalization constant, P(D), is not required for inference of the subsurface structure, yet of great value for model selection. Unfortunately, it is not particularly easy to estimate P(D) in practice. Here, I will introduce the various building blocks of a general purpose method which provides robust and unbiased estimates of the evidence, P(D). This method uses multi-dimensional numerical integration of the posterior (parameter) distribution. I will then illustrate this new estimator by application to three competing subsurface models (hypothesis) using GPR travel time data from the South Oyster Bacterial Transport Site, in Virginia, USA. The three subsurface models differ in their treatment of the porosity distribution and use (a) horizontal layering with fixed layer thicknesses, (b) vertical layering with fixed layer thicknesses and (c) a multi-Gaussian field. The results of the new estimator are compared against the brute force Monte Carlo method, and the Laplace-Metropolis method.
Subsurface Buoy Forms for Array Applications
1990-10-01
CIRCUMSCRIBED CIRCLES Figure 19. Derivation of a cycloid outline with relationship to familiar shape outlines. 35 An AutoLisp routine has been created to...Buoyance Bulletin, no. 44. Weast, R. C., D. R. Lied, M. J. Astle, and W. H. Hudson, R. G. 1944. Engineers’ Manual , 2d ed. Beyer. 1990. Handbook of...An AutoLisp Program Routine Created to Construct the Torospherical Outlines Shown on the Previous Page Is Reproduced Below. (defun c.Iorodraw () input
2017-09-18
Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-04-18
The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediationmore » under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.« less
NASA Astrophysics Data System (ADS)
Hayashida, T.; Tajima, F.
2007-12-01
The Real-time Earthquake Information System (REIS, Horiuchi et al., 2005) detects earthquakes and determines event parameters using the Hi-net (High-sensitivity seismograph network Japan) data in Japan. The system also predicts the arrival time and seismic intensity at a given site before ground motions arrive. Here, the seismic intensity is estimated based on the intensity magnitude which is derived from data of the Hi-net. As the Hi-net stations are located in the boreholes, intensity estimation on the ground surface is evaluated using a constant for subsurface amplification. But the estimated intensities based on the conventionally used amplification constants are not always in agreement with those observed at specific sites on the ground surface. The KiK-net (KIBAN Kyoshin network Japan) consists of strong motion instruments. Each station has two sets of accelerometers, one set is installed on the ground surface and the other one is co-located with a Hi-net station in the borehole. We use data recorded at the KiK-net stations to calibrate subsurface site amplification factors between the borehole and the ground surface. We selected data recorded for over 200 events during the period of 1997 to 2006 in Hiroshima prefecture and calculated the ratios of peak velocity amplitudes on the ground surface ( Asurf) to those in the borehole ( Abor). The subsurface amplification varies from station to station showing dependency on the propagation distance as well as on the incident direction of seismic waves. Results suggest that the site amplification factors shall be described as a function of distance and incident direction, and are not constants. Thus, we derived empirical amplification formulas between Asurf and the peak velocity amplitudes on the engineering bedrock ( Abed) as a function of distance in place of the conventionally used amplification constants. Here, the engineering bedrock is defined as the depth where the S- wave velocity is 600 m/s. The estimated intensities show substantial improvement in the accuracy at most stations as compared with those calculated using conventional constants. When the amplification dependence on the incident direction was accounted for, the estimated intensities somewhat improved. This calibration will help an earthquake early warning system such as REIS provide more accurate intensity estimates.
Engineering Students' Sustainability Approaches
ERIC Educational Resources Information Center
Haase, S.
2014-01-01
Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The…
18 CFR 50.5 - Pre-filing procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ELECTRIC TRANSMISSION FACILITIES § 50.5 Pre-filing procedures. (a) Introduction. Any applicant seeking a... consultations, project engineering, route planning, environmental and engineering contractor engagement... proceeding. This description also must include the identification of the environmental and engineering firms...
Global Environmental Priorities of Engineering Students in Krakow Poland.
ERIC Educational Resources Information Center
Robinson, Michael; Bowen, William M.
2000-01-01
Reports and interprets the rankings of Rodger Bybee's 12 global-environmental issues/threats by first and second year engineering students (n=175) at the Technical University of Krakow, Poland. Results indicate that personal experience with local environmental issues are the most important determinant for ranking global environmental threats.…
Design of a hydrophone for an Ocean World lander
NASA Astrophysics Data System (ADS)
Smith, Heather D.; Duncan, Andrew G.
2017-10-01
For this presentation we describe the science return, and design of a microphone on- board a Europa lander mission. In addition to the E/PO benefit of a hydrophone to listen to the Europa Ocean, a microphone also provides scientific data on the properties of the subsurface ocean.A hydrophone is a small light-weight instrument that could be used to achieve two of the three Europa Lander mission anticipated science goals of: 1) Asses the habitability (particularly through quantitative compositional measurements of Europa via in situ techniques uniquely available to a landed mission. And 2) Characterize surface properties at the scale of the lander to support future exploration, including the local geologic context.Acoustic properties of the ocean would lead to a better understanding of the water density, currents, seafloor topography and other physical properties of the ocean as well as lead to an understanding of the salinity of the ocean. Sound from water movement (tidal movement, currents, subsurface out-gassing, ocean homogeneity (clines), sub-surface morphology, and biological sounds.The engineering design of the hydrophone instrument will be designed to fit within a portion of the resource allocation of the current best estimates of the Europa lander payload (26.6 Kg, 24,900 cm3, 2,500 W-hrs and 2700 Mbits). The hydrophone package will be designed to ensure planetary protection is maintained and will function under the cur- rent Europa lander mission operations scenario of a two-year cruise phase, and 30-day surface operational phase on Europa.Although the microphone could be used on the surface, it is designed to be lowered into the subsurface ocean. As such, planetary protection (forward contamination) is a primary challenge for a subsurface microphone/ camera. The preliminary design is based on the Navy COTS optical microphone.Reference: Pappalardo, R. T., et al. "Science potential from a Europa lander." Astrobiology 13.8 (2013): 740-773.
4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment
NASA Astrophysics Data System (ADS)
Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.
2016-12-01
Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.
THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING
Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...
33 CFR 385.26 - Project Implementation Reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Implementation Report is a document that provides information on plan formulation and evaluation, engineering and..., environmental and/or economic benefits, engineering and design, costs, environmental impacts, real estate..., optimization and justification, cost-effectiveness, and engineering feasibility of the project; (xiii) Include...
NASA Astrophysics Data System (ADS)
Khawlie, M.; Awad, M.; Shaban, A.; Bou Kheir, R.; Abdallah, C.
Lying along the eastern Mediterranean coast with elevated mountain chains higher than 2500 m straddling its terrain, Lebanon is a country of natural beauty and is thus attracting tourism. However, with a population density exceeding 800/km 2 and a rugged steep sloping land, problems abound in the country calling for holistic-approach studies. Only remote sensing, whose use is new in Lebanon can secure such needed studies within a scientific and pragmatic framework. The paper demonstrates for the concerned themes, the innovative use of remote sensing in such a difficult terrain, giving three examples of major environmental problems in the coastal mountains. Only few studies have so far focused on those mountains, notably application of remote sensing. The rugged mountainous terrain receives considerable rain, but the water is quickly lost running on the steep slopes, or infiltrating through fractures and the karstic conduits into the subsurface. Field investigations are difficult to achieve, therefore, remote sensing helps reveal various surface land features important in reflecting water feeding into the subsurface. Optical, radar and thermal infrared remotely sensed data cover a wide spectrum serving that purpose. A map of preferential groundwater accumulation potential is produced. It can serve for better water exploitation as well as protection. Because the terrain is karstic and rugged, the subsurface water flow is difficult to discern. Any pollution at a certain spot would certainly spread around. This constitutes the second example of environmental problems facing the mountainous areas in Lebanon. An integrated approach using remote sensing and geographic information systems (GIS) gives good results in finding out the likelihood of how pollution, or contaminants, can selectively move in the subsurface. A diagnostic analysis with a GIS-type software acts as a guide producing indicative maps for the above purpose. The third example given deals with the problem of losing soil, which is a very vital source in such mountainous land. With steep slopes, torrential rain and improper human interference, run-off is high and water-soil erosion is continuously deteriorating the land cover. Remote sensing can facilitate studying the factors enhancing the process, such as soil type, slope gradient, drainage, geology and land cover. Digital elevation models created from SAR imagery contribute significantly to assessing vulnerability of hydric-soil erosion over such a difficult terrain. GIS layers of the above factors are integrated with erosional criteria to produce a risk map of soil erosion. Results indicate that 36% of the Lebanese terrain is under threat of high-level erosion, and 52% of that is concentrated in the rugged mountainous regions.
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
In the field of environmental engineering, modeling tools are playing an ever larger role in addressing air quality issues, including source pollutant emissions, atmospheric dispersion and human exposure risks. More detailed modeling of environmental flows requires tools for c...
Indian Health Service: Community Health
... Community Health Representatives (CHRs) Office of Environmental Health & Engineering (OEHE) Environmental Health Support Center Training (EHSCT) IHS ... Contracting Tribes - 08E17 Office of Environmental Health and Engineering - 10N14C Office of Finance and Accounting - 10E54 Office ...
Systems of frequency distributions for water and environmental engineering
NASA Astrophysics Data System (ADS)
Singh, Vijay P.
2018-09-01
A wide spectrum of frequency distributions are used in hydrologic, hydraulic, environmental and water resources engineering. These distributions may have different origins, are based on different hypotheses, and belong to different generating systems. Review of literature suggests that different systems of frequency distributions employed in science and engineering in general and environmental and water engineering in particular have been derived using different approaches which include (1) differential equations, (2) distribution elasticity, (3) genetic theory, (4) generating functions, (5) transformations, (6) Bessel function, (7) expansions, and (8) entropy maximization. This paper revisits these systems of distributions and discusses the hypotheses that are used for deriving these systems. It also proposes, based on empirical evidence, another general system of distributions and derives a number of distributions from this general system that are used in environmental and water engineering.
Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars
NASA Astrophysics Data System (ADS)
Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.
2013-12-01
Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence of ultra-violet rays, cosmic rays, and meteorite impacts; spacious volumes based on analogues of terrestrial lava tubes; tight walls and floors possibly glass-coated by rapid cooling inside the caverns; and so on. Exploration of subsurface caverns of the Moon and Mars would provide answers to various basic and applied scientific questions fundamental to understanding the nature of the Moon, Mars, and life. Furthermore, it could provide knowledge to enable constructing lunar and Martian bases for robotic and/or manned activities there. However, Japan does not have the technology for soft-landing on gravitational celestial bodies. First, we should acquire that technology. Next, we should acquire the technology for approaching and descending into holes that could be skylights of caverns. We should also develop the technology to move on the floors where there are many boulders and/or a mound of dusts. We should also consider how to investigate the dark inside of the caverns. There are many engineering challenges for exploring the lunar and Martian subsurface caverns, but our team is prepared to meet them.
Environmental and taxonomic bacterial diversity of anaerobic uranium(IV) bio-oxidation.
Weber, Karrie A; Thrash, J Cameron; Van Trump, J Ian; Achenbach, Laurie A; Coates, John D
2011-07-01
Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 μmol liter(-1)) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... addition (i.e., injection of soil amendment into the subsurface), subsequent application of in-situ... Amendment to the Consent Decree in U.S. v. Allied Signal Inc., et al., 96 Civ. 1513 (RPP) was lodged with... that was entered in 1996 involves the Cortese Landfill Superfund Site, located in the Town of Tusten...
Environmental Assessment for the Replacement of Water Reservoirs
2005-03-25
Intensive extraction of groundwater does not occur at Travis because of poor water- bearing subsurface geology. Intensive extraction SECTION 3.0...largest contiguous estuarine marsh and the largest wetland in the continental United States (CH2M HILL, 2001). Suisun Marsh drains into Grizzly and...and other support facilities. • Community (Commercial) – Uses include the exchange, commissary, banking, dining facilities, eating
Overview of environmental and hydrogeologic conditions at Barrow, Alaska
McCarthy, K.A.
1994-01-01
To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.
Subsurface Transport Over Multiple Phases Demonstration Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-01-05
The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential newmore » users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.« less
2011-02-01
Heating, Ventilation, Air Conditioning (HVAC) system to environmentally control the HPA Room as well as a Mechanical Room to house the new diesel ...Rickie D. Moon, Senior Systems Engineer MS, Environmental Management, Samford University BS, Chemistry and Mathematics, Samford University 28...Huntsville 16 LPES, Inc. Timothy Lavallee, PE, Principal/Senior Engineer BS, Mechanical Engineering , Northeastern University MS, Civil and
Transformation of TNT by Aquatic Plants,
1996-01-01
ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Department of Environmental Science and Engineering N/A George R. Brown School of Engineering Rice...Department of Environmental Science and Engineering at Rice University, Dr. Hughes teaches courses in Water and Wastewater Treatment, Biological Process...8:55 Chairperson’s Opening Remarks 1:40 Chairperson’s Remarks Alan J. M. Baker Ph.D., Reader in Environmental Science & Alan J. M. Baker, Ph.D
Environmental Testing of the NEXT PM1R Ion Engine
NASA Technical Reports Server (NTRS)
Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2007-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test program and confidence in the engineering solutions available for the remaining findings of the first test program, specifically the particulate contamination, the hardware environmental qualification program can proceed with confidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, N.W.T.
2009-10-15
Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulationmore » of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.« less
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
2016-08-09
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
Development of Enabling Scientific Tools to Characterize the Geologic Subsurface at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenna, Timothy C.; Herron, Michael M.
2014-07-08
This final report to the Department of Energy provides a summary of activities conducted under our exploratory grant, funded through U.S. DOE Subsurface Biogeochemical Research Program in the category of enabling scientific tools, which covers the period from July 15, 2010 to July 14, 2013. The main goal of this exploratory project is to determine the parameters necessary to translate existing borehole log data into reservoir properties following scientifically sound petrophysical relationships. For this study, we focused on samples and Ge-based spectral gamma logging system (SGLS) data collected from wells located in the Hanford 300 Area. The main activities consistedmore » of 1) the analysis of available core samples for a variety of mineralogical, chemical and physical; 2) evaluation of selected spectral gamma logs, environmental corrections, and calibration; 3) development of algorithms and a proposed workflow that permits translation of log responses into useful reservoir properties such as lithology, matrix density, porosity, and permeability. These techniques have been successfully employed in the petroleum industry; however, the approach is relatively new when applied to subsurface remediation. This exploratory project has been successful in meeting its stated objectives. We have demonstrated that our approach can lead to an improved interpretation of existing well log data. The algorithms we developed can utilize available log data, in particular gamma, and spectral gamma logs, and continued optimization will improve their application to ERSP goals of understanding subsurface properties.« less
Estimating and mapping ecological processes influencing microbial community assembly
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...
2015-05-01
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.
NASA Astrophysics Data System (ADS)
Stoker, C. R.
2003-12-01
Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.
NASA Astrophysics Data System (ADS)
Ben-Zvi-Assaraf, Orit; Ayal, Nitzan
2010-12-01
More and more technical universities now advocate integrating sustainability in higher education and including it as a strategic goal for improving education's quality and relevance to society. This study examines 30 fourth-year chemical engineering students, graduates of a university course designed to combine their terminological domain with sustainability-oriented goals, focusing on topics like corporate sustainability, developing environmental policy, introduction to ISO 14001—Environmental Management Systems (EMS), and environmental legislation. The study explores their perception of industrial-environmental issues and asks—How did the study unit influence the students' ability to use their preexisting scientific knowledge, while relating to industrial-environmental issues? Our findings indicate that engineering students can develop industrial-environmental awareness, and make use of interdisciplinary knowledge beyond that strictly related to the realm of engineering. Regarding the research's particular aim—i.e. determining the study unit's influence on students' ability to relate industrial-environmental issues to their own field of engineering—the findings indeed show a change in the students' conceptions of environmental elements related to industry. The course graduates became more attentive to the environmental aspects associated with building and opening a factory, and the concepts they raised in connection with the topic gained in variety.
NASA Astrophysics Data System (ADS)
Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.
2017-12-01
Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.
Environmental site assessments and audits: Building inspection requirements
NASA Astrophysics Data System (ADS)
Lange, John H.; Kaiser, Genevieve; Thomulka, Kenneth W.
1994-01-01
Environmental site assessment criteria were originally developed by organizations that focused, almost exclusively, on surface, subsurface, and pollution source contamination. Many of the hazards associated with indoor environments and building structures were traditionally not considered when evaluating sources and entities of environmental pollution. Since a large number of building materials are potentially hazardous, careful evaluation is necessary. Until recently, little information on building inspection requirements of environmental problems has been published. Traditionally, asbestos has been the main component of concern. The ever-changing environmental standards have dramatically expanded the scope of building surveys. Indoor environmental concerns, for example, currently include formaldehyde, lead-based paint, polychlorinated biphenyls, radon, and indoor air pollution. Environmental regulations are being expanded and developed that specifically include building structures. These regulatory standards are being triggered by an increased awareness of health effects from indoor exposure, fires, spills, and other accidents that have resulted in injury, death, and financial loss. This article discusses various aspects of assessments for building structures.
SWCC Prediction: Seep/W Add-In Functions
2017-06-01
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops...innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department...Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final report Approved for public release; distribution is
USGS Toxic Substances Hydrology Program, 2010
Buxton, Herbert T.
2010-01-01
The U.S. Geological Survey (USGS) Toxic Substances Hydrology Program adapts research priorities to address the most important contamination issues facing the Nation and to identify new threats to environmental health. The Program investigates two major types of contamination problems: * Subsurface Point-Source Contamination, and * Watershed and Regional Contamination. Research objectives include developing remediation methods that use natural processes, characterizing and remediating contaminant plumes in fractured-rock aquifers, identifying new environmental contaminants, characterizing new and understudied pesticides in common pesticide-use settings, explaining mercury methylation and bioaccumulation, and developing approaches for remediating watersheds affected by active and historic mining.
Predictive assimilation framework to support contaminated site understanding and remediation
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Bianchi, M.; Hubbard, S. S.
2014-12-01
Subsurface system behavior at contaminated sites is driven and controlled by the interplay of physical, chemical, and biological processes occurring at multiple temporal and spatial scales. Effective remediation and monitoring planning requires an understanding of this complexity that is current, predictive (with some level of confidence) and actionable. We present and demonstrate a predictive assimilation framework (PAF). This framework automatically ingests, quality controls and stores near real-time environmental data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of the subsurface system. PAF is implemented as a cloud based software application which has five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result deliver and (5) orchestration. Access to and interaction with PAF is done through a standard browser. PAF is designed to be modular so that it can ingest and process different data streams dependent on the site. We will present an implementation of PAF which uses data from a highly instrumented site (the DOE Rifle Subsurface Biogeochemistry Field Observatory in Rifle, Colorado) for which PAF automatically ingests hydrological data and forward models groundwater flow in the saturated zone.
Geologic Storage of CO2: Leakage Pathways and Environmental Risks
NASA Astrophysics Data System (ADS)
Celia, M. A.; Peters, C. A.; Bachu, S.
2002-05-01
Geologic storage of CO2 appears to be an attractive option for carbon mitigation because it offers sufficient capacity to solve the problem, and it can be implemented with existing technology. Among the list of options for storage sites, depleted hydrocarbon reservoirs and deep saline aquifers are two major categories. While injection into hydrocarbon reservoirs offers immediate possibilities, especially in the context of enhanced oil recovery, it appears that deep saline aquifers provide the extensive capacity necessary to solve the problem over the decade to century time scale. Capacity and technology argue favorably for this option, but remaining obstacles to implementation include capture technologies, overall economic considerations, and potential environmental consequences of the injection. Of these, the environmental questions may be most difficult to solve. Experience from CO2 floods for enhanced oil recovery and from CO2 and acid gas disposal operations indicates that geological storage of CO2 is safe over the short term for comparatively small amounts of CO2. However, there is no experience to date regarding the long-term fate and safety of the large volumes of CO2 that must be injected to significantly reduce atmospheric emissions. In order to make proper evaluation of environmental risks, the full range of possible environmental consequences must be considered. Most of these environmental concerns involve migration and leakage of CO2 into shallow portions of the subsurface and eventually into the atmosphere. In shallow subsurface zones, elevated levels of carbon dioxide can cause pH changes, leading to possible mobilization of ground-water contaminants including metals. In the unsaturated zone, vegetation can be adversely affected, as can other ecosystem components. At the land surface, elevated levels of CO2 can lead to asphyxiation in humans and other animals. And finally, in the atmosphere, CO2 that leaks from underground diminishes the effectiveness of the overall storage scheme and contributes to possible climate change. To characterize these environmental consequences, reliable models of leakage characteristics and rates are needed. While leakage through natural flowpaths in the subsurface may occur, a more likely pathway is leakage through abandoned wells. This may be especially troublesome in mature sedimentary basins, which are often "punctured" by a very large number of exploration and production wells. For example, in the Alberta Basin there are more than 100,000 abandoned wells, the oldest from 1883. The cement used in the completion and abandonment of these wells, historically of variable quality and quantity, most probably has degraded with age and under the effect of formation brines. The cement may degrade even more rapidly when contacted by CO2 and possibly other components in the injection mixture (such as H2S). Cement properties and their modification through time must be understood in order to provide reliable estimates of leakage rates. Those leakage rates must then be linked to models of environmental consequences, and ultimately the entire analysis must be embedded in a probabilistic framework. Such an approach will allow leakage to be addressed rationally in terms of safety and long-term environmental impacts.
Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This information will direct future studies and assist managers in understanding when the subsurface conduits may become overwhelmed.
Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Li, Li
2015-10-22
The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in naturalmore » systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport, water quality and water composition, and natural attenuation processes in natural systems.« less
Airborne EM survey in volcanoes : Application to a volcanic hazards assessment
NASA Astrophysics Data System (ADS)
Mogi, T.
2010-12-01
Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful tool to identify each volcanic deposit on the surface and at shallower depth as well. This suggests that more efficient hazard map involving subsurface information can be supplied by AEM resistivity mapping.
BOOK REVIEW: ENVIRONMENTAL ENGINEERING, 5TH EDITION
Book Review of Environmental Engineering, 5th Edition (Joseph A. Salvato, Nelson L. Nemerow, Franklin J. Agardy (Editors), John Wiley and Sons, Inc. Hoboken, New Jersey. 2003.). Author wrote review per the request of the Editor-in-Chief of the Journal of Environmental Quality.
NASA Astrophysics Data System (ADS)
2014-09-01
Tami Bond, environmental engineer and professor in the Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign, has been selected as a 2014 MacArthur Fellow.
Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.
1993-01-01
Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.
Environmental engineering education for developing countries: framework for the future.
Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L
2004-01-01
This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.
NASA Technical Reports Server (NTRS)
1980-01-01
Burns & McDonnell Engineering's environmental control study is assisted by NASA's Computer Software Management and Information Center's programs in environmental analyses. Company is engaged primarily in design of such facilities as electrical utilities, industrial plants, wastewater treatment systems, dams and reservoirs and aviation installations. Company also conducts environmental engineering analyses and advises clients as to the environmental considerations of a particular construction project. Company makes use of many COSMIC computer programs which have allowed substantial savings.
Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M
2013-02-05
As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.
2017-01-01
Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
Let us keep observing and play in sand boxes (Henry Darcy Medal Lecture)
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.
2012-04-01
Henry Darcy was a civil engineer recognized for a number of technical achievements and scientific discoveries. The sand column experiments for which he is known revealed the linear relationship that exists between fluid motion and driving forces at low velocities. Freeze and Back (1983) stated, ''The experiments carried out by Darcy with the help of his assistant, Ritter, in Dijon, France in 1855 and 1856 represent the beginning of groundwater hydrology as a quantitative science." Because of the prominence given to this experiment, two important facts behind Darcy's contributions to subsurface hydrology have not received much attention. First, Darcy was not only a good engineer, but he was also a highly respected scientist whose knowledge of both the fundamentals of fluid mechanics and the natural world of geology led to better conceptualizing and quantifying of groundwater processes at relevant scales to solve practical problems. The experiments for which he is known may have already been conceived, based on his theoretical understanding, and the results were anticipated (Brown 2002). Second, Darcy, through his contributions with Dupuit, showed that they understood hydrologeology at a regional scale and developed methods for quantification at the scale of geologic stratum (Ritz and Bobek, 2008). The primary thesis of this talk is that scientific contributions such as the one Darcy made require appreciation and a thorough understanding of fundamental theory coupled with observation and recording of phenomena both in nature and in the laboratory. Along with all of the significant theoretical, mathematical modeling, and computational advances we have made in the last several decades, laboratory experiments designed to observe phenomena and processes for better insight, accurate data generation, and hypothesis development are critically important to make scientific and engineering advances to address some of the emerging and societally important problems in hydrology and water resources engineering. Kleinhans et al. (2010) convincingly argued the same point, noting, "Many major issues of hydrology are open to experimental investigation." Current and emerging problems with water supply and their hydrologic implications are associated with sustainability of water as a resource for global food production, clean water for potable use, protection of human health, and impacts and implications of global warming and climate change on water resources. This talk will address the subsurface hydrologic science issues that are central to these problems and the role laboratory experimentation can play in helping to advance the basic knowledge. Improved understanding of fundamental flow, transport, reactive, and biological processes that occur at the pore-scale and their manifestation at different modeling and observational scales will continue to advance the subsurface science. Challenges also come from the need to integrate porous media systems with bio-geochemical and atmospheric systems, requiring observing and quantifying complex phenomena across interfaces (e.g., fluid/fluid in pores to land/atmospheric in the field). This talk will discuss how carefully designed and theory driven experiments at various test scales can play a central role in providing answers to critical scientific questions and how they will help to fill knowledge gaps. It will also be shown that careful observations will lead to the refinement of existing theories or the development of new ones. Focusing on the subsurface, the need to keep observing through controlled laboratory experimentation in various test scales from small cells to large sand boxes will be emphasized. How the insights obtained from such experiments will complement modeling and field investigations are highlighted through examples.
Aüllo, Thomas; Berlendis, Sabrina; Lascourrèges, Jean-François; Dessort, Daniel; Duclerc, Dominique; Saint-Laurent, Stéphanie; Schraauwers, Blandine; Mas, Johan; Patriarche, Delphine; Boesinger, Cécile; Magot, Michel; Ranchou-Peyruse, Anthony
2016-01-01
Deep subsurface aquifers despite difficult access, represent important water resources and, at the same time, are key locations for subsurface engineering activities for the oil and gas industries, geothermal energy, and CO2 or energy storage. Formation water originating from a 760 m-deep geological gas storage aquifer was sampled and microcosms were set up to test the biodegradation potential of BTEX by indigenous microorganisms. The microbial community diversity was studied using molecular approaches based on 16S rRNA genes. After a long incubation period, with several subcultures, a sulfate-reducing consortium composed of only two Desulfotomaculum populations was observed able to degrade benzene, toluene, and ethylbenzene, extending the number of hydrocarbonoclastic-related species among the Desulfotomaculum genus. Furthermore, we were able to couple specific carbon and hydrogen isotopic fractionation during benzene removal and the results obtained by dual compound specific isotope analysis (C = -2.4‰ ± 0.3‰; H = -57‰ ± 0.98‰; AKIEC: 1.0146 ± 0.0009, and AKIEH: 1.5184 ± 0.0283) were close to those obtained previously in sulfate-reducing conditions: this finding could confirm the existence of a common enzymatic reaction involving sulfate-reducers to activate benzene anaerobically. Although we cannot assign the role of each population of Desulfotomaculum in the mono-aromatic hydrocarbon degradation, this study suggests an important role of the genus Desulfotomaculum as potential biodegrader among indigenous populations in subsurface habitats. This community represents the simplest model of benzene-degrading anaerobes originating from the deepest subterranean settings ever described. As Desulfotomaculum species are often encountered in subsurface environments, this study provides some interesting results for assessing the natural response of these specific hydrologic systems in response to BTEX contamination during remediation projects.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan
2011-01-01
Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.
The transformation and environmental fate of engineered nanomaterials (ENMs) is the focus of intense research due to concerns about their potential impacts in the environment as a result of their uniquely engineered properties. Many approaches are being applied to investigate th...
ERIC Educational Resources Information Center
Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo
2009-01-01
Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
Musso, T B; Francisca, F M; Musso, T B; Musso, T B
2013-01-01
Earthen layers play a significant role in isolating contaminants in the subsurface, controlling the migration of contaminant plumes, and as landfill liners and covers. The physical, chemical and mineralogical properties of three calcareous mudstones from the Jagüel and Roca formations in North Patagonia, Argentina, are evaluated to determine their potential for the construction of liners. These mudstones were deposited in a marine environment in the Upper Cretaceous-Paleocene. The tested specimens mainly comprise silt and clay-sized particles, and their mineralogy is dominated by a smectite/illite mixed layer (70-90% Sm) and calcite in smaller proportion. Powdered mudstone samples have little viscosity and swelling potential when suspended in water. The hydraulic conductivity of compacted mudstones and sand-mudstone mixtures is very low (around 1-3 x 10(-10) m/s) and in good agreement with the expected hydraulic behaviour of compacted earthen layers. This behaviour can be attributed to the large amount of fine particles, high specific surface and the close packing of particles as confirmed by scanning electron microscope analysis. The tested materials also show a high cation exchange capacity (50-70 cmol/kg), indicating a high contaminant retardation capability. The calcareous mudstones show satisfactory mineralogical and chemical properties as well as an adequate hydraulic behaviour, demonstrating the potential use of these materials for the construction of compacted liners for the containment of leachate or as covers in landfills. These findings confirm the potential usage of marine calcareous mudstones as a low-cost geomaterial in environmental engineering projects.
2000-09-30
Environmental Science and Engineering Oregon Graduate Institute 20000 NW Walker Road Beaverton, OR 97006-8921 Phone: 1-503-748-1372 Fax: 1-503-748...Department of Environmental Science and Engineering,,Oregon Graduate Institute,20000 NW Walker Road,,Beaverton,,OR,97006 8. PERFORMING ORGANIZATION... Environmental Science and Engineering, Oregon Graduate Institute, 97 pp. Fain, A.M.V., D. A. Jay, D. J. Wilson, P. M. Orton, and A. M. Baptista, 2000
Slimak, K M
1978-12-01
The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.
Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Krüger, Martin
2014-05-01
Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... modeling; atmospheric science and engineering; ecology and ecological risk assessment; epidemiology... assessment; environmental modeling; industrial ecology; environmental engineering; environmental medicine... ``Ethics Requirements for Advisors'' link on the blue navigational bar on the SAB Web site at http://www...
MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeffler, Frank E.
2014-12-31
Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application ofmore » a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.« less
ERIC Educational Resources Information Center
Bandeira de Melo, Gilberto C.; Pinto, Joana Darc da Silva
In this work a tentative approach is described, with the intent of an optimized insertion of the environmental contents in engineering courses, using the existing disciplines, and with a minimal, if any, increase of the disciplines related to environmental protection. The disciplines are firstly classified with regard to the environmental issues…
Spacecraft Environmental Anomalies Handbook
1989-08-01
1989 4. TITLE AND SUBTITLE S. FUNDING NUMBERS SPACECRAFT ENVIRONMENTAL ANOMALIES HANDBOOK 282201AA PE: 63410F 6. AUTHOR(S) Paul A. Robinson, Jr 7...engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed
75 FR 35497 - Updated Guidance: Prevention Strategies for Seasonal Influenza in Healthcare Settings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
...-generating procedure precautions, surveillance, and environmental and engineering controls. CDC will consider... procedures. Implementing environmental and engineering infection control measures. [[Page 35499
Workshop on Monitoring and Failure Detection in Earthen Embankments
2010-06-15
funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics...that are widely used to image and characterize subsurface geology . Many of these technologies can be adapted to the interrogation and...the active seismic techniques, have a long history in shallow exploration (tens to hundreds of meters) for geology , environmental, and civil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Methe, Barbara; Lipton, Mary; Mahadevan, Krishna
Microbes exist in communities in the environment where they are fundamental drivers of global carbon, nutrient and metal cycles. In subsurface environments, they possess significant metabolic potential to affect these global cycles including the transformation of radionuclides. This study examined the influence of microbial communities in sediment zones undergoing biogeochemical cycling of carbon, nutrients and metals including natural attenuation of uranium. This study examined the relationship of both the microbiota (taxonomy) and their metabolic capacity (function) in driving carbon, nutrient and metal cycles including uranium reduction at the Department of Energy (DOE) Rifle Integrated Field Research Challenge (RIFRC). Objectives ofmore » this project were: 1) to apply systems-level biology through application of ‘metaomics’ approaches (collective analyses of whole microbial community DNA, RNA and protein) to the study of microbial environmental processes and their relationship to C, N and metals including the influence of microbial communities on uranium contaminant mobility in subsurface settings undergoing natural attenuation, 2) improve methodologies for data generation using metaomics (collectively metagenomics, metatranscriptomics and proteomics) technologies and analysis and interpretation of that data and 3) use the data generated from these studies towards microbial community-scale metabolic modeling. The strategy for examining these subsurface microbial communities was to generate sequence reads from microbial community DNA (metagenomics or whole genome shotgun sequencing (WGS)) and RNA (metatranscriptomcs or RNAseq) and protein information using proteomics. Results were analyzed independently and through computational modeling. Overall, the community model generated information on the microbial community structure that was observed using metaomic approaches at RIFRC sites and thus provides an important framework for continued community modeling development. The model as created is capable of predicting the response of the community structure in changing environments such as anoxic/oxic conditions or limitations by carbon or nutrients. The ability to more accurately model these responses is critical to understanding carbon and energy flows in an ecosystem is critical towards improving our ability to make predictions that can be used to design more efficient remediation and management strategies, and better understand the implications of environmental perturbations on these ecosystems.« less
NASA Astrophysics Data System (ADS)
Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.
2007-12-01
Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.
A new high-resolution electromagnetic method for subsurface imaging
NASA Astrophysics Data System (ADS)
Feng, Wanjie
For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a high-power (moment of about 6800 Am2) vertical-array DTAC system was designed, developed and tested on controlled buried targets and surface interference to illustrate that the DTAC system was insensitive to surface interference even with a high-power transmitter and having higher resolution by using the large-moment transmitter. From the theoretical and practical analysis and tests, several characteristics of the DTAC method were found: (1) The DTAC method can null out the effect of 1D layered and 2D structures, because magnetic fields are orientation independent which lead to no difference among the null vector directions. This characteristic allows for the measurements of smaller subsurface targets; (2) The DTAC method is insensitive to the orientation errors. It is a robust EM null coupling method. Even large orientation errors do not affect the measured target responses, when a reference frequency and one or more data frequencies are used; (3) The vertical-array DTAC method is effective in reducing the geologic noise and insensitive to the surface interference, e.g., fences, vehicles, power line and buildings; (4) The DTAC method is a high-resolution EM sounding method. It can distinguish the depth and orientation of subsurface targets; (5) The vertical-array DTAC method can be adapted to a variety of rapidly moving survey applications. The transmitter moment can be scaled for effective study of near-surface targets (civil engineering, water resource, and environmental restoration) as well as deep targets (mining and other natural-resource exploration).
Biodegradability of pentachlorophenol in the environment: A literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakles, D.
1993-04-01
Pentachlorophenol has been widely used as a wood preserving agent for over 50 years to treat millions of electrical utility poles and crossarms. Treatment of poles with pentachlorophenol has in some cases resulted in contamination of soils, groundwater, and surface water. Environmental releases are a concern because of the potential toxicity of pentachlorophenol and its stringent regulation. Microbiological degradation of pentachlorophenol in environmental media has been demonstrated in numerous cases. The potential for pentachlorophenol to be biologically degraded is of interest to the electrical utility industry for two reasons. First, it is a factor in understanding the probable fate ofmore » pentachlorophenol where it has been released into the environment, and second, its biodegradability can potentially result in effective and economical treatment strategies for soils, water, and subsurface environments. The objective of this literature review is to collect a baseline of information on the biodegradability of pentachlorophenol in soils, surface water, and groundwater for the electric utility industry. The focus of the electric utility industry's interest in the environmental management and control of pentachlorophenol is primarily in the management of environmental media, particularly soils, that may have become incidentally contaminated with pentachlorophenol in association with the treatment, storage, or use of utility poles and crossarms. The review of the literature has found that [open quotes]unassisted[close quotes] biodegradation of pentachlorophenol in aquatic, soil, and subsurface environments may occur, presumably if there is an acclimated microbial population of sufficient density. Aerobic conditions appear to be most conducive to biodegradation in these cases. Several studies have shown that with an acclimated, mixed culture and conventional wastewater treatment approaches, pentachlorophenol can be effectively treated in water.« less
Biodegradability of pentachlorophenol in the environment: A literature review. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakles, D.
1993-04-01
Pentachlorophenol has been widely used as a wood preserving agent for over 50 years to treat millions of electrical utility poles and crossarms. Treatment of poles with pentachlorophenol has in some cases resulted in contamination of soils, groundwater, and surface water. Environmental releases are a concern because of the potential toxicity of pentachlorophenol and its stringent regulation. Microbiological degradation of pentachlorophenol in environmental media has been demonstrated in numerous cases. The potential for pentachlorophenol to be biologically degraded is of interest to the electrical utility industry for two reasons. First, it is a factor in understanding the probable fate ofmore » pentachlorophenol where it has been released into the environment, and second, its biodegradability can potentially result in effective and economical treatment strategies for soils, water, and subsurface environments. The objective of this literature review is to collect a baseline of information on the biodegradability of pentachlorophenol in soils, surface water, and groundwater for the electric utility industry. The focus of the electric utility industry`s interest in the environmental management and control of pentachlorophenol is primarily in the management of environmental media, particularly soils, that may have become incidentally contaminated with pentachlorophenol in association with the treatment, storage, or use of utility poles and crossarms. The review of the literature has found that {open_quotes}unassisted{close_quotes} biodegradation of pentachlorophenol in aquatic, soil, and subsurface environments may occur, presumably if there is an acclimated microbial population of sufficient density. Aerobic conditions appear to be most conducive to biodegradation in these cases. Several studies have shown that with an acclimated, mixed culture and conventional wastewater treatment approaches, pentachlorophenol can be effectively treated in water.« less
2016-03-01
ER D C/ G SL T R- 16 -7 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in...client/default. ERDC/GSL TR-16-7 March 2016 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge...Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-16-7 ii Abstract A comprehensive study of the subsurface geology in the Tara Wildlife
1983-09-01
al. (1981) was conducted on Copper City No. 2 tailings embankment damn near Miami, Arizona . Due to the extreme topographic relief in the area of the...mode of behavior and scale. ThiL dependency is summarized in the factor R. For example, circular shear instability as in a copper porphyry slope...OF THE PROBABILISTIC SLOPE STABILITY MODEL. . 32 6.1 DESCRIPTION OF COPPER CITY NUMBER 2 TAILINGS DAM . . 32 6.2 SUBSURFACE INVESTIGATION
Air Force Civil Engineer, Volume 10, Number 1, Spring 2002
2002-01-01
gone into the 823rd Expeditionary RED HORSE Squadron�s military construction (MILCON) funded ramp project at Al Udeid Air Base, Qatar , and the main...AE W P ub lic A ff ai rs an Air Base RED HORSE builds MILCON project in Qatar SSgt Chuck Risinger, 823rd RHS, operates a slip form paver March 24...and were not designed to limit or contain the migration of lead into the environ- ment and sub-surface groundwater aquifers . An estimated 2,000
1994-01-01
second gate indicating that the intruder is a runner or a fast truck. FILTER ASCPNFIER ONESHOT AND LOGIC BUS B note: t 0 0 7 the Q--. BISTABLE MV...Minutes of the PINTSITIWG Meeting. Test Integration Working Group, Fort Belvoir Research . Development and Engineering Center, Ft. Belvoir. VA, 22 April...MP-CD ADVANCED RESEARCH PROJECT AGENCY ATTN: ATZN-MP-DE ATTN: EAO ATTN: ATZN-MP-TB ATTN: STO N DOHERTY ATTN: ATZN-MP-TS DEFENSE INTELLIGENCE AGENCY U
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.
This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...
Air Force Institute of Technology, Civil Engineering School: Environmental Protection Course.
ERIC Educational Resources Information Center
Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.
This document contains information assembled by the Civil Engineering School to meet the initial requirements of NEPA 1969 and Executive Orders which required the Air Force to implement an effective environmental protection program. This course presents the various aspects of Air Force environmental protection problems which military personnel…
Modeling and Reduction of Shocks on Electronic Components Within a Projectile
2008-08-01
Engineering, University of Nevada, Las Vegas, NV 89154-4027 †Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV...Samaan Ladkanyb, Mostafiz Chowdhuryc aDepartment of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154-4027, USA bDepartment...of Civil and Environmental Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154-4027, USA cAMSRL-WM-MB (ALC), Ordnance Materials Branch
Past Performance analysis of HPOTP bearings
NASA Technical Reports Server (NTRS)
Bhat, B. N.; Dolan, F. J.
1982-01-01
The past performance analysis conducted on three High Pressure Oxygen Turbopump (HPOTP) bearings from the Space Shuttle Main Engine is presented. Metallurgical analysis of failed bearing balls and races, and wear track and crack configuration analyses were carried out. In addition, one bearing was tested in laboratory at very high axial loads. The results showed that the cracks were surface initiated and propagated into subsurface locations at relatively small angles. Subsurface cracks were much more extensive than was appeared on the surface. The location of major cracks in the races corresponded to high radial loads rather than high axial loads. There was evidence to suggest that the inner races were heated to elevated temperatures. A failure scenario was developed based on the above findings. According to this scenario the HPOTP bearings are heated by a combination of high loads and high coefficient of friction (poor lubrication). Different methods of extending the HPOTP bearing life are also discussed. These include reduction of axial loads, improvements in bearing design, lubrication and cooling, and use of improved bearing materials.
NASA Astrophysics Data System (ADS)
Li, Ping; Jin, Tan; Guo, Zongfu; Lu, Ange; Qu, Meina
2016-10-01
High efficiency machining of large precision optical surfaces is a challenging task for researchers and engineers worldwide. The higher form accuracy and lower subsurface damage helps to significantly reduce the cycle time for the following polishing process, save the cost of production, and provide a strong enabling technology to support the large telescope and laser energy fusion projects. In this paper, employing an Infeed Grinding (IG) mode with a rotary table and a cup wheel, a multi stage grinding process chain, as well as precision compensation technology, a Φ300mm diameter plano mirror is ground by the Schneider Surfacing Center SCG 600 that delivers a new level of quality and accuracy when grinding such large flats. Results show a PV form error of Pt<2 μm, the surface roughness Ra<30 nm and Rz<180 nm, with subsurface damage <20 μm, and a material removal rates of up to 383.2 mm3/s.
Subsurface Void Characterization with 3-D Time Domain Full Waveform Tomography.
NASA Astrophysics Data System (ADS)
Nguyen, T. D.
2017-12-01
A new three dimensional full waveform inversion (3-D FWI) method is presented for subsurface site characterization at engineering scales (less than 30 m in depth). The method is based on a solution of 3-D elastic wave equations for forward modeling, and a cross-adjoint gradient approach for model updating. The staggered-grid finite-difference technique is used to solve the wave equations, together with implementation of the perfectly matched layer condition for boundary truncation. The gradient is calculated from the forward and backward wavefields. Reversed-in-time displacement residuals are induced as multiple sources at all receiver locations for the backward wavefield. The capability of the presented FWI method is tested on both synthetic and field experimental datasets. The test configuration uses 96 receivers and 117 shots at equal spacing (Fig 1). The inversion results from synthetic data show the ability of characterizing variable low- and high-velocity layers with embedded void (Figs 2-3). The synthetic study shows good potential for detection of voids and abnormalities in the field.
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...
NASA Astrophysics Data System (ADS)
Catchings, R.
2017-12-01
P- and S-wave propagation differ in varying materials in the Earth's crust. As a result, combined measurements of P- and S-wave data can be used to infer properties of the shallow crust, including bulk composition, fluid saturation, faulting and fracturing, seismic velocities, reflectivity, and general structures. Ratios of P- to S-wave velocities and Poisson's ratio, which can be derived from the P- and S-wave data, can be particularly diagnostic of subsurface materials and their physical state. In field studies, S-wave data can be obtained directly with S-wave sources or from surface waves associated with P-wave sources. P- and S-wave data can be processed using reflection, refraction, and surface-wave-analysis methods. With the combined data, unconsolidated sediments, consolidated sediments, and rocks can be differentiated on the basis of seismic velocities and their ratios, as can saturated versus unsaturated sediments. We summarize studies where we have used combined P- and S-wave measurements to reliably map the top of ground water, prospect for minerals, locate subsurface faults, locate basement interfaces, determine basin shapes, and measure shear-wave velocities (with calculated Vs30), and other features of the crust that are important for hazards, engineering, and exploration purposes. When compared directly, we find that body waves provide more accurate measures than surface waves.
Characterization of steel rebar spacing using synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang
2018-03-01
Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.
NASA Astrophysics Data System (ADS)
Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.
2014-08-01
Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.