Science.gov

Sample records for subsurface environments diversity

  1. Microbial Diversity of Groundwater from Deep Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Lin, L.; Onstott, T. C.; Hall, J.

    2002-12-01

    The subsurface environment harbors one of the most abundant reservoirs of biomass on Earth. The distribution of microbial ecosystems and the diversity of microbial metabolisms there remained poorly understood due to lack of detailed sampling over three-dimensional space with extremely heterogeneous characteristics. South African Au mines, however, provide the best access in the world to various types of groundwater and rocks at depths up to 4 km below surface. In this study, we present our recent analyses of microbial community structure of groundwater (with residence time of several million years) collected from depths between 850 to 1500 mbsl of Beatrix Au mine, South Africa. Five groundwater samples were collected anaerobically from freshly drilling boreholes with flow rates of 1 to 38 L/min. Cells were concentrated through filtration and total DNA were extracted from filters and PCR-amplified with primers targeting 16S rDNA gene. The amplicons were cloned and digested with restriction enzymes to identify the unique clone type. Sequences were obtained through direct sequencing of representative clones and compared with the closest matching sequences deposited in the gene bank for the construction of phylogenetic tree. The archaeal signatures were only found in one sample and close to the lineage of methanosarcina. The most predominant ribotype was similar to the environmental clone found in the same mine under the species level while the rest of ribotypes were either close to those capable of methanogenesis from long-chain alkanes or found in rice field or were distant from other environmental clones reported in previous study (Takai et al., 2001). The bacterial community exhibited a wide range of diversity among samples. Most samples were dominated by sequences close to alpha proteobacteria with various proportions of beta, gamma proteobacteria and environmental clones. A significant proportion of sequences close to thermophilic delta proteobacteria and

  2. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    USGS Publications Warehouse

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  3. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    SciTech Connect

    Holmes, Dawn; O'Neil, Regina; Vrionis, Helen A.; N'guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll, Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-12-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants

  4. Bacterial diversity in a deep-subsurface clay environment.

    PubMed Central

    Boivin-Jahns, V; Ruimy, R; Bianchi, A; Daumas, S; Christen, R

    1996-01-01

    The presence of bacteria in a deep clay sediment was analyzed in a 20-m-long core horizontally drilled from a mine gallery at a depth of 224 m in the Boom clay formation (Mol, Belgium). This clay deposit is the result of a marine sedimentary process that occurred 35 million years ago. Bacterial activities were estimated by measuring respiration on [14C]glucose. Using the same samples, universal primers for the genes coding for eubacterial 16S rRNA were used to amplify extracted DNA. PCR products were then cloned, sequenced, and analyzed by molecular phylogeny. Our data showed a decrease in bacterial densities as a function of distance from the gallery, with few bacteria detectable by culture at more than 80 cm from the gallery wall. PCR experiments showed the presence of bacteria in all samples, and phylogenetic analyses were then used to tentatively identify these organisms. Because of low bacterial densities in deep clay samples, direct counts and enumeration of viable bacteria on diverse culture media remained negative. All experiments, both cultures and PCR, demonstrated the difficulty of analyzing samples that contain only a few poorly active bacteria as it is difficult to avoid a small contamination by active bacteria during sampling. Since the porosity of the Boom clay formation is less than the expected size of bacteria, it is possible that some of the bacteria present in this 35-million-year-old deep clay deposit derive from cells initially trapped during the sedimentation process. PMID:8795233

  5. Physiological and phylogenetic study of microbes from geochemically and hydrogeologically diverse subsurface environments

    SciTech Connect

    Balkwill, D.L.; Reeves, R.H.

    1992-10-01

    An important aspect of our ongoing research effort in the DOE Deep Microbiology Program has been the characterization of certain microorganisms in samples of subsurface materials from various DOE production sites. Recently, it was our responsibility to determine the numbers, diversity, morphological characteristics, and physiological traits (including the potential metabolic capabilities) of the viable, aerobic, chemoheterotrophic micro-organisms in samples that were obtained from the Idaho National Engineering Laboratory (INEL) and the Hanford Reservation (HR) in 1990. It was decided that the physiological characteristics of the INEL and HR subsurface microbial isolates would be analyzed during the current project. We describe here the research on physiological characteristics that has been completed during the eleven-month period covered by the present technical report. Approximately 750 microbial strains were isolated by our laboratory from the INEL and HR samples in 1990 and 1991. During the portion of the current project covered by this interim report, all of these strains were tested for their ability to utilize each of 95 different organic compounds as sole sources of carbon. Identifications are based on how well the carbon utilization patterns of the isolates match those of 659 species and subspecies (i.e., established taxa).

  6. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2. A wide range of phylogenies have been identified, including genera that fall within the Proteobacteria, Bacilli, and Clostridial classes. Several species identified by 16S BLAST best hits are also known to inhabit deep subsurface environments, preliminarily confirming that a non-zero diversity has been able to survive, and possibly thrive, in the extreme scCO2-exposed deep subsurface environment at McElmo Dome. It thus appears that at least a subsection of native subsurface community biota may withstand the severe stresses associated with the injection of scCO2 for long-term geologic carbon sequestration efforts.

  7. Physiological and phylogenetic study of microbes from geochemically and hydrogeologically diverse subsurface environments

    SciTech Connect

    Balkwill, D.L.; Reeves, R.H.

    1991-01-01

    The present document is an interim technical report in which we describe the research which has been completed during the seven-month period since the start of the grant. Progress is summarized in two main areas. The first is microbiological characterization of subsurface materials from the Hanford reservation and the Idaho National Engineering Laboratory, and the second is phylogenetic characterization of these microorganisms. The major tools used for phylogenetic characterization are RFLP analysis of PCR derived material and 16S rRNA sequencing. A description of manuscripts ready for publication is also provided. 4 refs. (MHB)

  8. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    NASA Astrophysics Data System (ADS)

    Freedman, A. J.; Thompson, J. R.

    2012-12-01

    community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2.

  9. Diversity and distribution of anaeromyxobacter strains in a uranium-contaminated subsurface environment with a nonuniform groundwater flow.

    PubMed

    Thomas, Sara H; Padilla-Crespo, Elizabeth; Jardine, Phillip M; Sanford, Robert A; Löffler, Frank E

    2009-06-01

    Versaphilic Anaeromyxobacter dehalogenans strains implicated in hexavalent uranium reduction and immobilization are present in the fractured saprolite subsurface environment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge (IFC) site near Oak Ridge, TN. To provide insight into the in situ distribution of Anaeromyxobacter strains in this system with a nonuniform groundwater flow, 16S rRNA gene-targeted primers and linear hybridization (TaqMan) probes were designed for Oak Ridge IFC Anaeromyxobacter isolates FRC-D1 and FRC-W, along with an Anaeromyxobacter genus-targeted probe and primer set. Multiplex quantitative real-time PCR (mqPCR) was applied to samples collected from Oak Ridge IFC site areas 1 and 3, which are not connected by the primary groundwater flow paths; however, transport between them through cross-plane fractures is hypothesized. Strain FRC-W accounted for more than 10% of the total quantifiable Anaeromyxobacter community in area 1 soils, while strain FRC-D1 was not detected. In FeOOH-amended enrichment cultures derived from area 1 site materials, strain FRC-D1 accounted for 30 to 90% of the total Anaeromyxobacter community, demonstrating that this strain was present in situ in area 1. The area 3 total Anaeromyxobacter abundance exceeded that of area 1 by 3 to 5 orders of magnitude, but neither strain FRC-W- nor FRC-D1-like sequences were quantifiable in any of the 33 area 3 groundwater or sediment samples tested. The Anaeromyxobacter community in area 3 increased from <10(5) cells/g sediment outside the ethanol biostimulation treatment zone to 10(8) cells/g sediment near the injection well, and 16S rRNA gene clone library analysis revealed that representatives of a novel phylogenetic cluster dominated the area 3 Anaeromyxobacter community inside the treatment loop. The combined applications of genus- and strain-level mqPCR approaches along with clone libraries provided novel information on patterns of microbial

  10. Diversity and Distribution of Anaeromyxobacter Strains in a Uranium-Contaminated Subsurface Environment with a Nonuniform Groundwater Flow▿ †

    PubMed Central

    Thomas, Sara H.; Padilla-Crespo, Elizabeth; Jardine, Phillip M.; Sanford, Robert A.; Löffler, Frank E.

    2009-01-01

    Versaphilic Anaeromyxobacter dehalogenans strains implicated in hexavalent uranium reduction and immobilization are present in the fractured saprolite subsurface environment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge (IFC) site near Oak Ridge, TN. To provide insight into the in situ distribution of Anaeromyxobacter strains in this system with a nonuniform groundwater flow, 16S rRNA gene-targeted primers and linear hybridization (TaqMan) probes were designed for Oak Ridge IFC Anaeromyxobacter isolates FRC-D1 and FRC-W, along with an Anaeromyxobacter genus-targeted probe and primer set. Multiplex quantitative real-time PCR (mqPCR) was applied to samples collected from Oak Ridge IFC site areas 1 and 3, which are not connected by the primary groundwater flow paths; however, transport between them through cross-plane fractures is hypothesized. Strain FRC-W accounted for more than 10% of the total quantifiable Anaeromyxobacter community in area 1 soils, while strain FRC-D1 was not detected. In FeOOH-amended enrichment cultures derived from area 1 site materials, strain FRC-D1 accounted for 30 to 90% of the total Anaeromyxobacter community, demonstrating that this strain was present in situ in area 1. The area 3 total Anaeromyxobacter abundance exceeded that of area 1 by 3 to 5 orders of magnitude, but neither strain FRC-W- nor FRC-D1-like sequences were quantifiable in any of the 33 area 3 groundwater or sediment samples tested. The Anaeromyxobacter community in area 3 increased from <105 cells/g sediment outside the ethanol biostimulation treatment zone to 108 cells/g sediment near the injection well, and 16S rRNA gene clone library analysis revealed that representatives of a novel phylogenetic cluster dominated the area 3 Anaeromyxobacter community inside the treatment loop. The combined applications of genus- and strain-level mqPCR approaches along with clone libraries provided novel information on patterns of microbial

  11. Microbial communities in subsurface environments: Diversity, origin, and evolution. Project technical progress report, September 1, 1993--August 31, 1996

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1994-05-02

    This report summarizes the progress made from 9-1-93 to 5-1-94 on this DOE grant. As participants in the subsurface science program, the authors are assessing the influence of environmental conditions on the distribution and evolution of subsurface microorganisms employing molecular techniques. The approach utilizes 16S rRNA targeted oligonucleotide probes, polymerase chain reaction (PCR) amplification of gene sequences, and sequencing techniques. Continued progress towards identifying target sequences for selected microbial types and groups is being made by analysis of rRNA sequence data for subsurface microorganisms and other microorganisms in the rRNA databases. Hybridization probes for these target sequences are being produced and used to classify isolated strains of subsurface microbes into focus clades useful for testing origins hypotheses.

  12. Geomicrobiology of extremely acidic subsurface environments.

    PubMed

    Johnson, David Barrie

    2012-07-01

    Extreme acidophiles (microorganisms with pH optima of < 3) can colonize and exploit subterranean environments, such as abandoned metal sulfide mines, that have the potential for developing widespread or isolated pockets of acidity. Although acidophiles can utilize a wide range of electron donors, inorganic materials (reduced sulfur, ferrous iron, and possibly hydrogen) are often the most abundant sources of energy for acidophiles in the subsurface. The diversity and interactions of acidophilic microbial communities in two abandoned sulfide mineral mines (in Iron Mountain, California, and the Harz mountains in Germany) and a sulfidic cave (Frasissi, Italy) are reviewed. In addition, the contrasting geomicrobiology of two abandoned sulfide mineral mines in north Wales is described. Both are extremely acidic (pH~2) and low-temperature (8-9 °C) sites, but one (Cae Coch) is essentially a dry mine with isolated pockets of water, while the other (Mynydd Parys) contains a vast underground lake that was partially drained several years ago. The microbial communities in these two mines exhibit different relative abundances and often different species of archaea and bacteria. Wooden pit props, submerged in the underground lake, act as a slow-release source of organic carbon in the subterranean Mynydd Parys lake, supporting a microbial community that is more enriched with heterotrophic microorganisms. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Physiological and phylogenetic study of microbes from geochemically and hydrogeologically diverse subsurface environments. Interim technical report, November 1, 1991--September 30, 1992

    SciTech Connect

    Balkwill, D.L.; Reeves, R.H.

    1992-10-01

    An important aspect of our ongoing research effort in the DOE Deep Microbiology Program has been the characterization of certain microorganisms in samples of subsurface materials from various DOE production sites. Recently, it was our responsibility to determine the numbers, diversity, morphological characteristics, and physiological traits (including the potential metabolic capabilities) of the viable, aerobic, chemoheterotrophic micro-organisms in samples that were obtained from the Idaho National Engineering Laboratory (INEL) and the Hanford Reservation (HR) in 1990. It was decided that the physiological characteristics of the INEL and HR subsurface microbial isolates would be analyzed during the current project. We describe here the research on physiological characteristics that has been completed during the eleven-month period covered by the present technical report. Approximately 750 microbial strains were isolated by our laboratory from the INEL and HR samples in 1990 and 1991. During the portion of the current project covered by this interim report, all of these strains were tested for their ability to utilize each of 95 different organic compounds as sole sources of carbon. Identifications are based on how well the carbon utilization patterns of the isolates match those of 659 species and subspecies (i.e., established taxa).

  14. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  15. In situ detection of anaerobic alkane metabolites in subsurface environments.

    PubMed

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  16. Accessing Surface and Subsurface Habitable Environments of Ancient Mars

    NASA Astrophysics Data System (ADS)

    Mustard, J. F.

    2014-12-01

    The martian Curiosity rover has characterized the Yellowknife Bay region as habitable based on the presence of sedimentary rocks, the array of elements essential to supporting life (CHNOPS), and indications of hydrologic activity either as a shallow stream bed or intermittently wet lake bed. However as an ancient site this surface was challenging for sustained habitability due to the radiation environment and unknown persistence of water. In contrast the shallow subsurface was potentially a longer lived environment sheltered from the harsh surface conditions. Yet our knowledge of subsurface environments is limited. Did the ancient subsurface of Mars encompass the full range of factors needed for habitability, what is the evidence for this, and was this preserved in the geologic record? Syntheses of global 0.4-5.0 μm spectroscopic observations from high (19 m/pixel CRISM) to moderate (1 km/pixel OMEGA) resolution VNIR data show diverse assemblages of aqueous minerals. The most common environment observed from orbit is a subsurface hydrothermal-type environment accounting for more than 70% of observed sites with hydrated silicates. The dominant hydrated mineral phase is smectite clay, implying a moderate pH environment and a thermal environmental <350°C. The heat source to drive hydrothermal systems could be crustal cooling following planet formation, conductive heat flow from the mantle, impact generated heat pulses, deuteric alteration and magmatism. Evidence of relatively rapid cooling of the crust after formation perhaps by hydrothermal circulation is provided by ancient topography preserved by a rigid crust. Exhumation of Noachian-aged phyllosilicate-rich terrains reveal abundant linear ridges resistant to erosion interpreted to be mineralized fraction zones in regional hydrothermal systems. The proposed landing site in Northeast Syrtis provides excellent access to both surface (Late Noachian fluvial systems with standing bodies of water) and subsurface

  17. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    SciTech Connect

    Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana; Gu, Baohua; Elias, Dwayne A.

    2014-07-14

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na2SO4 and NH4H2PO4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.

  18. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    DOE PAGES

    Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun; ...

    2014-07-14

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na2SO4 and NH4H2PO4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 g DNA/g clay with themore » Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less

  19. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    SciTech Connect

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  20. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber.

    PubMed

    Higashi, Yowsuke; Sunamura, Michinari; Kitamura, Keiko; Nakamura, Ko-ichi; Kurusu, Yasurou; Ishibashi, Jun-ichiro; Urabe, Tetsuro; Maruyama, Akihiko

    2004-03-01

    After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also

  1. Microbial activities in deep subsurface environments

    SciTech Connect

    Phelps, T.J.; Raione, E.G.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in forty-six sediment samples from three aseptically sampled boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 minutes of core recovery. [{sup 14}C-1-] Acetate incorporation into lipids. [methyl-{sup 3}H-]thymidine incorporation into DNA, [{sup 14}C-2-]acetate and [{sup 14}C-U-]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities followed by the shallow aquifer zones. Water saturated subsurface sediments exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones. Regardless of depth, sediments which contained more than 20% clays exhibited the lowest activities and culturable microorganisms.

  2. Microbial Diversity and Heterogeneity in Sandy Subsurface Soils

    PubMed Central

    Zhou, Jizhong; Xia, Beicheng; Huang, Heshu; Palumbo, Anthony V.; Tiedje, James M.

    2004-01-01

    Microbial community diversity and heterogeneity in saturated and unsaturated subsurface soils from Abbott's Pit in Virginia (1.57, 3.25, and 4.05 m below surface) and Dover Air Force Base in Delaware (6.00 and 7.50 m below surface) were analyzed using a culture-independent small-subunit (SSU) rRNA gene (rDNA)-based cloning approach. Four to six dominant operational taxonomic units (OTUs) were identified in 33 to 100 unique SSU rDNA clones (constituting about 40 to 50% of the total number of SSU rDNA clones in the clone library) from the saturated subsurface samples, whereas no dominant OTUs were observed in the unsaturated subsurface sample. Less than 10% of the clones among samples from different depths at the same location were identical, and the proportion of overlapping OTUs was lower for the samples that were vertically far apart than for adjacent samples. In addition, no OTUs were shared between the Abbott's Pit and Dover samples. The majority of the clones (80%) had sequences that were less than 5% different from those in the current databases. Phylogenetic analysis indicated that most of the bacterial clones were affiliated with members of the Proteobacteria family (90%), gram-positive bacteria (3%), and members of the Acidobacteria family (3%). Principal component analysis revealed that samples from different geographic locations were well separated and that samples from the same location were closely grouped together. In addition, the nonsaturated subsurface samples from Abbott's Pit clustered together and were well separated from the saturated subsurface soil sample. Finally, the overall diversity of the subsurface samples was much lower than that of the corresponding surface soil samples. PMID:15006798

  3. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  4. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    PubMed Central

    Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.

    2014-01-01

    Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199

  5. Improved yield of high molecular weight DNA coincides with increased microbial diversity access from iron oxide cemented sub-surface clay environments.

    PubMed

    Hurt, Richard A; Robeson, Michael S; Shakya, Migun; Moberly, James G; Vishnivetskaya, Tatiana A; Gu, Baohua; Elias, Dwayne A

    2014-01-01

    Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1-V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered.

  6. Subsurface heat flow in an urban environment

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2004-02-01

    The subsurface temperature field beneath Winnipeg, Canada, is significantly different from that of the surrounding rural areas. Downward heat flow to depths as great as 130 m has been noted in some areas beneath the city and groundwater temperatures in a regional aquifer have risen by as much as 5°C in some areas. Numerical simulation of heat transport supports the conjecture that these temperature changes can be largely attributed to heat loss from buildings and the temperature at any given point is sensitive to the distance from and the age of any buildings. The effect is most noticable when buildings are closely spaced, which is typical of urban areas. Temperature measurements in areas more than a few hundred meters away from any heated structure were only a few tenths of a degree Celsius greater than those observed outside the city, suggesting that other reasons for increases in subsurface temperature, such as changes in surface cover or climate change, may be responsible for some of the some of the observed increase in temperatures. These sources of additional heat to the subsurface make it difficult to resolve information on past climates from temperatures measured in boreholes and monitoring wells. In some areas, the temperature increases may also have an impact on geothermal energy resources. This impact might be in the form of an increase in heat pump efficiency or in the case of the Winnipeg area, a decrease in the efficiency of direct use of groundwater for cooling.

  7. Human utilization of subsurface extraterrestrial environments.

    PubMed

    Boston, P J; Frederick, R D; Welch, S M; Werker, J; Meyer, T R; Sprungman, B; Hildreth-Werker, V; Thompson, S L; Murphy, D L

    2003-06-01

    Caves have been used in the ancient past as shelter or habitat by many organisms (including humans). Since antiquity, humans have explored caves for the minerals they contain and sometimes for ceremonial purposes. Over the past century, caves have become the target of increasing exploration, scientific research, and recreation. The use of caves on extraterrestrial bodies for human habitation has been suggested by several investigators. Lunar lava tube bases received early attention because lava tubes were clearly visible in lunar images from the Apollo Era. More recently, Mars Observer Camera data has shown us clear evidence of large tubes visible in a number of volcanic regions on Mars. The budding field of cave geomicrobiology has direct application to questions about subsurface life on other planets. Caves contain many unusual organisms making their living from unlikely materials like manganese, iron, and sulfur. This makes caves and other subsurface habitats prime targets for astrobiological missions to Mars and possibly other bodies. We present the results of a completed Phase I and on-going Phase II NASA Institute for Advanced Concepts (NIAC) study that intensively examines the possibilities of using extraterrestrial caves as both a resource for human explorers and as a highly promising scientific target for both robotic and future human missions to Mars and beyond.

  8. Subsurface Environment Sampler for Improved In Situ Characterization of Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.

    2016-12-01

    There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.

  9. Active Serpentinization and the Potential for a Diverse Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Canovas, P. A.; Shock, E.

    2013-12-01

    The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce

  10. Microbial iron-redox cycling in subsurface environments.

    PubMed

    Roden, Eric E

    2012-12-01

    In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic coupled iron oxidation and reduction within redox transition zones in subsurface environments. In the present paper, I review and synthesize a few case studies of iron-redox cycling in subsurface environments, highlighting key biochemical aspects of the extracellular iron-redox metabolisms involved. Of specific interest are the coupling of iron oxidation and reduction in field and experimental systems that model redox gradients and fluctuations in the subsurface, and novel pathways and organisms involved in the redox cycling of insoluble iron-bearing minerals. These findings set the stage for rapid expansion in our knowledge of the range of extracellular electron-transfer mechanisms utilized by subsurface micro-organisms. The observation that closely coupled oxidation and reduction of iron can take place under conditions common to the subsurface motivates this expansion in pursuit of molecular tools for studying iron-redox cycling communities in situ.

  11. Subsurface environment database for application of ground heat exchanger system

    NASA Astrophysics Data System (ADS)

    Hamamoto, H.; Hachinohe, S.; Shiraishi, H.; Takashi, I.; Sasaka, K.; Miyakoshi, A.; Goto, S.

    2010-12-01

    Ground heat exchanger system is economical and environmentally friendly technology and widely used in Europe and North America, while it is rarely used in Japan. One of the causes is relatively complex topography and geological structure in Japan in comparison with those in Europe and North America. Complex structures produce regional differences in subsurface thermal properties and temperature structure, leading to regional variation in efficiency of heat exchanger system. It is thus important to evaluate available subsurface heat energy through thermal response tests and/or numerical simulation and to design appropriate systems (depth and number of boreholes for heat exchange). Information on subsurface environment in target areas is necessary for evaluation of potential subsurface heat energy, but little information has been published. Center for Environmental Science in Saitama is a research institute established by a local government, Saitama prefecture, which is located on the north of Tokyo and has a population of over seven million. We have been collecting various subsurface environmental data in Saitama (e.g., lithological column data on over 10,000 boreholes). We have compiled the accumulated data and obtained new data (geological information, subsurface temperature distribution, and hydrogeological properties) to construct a database for application of ground heat exchanger systems in Saitama. It is important to estimate demand for heat energy in the target areas as well as available subsurface heat energy. We therefore compile meteorological data (air temperature and solar radiation) necessary for estimation for the demand and investigate regional variation in meteorological condition. We intend to disclose the database and research products using web GIS (geographic information system) in the future. It will assist spread of ground heat exchanger systems in the target areas. Investigation methods of subsurface environment survey and database

  12. Identifying Heterogeneities in Subsurface Environment using the Level Set Method

    SciTech Connect

    Lei, Hongzhuan; Lu, Zhiming; Vesselinov, Velimir Valentinov

    2016-08-25

    These are slides from a presentation on identifying heterogeneities in subsurface environment using the level set method. The slides start with the motivation, then explain Level Set Method (LSM), the algorithms, some examples are given, and finally future work is explained.

  13. UNDERSTANDING THE FATE OF PETROLEUM HYDROCARBONS IN THE SUBSURFACE ENVIRONMENT

    EPA Science Inventory

    Sinca a significant number of the two or more million underground storage tank (UST) systems used for petroleum products leak, their cleanup poses a major environmental challenge. Our understnading of the fate of petroleum hydrocarbons in the subsurface environment is critical t...

  14. UNDERSTANDING THE FATE OF PETROLEUM HYDROCARBONS IN THE SUBSURFACE ENVIRONMENT

    EPA Science Inventory

    Sinca a significant number of the two or more million underground storage tank (UST) systems used for petroleum products leak, their cleanup poses a major environmental challenge. Our understnading of the fate of petroleum hydrocarbons in the subsurface environment is critical t...

  15. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  16. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    NASA Astrophysics Data System (ADS)

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum

  17. Microbial Diversity in the Columbia River Basalt Group and the Context for Life in Subsurface Basalts

    NASA Astrophysics Data System (ADS)

    Lavalleur, H. J.; Smith, A.; Fisk, M. R.; Colwell, F. S.

    2012-12-01

    Large igneous provinces constitute a sizable volume of porous and fractured materials in the Earth's crust and many of these environments exist within the boundaries of survival for subsurface life. The results of microbiological studies of basalts and other igneous materials in subsurface settings hint at the types of microbes that dwell in these environments. We investigated the microbes in aquifers in the Columbia River Basalt Group (CRBG) and also considered the microbial communities in subsurface basalts more broadly to determine if there are recurrent themes in the types of microbes and the nature of diversity present in these geological systems. Bacteria and Archaea collected from five intervals in the CRBG were examined using high-throughput DNA sequencing directed at the 16S rRNA genes. The highest bacterial biomass and the highest bacterial diversity were observed in the deepest samples (>1018 meters below land surface) whereas the highest archaeal diversity was detected in the shallowest samples (<449 mbls). Microbes classified as Proteobacteria, Firmicutes, and Actinobacteria dominated the aquifers. These findings are generally consistent with earlier cultivation- and clone library-based studies performed on microbes from the CRBG and the Snake River Plain aquifer. Microbes associated with marine basalts are similar to those found in terrestrial settings and include Proteobacteria, Firmicutes, candidate division bacterium OP1, Euryarchaeota, and Crenarchaeota. Based on 16S rRNA sequence similarities to known microbes, both basaltic regions have taxa with representative physiologies likely to include hydrogen oxidation, iron and sulfur metabolism, acetogenesis, and hydrocarbon metabolism. Research on the microbiology of basalt rich provinces on the planet has informed our understanding of biogeochemical cycling where igneous rocks dominate. The knowledge gained in these investigations also promotes our ability to verify the remediation of contaminants

  18. Bacterial growth in a simulated Martian subsurface environment

    NASA Astrophysics Data System (ADS)

    Kronyak, R. E.; Pavlov, A.; House, C. H.

    2013-12-01

    The ability of microorganisms to grow under Martian conditions has implications in both the search for life and habitability of Mars as well as the potential contamination of Mars by landing spacecraft. Factors that inhibit the growth of organisms on Mars include UV radiation, low pressure and temperature, CO2 atmosphere, lack of liquid water, and extreme desiccation. Yet a possible biozone capable of supporting microbial life on Mars exists in the shallow subsurface where there is protection from harsh UV rays. In addition, the presence of widespread subsurface ice, confirmed by the Phoenix Lander, offers a water source as the ice sublimates through the upper soil. Here we will determine the ability of the organism Halomonas desiderata strain SP1 to grow in the simulated Martian subsurface environment. Halomonas was chosen as the bacteria of interest due to its tolerance to extreme environments, including carrying salt concentrations and pH. Experiments were carried out in the Mars Simulation Chamber, where temperatures, pressures, and atmospheric composition can be closely monitored to simulate Martian conditions. A series of stress experiments were conducted to observe Halomonas's ability to withstand exposure to a Mars analog soil, freezing temperatures, anoxic conditions, and low pressures. We have determined that Halomonas is able to survive exposures to low temperatures, pressures, and anoxic conditions. We will report on the survival and growth of Halomonas in the simulated Martian permafrost under low (6-10 mbar) atmospheric pressures.

  19. Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter.

    PubMed

    Waldron, Patricia J; Petsch, Steven T; Martini, Anna M; Nüsslein, Klaus; Nüslein, Klaus

    2007-07-01

    The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl(-) in a subsurface shale rich in CH(4) derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH(4)-producing zone lacked electron acceptors such as O(2), NO(3)(-), Fe(3+), or SO(4)(2-). Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl(-) concentrations above approximately 1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H(2)/CO(2)) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH(4)-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.

  20. Integron diversity in marine environments.

    PubMed

    Abella, Justine; Bielen, Ana; Huang, Lionel; Delmont, Tom O; Vujaklija, Dušica; Duran, Robert; Cagnon, Christine

    2015-10-01

    Integrons are bacterial genetic elements known to be active vectors of antibiotic resistance among clinical bacteria. They are also found in bacterial communities from natural environments. Although integrons have become especially efficient for bacterial adaptation in the particular context of antibiotic usage, their role in natural environments in other contexts is still unknown. Indeed, most studies have focused on integrons and the spread of antibiotic resistance in freshwater or soil impacted by anthropogenic activities, with only few on marine environments. Notably, integrons show a wider diversity of both gene cassettes and integrase gene in natural environments than in clinical environments, suggesting a general role of integrons in bacterial adaptation. This article reviews the current knowledge on integrons in marine environments. We also present conclusions of our studies on polluted and nonpolluted backgrounds.

  1. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    NASA Astrophysics Data System (ADS)

    Huang, Ping; Lin, I.-I.; Chou, Chia; Huang, Rong-Hui

    2015-05-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  2. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  3. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    PubMed Central

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  4. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  5. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  6. Biogeography and diversity of methane and sulfur-cycling ecotypes in deep subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Biddle, J.; Girguis, P. R.

    2013-12-01

    The microbially mediated anaerobic oxidation of methane (AOM) is critical for regulating the flux of methane from the ocean. AOM is coupled to sulfate availability in many anoxic marine environments, which has been extensively studied at cold seeps, hydrothermal vents, and the sulfate-methane transition zone at the seafloor. The microbes known to catalyze AOM form phylogenetically distinct anaerobic methanotroph (ANME) clusters and sometimes live in concert with sulfate-reducing bacteria (SRB). Strikingly, certain ANME groups and subgroups have been shown to occupy different ecological niches in both hydrocarbon seep and hydrothermal vent sediments. However, the environmental parameters that select for certain phylogenetic variants or 'ecotypes' in a wide range of marine systems are still unknown. A marine environment that remains elusive to characterization of potential ANME and SRB ecotype diversity is methane hydrate formations in the deep subsurface. Current estimates indicate that seafloor hydrates may exceed 10,000 GtC at standard temperature and pressure conditions. However, only a handful of studies have investigated the potential for AOM in the deep subsurface associated with methane hydrates. To gain a better understanding of the distribution of methane- and sulfur- cycling ecotypes in biogeochemically distinct marine subsurface ecosystems, we generated a substantial library of 16S rRNA gene sequences for these uncultivable deep sea microorganisms using Illumina sequencing. Sediment strata were collected from the methane-hydrate associated deep subsurface of Hydrate Ridge (30 - 100 mbsf), hydrocarbon cold seeps of Monterey Bay, metalliferous sedimented hydrothermal vents of Juan de Fuca Ridge, and organic-rich hydrothermally influenced sediments of Guaymas Basin. We used the Illumina MiSeq sequencing platform to assess Archaeal and Bacterial richness in a total of 36 deep sea sediment samples followed by qPCR for quantification of ANME and SRB phylotype

  7. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  8. Introduction to special section on Colloid Transport in Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Saiers, James E.; Ryan, Joseph N.

    2006-12-01

    The Water Resources Research special section on Colloid Transport in Subsurface Environments presents new knowledge that is critical to solving problems related to groundwater pollution by microbial pathogens and hazardous chemicals. This introduction to the special section surveys fourteen manuscripts that advance current understanding of the transport of biocolloids (e.g., bacteria, viruses, and protozoa), mineral colloids, and colloid-associated contaminants in the vadose zone and in groundwater. These papers present new techniques for elucidating mechanisms that govern colloid mobility, propose mathematical models appropriate for quantifying colloid and colloid-associated contaminant transport, and report pore-scale and column-scale observations requisite for evaluating these models. Together, the papers of this special section illuminate the complexity of the colloid transport problem and describe progress toward understanding this complexity.

  9. Emerge - A Python environment for the modeling of subsurface transfers

    NASA Astrophysics Data System (ADS)

    Lopez, S.; Smai, F.; Sochala, P.

    2014-12-01

    The simulation of subsurface mass and energy transfers often relies on specific codes that were mainly developed using compiled languages which usually ensure computational efficiency at the expense of relatively long development times and relatively rigid software. Even if a very detailed, possibly graphical, user-interface is developed the core numerical aspects are rarely accessible and the smallest modification will always need a compilation step. Thus, user-defined physical laws or alternative numerical schemes may be relatively difficult to use. Over the last decade, Python has emerged as a popular and widely used language in the scientific community. There already exist several libraries for the pre and post-treatment of input and output files for reservoir simulators (e.g. pytough). Development times in Python are considerably reduced compared to compiled languages, and programs can be easily interfaced with libraries written in compiled languages with several comprehensive numerical libraries that provide sequential and parallel solvers (e.g. PETSc, Trilinos…). The core objective of the Emerge project is to explore the possibility to develop a modeling environment in full Python. Consequently, we are developing an open python package with the classes/objects necessary to express, discretize and solve the physical problems encountered in the modeling of subsurface transfers. We heavily relied on Python to have a convenient and concise way of manipulating potentially complex concepts with a few lines of code and a high level of abstraction. Our result aims to be a friendly numerical environment targeting both numerical engineers and physicist or geoscientists with the possibility to quickly specify and handle geometries, arbitrary meshes, spatially or temporally varying properties, PDE formulations, boundary conditions…

  10. Determining the Hydraulic Conductivity of the Subsurface in Wetland Environments

    NASA Astrophysics Data System (ADS)

    Berry, L. E.; Mutiti, S.; Hazzard, S.

    2011-12-01

    Slug tests are a popular method for determining hydraulic conductivity (K) of subsurface material and have the potential to be very accurate because of minimal disturbance to the subsurface. A variety of methods and piezometer construction are widely used for slug tests. Most wetland environments are composed of low K material such as silt or clay, which can make determination of hydrogeologic properties challenging. This study is part of a broader ongoing project to understand the functions of wetlands in Milledgeville, Georgia, a city in the Oconee River Basin (ORB), which straddles the Piedmont and the Coastal Plain. The ORB sits on saprolite and gneiss bedrock, and consequently, its wetlands exhibit a high concentration of clay materials. One site, the Oconee River Greenway, lies along the riverbanks of the Oconee. The second site, Andalusia Farm, is a historical site formerly belonging to writer, Flannery O'Connor. The objective of this study was to determine the best method and/or piezometer type for determining K values for low permeability wetland material. We also investigated the potential of using heat and pressure monitoring to determine horizontal and vertical extent of slug tests. The Greenway wetland has significant seasonal interflow through a relatively more permeable sandy layer. Borehole logs and electrical resistivity profiling were used to study the subsurface stratigraphy. Slug test results from different types of piezometers (borehole, drive point, partially screened and fully screened) were compared. Pressure transducers and HOBO thermisters were used to collect water depth, pressure and temperature data. These results were also compared to results from sediment analyses, in-situ permeameters and heat monitoring. Drive point and borehole piezometers with equal diameters produced comparable K estimates at each site. However, fully screened piezometers of either installation type produced higher K values than partially screened piezometers

  11. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    SciTech Connect

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as /sup 14/CO/sub 2/, /sup 14/CH/sub 4/, HT, and CH/sub 3/T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables.

  12. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  13. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  14. Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA.

    PubMed

    Rastogi, Gurdeep; Stetler, Larry D; Peyton, Brent M; Sani, Rajesh K

    2009-08-01

    A culture-independent molecular phylogenetic analysis was carried out to study the prokaryotic diversity in two soil samples collected from the subsurface (1.34 km depth) of the former Homestake gold mine, Lead, South Dakota, USA at two sites, the Ross shaft and number 6 Winze. Microbial community analyses were performed by cloning and sequencing of 16S rRNA genes retrieved directly from soil samples. Geochemical characterization of soils revealed high amount of toxic metals such as As, Cd, Co, Cr, Cu, Ni, Pb, Zn, and U at both the sites. Phylogenetic analyses showed that soil samples were predominantly composed of phylotypes related to phylum Proteobacteria. Other phyla detected in libraries were Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Verrucomicrobia, and candidate divisions OP10 and TM7. The majority (>95%) of the phylotypes retrieved in the libraries were most closely related to environmental sequences from yet-uncultured bacteria representing a hitherto unidentified diversity. The archaeal communities at both the sites exhibited lower diversity and were most closely affiliated to uncultivated species within the Crenarchaeota. Results showed the existence of diverse microbial populations in deep subsurface environment of the Homestake gold mine. Statistical analyses demonstrated that each site harbored phylogenetically distinct microbial populations that were more diverse at Ross site compare to winze site.

  15. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  16. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs.

    PubMed

    Liebensteiner, Martin G; Tsesmetzis, Nicolas; Stams, Alfons J M; Lomans, Bartholomeus P

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed.

  17. Diversity and community structure of archaea in deep subsurface sediments from the tropical Western pacific.

    PubMed

    Zhang, Wei; Saren, Gaowa; Li, Tiegang; Yu, Xinke; Zhang, Linbao

    2010-06-01

    Archaeal 16S rRNA gene clone libraries using PCR amplicons from eight different layers of the MD06-3051 core were obtained from the tropical Western Pacific sediments. A total of 768 clones were randomly selected, and 264 representative clones were sequenced by restriction fragment length polymorphism. Finally, 719 valid clones and 104 operational taxonomic units were identified after chimera-check and > or =97% similarity analysis. The phylogenetic analysis of 16S rDNA sequences obtained from sediment samples were very diverse and showed stratification with depth. Majority of the members were most closely related to uncultivated groups and physiologically uncharacterized assemblages. All phylotypes were affiliated with Crenarchaeota (76%) and Euryarchaeota (24%), respectively. Deep-sea archaeal group (DSAG, 41% of total clones) and miscellaneous crenarchaeotic group (MCG, 29% of total clones) belonging to Crenarchaeota were the most predominant archaeal 16S rDNA phylotypes in clone libraries. Phylotypes in this study shared high similarity with those in subsurface sediments from Peru Margin sites, which indicated that different geographical zones might host similar members of archaeal populations based on similar sedimentary environments. In our study, members of DSAG and MCG seemed to dominate certain layers of the nonhydrate sediments, suggesting a wide ecophysiological adaptation than previously appreciated. The spatial distribution and community structure of these groups might vary with the different geochemical gradients of the environment.

  18. Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer.

    PubMed

    Basso, Odile; Lascourreges, Jean-François; Le Borgne, François; Le Goff, Cyril; Magot, Michel

    2009-03-01

    The bacterial diversity of a subsurface water sample collected from a gas storage aquifer in an Upper Jurassic calcareous formation was investigated by culture of microorganisms and construction of a 16S rRNA gene library. Both culture and molecular techniques showed that members of the phyla Firmicutes and class delta-proteobacteria dominated the bacterial community. The presence of hydrogen-utilizing autotrophic bacteria including sulfate reducers (e.g. Desulfovibrio aespoeensis) and homoacetogens (e.g. Acetobacterium carbinolicum) suggested that CO(2) and H(2) are the main carbon and energy sources sustaining a nutrient-limited subsurface lithoautotrophic microbial ecosystem (SLiME). Gram-positive SRB belonging to the genus Desulfotomaculum, frequently observed in subsurface environments, represented 25% of the clone library and 4 distinct phylotypes. No Archaea were detected by both experimental approaches. Water samples were collected in an area of the rauracian geological formation located outside the maximum seasonal extension of underground gas storage. Considering the observed microbial diversity, there is no evidence of any influence on the microbial ecology of the aquifer in the surroundings of maximum extension reached by the gas bubble of the underground storage, which should have resulted from the introduction of exogenous carbon and energy sources in a nutrient-limited ecosystem.

  19. Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments.

    PubMed

    Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto

    2013-10-01

    We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Applicability of MICP in Subsurface and Fractured Environments (Invited)

    NASA Astrophysics Data System (ADS)

    Phillips, A. J.; Eldring, J.; Hiebert, R.; Lauchnor, E. G.; Mitchell, A.; Esposito, R.; Gerlach, R.; Cunningham, A. B.; Spangler, L.

    2013-12-01

    Subsurface leakage mitigation strategies using ureolytic biofilm- or microbially-induced calcium carbonate (CaCO3) precipitation (MICP) have been investigated for sealing high permeability regions, like fractures under subsurface relevant conditions. This technology may help in the deep subsurface to improve security of geologically stored carbon dioxide, seal subsurface hydraulic fractures, or enhance oil recovery. Sealing technologies using low-viscosity fluids, such as those used to promote MICP are advantageous since they may penetrate small aperture fractures not reachable by cement-based sealing technologies. MICP has also been researched by others for applications such as: consolidating porous materials, improving or repairing construction materials and remediating environmental concerns. Firstly, injection strategies to control saturation conditions and region-specific precipitation were developed in two-foot long sand-filled columns. Sporosarcina pasteurii biofilms were promoted and calcium and urea solutions were injected to stimulate mineralization. These injection strategies resulted in: 1) promoting homogeneous CaCO3 distribution along the flow path; 2) minimizing near-injection point plugging; and 3) enhancing precipitation efficiency by periodically reviving ureolytic activity. Secondly, the developed injection strategies were used to reduce permeability and ultimately twice seal a hydraulically fractured, 74 cm diameter (meso-scale) Boyles Sandstone core under ambient pressures. Thirdly, a novel high pressure test vessel was developed to study MICP at subsurface relevant pressures (up to 96 bar) (Figure 1). The fractured core's permeability was reduced by more than two orders of magnitude after promoting MICP under 44 bar of confining pressure. In a recent high pressure meso- scale MICP experiment, non-homogeneous, preferential flow paths were observed as cemented regions in a porous media sand pack. The preferential cementation was hypothesized to

  1. Microbial Transport and Fate in the Subsurface Environment: Introduction to the Special Section.

    PubMed

    Bradford, Scott A; Schijven, Jack; Harter, Thomas

    2015-09-01

    Microorganisms constitute an almost exclusive form of life in the earth's subsurface environment (not including caves), particularly at depths exceeding the soil horizon. While of broad interest to ecology and geology, scientific interest in the fate and transport of microorganisms, particularly those introduced through the anthropogenic environment, has focused on understanding the subsurface environment as a pathway for human pathogens and on optimizing the use of microbial organisms for remediation of potable groundwater. This special section, inspired by the 2014 Ninth International Symposium for Subsurface Microbiology, brings together recent efforts to better understand the spatiotemporal occurrence of anthropogenic microbial groundwater contamination and the fate and transport of microbes in the subsurface environment: in soils, deep unsaturated zones, and within aquifer systems. Work includes field reconnaissance, controlled laboratory studies to improve our understanding of specific fate and transport processes, and the development and application of improved mechanistic understanding of microbial fate and transport processes in the subsurface environment. The findings confirm and also challenge the limitations of our current understanding of highly complex microbial fate and transport processes across spatiotemporal scales in the subsurface environment; they also add to the increasing knowledge base to improve our ability to protect drinking water resources and perform in situ environmental remediation.

  2. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments

    PubMed Central

    Zhuang, Kai; Izallalen, Mounir; Mouser, Paula; Richter, Hanno; Risso, Carla; Mahadevan, Radhakrishnan; Lovley, Derek R

    2011-01-01

    The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies. PMID:20668487

  3. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments.

    PubMed

    Zhuang, Kai; Izallalen, Mounir; Mouser, Paula; Richter, Hanno; Risso, Carla; Mahadevan, Radhakrishnan; Lovley, Derek R

    2011-02-01

    The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies.

  4. Microbial Adaptations to Biosustainabilitiy in Deep-Subsurface Environments on Earth

    NASA Astrophysics Data System (ADS)

    Pratt, L. M.; Onstott, T. C.

    2005-12-01

    Exploration for life on Mars and icy moons in our solar system necessitates development of innovative techniques for life-detection followed by field testing in analogue environments on Earth. A collaborative international effort is underway to drill and sample within regions of persistent permafrost in northern Canada for the purpose of characterizing microbial ecosystems adapted to long-term cold conditions. In 2001 and 2002, Finnish and Canadian scientists installed an instrumented borehole array in a commercial gold mine with sampling valves at 890 and 1130 meters below the surface. Numerous water and gas samples from the Lupin borehole array have been analyzed for molecular and isotopic compositions of organic and inorganic chemical constituents. Boreholes with the lowest concentration of methane and largest 34S fractionation between dissolved sulfate and sulfide are the focus of microbiological sampling. Microbial diversity at Lupin is being assessed by culturing, sequencing, and direct detection of microbial reactions. Cell counts indicate a low biodensity, ranging from 100 to100,000 cells/ml. Phylogenetic analysis using 16S rDNA indicates low biodiversity with the planktonic biota dominated by a distinctive new phlyotype having 95-97% similarity to Thiohalobaccili. Similarly, the subsurface brines sampled at depths of 1500 to 3500 meters in the Witwatersrand basin of South Africa yield low biodensity and biodiversity with the dominant phylotype being a Desulfotomaculum-like organism that appears to represent a new species and new family. Microbes sampled in fracture water at kilometer depths below the surface are significantly different from surface extremophiles and show specific genetic adaptations to biosustainability in deep-subsurface environments.

  5. Environmental parameters controlling microbial activities in terrestrial subsurface environments

    SciTech Connect

    Kieft, T.L.

    1990-01-01

    This project was begun in July 1988 as part of Phase I of the Deep Microbiology Subprogram. At this time, the Subprogram was preparing for sampling near the Savannah River Site (SRS) from what was being termed the Investigator's Hole.'' This was the fourth hole drilled for sampling in the coastal plain sediments at a site near the SRS. Since there was a possibility of sampling from the saline Triassic basin in the deeper regions in this fourth hole, there was particular interest in quantifying halotolerant microorganisms from these samples and in determining the responses of subsurface microbes to a range of soft concentrations. Further interest in the soft tolerances of microbes from these coastal sediments arose from the fact that all of these sediments were deposited under marine conditions. It was also anticipated that samples would be available from the shallow unsaturated (vadose) zone at this site, so there was interest in quantifying microbial responses to matric water potential as well as solute water potential. The initial objectives of this research project were to: characterize microbial communities in a saline aquifer; determine the potential for microbial metabolism of selected organic compounds in a saline aquifers; characterize microbial communities in unsaturated subsurface materials (vadose zones); and determine the potential for microbial metabolism of selected organic compounds in unsaturated subsurface materials (vadose zones). Samples were collected from the borehole during a period extending from August to October 1988. A total of nine samples were express shipped to New Mexico Tech for analyses. These were all saturated zone samples from six different geological formations. Water contents and water potentials were measured at the time of sample arrival.

  6. Adaptive Mesh Refinement in Reactive Transport Modeling of Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Molins, S.; Day, M.; Trebotich, D.; Graves, D. T.

    2015-12-01

    Adaptive mesh refinement (AMR) is a numerical technique for locally adjusting the resolution of computational grids. AMR makes it possible to superimpose levels of finer grids on the global computational grid in an adaptive manner allowing for more accurate calculations locally. AMR codes rely on the fundamental concept that the solution can be computed in different regions of the domain with different spatial resolutions. AMR codes have been applied to a wide range of problem including (but not limited to): fully compressible hydrodynamics, astrophysical flows, cosmological applications, combustion, blood flow, heat transfer in nuclear reactors, and land ice and atmospheric models for climate. In subsurface applications, in particular, reactive transport modeling, AMR may be particularly useful in accurately capturing concentration gradients (hence, reaction rates) that develop in localized areas of the simulation domain. Accurate evaluation of reaction rates is critical in many subsurface applications. In this contribution, we will discuss recent applications that bring to bear AMR capabilities on reactive transport problems from the pore scale to the flood plain scale.

  7. Actinobacterial diversity across a marine transgression in the deep subsurface off Shimokita Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Harrison, B. K.; Bailey, J. V.

    2013-12-01

    Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.

  8. [Microbial diversity of deep-sea extremophiles--Piezophiles, Hyperthermophiles, and subsurface microorganisms].

    PubMed

    Kato, C; Takai, K

    2000-12-01

    Knowledge of our Planet's biosphere has increased tremendously during the last 10 to 20 years. In the field of Microbiology in particular, scientists have discovered novel "extremophiles", microorganisms capable of living in extreme environments such as highly acidic or alkaline conditions, at high salt concentration, with no oxygen, extreme temperatures (as low as -20 degrees C and as high as 300 degrees C), at high concentrations of heavy metals and in high pressure environments such as the deep-sea. It is apparent that microorganisms can exist in any extreme environment of the Earth, yet already scientists have started to look for life on other planets; the so-called "Exobiology" project. But as yet we have little knowledge of the deep-sea and subsurface biosphere of our own planet. We believe that we should elucidate the Biodiversity of Earth more thoroughly before exploring life on other planets, and these attempts would provide deeper insight into clarifying the existence of extraterrestrial life. We focused on two deep-sea extremophiles in this article; one is "Piezophiles", and another is "Hyperthermophiles". Piezophiles are typical microorganisms adapted to high-pressure and cold temperature environments, and located in deep-sea bottom. Otherwise, hyperthermophiles are living in high temperature environment, and located at around the hydrothermal vent systems in deep-sea. They are not typical deep-sea microorganisms, but they can grow well at high-pressure condition, just like piezophiles. Deming and Baross mentioned that most of the hyperthermophilic archaea isolated from deep-sea hydrothermal vents are able to grow under conditions of high temperature and pressure, and in most cases their optimal pressure for growth was greater than the environmental pressure they were isolated from. It is possible that originally their native environment may have been deeper than the sea floor and that there had to be a deeper biosphere. This implication suggests that

  9. Computer modeling and experimental work on the astrobiological implications of the martian subsurface ionising radiation environment

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.

    Any microbial life extant in the top meters of the martian subsurface is likely to be held dormant for long periods of time by the current permafrost conditions. In this potential habitable zone, a major environmental hazard is the ionising radiation field generated by the flux of exogenous energetic particles: solar energetic protons and galactic cosmic rays. The research reported here constitutes the first multidisciplinary approach to assessing the astrobiological impact of this radiation on Mars. A sophisticated computer model has been constructed de novo to characterise this complex subsurface ionising radiation field and explore the influence of variation in crucial parameters such as atmospheric density, surface composition, and primary radiation spectra. Microbiological work has been conducted to isolate novel cold-tolerant bacterial strains from the Dry Valleys environment of Antarctica, an analogue site to the martian surface, and determine their phylogenetic diversity and survival under high-dose gamma-ray exposure frozen at -79 °C, a temperature characteristic of the martian mid-latitude permafrost. Original results are presented pertinent to microbial survival time, persistence of organic biomarkers, and calibration of the optically stimulated luminescence dating technique, as a function of depth. The model predicts a population of radiation resistant cells to survive in martian permafrost soil for 450,000 years at 2 m depth, the proposed drill length of the ExoMars rover. The Antarctic culturing studies identified representatives of four bacterial genera. The novel isolate Brevundimonas sp. MV.7 is found to show 99% 16S sequence similarity to cells discovered in NASA spacecraft assembly clean rooms, with the experimental irradiation determining this strain to suffer 10-6 population inactivation after a radiation dose of 7.5 kGy in martian permafrost conditions. Integrating the modelling and experimental irradiation, this research finds a contaminant

  10. Exploring Genomic Diversity Using Metagenomics of Deep-Sea Subsurface Microbes from the Louisville Seamount and the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Tully, B. J.; Sylvan, J. B.; Heidelberg, J. F.; Huber, J. A.

    2014-12-01

    There are many limitations involved with sampling microbial diversity from deep-sea subsurface environments, ranging from physical sample collection, low microbial biomass, culturing at in situ conditions, and inefficient nucleic acid extractions. As such, we are continually modifying our methods to obtain better results and expanding what we know about microbes in these environments. Here we present analysis of metagenomes sequences from samples collected from 120 m within the Louisville Seamount and from the top 5-10cm of the sediment in the center of the south Pacific gyre (SPG). Both systems are low biomass with ~102 and ~104 cells per cm3 for Louisville Seamount samples analyzed and the SPG sediment, respectively. The Louisville Seamount represents the first in situ subseafloor basalt and the SPG sediments represent the first in situ low biomass sediment microbial metagenomes. Both of these environments, subseafloor basalt and sediments underlying oligotrophic ocean gyres, represent large provinces of the seafloor environment that remain understudied. Despite the low biomass and DNA generated from these samples, we have generated 16 near complete genomes (5 from Louisville and 11 from the SPG) from the two metagenomic datasets. These genomes are estimated to be between 51-100% complete and span a range of phylogenetic groups, including the Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, and unclassified bacterial groups. With these genomes, we have assessed potential functional capabilities of these organisms and performed a comparative analysis between the environmental genomes and previously sequenced relatives to determine possible adaptations that may elucidate survival mechanisms for these low energy environments. These methods illustrate a baseline analysis that can be applied to future metagenomic deep-sea subsurface datasets and will help to further our understanding of microbiology within these environments.

  11. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  12. Watershed-scale fungal community characterization along a pH gradient in a subsurface environment cocontaminated with uranium and nitrate.

    PubMed

    Jasrotia, Puja; Green, Stefan J; Canion, Andy; Overholt, Will A; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2014-03-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  13. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  14. Continental subsurface waters support unique but diverse C-acquisition strategies

    NASA Astrophysics Data System (ADS)

    Lau, C. M.; Magnabosco, C.; Brown, C. T.; Grim, S. L.; Lacrampe Couloume, G.; Wilkie, K. M.; Sherwood Lollar, B.; Simkus, D.; Slater, G. F.; Hendrickson, S.; Pullin, M. J.; Kieft, T. L.; Li, L.; Snyder, L.; Kuloyo, O.; Linage, B.; Borgonie, G.; Vermeulen, J.; Maleke, M.; Tlalajoe, N.; Moloantoa, K.; van Heerden, E.; Vermeulen, F.; Pienaar, M.; Munro, A.; Joubert, L.; Ackerman, J.; van Jaarsveld, C.; Onstott, T. C.

    2013-12-01

    Terrestrial subsurface environments generally support two orders of magnitude fewer microorganisms than submarine environments where energy and C sources are more abundant. However, our research on the geochemistry and stable isotopes has suggested that the microbial communities residing in the continental subsurface waters, aged more than thousands of years, do not live by a monotypic metabolic network across sites. We evaluated the taxonomic and functional diversity of microbial communities from three localities in South Africa and their relationship to the environmental parameters associated with each fracture water. The borehole at Tau Tona Au mine (TT107; 3,100 mbls), Masimong Au mine (MM5; 1,900 mbls) and Zondereinde Pt mine (NO14; 2,100 mbls) contain saline fracture water of paleometeroic origin but the anaerobic ecosystems were driven by distinctive C-assimilation strategies. Archaea and Bacteria are present in all samples with the latter being dominant (>75%). The similarity between the Δ14C and δ13C-PLFA with those of the DIC indicates that the majority of cellular C in the TT107 sample was derived from the DIC (0.6 mM), even though dissolved CH4 (8.8 mM) is more available. The DIC may have supported a wide variety of chemoautotrophs including the predominant firmicutes, e.g. Thermincola sp. and Ca. Desulforudis audaxviator. Interestingly, a considerable percentage of sequences related to oligotrophic α-proteobacteria Caulobacter sp. was detected, which warrants further investigation as the aerobic heterotrophic microorganism has a unique dimorphic life cycle. For the MM5 sample, the δ13C and δ2H of the CH4 indicate it was produced via CO2 reduction from DIC, which is consistent with the relatively high abundance of hydrogenotrophic methanogen Methanothermobacter sp. that scavenged the abiogenic H2 and utilized the DIC (0.43 mM) leading to its enriched δ13C signature. In contrast to the TT107 sample, the much-depleted δ13C-CH4 indicates that the

  15. Radon transport from the subsurface: The roles of certain boundary conditions at subsurface/environment boundaries

    SciTech Connect

    Owczarski, P.C.; Holford, D.J.; Gee, G.W.; Freeman, H.D.; Burk, K.W.

    1990-12-01

    The effects of wind on radon transport from its soil source to the environment are examined in two situations. In the first situation, the removal of radon from the soil-air interface was found to be partially rate limiting in conditions of nearly stagnant air (low wind). This gas-phase mass transfer limitation became especially important when high exhaling advective velocities or high diffusion fluxes to the air existed. A detailed mathematical formulation for one-dimensional steady-state radon transport from the soil to the air using an air side mass transfer coefficient was developed for this analysis. In the second situation, the Rn3D computer code was used to estimate radon concentration profiles in soils beneath a two-dimensional slab-on-grade dwelling subjected to wind pressures. Of five generic dry homogeneous soils studied (gravel, sand, silt, loam and clay), only gravel showed significant changes in subslab concentrations as a results of wind pressures. 7 refs., 6 figs., 4 tabs.

  16. Effective sensing approach for assessment and monitoring of in-situ biodegradation in a subsurface environment

    NASA Astrophysics Data System (ADS)

    Li, Dong X.

    1999-02-01

    Rapid assessment and monitoring of biological conditions in a subsurface environment is becoming more and more important as bioremediation approaches become widely used in environmental cleanup. Remediation monitoring is also more challenging for in-situ remedial approaches, such as bioventing, biosparging, or passive bioremediation, where conventional 'inlet' and 'outlet' monitoring can no longer be applied. A sensing approach using subsurface chemical sensors offers a cost- effective alternative for remediation monitoring. Additional benefits of deploying subsurface sensors include continuous and unattended measurement with minimum disturbance to the subsurface condition. In a series of field studies, an electrochemical oxygen sensor, a non-dispersive infrared (NDIR) carbon dioxide sensor, and two hydrocarbons sensors were employed for monitoring in-situ bioremediation of petroleum hydrocarbon contaminated soils. Biodegradation rates were effectively measured through an in-situ respiration measurement using subsurface oxygen and carbon dioxide sensors. The high sensitivity of the carbon dioxide sensor to small change in the concentration enables rapid respiration measurements. Subsurface hydrocarbon sensors offer a means to monitor the progress of remediation and the migration of contaminant vapors during the remediation. The chemical sensors tested are clearly cost effective for remediation monitoring. The strengths of oxygen and carbon dioxide sensors are complimentary to each other. Strengths and limitations of different hydrocarbon sensors were also noted. Balancing cost and performance of sensors is crucial for environmental remediation application.

  17. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  18. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill

  19. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  20. Microbial functional gene diversity with a shift of subsurface redox conditions during In Situ uranium reduction.

    PubMed

    Liang, Yuting; Van Nostrand, Joy D; N'guessan, Lucie A; Peacock, Aaron D; Deng, Ye; Long, Philip E; Resch, C Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C; Lovley, Derek R; Zhou, Jizhong

    2012-04-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (E(h)) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.

  1. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques

  2. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments

    SciTech Connect

    Aklujkar, Muktak; Young, Nelson D; Holmes, Dawn; Chavan, Milind; Risso, Carla; Kiss, Hajnalka; Han, Cliff; Land, Miriam L; Lovley, Derek

    2010-01-01

    Background. Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results. Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion. Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in

  3. Microbial biomass and activities associated with subsurface environments contaminated with chlorinated hydrocarbons

    SciTech Connect

    Phelps, T.J.; Ringelberg, D.; Hedrick, D.; Davis, J.; Fliermans, C.B. )

    1988-01-01

    Soil microcosms and enrichment cultures from subsurface sediments and ground waters contaminated with trichloroethylene (TCE) were examined. Total lipids, (1-C{sub 14})acetate incorporation into lipids, and (Me{sup 3}H)thymidine incorporation into DNA were determined in these subsurface environments. In heavily TCE-contaminated zones radioisotopes were not incorporated into lipids or DNA. Radioisotope incorporation occurred in sediments both above and below the TCE plume. Phospholipid fatty acids (PLFA) were not detected, i.e., < 0.5 pmol/L in heavily contaminated groundwater samples. In less contaminated waters, extracted PLFA concentrations were greater than 100 pmol/L and microbial isolates were readily obtained. Degradation of 30-100 mg/L TCE was observed when sediments were amended with a variety of energy sources. Microorganisms in these subsurface sediments have adapted to degrade TCE at concentrations greater than 50 mg/L. 34 refs., 4 figs., 4 tabs.

  4. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand.

    PubMed

    Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa

    2009-04-15

    Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.

  5. Biogenic smectite clay formation in subsurface granitic environments

    NASA Astrophysics Data System (ADS)

    Tuck, V.; Edyvean, R.; West, J.; Bateman, K.; Coombs, P.; Milodowski, A.

    2003-04-01

    Many bacteria and biofilms in groundwater environments are able to adsorb and accumulate soluble components from an aqueous environment and exert a strong influence on the attenuation and transport of a significant range of dissolved species including many pollutants. They can also act as catalysts or nucleation sites for authigenic mineral phases such as metal sulphides or complex silicates. The processes involved are not well defined, but appear to range from large-scale interactions altering bulk groundwater chemistry to very small-scale interactions involving geochemical and physical alterations within biofilms and at the mineral surface. The purpose of this research program is to investigate biologically-induced and unusually rapid formation of smectite and chlorite clays. The work expands on experiments conducted by the British Geological Survey designed to simulate rock-water/microbial interactions, radionuclide mobility and groundwater redox-buffering capacity in the vicinity of the Äspö Underground Research Laboratory (URL) in Sweden. Packed-columns were set up containing crushed Äspö granodiorite, saline groundwater (simulating Äspö’s) and either single or combined inoculations of two bacteria species isolated from the Äspö URL, an iron-reducer Shewanella putrefaciens and a sulphate-reducer Desulfovibrio aespoeensis. Flow was maintained at 12ml/day to mimic that in the Äspö region, and strict anaerobic/reducing conditions were maintained throughout the experiments. Results showed that the iron-reducing bacteria S. putrefaciens quickly attached to surfaces and formed extensive filamentous biofilm meshes across porespaces. Neoformed smectite and chlorite clays also appeared on or near the biofilaments along with a calcium sulphate precipitate. Both of these processes (clay formation and the production of a mesh-like biofilm) served to cause total blockage of the pores, rendering the aggregate impermeable and thus cutting off the flow of

  6. Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water.

    PubMed

    Wouters, Katinka; Moors, Hugo; Boven, Patrick; Leys, Natalie

    2013-12-01

    The Boom Clay in Belgium is investigated in the context of geological nuclear waste disposal, making use of the High Activity Disposal Experimental Site (HADES) underground research facility. This facility, located in the Boom Clay at a depth of 225 m below the surface, offers a unique access to a microbial community in an environment, of which all geological and geochemical characteristics are being thoroughly studied. This study presents the first elaborate description of a microbial community in water samples retrieved from a Boom Clay piezometer (borehole water). Using an integrated approach of microscopy, metagenomics, activity screening and cultivation, the presence and activity of this community are disclosed. Despite the presumed low-energy environment, microscopy and molecular analyses show a large bacterial diversity and richness, tending to correlate positively with the organic matter content of the environment. Among 10 borehole water samples, a core bacterial community comprising seven bacterial phyla is defined, including both aerobic and anaerobic genera with a range of metabolic preferences. In addition, a corresponding large fraction of this community is found cultivable and active. In conclusion, this study shows the possibility of a microbial community of relative complexity to persist in subsurface Boom Clay borehole water. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments.

    PubMed

    Nesbø, Camilla L; S Swithers, Kristen; Dahle, Håkon; Haverkamp, Thomas H A; Birkeland, Nils-Kåre; Sokolova, Tatiana; Kublanov, Ilya; Zhaxybayeva, Olga

    2015-07-01

    Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the 'burial and isolation' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.

  8. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-06-01

    The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  9. Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms from the Western Flank of the Mid-Atlantic Ridge

    PubMed Central

    Zhang, Xinxu; Feng, Xiaoyuan; Wang, Fengping

    2016-01-01

    Deep-sea oceanic crust constitutes the largest region of the earth’s surface. Accumulating evidence suggests that unique microbial communities are supported by iron cycling processes, particularly in the young (<10 million-year old), cool (<25°C) subsurface oceanic crust. To test this hypothesis, we investigated the microbial abundance, diversity, and metabolic potentials in the sediment-buried crust from “North Pond” on western flank of the Mid-Atlantic Ridge. Three lithologic units along basement Hole U1383C were found, which typically hosted ∼104 cells cm-3 of basaltic rock, with higher cell densities occurring between 115 and 145 m below seafloor. Similar bacterial community structures, which are dominated by Gammaproteobacterial and Sphingobacterial species closely related to iron oxidizers, were detected regardless of variations in sampling depth. The metabolic potentials of the crust microbiota were assayed by metagenomic analysis of two basalt enrichments which showed similar bacterial structure with the original sample. Genes coding for energy metabolism involved in hydrocarbon degradation, dissimilatory nitrate reduction to ammonium, denitrification and hydrogen oxidation were identified. Compared with other marine environments, the metagenomes from the basalt-hosted environments were enriched in pathways for Fe3+ uptake, siderophore synthesis and uptake, and Fe transport, suggesting that iron metabolism is an important energy production and conservation mechanism in this system. Overall, we provide evidence that the North Pond crustal biosphere is dominated by unique bacterial groups with the potential for iron-related biogeochemical cycles. PMID:27047476

  10. Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms from the Western Flank of the Mid-Atlantic Ridge.

    PubMed

    Zhang, Xinxu; Feng, Xiaoyuan; Wang, Fengping

    2016-01-01

    Deep-sea oceanic crust constitutes the largest region of the earth's surface. Accumulating evidence suggests that unique microbial communities are supported by iron cycling processes, particularly in the young (<10 million-year old), cool (<25°C) subsurface oceanic crust. To test this hypothesis, we investigated the microbial abundance, diversity, and metabolic potentials in the sediment-buried crust from "North Pond" on western flank of the Mid-Atlantic Ridge. Three lithologic units along basement Hole U1383C were found, which typically hosted ∼10(4) cells cm(-3) of basaltic rock, with higher cell densities occurring between 115 and 145 m below seafloor. Similar bacterial community structures, which are dominated by Gammaproteobacterial and Sphingobacterial species closely related to iron oxidizers, were detected regardless of variations in sampling depth. The metabolic potentials of the crust microbiota were assayed by metagenomic analysis of two basalt enrichments which showed similar bacterial structure with the original sample. Genes coding for energy metabolism involved in hydrocarbon degradation, dissimilatory nitrate reduction to ammonium, denitrification and hydrogen oxidation were identified. Compared with other marine environments, the metagenomes from the basalt-hosted environments were enriched in pathways for Fe(3+) uptake, siderophore synthesis and uptake, and Fe transport, suggesting that iron metabolism is an important energy production and conservation mechanism in this system. Overall, we provide evidence that the North Pond crustal biosphere is dominated by unique bacterial groups with the potential for iron-related biogeochemical cycles.

  11. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment.

    PubMed

    Bose, Purnendu; Sharma, Archana

    2002-11-01

    Widespread arsenic contamination of groundwater has been reported of late in Bangladesh and West Bengal state of India. On the basis of arsenic geochemistry, three probable mechanisms have been cited for arsenic mobility in aquifers of West Bengal and Bangladesh. First, mobilization of arsenic due to the oxidation of arsenic-bearing pyrite minerals. Second, dissolution of arsenic-contaminated iron oxy-hydroxides (FeOOH) due to onset of reducing conditions in the subsurface. Third, due to the release of arsenic sorbed to aquifer minerals by competitive exchange with phosphate ions, that migrates into aquifers due to application of fertilizer to surface soil. Based on the review of field data from the affected region, it appears that the second mechanism described above is the most probable. Two reduction processes associated with this mechanism were investigated, viz., reduction of iron oxy-hydroxide to iron (II), which results in the mobilization of arsenic, and reduction of arsenic (V) to arsenic (III), which may enhance mobility of arsenic under certain conditions. These reactions, in the opinion of some researchers, are possible in subsurface environments mainly through microbial intervention. However, through the data presented in this paper, it has been demonstrated that above red-ox reactions involving iron and arsenic are also possible through predominantly abiotic pathways. While these results do not necessarily imply that abiotic red-ox processes are dominant in all subsurface environments containing iron and arsenic, it is entirely possible that abiotic interactions as described here may be responsible for a substantial amount of transformations involving iron and arsenic in anoxic subsurface environments.

  12. [Microbial activity and functional diversity in rhizosphere of cucumber under different subsurface drip irrigation scheduling].

    PubMed

    Li, Hua; He, Hong-Jun; Li, Teng-Fei; Zhang, Zi-Kun

    2014-08-01

    The effects of subsurface drip irrigation scheduling on microbial activity and functional diversity in rhizosphere of cucumber in solar greenhouse were studied in this paper. The results showed that the soil microbial biomass C and N, basal respiration, metabolic quotient and values of AWCD, Shannon and McIntosh indexes were increased at first and then decreased with the increase of irrigation water amount. The values of microbial C and N, basal respiration and metabolic quotient in I2 treatments were significantly higher than those in I1 treatments at the 0.8E(p) irrigation level. The numbers of bacteria, actinomyces and nitrogen-fixing bacteria, and the activities of urease, phosphatase, sucrase, catalase and polyhenoloxidase were significantly higher in the 0.8E(p) treatment than in the other treatments. The numbers of bacteria and nitrogen-fixing bacteria, the activities of urease, phosphatase and sucrase in I2 treatments were significantly higher than in I1 treatment, the actinomyces number and activities of catalase and polyhenoloxidase had no significant difference between I1 and I2 treatments, however, the fungi number in I2 treatments were significantly lower than in I2 treaments at the 0.8E(p) irrigation level. The microbial activity and functional diversity in rhizosphere of cucumber were strengthened in the I20.8E(p) treatment, meanwhile, the soil microflora was improved and the soil enzymes activities were enhanced, therefore, the cucumber growth was promoted as well.

  13. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm

    NASA Astrophysics Data System (ADS)

    Church, Jonathan R.

    New condensed matter metrologies are being used to probe ever smaller length scales. In support of the diverse field of materials research synchrotron based spectroscopies provide sub-micron spatial resolutions and a breadth of photon wavelengths for scientific studies. For electronic materials the thinnest layers in a complementary metal-oxide-semiconductor (CMOS) device have been reduced to just a few nanometers. This raises concerns for layer uniformity, complete surface coverage, and interfacial quality. Deposition processes like chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been shown to deposit the needed high-quality films for the requisite thicknesses. However, new materials beget new chemistries and, unfortunately, unwanted side-reactions and by-products. CVD/ALD tools and chemical precursors provided by our collaborators at Air Liquide utilized these new chemistries and films were deposited for which novel spectroscopic characterization methods were used. The second portion of the thesis focuses on fading and decomposing paint pigments in iconic artworks. Efforts have been directed towards understanding the micro-environments causing degradation. Hard X-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy X-ray photoelectron spectroscopy (VKE-XPS) are advanced XPS techniques capable of elucidating both chemical environments and electronic band structures in sub-surface regions of electronic materials. HAXPES has been used to study the electronic band structure in a typical CMOS structure; it will be shown that unexpected band alignments are associated with the presence of electronic charges near a buried interface. Additionally, a computational modeling algorithm, Bayes-Sim, was developed to reconstruct compositional depth profiles (CDP) using VKE-XPS data sets; a subset algorithm also reconstructs CDP from angle-resolved XPS data. Reconstructed CDP produced by Bayes-Sim were most strongly correlated to the real

  14. Diversity: creating an environment of inclusiveness.

    PubMed

    Swanson, Jane W

    2004-01-01

    Diversity is a concept that most organizations espouse but find challenging to put into practice. It is especially critical for healthcare organizations to be responsive in addressing issues of diversity related to not only employees but also clients. This article identifies the following 3 areas that must be addressed if an organization is to succeed in creating an environment where diversity and inclusiveness are honored: (1) organizations and their leaders need to be aware of their reactions "those who are different" in their organization. This awareness is critical in identifying the underlying obstacles that prevent a truly inclusive workplace; (2) organizations and their leaders need to be able to expand their perspectives allowing them to not only understand but appreciate others. These expanded perspectives can provide a potentially powerful tool for both problem solving and conflict resolution; (3) if organizations and their leaders are actively engaged in exploring options and are open to alternatives, they will find that they not only succeed in creating an environment of inclusiveness but also are in a better position to meet the needs of employees, patients, and a multicultural society.

  15. Microbial Fossils from Terrestrial Subsurface Hydrothermal Environments: Examples and Implications for Mars

    NASA Technical Reports Server (NTRS)

    Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).

  16. Microbial Fossils from Terrestrial Subsurface Hydrothermal Environments: Examples and Implications for Mars

    NASA Technical Reports Server (NTRS)

    Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).

  17. Does the Cave Environment Reduce Functional Diversity?

    PubMed Central

    Fernandes, Camile Sorbo; Batalha, Marco Antonio; Bichuette, Maria Elina

    2016-01-01

    Caves are not colonised by all taxa present in the surface species pool, due to absence of light and the tendency to food limitation when compared to surface communities. Under strong species sorting during colonisation and later by the restrictive environmental filter, traits that are not adaptive in subterranean habitats may be filtered out. We tested whether cave communities were assembled by the restrictive regime propitiated by permanent darkness or by competitive exclusion due to resource scarcity. When compared to surface communities, the restrictive subterranean regime would lead to lower functional diversity and phenotypic clustering inside the caves, and the opposite should be expected in the case of competitive exclusion. Using isopods (Oniscidea) as model taxa, we measured several niche descriptors of taxa from surface and cave habitats, used a multivariate measure of functional diversity, and compared their widths. We found phenotypic overdispersion and higher functional diversity in cave taxa when compared to surface taxa. On the one hand, the dry climate outside of caves hampered the survival of several taxa and their ecological strategies, not viable under severe desiccation risk, culminating in the clustering of functional traits. In contrast, this restriction does not occur inside of caves, where isopods find favourable conditions under lower predation pressures and more amenable environmental parameters that allow occupation and subsequent diversification. Our results showed that, at least for some taxa, caves may not be such a harsh environment as previously thought. The high functional diversity we found inside caves adds an additional reason for the conservation of these sensitive environments. PMID:27003837

  18. Does the Cave Environment Reduce Functional Diversity?

    PubMed

    Fernandes, Camile Sorbo; Batalha, Marco Antonio; Bichuette, Maria Elina

    2016-01-01

    Caves are not colonised by all taxa present in the surface species pool, due to absence of light and the tendency to food limitation when compared to surface communities. Under strong species sorting during colonisation and later by the restrictive environmental filter, traits that are not adaptive in subterranean habitats may be filtered out. We tested whether cave communities were assembled by the restrictive regime propitiated by permanent darkness or by competitive exclusion due to resource scarcity. When compared to surface communities, the restrictive subterranean regime would lead to lower functional diversity and phenotypic clustering inside the caves, and the opposite should be expected in the case of competitive exclusion. Using isopods (Oniscidea) as model taxa, we measured several niche descriptors of taxa from surface and cave habitats, used a multivariate measure of functional diversity, and compared their widths. We found phenotypic overdispersion and higher functional diversity in cave taxa when compared to surface taxa. On the one hand, the dry climate outside of caves hampered the survival of several taxa and their ecological strategies, not viable under severe desiccation risk, culminating in the clustering of functional traits. In contrast, this restriction does not occur inside of caves, where isopods find favourable conditions under lower predation pressures and more amenable environmental parameters that allow occupation and subsequent diversification. Our results showed that, at least for some taxa, caves may not be such a harsh environment as previously thought. The high functional diversity we found inside caves adds an additional reason for the conservation of these sensitive environments.

  19. Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments

    PubMed Central

    Nesbø, Camilla L; S Swithers, Kristen; Dahle, Håkon; Haverkamp, Thomas HA; Birkeland, Nils-Kåre; Sokolova, Tatiana; Kublanov, Ilya; Zhaxybayeva, Olga

    2015-01-01

    Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the ‘burial and isolation' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development. PMID:25500512

  20. A biogeochemical framework for bioremediation of plutonium(V) in the subsurface environment.

    PubMed

    Deo, Randhir P; Rittmann, Bruce E

    2012-07-01

    Accidental release of plutonium (Pu) from storage facilities in the subsurface environment is a concern for the safety of human beings and the environment. Given the complexity of the subsurface environment and multivalent state of Pu, we developed a quantitative biogeochemical framework for bioremediation of Pu(V)O(2) (+) in the subsurface environment. We implemented the framework in the biogeochemical model CCBATCH by expanding its chemical equilibrium for aqueous complexation of Pu and its biological sub-models for including Pu's toxicity and reduction reactions. The quantified framework reveals that most of the Pu(V) is speciated as free Pu(V)O(2) (+) ((aq)), which is a problem if the concentration of free Pu(V)O(2) (+) is ≥28 μM (the half-maximum toxicity value for bacteria able to reduce Pu(V) to Pu(III)PO(4(am))) or ≥250 μM (the full-toxicity value that takes the bioreduction rate to zero). The framework includes bioreduction of Fe(3+) to Fe(2+), which abiotically reduces Pu(V)O(2) (+) to Pu(IV) and then to Pu(III). Biotic (enzymatic) reduction of Pu(V)O(2) (+) directly to Pu(III) by Shewanella alga (S. alga) is also included in the framework. Modeling results also reveal that for formation of Pu(III)PO(4(am)), the desired immobile product, the concentration of coexisting model strong ligand-nitrilotriacetic acid (NTA)-should be less than or equal to the concentration of total Pu(III).

  1. Isolation of Geobacter species from diverse sedimentary environments

    USGS Publications Warehouse

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  2. Experimental investigations of the entrapment and persistence of organic liquid contaminants in the subsurface environment.

    PubMed Central

    Abriola, L M; Bradford, S A

    1998-01-01

    Organic liquids are common polluters of the subsurface environment. Once released, these nonaqueous phase liquids (NAPLs) tend to become entrapped within soils and geologic formations where they may serve as long-term contaminant reservoirs. The interphase mass transfer from such entrapped residuals will ultimately control environmental exposure levels as well as the persistence and/or remedial recovery of these contaminants in the subsurface. This paper summarizes National Institute of Environmental Health Sciences-sponsored research designed to investigate and quantify NAPL entrapment and interphase mass transfer in natural porous media. Results of soil column and batch experiments are presented that highlight research findings over the past several years. These experiments explore dissolution and volatilization of hydrocarbons and chlorinated solvents in sandy porous media. Initial concentration levels and long-term recovery rates are shown to depend on fluid flow rate, soil structure, NAPL composition, and soil wetting characteristics. These observations are explained in the context of conceptual models that describe entrapped NAPL morphology and boundary layer transport. The implications of these laboratory findings on the subsurface persistence and recovery of entrapped NAPLs are discussed. Images Figure 1 Figure 3 Figure 9 PMID:9703497

  3. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  4. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust.

    PubMed

    Robador, Alberto; Jungbluth, Sean P; LaRowe, Douglas E; Bowers, Robert M; Rappé, Michael S; Amend, Jan P; Cowen, James P

    2014-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with (35)S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling.

  5. Laboratory and Field Evidence for Long-Term Starvation Survival of Microorganisms in Subsurface Terrestrial Environments

    SciTech Connect

    Kieft, T.L.; Murphy, E.M.; Amy, P.S.; Haldeman, D.L.; Ringelberg, D. B. |

    1997-12-31

    BIOGEOCHEMICAL MODELING OF GROUNDWATER FLOW AND NUTRIENT FLUX IN SUBSURFACE ENVIRONMENTS INDICATES THAT INHABITANT MICROORGANISMS EXPERIENCE SEVERE NUTRIENT LIMITATION. USING LABORATORY AND FIELD METHODS, WE HAVE BEEN TESTING STARVATION SURVIVAL IN SUBSURFACE MICROORGANISMS. IN MICROCOSM EXPERIMENTS, WE HAVE SHOWN THAT STRAINS OF TWO COMMONLY ISOLATED SUBSURFACE GENERA, ARTHROBACTER AND PSEUDOMONAS, ARE ABLE TO MAINTAIN VIABILITY IN LOW-NUTRIENT, NATURAL SUBSURFACE SEDIMENTS FOR OVER ONE YEAR. THESE NON-SPORE-FORMING BACTERIA UNDERGO RAPID INITIAL MINIATURIZATION FOLLOWED BY A STABILIZATION OF CELL SIZE. MEMBRANE LIPID PHOSPHOLIPID FATTY ACID (PLFA) PROFILES OF THE PSEUDOMONAS ARE CONSISTENT WITH ADAPTATION TO NUTRIENT STRESS; ARTHROBACTER APPARENTLY RESPONDS TO NUTRIENT DEPRIVATION WITHOUT ALTERING MEMBRANE PLFA. TO TEST SURVIVABILITY OF MICROORGANISMS OVER A GEOLOGIC TIME SCALE, WE CHARACTERIZED MICROBIAL COMMUNITIES IN A SEQUENCE OF UNSATURATED SEDIMENTS RANGING IN AGE FROM MODEM TO {gt}780,000 years. Sediments were relatively uniform silts in Eastern Washington State. Porewater ages at depth (measured by the chloride mass-balance approach) were as old as 3,600 years. Microbial abundance, biomass, and activities (measured by direct counts, culture counts, total PLFAs, and radiorespirometry) declined with sediment age. The pattern is consistent with laboratory microcosm studies of Microbial survival: rapid short-term change followed by long-term survival of a proportion of cells. Even the oldest sediments evinced a small but viable Microbial community. Microbial survival appeared to be a function of sediment age. Porewater age appeared to influence the markup of surviving communities, as indicated by PLFA profiles. Sites with different Porewater recharge rates and patterns of Pleistocene flooding had different communities.

  6. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield

    PubMed Central

    Hubalek, Valerie; Wu, Xiaofen; Eiler, Alexander; Buck, Moritz; Heim, Christine; Dopson, Mark; Bertilsson, Stefan; Ionescu, Danny

    2016-01-01

    Little research has been conducted on microbial diversity deep under the Earth's surface. In this study, the microbial communities of three deep terrestrial subsurface aquifers were investigated. Temporal community data over 6 years revealed that the phylogenetic structure and community dynamics were highly dependent on the degree of isolation from the earth surface biomes. The microbial community at the shallow site was the most dynamic and was dominated by the sulfur-oxidizing genera Sulfurovum or Sulfurimonas at all-time points. The microbial community in the meteoric water filled intermediate aquifer (water turnover approximately every 5 years) was less variable and was dominated by candidate phylum OD1. Metagenomic analysis of this water demonstrated the occurrence of key genes for nitrogen and carbon fixation, sulfate reduction, sulfide oxidation and fermentation. The deepest water mass (5000 year old waters) had the lowest taxon richness and surprisingly contained Cyanobacteria. The high relative abundance of phylogenetic groups associated with nitrogen and sulfur cycling, as well as fermentation implied that these processes were important in these systems. We conclude that the microbial community patterns appear to be shaped by the availability of energy and nutrient sources via connectivity to the surface or from deep geological processes. PMID:27022994

  7. Reconstruction of the thermal environment evolution from subsurface temperature distribution in large cities in East Asia

    NASA Astrophysics Data System (ADS)

    Hamamoto, H.; Goto, S.; Vuthy, M.; Nishijima, J.; Yamano, M.; Taniguchi, M.; Miyakoshi, A.; Hachinohe, S.; Sasaka, K.; Shiraishi, H.

    2009-12-01

    Temperature changes at the ground surface propagate into the underground and disturb the subsurface temperature structure. Analyzing disturbances in the subsurface temperature structure, we can reconstruct the past ground surface temperature (GST) change, which is closely related to the past surface air temperature change. This method can be applied to studies of thermal environment evolution in urban areas such as the development of “heat islands”. As part of an international multidisciplinary research project “Human Impacts on Urban Subsurface Environments”, we have been investigating GST histories in and around several large cities in East Asia, including Bangkok and Tokyo. We have also started a study on the subsurface thermal environment in Saitama prefecture, located on the north of Tokyo, as a research project of CESS (Center for Environmental Science in Saitama). The eastern part of Saitama prefecture is densely populated and considered to be a part of Tokyo Metropolitan area. In this presentation, we show the results of GST history reconstruction in the both areas. In Bangkok area, we conducted measurements of temperature profiles in groundwater monitoring wells at 45 sites in 2004, 2006, and 2008. In Saitama, we measured temperature profiles at 15 sites in 2009. We examined the shapes of the temperature profiles and selected ones that are not significantly disturbed by groundwater flow. Reconstruction of GST history for the last several hundred years was made at six sites in the Bangkok area and at two sites in the Saitama area. We used a multi-layer model that allows layers with different thermal properties, determining layer boundaries based on lithology of the formations around the wells. All of the reconstructed GST histories show surface warming in the last century. In the Bangkok area, the amount of the temperature increase ranges from 0.4 to 2.6 K and is larger in the city than in the area to the west of Bangkok and in the northern rural

  8. Hydro-environmental changes and their influence on the subsurface environment in the context of urban development.

    PubMed

    Yoshikoshi, Akihisa; Adachi, Itsu; Taniguchi, Tomomasa; Kagawa, Yuichi; Kato, Masahiro; Yamashita, Akio; Todokoro, Taiko; Taniguchi, Makoto

    2009-04-15

    The relationship between urban development and hydro-environmental change, particularly with regard to the subsurface environment is examined for three coastal cities affected by Asian monsoons (Tokyo and Osaka in Japan, and Bangkok in Thailand). Major differences in subsurface changes among these cities are closely related to city size, urban structure, and the timing, stage and extent of urbanization as well as the natural environment. The work shows that the urban development has not affected the Bangkok subsurface hydro-environment in the same way it has in Tokyo and Osaka. Three reasons for the difference account for this, (1) Bangkok's abundant annual rainfall, (2) Bangkok has the smallest ratio of impervious pavement surface area, meaning that surface water can more easily infiltrate underground., (3) the degree and extent of urbanization. Bangkok's subsurface hydro-environment has not been heavily affected because underground development has not yet reached deep subterranean areas. By researching yet more cities, at different stages of urbanization to that of Tokyo, Osaka and Bangkok, we plan to quantitatively examine urbanization and its influence on subsurface hydro-environments. This research will help limit damage to developing cities that are not yet experiencing subsurface failures but which are expected to confront these problems in the future.

  9. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments

    PubMed Central

    Aüllo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

    2013-01-01

    Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review. PMID:24348471

  10. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico.

    PubMed

    Ragon, Marie; Van Driessche, Alexander E S; García-Ruíz, Juan M; Moreira, David; López-García, Purificación

    2013-01-01

    The Naica Mine in northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54-58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700-760 m) mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria, and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs) were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA) and sulfate reduction (dsrAB) were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA) were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment.

  11. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico

    PubMed Central

    Ragon, Marie; Van Driessche, Alexander E. S.; García-Ruíz, Juan M.; Moreira, David; López-García, Purificación

    2013-01-01

    The Naica Mine in northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54–58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700–760 m) mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria, and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs) were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA) and sulfate reduction (dsrAB) were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA) were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment. PMID:23508882

  12. Diversity, abundance, and distribution of NO-forming nitrite reductase-encoding genes in deep-sea subsurface sediments of the South China Sea.

    PubMed

    Li, M; Hong, Y; Cao, H; Klotz, M G; Gu, J-D

    2013-03-01

    In marine ecosystems, both nitrite-reducing bacteria and anaerobic ammonium-oxidizing (anammox) bacteria, containing different types of NO-forming nitrite reductase-encoding genes, contribute to the nitrogen cycle. The objectives of study were to reveal the diversity, abundance, and distribution of NO-forming nitrite reductase-encoding genes in deep-sea subsurface environments. Results showed that higher diversity and abundance of nirS gene than nirK and Scalindua-nirS genes were evident in the sediments of the South China Sea (SCS), indicating bacteria containing nirS gene dominated the NO-forming nitrite-reducing microbial community in this ecosystem. Similar diversity and abundance distribution patterns of both nirS and Scalindua-nirS genes were detected in this study sites, but different from nirK gene. Further statistical analyses also showed both nirS and Scalindua-nirS genes respond similarly to environmental factors, but differed from nirK gene. These results suggest that bacteria containing nirS and Scalindua-nirS genes share similar niche in deep-sea subsurface sediments of the SCS, but differed from those containing nirK gene, indicating that community structures of nitrite-reducing bacteria are segregated by the functional modules (NirS vs. NirK) rather than the competing processes (anammox vs. classical denitrification).

  13. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Kral, T. A.

    2016-09-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  14. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars.

    PubMed

    Mickol, R L; Kral, T A

    2016-09-23

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  15. Multi-dimensional Modeling of Fullerene (C60) Nanoparticle Transport in the Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Bai, C.; Li, Y.

    2011-12-01

    The escalating production and consumption of engineered nanomaterials may lead to increased release into groundwater. A number of studies have revealed the potential human health effects and aquatic toxicity of nanomaterials. Understanding the fate and transport of engineered nanomaterials is very important for evaluating their potential risks to human and ecological health. While a lot of efforts have been put forward in this area, limited work has been conducted to evaluate engineered nanomaterial transport in multi-dimension and at field scale. In this work, we simulate the transport of fullerene aggregates (nC60), a widely used engineered nanomaterial, in a multi-dimensional environment. A Modular Three-Dimensional Multispecies Transport Model (MT3DMS) was modified to incorporate the transport and retention of nC60. The modified MT3DMS was validated by comparing with analytical solutions and one-dimensional numerical simulation results. The validated simulator was then used to simulate nC60 transport in two- and three-dimensional field sites. Hypothetical scenarios for nanomaterial entering the subsurface environment, including entering from an injection well and releasing from a waste site were investigated. Influences of injection rate, groundwater velocity, ground water recharge rate, subsurface heterogeneity, and nanomaterial size and surface property were evaluated. Insights gained from this work will be discussed.

  16. Depositional environments of the subsurface Cretaceous deposits of southeastern North Carolina

    NASA Astrophysics Data System (ADS)

    Custer, E. S., Jr.

    1981-02-01

    The subsurface Cretaceous deposits of southeastern North Carolina were analyzed. Six lithologic units were recognized. These are, in ascending stratigraphic order: an unnamed Lower Cretaceous unit, Cape Fear Formation, unnamed Upper Cretaceous unit, Middendorf Formation, Black Creek Formation, and Peedee Formation. The unnamed Lower Cretaceous unit contains interbedded fine to medium grained sands, calcareous sandstones, sandy limestones and clays which were deposited in environments ranging from nearshore to fluvial. The Cape Fear Formation consists of very fine to coarse tan sands interbedded with brown and reddish clays. The Upper Cretaceous unnamed unit is composed of tan and yellow medium to coarse sands interbedded with tan and red clays deposited in braided fluvial environments. The Black Creek Formation consists of lignitic dark clays and coarse to very fine sands. Formation is composed of dark green to greenish-gray, micaceous, glauconitic clays and sands interbedded with calcareous sandstones or sandy limestones.

  17. Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Nickel, J.; Kallmeyer, J.

    2012-04-01

    The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from

  18. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water.

    PubMed

    Unal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R(2) = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community.

  19. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  20. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  1. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Kinetic Modeling of Biogeochemical Processes in Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2002-12-01

    Microbial reactions play an important role in regulating pore water chemistry (e.g., pH and Eh) as well as secondary mineral distribution in many subsurface systems and therefore directly control trace metal migration and recycling in those systems. In this paper, we present a multicomponent kinetic model that explicitly accounts for the coupling of microbial metabolism, microbial population dynamics, advective/dispersive transport of chemical species, aqueous speciation, and mineral precipitation/dissolution in porous geologic media. A modification to the traditional microbial growth kinetic equation is proposed, to account for the likely achievement of quasi-steady state biomass accumulations in natural environments. A scale dependence of microbial reaction rates is derived based on both field observations and the scaling analysis of reactive transport equations. As an example, we use the model to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium (VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (US DOE) under Contract DE-AC04-94AL85000.

  3. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    SciTech Connect

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation.

  4. Effects of soil layering and interfacial tension on DNAPL migration in subsurface environments

    SciTech Connect

    Singletary, M.A.; Pennell, K.D.; Ramsburg, A.

    1999-07-01

    A series of tetrachloroethene (PCE) infiltration experiments was conducted in 2-dimensional aquifer cells to investigate the effects of soil layering and interfacial tension on dense non-aqueous phase liquid (DNAPL) infiltration and entrapment in saturated environments. The aquifer cells were packed with a background medium, 20--30 mesh Ottawa sand, and a single low-permeability layer, consisting of either F-70 Ottawa sand or Wurtsmith aquifer material, located near the center of the cell. PCE was introduced approximately 5 cm below the water table at a constant flow rate of 0.05 ml/min. The results of these experiments demonstrate the dramatic effects that interfacial tension reduction can have on DNAPL flow and entrapment in layered subsurface systems. These findings also have implications during field implementation of surfactant enhanced aquifer remediation (SEAR), in which low interfacial tension surfactant formulations may lead to DNAPL migration into fine layers or previously uncontaminated regions of an aquifer.

  5. Isolation and Characterization of Metal-Reducing Thermoanaerobacter Strains from Deep Subsurface Environments of the Piceance Basin, Colorado

    PubMed Central

    Roh, Yul; Liu, Shi V.; Li, Guangshan; Huang, Heshu; Phelps, Tommy J.; Zhou, Jizhong

    2002-01-01

    Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60°C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe3O4), siderite (FeCO3), rhodochrosite (MnCO3), and uraninite (UO2). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process. PMID:12450823

  6. Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction.

    PubMed

    Herrera, Aude; Cockell, Charles S

    2007-07-01

    The last decade has been marked by a large number of studies focused on understanding the distribution of microorganisms in volcanic environments. These studies are motivated by the desire to elucidate how the geochemically extreme conditions of such environments can influence microbial diversity both on the surface and in the subsurface of the Earth. The exploration of microbial community diversity has generally not relied on culture-dependent methods, but has been carried out using environmental DNA extraction. Because of the large diversity of chemically and physically complex samples, extracting DNA from volcanic environments is technically challenging. In view of the emerging literature, and our own experience in the optimisation of methods for DNA extraction from volcanic materials, it is timely to provide a methodological comparison. This review highlights and discusses new insights and methods published on DNA extraction methods from volcanic samples, considering the different volcanic environments. A description of a recent method for DNA extraction from basalt and obsidian glass rock samples from Iceland is included. Finally, we discuss these approaches in the wider context of modern work to understand the microbial diversity of volcanic environments.

  7. Terrestrial Subsurface Ecosystem

    SciTech Connect

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  8. Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine.

    PubMed

    Inagaki, Fumio; Takai, Ken; Hirayama, Hisako; Yamato, Yu; Nealson, Kenneth H; Horikoshi, Koki

    2003-08-01

    Distribution and phylogenetic diversity of microbial communities in hot, deep underground environments in the Hishikari epithermal gold mine, southern part of Kyushu, Japan, were evaluated using molecular phylogenetic analyses. Samples included drilled cores such as andesitic volcanic rock (0.95-1.78 Ma) and the oceanic sedimentary basement rock of Shimanto-Supergroup (100 Ma), as well as geothermal hot aquifer waters directly collected from two different sites: AW-site (71.5 degrees C, pH 6.19) and XW-site (85.0 degrees C, pH 6.80) at a depth of 350 mbls (meters below land surface). Based on PCR-amplified 16S rRNA gene clone analysis, the microbial communities in the drilled cores and the hot aquifer water from the XW-site consisted largely of the 16S rRNA gene sequences, closely related to the sequences often found in marine environments, while the aquifer water from the AW-site contained 16S rRNA gene sequences representing members of Aquificales, thermophilic methanotrophs within the gamma-subdivision of the Proteobacteria and uncultivated strains within the beta-subdivision of Proteobacteria. The cultivable microbial community detected by enrichment cultivation analysis largely matched that detected by the culture-independent molecular analysis.

  9. Modeling and interpreting bioavailability of organic contaminant mixtures in subsurface environments

    NASA Astrophysics Data System (ADS)

    Haws, Nathan W.; Ball, William P.; Bouwer, Edward J.

    2006-01-01

    Bioavailability often controls the fate of organic contaminants in surface and subsurface aquatic environments. Bioavailability can be limited by sorption, mass transfer, and intrinsic biodegradation potential and can be further altered by the presence of other compounds. This paper reviews current perspectives on the processes influencing subsurface contaminant bioavailability, how these processes are modeled, and how the relative role of the various processes can be assessed through bioavailability indices. Although these processes are increasingly well understood, the use of sophisticated models and indices often are precluded by an inability to estimate the many parameters that are associated with complex models. Nonetheless, the proper representation of sorption, mass transfer, biodegradation, and co-solute effects can be critical in predicting bio-attenuation. The influence of these processes on contaminant fate is illustrated with numerical simulations for the simultaneous degradation of toluene (growth substrate) and trichloroethylene (nongrowth cometabolite) in hypothetical, aerobic, solid-water systems. The results show how the relative impacts on contaminant fate of the model's various component processes depends upon system conditions, including co-solute concentrations. Slow biodegradation rates increase the inhibition effects of a cometabolite and suppress the rate enhancement effects of a growth substrate. Irrespective of co-solute effects, contaminant fate is less sensitive to biodegradation processes in systems with strong sorption and slow desorption rates. Bioavailability indices can be used to relate these findings and to help identify appropriate modeling simplifications. In general, however, there remains a need to redefine such indices in order that bioavailability concepts can be better incorporated into site characterization, remediation design, and regulatory oversight.

  10. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  11. Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin.

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A; Parkes, John R; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.

  12. Creative work environments in sport organizations: the influence of sexual orientation diversity and commitment to diversity.

    PubMed

    Cunningham, George B

    2011-01-01

    Drawing from creative capital theory, the purpose of this study was to examine the degree to which sexual orientation diversity and commitment to diversity were predictive of workplaces that fostered creativity. Data were collected from 653 senior level athletic administrators and aggregated to the athletic department level of analysis (n = 199). Moderated regression indicated that sexual orientation diversity did not influence the presence of a creative work environment. There was however, a significant sexual orientation diversity × commitment to diversity interaction. When commitment to diversity was high, there was a positive association between sexual orientation diversity and a creative work environment; on the other hand, when commitment to diversity was low, the aforementioned relationship was negative. Results provide support for the notion that all diversity forms can be a source of enrichment and understanding, thereby benefiting the workplace.

  13. Environments Tune and Select Cellular Diversity.

    PubMed

    Kidd, Brian A

    2017-09-01

    Technical advances in single-cell sequencing data and their application to greater samples is revealing substantial cell-to-cell variation in expression levels and propagation of this variation between molecules across cells. New quantitative approaches that apply mechanistic and statistical models in a systems-wide approach are illuminating the drivers of phenotypic diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Teacher Burnout in Diverse Elementary School Environments.

    ERIC Educational Resources Information Center

    Twillie, Less Doll; Petry, John R.

    This study examined the question: Do teachers who work in a more supportive educational environment exhibit less burnout as measured by the teacher burnout questionnaire than do teachers who work in a less supportive educational environment? Subjects were 22 teachers (100%) from an elementary school serving an urban university faculty client group…

  15. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    NASA Astrophysics Data System (ADS)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  16. Application of AMDS mortar as a treatment agent for arsenic in subsurface environment

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, H.; Choi, U. K.; Yang, I. J.

    2014-12-01

    Among the treatment technologies available for As in soil and groundwater, adsorption or precipitation using acid mine drainage (AMD) sludge has become a promised technique because of high efficiency, inexpensiveness and simple to handling. The adsorbents were prepared by addition of Cement, Joomoonjin sand, fly ash, and Ca(OH)2 to air dry AMD sludge. In this work, the adsorption of As (III) and As (V) on AMDS mortar has been studied as a function of kinetic, pH, and initial arsenic concentration. Results of batch study showed that 75-90% of both As (III) and As (V) were removed at pH 7. Arsenic adsorption capacities were the highest at neutral pH condition and the adsorption equilibrium time reached in 7 days using AMDS mortar. Additionally, the adsorption kinetic process is expressed well by pseudo-second-order model. The adsorption capacities of AMDS mortar for As(III) and As(V) were found 19.04 and 30.75 mg g-1, respectively. The results of As (III) adsorption isotherms were fitted well to the Freundlich model. Moreover, As (V) adsorption isotherms were fitted well to the Langmuir model rather than Freundlich model. Based on experimental results in this study, we could conclude that AMDS mortar can be effectively used for arsenic removal agent from subsurface environment.

  17. Depositional controls and environments of the upper Frio Formation: Southeastern Louisiana subsurface

    SciTech Connect

    Marlin, D.J. )

    1991-03-01

    The subsurface upper Frio Formation (late Oligocene) consists of interbedded carbonate and siliciclastic facies. Synthesis of induction-electric logs and fragmented conventional core data show that resistive, low porosity carbonates are key to understanding environment of deposition, sandstone facies geometry, and hydrocarbon distribution. The southeastern Louisiana Oligocene shelf received little clastic influx during Frio Formation time. Periodically, the resistive, carbonate facies formed a semi-continuous lineation of banks at the paleo shelf-edge at or about 30N latitude. The banks acted as barriers to siliciclastic deposition with sediments being deflected westward behind the banks and funnelled basinward through breaks in the banks at the shelf edge. Petrographic study of the carbonates commonly reveals lepidocyclinid-nummulitid biomicrites that show signs of early porosity occlusion and minor burial diagenesis. They range in composition from pure limestone to impure, iron-rich dolomitic sandstones. Several cycles of carbonate-shale-sandstone are noted in the upper Frio Formation driven by relative sea-level change. Carbonate banks grew during transgressive periods and were periodically inhibited during early regressive siltation events or water-deepening below the photic range. Subsequent lowering of sea-level initiating progradational pulses of fine- to medium-grained sands that were funnelled around carbonate banks. Sandstone distribution patterns imply funnelling aspects and paleo-bathymetric bank relief while sand lenses within shales imply progradation. The nex sea-level rise initiated conditions advocating renewed bank growth as depicted by carbonate facies overlying sandstones.

  18. Flow velocity impact on biofilm development in subsurface environments - A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Boisson, A.; Aquilina, L.; Bour, O.; Davy, P.

    2012-12-01

    Biofilm development is the result of complex interactions between structural, physical, chemical and biological properties. Natural circulation of chemically rich water in subsurface environments both promotes and limits biofilm growth, with a strong impact on its shape and reactivity. Understanding the interaction between hydrodynamic processes and biofilm properties requires more experimental and modeling investigations. We propose an experimental approach to study the relationship between hydrodynamic parameters and reactivity at the pore-scale. The experimental set-up allows monitoring denitrification process for nitrate rich site water passing continuously through plastic tubes for several flow velocities. This idealized 1D flow experiment enables to reproduce pore-scale interactions between flow velocity and biological activities in natural conditions. The observed dynamic of nitrate transformation is related to different evolution of the biofilm structure and illustrates the impact of flow velocity on biofilm growth and shape. It leads to identify several regimes at the different phases of the biofilm development where flow velocity is a determinant factor for biofilm stability and performance.

  19. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    SciTech Connect

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  20. Reconstruction of the thermal environment evolution from subsurface temperature distribution in Japan and Thailand

    NASA Astrophysics Data System (ADS)

    Hamamoto, H.; Yamano, M.; Goto, S.; Hachinohe, S.; Shiraishi, H.; Ishiyama, T.; Miyakoshi, A.; Taniguchi, M.; Arimoto, H.; Kitaoka, K.

    2012-12-01

    Temperature changes at the ground surface propagate into the underground and disturb the subsurface temperature structure. Analyzing disturbances in the subsurface temperature structure, we can reconstruct the past ground surface temperature (GST) change, which is closely related to the past surface air temperature change. This method can be applied to studies of thermal environment evolution in urban areas such as the development of "heat islands". We have been investigating GST histories in three areas, which are located in Japan and Thailand. The three areas are the northern part of Kanto area, Osaka area, and Bangkok area. Kanto area and Osaka area have the greatest and second greatest population in Japan, each other. Bangkok area has the greatest population in Thailand. In the northern part of Kanto area, we conducted measurements of temperature profiles in groundwater monitoring wells at 25 sites in 2009, 2010, and 2011. In Osaka area, temperature profiles were measured at 31 sites in 2011 as the project of the Sumitomo Foundation (M. Taniguchi). In Bangkok area, we measured temperature profiles at 45 sites in 2004, 2006, 2008, and 2010. We examined the shapes of the temperature profiles and selected ones that are not significantly disturbed by groundwater flow. Reconstruction of GST history for the last about 300 hundred years was made at two sites in the northern part of Kanto area, at six sites in Osaka area, and at six sites in Bangkok area. We used a multi-layer model that allows layers with different thermal properties, determining layer boundaries based on lithology of the formations around the wells. All of the reconstructed GST histories show surface warming in the last century. In the northern part of Kanto area, the amount of the temperature increase from 1700 to 2010 is about 2.5 K at both sites. In Osaka area, the amount of the temperature increase from 1700 to 2010 ranges from 2.5 K to 5.0 K and is larger in the city center and the southern part

  1. ORGANIC ACID DERIVATIZATION TECHNIQUES APPLIED TO PETROLEUM HYDROCARBON TRANSFORMATIONS IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way. u mass balance between fuel constituents and end products may be approached to monitor cle...

  2. ORGANIC ACID DERIVATIZATION TECHNIQUES APPLIED TO PETROLEUM HYDROCARBON TRANSFORMATIONS IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way. u mass balance between fuel constituents and end products may be approached to monitor cle...

  3. Planning Literacy Environments for Diverse Preschoolers

    ERIC Educational Resources Information Center

    Dennis, Lindsay R.; Lynch, Sharon A.; Stockall, Nancy

    2012-01-01

    "Emergent literacy" is defined as the developmental process beginning at birth in which children acquire the foundation for reading and writing, including language, listening comprehension, concepts of print, alphabetic knowledge, and phonological awareness. The environment within which emergent literacy skills develop is also an important…

  4. Laboratory Studying of Metabolic Activity of Terrestrial Bacteria in Subsurface Martian Environments

    NASA Astrophysics Data System (ADS)

    Vdovina, M. A.; Pavlov, A. K.; Shelegedin, V. N.; Kogan, V. T.

    2008-09-01

    Abstract Large amount of water ice presents in subsurface layers of Mars according to observational data. This ice is able to intensive sublimation through porous upper regolith if the surface is heated enough by sunlight. TES data give the value of maximal daytime temperature for some areas of martian surface up to 300 K. Under such conditions vapours diffuse through the porous surface layer. As a result the "wet layer" appears under sand's surface. In our experiment we used special vacuum chamber to model the process of ice sublimation and vapour diffusion while heating. This chamber has a cryogenic pump inside for effective capturing of water vapour. The atmospheric pressure inside was maintained at 0.1-0.01 mbar. We use water ice sample covered by several centimetres of sand with weight fraction of organic matter (glucose) ~ 10-5-10-4. Sublimation is driven by radiation heating of sand's surface. Temperature control of sand's surface is also provided. We have discovered the increase of bacterial population of Vibrio Sp. in the "wet layer". These results confirm that shallow ground ice and a few hours of heating per day could provide sufficient conditions for growth of bacterial population under martian surface. Environments of some areas of modern Mars are close to that we have modelled in our experiments. We also present upgraded experimental setup especially constructed for studying of metabolism of different types of bacteria and different chemical composition of soil. Further upgrade is in progress at present and it will allow us to vary atmospheric composition inside the chamber and measure products of metabolism such as methane etc.

  5. Controls on Arsenic Retention in Surface and Subsurface Environments: Resolving the Impact of Iron Reduction

    NASA Astrophysics Data System (ADS)

    Tufano, K.; Fendorf, S.

    2007-12-01

    A transition from oxidizing to reducing conditions has long been implicated in increasing aqueous As concentrations. Confounding processes controlling the release of As, reductive transformation of ferrihydrite, a common Fe(III) (hydr)oxide, has recently been shown to promote As retention rather than release. Elucidating the processes controlling As desorption and subsequent migration in surface and subsurface environments and how environmental factors (for example, availability of labile carbon and duration/extent of flooding) affect these processes will allow predictions to be made regarding long-term stability of As in soil and sediment. In turn, this can aid in evaluating the likelihood of having measurable As in groundwater. To better resolve these processes, here we examine As desorption from ferrihydrite-coated sands pre-sorbed with As(III) at circumneutral pH under Fe-reducing conditions with the dissimilatory iron reducing bacterium (DIRB) Shewanella putrefaciens strain CN- 32. We reveal that upon iron reduction, transformation of As-bearing ferrihydrite results in As(III) retention. However, over time there is a shift from reductive transformation to reductive dissolution of the As-bearing Fe phase(s) coupled with prolonged release of As to the aqueous phase. Our results suggest that arsenic retention may increase or decrease depending on the type of iron oxide, secondary iron transformations, and duration of reducing conditions. Immediately following a transition to anaerobic conditions there is potential for As retention on newly formed ferric/ferrous (hydr)oxide phases; however prolonged reduction will result in both the dissolution of ferric/ferrous (hydr)oxides and release of aqueous arsenic.

  6. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    USGS Publications Warehouse

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  7. Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿

    PubMed Central

    Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950

  8. On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe

    PubMed Central

    2016-01-01

    Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. PMID:27707907

  9. On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe.

    PubMed

    Atri, Dimitra

    2016-10-01

    Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed.

  10. A Low T, High RH, and Potentially Life-Friendly Environment Within the Martian Salt-Rich Subsurface in Equatorial Regions

    NASA Astrophysics Data System (ADS)

    Wang, A.; Zheng, M. P.; Kong, F. J.; Ling, Z. C.; Kong, W. G.; Sobron, P.; Jolliff, B. L.

    2011-03-01

    Hydrated sulfates found in the subsurface at Gusev and at saline playa on the Tibet Plateau imply a high RH environment, supported by lab studies. A high-RH, salt-rich subsurface can accommodate organisms, e.g., halophiles in the Tibet saline playa.

  11. Diversity of the parachlamydiae in the environment.

    PubMed

    Corsaro, Daniele; Venditti, Danielle

    2006-01-01

    Chlamydiae are obligate intracellular bacteria, parasites of a variety of eukaryotes ranging from amoebae to humans. Among them, the family Parachlamydiaceae comprises endosymbionts of amoebae, mainly Acanthamoeba, currently investigated as emerging pathogens of humans and other vertebrates. 16S rDNA-based PCR culture-independent studies in environmental samples have demonstrated the presence of Chlamydiales in various types of nonmedical habitats. Here we reviewed the biology of the Parachlamydiaceae, and more particularly those studies reporting molecular evidences for their presence in the environment, with a re-analysis of the 16S rDNA phylotypes.

  12. The diversity issue revisited: international students in clinical environment.

    PubMed

    Pitkäjärvi, Marianne; Eriksson, Elina; Pitkälä, Kaisu

    2012-01-01

    Background. Globalization within higher education leads to an increase in cultural and linguistic diversity in student populations. The purpose of this study was to explore culturally diverse health care students' experiences in clinical environment in Finland, and to compare them with those of native Finnish students' participating in the same program. Method. A cross-sectional survey was performed at 10 polytechnic faculties of health care in Finland. 283 respondents (148 international and 95 Finnish students) responded to items concerning clinical rotation. The survey included items grouped as dimensions: (1) welcoming clinical environment, (2) unsupportive clinical environment, (3) approach to cultural diversity, (4) communication, and (5) structural arrangements. Results. International students felt as welcome on their placements as Finnish students. Concerning structural arrangements set up to facilitate preceptorship and approach to cultural diversity in the learning environment, the two groups' opinions were similar. However, international students were more likely than Finnish students to experience their clinical learning environment as unsupportive (P < 0.001). In addition, their experiences of communication with the staff was poorer than that of their Finnish peers' (P = 0.04). Conclusions. Awareness of strategies that enhance understanding, acceptance, and appreciation of cultural and linguistic diversity in any health care setting are needed.

  13. Measurement of microbial growth in the low nutrient conditions of a simulated subsurface environment

    NASA Astrophysics Data System (ADS)

    Hand, V. L.; Boult, S.; Vaughan, D. J.; Beadle, I. R.; Humphreys, P.; Wogelius, R. A.

    2003-04-01

    The growth of bacteria in natural porous media may alter porosity and permeability, and therefore hydraulic conductivity. Changes are due both to pore clogging caused by the production of bacterial extracellular polysaccharides (EPS) and the formation of secondary mineral precipitates. Pore clogging has implications not only for fluid flow, but also for contaminant transport. Most biofilm research has been conducted under nutrient rich conditions, quite different from the actual subsurface environment. There is therefore a general need for studies under environmentally relevant conditions. The main objectives were to determine growth under environmental conditions and to produce reproducible homogeneously coated columns of porous media for further experiments on metal transport. Six short columns (length 25mm; diameter 20mm) instrumented with pressure, pH and dissolved oxygen sensors were used. Growth and reproducibility of the biofilm are related to the flow rate, the concentration of the nutrients and the grain size of the porous medium substrate. Two types of porous media were used; a single mineral quartz media with a constant grain size and a natural mixed mineral assemblage of non-uniform grain size. Nutrient used was a landfill derived carbon source present in synthetic trench leachate (STL) diluted with synthetic groundwater (SGW) by a factor of 100. The STL was pumped through each column at a constant, environmentally relevant flow rate of 0.109 ml/min. Experiments were performed under both aerobic and anaerobic conditions contained in a temperature-controlled room at 10^oC. Measurement of the pressure increase within the column apparatus was made, as an increase in pressure is relative to the resistance of the media to flow and indicates biofilm formation and pore clogging within the column. Monitoring of dissolved oxygen shows the metabolic conditions of the bacteria and also the biological oxygen demand. Column effluent was analysed for changes in

  14. DPM — efficient storage in diverse environments

    NASA Astrophysics Data System (ADS)

    Hellmich, Martin; Furano, Fabrizio; Smith, David; Brito da Rocha, Ricardo; Álvarez Ayllón, Alejandro; Manzi, Andrea; Keeble, Oliver; Calvet, Ivan; Regala, Miguel Antonio

    2014-06-01

    Recent developments, including low power devices, cluster file systems and cloud storage, represent an explosion in the possibilities for deploying and managing grid storage. In this paper we present how different technologies can be leveraged to build a storage service with differing cost, power, performance, scalability and reliability profiles, using the popular storage solution Disk Pool Manager (DPM/dmlite) as the enabling technology. The storage manager DPM is designed for these new environments, allowing users to scale up and down as they need it, and optimizing their computing centers energy efficiency and costs. DPM runs on high-performance machines, profiting from multi-core and multi-CPU setups. It supports separating the database from the metadata server, the head node, largely reducing its hard disk requirements. Since version 1.8.6, DPM is released in EPEL and Fedora, simplifying distribution and maintenance, but also supporting the ARM architecture beside i386 and x86_64, allowing it to run the smallest low-power machines such as the Raspberry Pi or the CuBox. This usage is facilitated by the possibility to scale horizontally using a main database and a distributed memcached-powered namespace cache. Additionally, DPM supports a variety of storage pools in the backend, most importantly HDFS, S3-enabled storage, and cluster file systems, allowing users to fit their DPM installation exactly to their needs. In this paper, we investigate the power-efficiency and total cost of ownership of various DPM configurations. We develop metrics to evaluate the expected performance of a setup both in terms of namespace and disk access considering the overall cost including equipment, power consumptions, or data/storage fees. The setups tested range from the lowest scale using Raspberry Pis with only 700MHz single cores and a 100Mbps network connections, over conventional multi-core servers to typical virtual machine instances in cloud settings. We evaluate the

  15. Variability of Near-stream, Sub-surface Major-ion and Tracer Concentrations in an Acid Mine Drainage Environment

    NASA Astrophysics Data System (ADS)

    Bencala, K. E.; Kimball, B. A.; Runkel, R. L.

    2006-12-01

    In acid mine drainage environments, tracer-injection and synoptic sampling approaches provide tools for making operational estimates of solute loading within a stream segment. Identifying sub-surface contaminant sources remains a challenge both for characterization of in-stream metal loading and hydrological process research. There is a need to quantitatively define the character and source of contaminants entering streams from ground-water pathways, as well as the potential for changes in water chemistry and contaminant concentrations along these flow paths crossing the sediment-water interface. Complicating the identification of inflows is the mixing of solute sources which may occur in the `near-stream' subsurface areas and specifically along hyporheic exchange flows (HEFs). In Mineral Creek (Silverton, Colorado), major-ion (SO42-, Cl-, Na+, Ca2+, Mg2+) meter-scale sampling shows that subsurface inflows and likely HEFs occur in a hydro- geochemical setting of significant, one order-of-magnitude, spatial variation in the solute concentrations. Transient Storage Models (TSMs) are a tool for interpreting the in-stream responses of solute transport in streams influenced by hyporheic exchange flows. Simulations using the USGS TSM code OTIS are interpreted as suggesting that in Mineral Creek the strong concentration `tailing' of bromide following the tracer injection occurred, at least in part, from HEFs in a hydro - solute transport setting of likely multiple, dispersed and mixed sources of water along a 64 m sub-reach of the nominally gaining stream. In acid mine drainage environments, the ability to distinguish between local and deep solute sources is critical in modeling reactive transport along the stream, as well as in identifying the geochemical evolution of dispersed, subsurface inflows thorough the catchment.

  16. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    PubMed Central

    Stern, Rowena F.; Horak, Ales; Andrew, Rose L.; Coffroth, Mary-Alice; Andersen, Robert A.; Küpper, Frithjof C.; Jameson, Ian; Hoppenrath, Mona; Véron, Benoît; Kasai, Fumai; Brand, Jerry; James, Erick R.; Keeling, Patrick J.

    2010-01-01

    Background Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of

  17. Achieving diversity in nursing through multicontextual learning environments.

    PubMed

    Giddens, Jean Foret

    2008-01-01

    Attempts to increase diversity within the nursing profession have resulted in the admission of more ethnically diverse students into nursing education programs. However, traditional curricular and pedagogical practices seen in many nursing programs do not accommodate the learning needs of diverse learners. Nurse educators are encouraged to adopt learner-centered pedagogical approaches and embrace multicontextual learning environments. The purpose of this article is to describe the concept of multicontextuality and to introduce an exemplar of a multicontextual learning environment that has been recently developed and implemented in an undergraduate nursing program. The virtual community, known as The Neighborhood, presents nursing concepts in a rich personal and community context through stories and supplemental multimedia. The perceived benefit is enhancement of conceptual learning in a student-oriented learning environment.

  18. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.

    PubMed

    Newberry, Carole J; Webster, Gordon; Cragg, Barry A; Parkes, R John; Weightman, Andrew J; Fry, John C

    2004-03-01

    Diversity of Bacteria and Archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rRNA and methyl co-enzyme M reductase (mcrA) genes. Samples analysed were from Ocean Drilling Program (ODP) Leg 190 deep subsurface sediments at three sites spanning the Nankai Trough in the Pacific Ocean off Shikoku Island, Japan. DNA was amplified, from three depths at site 1173 (4.15, 98.29 and 193.29 mbsf; metres below the sea floor), and phylogenetic analysis of clone libraries showed a wide variety of uncultured Bacteria and Archaea. Sequences of Bacteria were dominated by an uncultured and deeply branching 'deep sediment group' (53% of sequences). Archaeal 16S rRNA gene sequences were mainly within the uncultured clades of the Crenarchaeota. There was good agreement between sequences obtained independently by cloning and by denaturing gradient gel electrophoresis. These sequences were similar to others retrieved from marine sediment and other anoxic habitats, and so probably represent important indigenous bacteria. The mcrA gene analysis suggested limited methanogen diversity with only three gene clusters identified within the Methanosarcinales and Methanobacteriales. The cultivated members of the Methanobacteriales and some of the Methanosarcinales can use CO2 and H2 for methanogenesis. These substrates also gave the highest rates in 14C-radiotracer estimates of methanogenic activity, with rates comparable to those from other deep marine sediments. Thus, this research demonstrates the importance of the 'deep sediment group' of uncultured Bacteria and links limited diversity of methanogens to the dominance of CO2/H2 based methanogenesis in deep sub-seafloor sediments.

  19. [Effect of free surface flow wetland and subsurface flow wetland on bacterial diversity in Beijing Cuihu Wetland Park].

    PubMed

    Wang, Xiao-dan; Zhai, Zhen-hua; Zhao, Shuang; Li, Rong-qi; Ma, Wen-lin; Li, Yan-hong

    2009-01-01

    To achieve the effects of artificial wetland on the bacterial diversity, the culturable bacteria and total cell counts of three wetland cells, including sewage pond (SP), free surface wetland (SF) and subsurface flow wetland (SSF), were investigated using the traditional culture-dependent approach and flow cytometry method, based on the detecting the water quality. The bacterial diversity and dominant groups were also compared by PCR-DGGE profiles and 16S rDNA library technique based on its V3 region. Results show that SF and SSF cells can remove the nutrients effectively, the highest removal ratio of COD, total nitrogen, and total phosphorus reach to 42.33%, 52.92% and 41.4%, respectively; The total microbes are increased continuously with the treatment by SF and SSF, and the culturable bacteria clones are decreased after treatment by SF, and increased after further train by SSF. The Shannon-Weaver index is increased to 3.2850 from 3.0819 while the water flowing through SF, but decreased to 3.0181 after flowing through SSF; The dominant groups in SP include Actinobacteria, Cyanobacteria and alpha-Proteobacteria, reach to 38%, 18% and 18%, respectively; but the most dominant bacteria is changed to beta-Proteobacteria with the ratio of 32% and 44%, after treatment by SF and SSF, respectively. Cytophagal Flexibacter/Bacteroides (CFB) phylum is also increased to 24% finally. Therefore, while the Cuihu Wetland removing the nutrients,the bacterial counts, diversity and dominant groups are also changed,some beneficial bacteria in beta-Proteobacteria and CFB phylum increased, and part of those deleterious bacteria in Actinobacteria and Cyanobacteria decreased.

  20. The possible origin of the first cell biosystem in the thermal subsurface environment of the earth.

    PubMed

    Trevors, Jack T

    2004-01-01

    Bacteria are the simplest living biosystems or organisms that exhibit all the characteristics of life. As such, they are excellent models to examine the cell as the basic unit of life and the cell theory which states that all organisms are composed of one or more similar cells. In this article I examine the hypothesis that the primordial soup so often referred to in science was possibly an oil/water interface and/or emulsion in the Earth's, warm, anaerobic subsurface. This warm subsurface location, protected from surface radiation, could have been a favourable location for the assembly of the first bacterial cells on the Earth capable of growth and controlled division or the first biosystem.

  1. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-02-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper ( >3 m depth) placement of the heat flow probe.

  2. Design manual for the extraction of contaminants from unconsolidated subsurface environments

    SciTech Connect

    Bedient, P.B.

    1995-09-01

    The objective of the research is to demonstrate the viability of using extraction enhancement technologies to remove nonaqueous phase liquids (NAPL) from a hazardous waste source area. The plan specifically addresses methods for identifying and locating the NAPL contamination in complex geologies. The demonstration technologies will then be tested for their ability to extract NAPLs from the subsurface in side-by-side test cells. Surfactants, co-solvents, and air sparging techniques will be tested in small field cells (each 3 m by 5 m in plan view and 10 m deep). Two surfactant, two air sparging/soil vapor extraction, and one co-solvent test will be performed in five cells, which will be isolated using sheet piles driven into the subsurface. Each cell will be instrumented with over 67 monitoring locations. More than 1,500 samples will be taken from each cell for chemical analysis.

  3. Biodegradation and Sorption of Organic Solvents and Hydrocarbon Fuel Constituents in Subsurface Environments

    DTIC Science & Technology

    1988-03-01

    event, and it was not considered necessary to acquire aseptic subsurface samples. The redox potential (Eh) of the aquifer material was measured in a... plated mild steel core barrels. Cores were taken by pressing the length of the core k50 cm) into the ground, extracting the core, redrilling the hole to...ether (EGME) technique (References 42, 43). b. Determination of Partition Coefficients and Sorption Isotherms The compounds used in this study were o

  4. Distribution and diversity of halophilic bacteria in a subsurface salt formation.

    PubMed

    Vreeland, R H; Piselli, A F; McDonnough, S; Meyers, S S

    1998-08-01

    The Waste Isolation Pilot Plant (WIPP) is a salt mine constructed 650 meters below the ground surface by the United States Department of Energy. The facility will be used for permanent disposal of transuranic wastes. This underground repository has been constructed in the geologically stable Permian age Salado salt formation. Of the wastes to be placed into the facility, 85% will be biodegradable cellulose. A 3-year survey of the bacterial populations existing within the facility was conducted. Bacterial populations were found to be heterogeneously distributed throughout the mine. Populations in some mine areas reached as high as 1.0 x 10(4) colony-forming units per gram of NaCl. The heterogeneous distribution of bacteria within the mine did not follow any recognizable pattern related to either age of the workings or to human activity. A biochemical comparison between ten known species of halophilic bacteria, and strains isolated from both the mine and nearby surface hypersaline lakes, showed the presence of extreme halophiles with wide biochemical diversity, some of which could prove to represent previously undescribed groups. The halophilic bacteria isolated from the mine were found to degrade cellulose and a wide variety of other carbon compounds. When exposed to two types of common laboratory paper, the cellulose-degrading halophiles attached to the substrate within 30 minutes of inoculation. Cultures enriched directly from a brine seep in the mine easily destroyed both papers and produced detectable amounts of oxalacetic and pyruvic acids. The combination of heterogeneity in the distribution of organisms, the presence of a physiologically diverse community, and the relatively slow metabolism of cellulose may explain several long-standing debates about the existence of microorganisms in ancient underground salt formations.

  5. Spatial distribution of microbial populations and carbon cycle in the subsurface environment of the Horonobe area, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Ise, K.; Terashima, M.; Sasaki, Y.; Amamiya, H.; Yoshikawa, H.

    2014-12-01

    Microorganisms are widely distributed in the subsurface environments. However, the distribution, role and rate of metabolisms, and the source of their activity are not well known. In this study, we investigated deep groundwater samples from sedimentary rocks, containing saturated methane and CO2, using boreholes at the Horonobe Underground Research Laboratory (URL), northern Hokkaido, Japan. The hydrochemical conditions of groundwaters, such as in-situ water pressure, temperature, electric conductivity, pH, redox potential, were monitored without degassing at multiple intervals along the borehole. Groundwater samples were taken periodically and chemical composition was analyzed using ICP-MS, etc. Cell counts were in the range of 103 to 105 cells ml-1. Molecular analyses revealed the spatial distribution and heterogeneity of the microbial population. Abundant methanogens were detected in the groundwater, and 80% of them were related to either Methanoregula boonei or Methanobacterium flexile that can utilize H2/CO2 by methanogenesis. Phylotypes clustered within the phylum Firmicutes, beta-Proteobacteria, delta-Proteobacteria and candidate division TM7 were dominant in the groundwater samples. Laboratory experiments using a culture technique showed that humic substances purified from the groundwater at Horonobe area appear to be degraded by microorganisms. Our results suggest that microbial spatial distributions in the subsurface environment were correlated closely with geochemical conditions, such as redox condition and carbon sources. In addition, it is inferred that humic substances are one of the important carbon sources for the subsurface microbial redox processes in the environment. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan.

  6. Evaluating a Gender Diversity Workshop to Promote Positive Learning Environments

    ERIC Educational Resources Information Center

    Burford, James; Lucassen, Mathijs F. G.; Hamilton, Thomas

    2017-01-01

    Drawing on data from an Aotearoa/New Zealand study of more than 230 secondary students, this article evaluates the potential of a 60-min gender diversity workshop to address bullying and promote positive environments for learning. Students completed pre- and postworkshop questionnaires. The authors used descriptive statistics to summarize results…

  7. Evaluating a Gender Diversity Workshop to Promote Positive Learning Environments

    ERIC Educational Resources Information Center

    Burford, James; Lucassen, Mathijs F. G.; Hamilton, Thomas

    2017-01-01

    Drawing on data from an Aotearoa/New Zealand study of more than 230 secondary students, this article evaluates the potential of a 60-min gender diversity workshop to address bullying and promote positive environments for learning. Students completed pre- and postworkshop questionnaires. The authors used descriptive statistics to summarize results…

  8. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments.

    PubMed

    Lefébure, T; Douady, C J; Gouy, M; Trontelj, P; Briolay, J; Gibert, J

    2006-06-01

    Extreme conditions in subsurface are suspected to be responsible for morphological convergences, and so to bias biodiversity assessment. Subterranean organisms are also considered as having poor dispersal abilities that in turn generate a large number of endemic species when habitat is fragmented. Here we test these general hypotheses using the subterranean amphipod Niphargus virei. All our phylogenetic analyses (Bayesian, maximum likelihood and distance), based on two independent genes (28S and COI), revealed the same tripartite structure. N. virei populations from Benelux, Jura region and the rest of France appeared as independent evolutionary units. Molecular rates estimated via global or Bayesian relaxed clock suggest that this split is at least 13 million years old and accredit the cryptic diversity hypothesis. Moreover, the geographical distribution of these lineages showed some evidence of recent dispersal through apparent vicariant barrier. In consequence, we argue that future analyses of evolution and biogeography in subsurface, or more generally in extreme environments, should consider dispersal ability as an evolving trait and morphology as a potentially biased marker.

  9. Environmental parameters controlling microbial activities in terrestrial subsurface environments. Technical completion report

    SciTech Connect

    Kieft, T.L.

    1990-12-31

    This project was begun in July 1988 as part of Phase I of the Deep Microbiology Subprogram. At this time, the Subprogram was preparing for sampling near the Savannah River Site (SRS) from what was being termed the ``Investigator`s Hole.`` This was the fourth hole drilled for sampling in the coastal plain sediments at a site near the SRS. Since there was a possibility of sampling from the saline Triassic basin in the deeper regions in this fourth hole, there was particular interest in quantifying halotolerant microorganisms from these samples and in determining the responses of subsurface microbes to a range of soft concentrations. Further interest in the soft tolerances of microbes from these coastal sediments arose from the fact that all of these sediments were deposited under marine conditions. It was also anticipated that samples would be available from the shallow unsaturated (vadose) zone at this site, so there was interest in quantifying microbial responses to matric water potential as well as solute water potential. The initial objectives of this research project were to: characterize microbial communities in a saline aquifer; determine the potential for microbial metabolism of selected organic compounds in a saline aquifers; characterize microbial communities in unsaturated subsurface materials (vadose zones); and determine the potential for microbial metabolism of selected organic compounds in unsaturated subsurface materials (vadose zones). Samples were collected from the borehole during a period extending from August to October 1988. A total of nine samples were express shipped to New Mexico Tech for analyses. These were all saturated zone samples from six different geological formations. Water contents and water potentials were measured at the time of sample arrival.

  10. Contrasting "Fish" Diversity Dynamics between Marine and Freshwater Environments.

    PubMed

    Guinot, Guillaume; Cavin, Lionel

    2015-08-31

    Two theoretical models have been proposed to describe long-term dynamics of diversification: the equilibrium model considers the Earth as a closed system with a fixed maximum biological carrying capacity, whereas the expansion model hypothesizes a continuously increasing diversification of life. Based on the analysis of the fossil record of all organisms, Benton suggested contrasting models of diversity dynamics between marine and continental realms. Diversity in marine environments is characterized by phases of rapid diversification followed by plateaux, i.e., an equilibrium model directly derived from insular biogeography theories, whereas diversity in continental environments is characterized by exponential growth. Previous studies that aimed at testing these models with empirical data were based on datasets extracted directly from the reading of the vagaries of the raw fossil record, without correcting for common fossil record biases (preservation and sampling). Although correction of datasets for the incompleteness of the fossil record is now commonly performed for addressing long-term biodiversity variations, only a few attempts have been made to produce diversity curves corrected by phylogenetic data from extant and extinct taxa. Here we show that phylogenetically corrected diversity curves for "fish" (actinopterygians and elasmobranchs) during the last 200 million years fit an equilibrium model in the marine realm and an expansion model in the freshwater realm. These findings demonstrate that the rate of diversification has decreased for marine fish over the Cenozoic but is in sharp expansion for freshwater fish.

  11. Depositional environments and sedimentary tectonics of subsurface Cotton Valley group (upper Jurassic), west-central Mississippi

    SciTech Connect

    Sydboten, B.D. Jr.; Bowen, R.L.

    1987-09-01

    Study of data from 65 selected wells in a 6-county area (about 60 by 60 mi) north and west of Jackson, Mississippi, discloses that Cotton Valley strata, now within the axial trough of the Mississippi embayment, display thickness variations which demonstrate that Late Jurassic sedimentation was strongly controlled by maximum subsidence along the same trough axis. Examination of well logs, other records, and cutting sets from 38 wells has resulted in preparation of dip and strike cross sections that permit information definition of lower, middle, and upper parts of the Cotton Valley Group throughout the area evaluated. Within these lithostratigraphic diversions, lithofacies are discriminable that represent alluvial, upper delta plain, lower delta plain, and prodeltaic environments. These facies display a general variation from coarse, commonly red, oxidized sediments on the north and east, to mudrocks, locally calcareous and carbonaceous, on the southwest. Within the Cotton Valley Group examined, two persistent clastic lobes demonstrate relative environmental stability while deposits ranging in thickness from 1500 ft (northwestern corner of study area) to 4500 ft (axial depocenter on the south) accumulated. During Cotton Valley deposition, west-central Mississippi was the site of a two-toed birdfoot delta within which lignites were deposited. Major sediment supply was from the east and north; a minor source was to the northwest (Ouachita-Ozarks). Irregulatories in both rates of supply of clastics and of shelf subsidence permitted intermittent shallow, clear-water, marine incursions from the south during which thin carbonate beds were deposited, interfingering with the clastics. Thus, potential source and host rocks for hydrocarbon traps are closely associated, for thick, organic-rich, interlobate mudrocks pass laterally and vertically into fluvial sands of the delta lobes.

  12. More noise, please: How cultural overprinting in the urban environment can be exploited for improved subsurface imaging (Invited)

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.

    2009-12-01

    A long standing issue for geophysical imaging methods revolves around the proper treatment of "noise": Defining what noise is; separating "noise" for "signal"; filtering and suppressing noise; and recently, challenging the prevailing view that noise is a nuisance to see if, instead, it may contribute favorably toward improving subsurface imaging fidelity. This last point is particularly relevant to geophysical imaging in the urban environment where noise sources are abundant, complex, and logistical constraints on geophysical field procedures prohibit a crude "turning up the volume" approach to simply drown out the noise with powerful sources of electromagnetic and seismic energy. In this contribution I explore the concept passive geophysical imaging which uses uncorrelated ambient noise as the source of geophysical imaging energy to be used in the urban environment. Examples will be presented from seismic and ground penetrating radar methods, in addition to new theoretical results bearing on the feasibility of low-frequency electromagnetic induction techniques.

  13. Non-viable Microbial Community Structure and Geochemistry of Deep Subsurface Shales at Marcellus Shale Energy and Environment Laboratory

    NASA Astrophysics Data System (ADS)

    Akondi, R.; Trexler, R.; Sharma, S.; Mouser, P. J.; Pfiffner, S. M.

    2016-12-01

    The deep subsurface is known to harbor diverse communities of living microbes, and can therefore be expected to also harbor an equally diverse and likely different set of non-viable microbial populations. In this study, diglyceride fatty acids, (DGFA, biomarkers for non-viable microbes) as well as their compound specific isotopes (CSIA) were used to study the yield and variety of DGFAs in deep subsurface mid-Devonian sediments of different lithologies. Pristine sidewall cores were obtained from intervals in the Marcellus, Mahantango, and the Marcellus/Mahantango formation interface. The biomarkers were extracted and DGFAs were methylated to fatty acid methyl esters (FAMEs) and analyzed using GC-MS, while the CSIAs were performed using GC-irMS. Sediments were also analyzed for total organic carbon (TOC), stable carbon isotopic composition of organic carbon (δ13Corg), inorganic carbon (δ13Ccarb), and nitrogen (δ15Norg). TOC concentration was highest in the Marcellus and there was a general trend of increasing TOC from Mahantango to the Marcellus. The δ13Corg and δ13Ccarb increased and decreased respectively from Mahantango to the Marcellus while δ15Norg did not show any trend. The FAME profiles consisted of normal saturated, monounsaturated, polyunsaturated, branched, epoxy, terminally branched, hydroxyl, and dimethyl esters. The total biomass yield and variety of DGFA-FAME profiles were higher in the Mahantango compared to the samples from the Marcellus formation and Marcellus/Mahantango interface, suggesting the presence of more paleo-microbial activity in the less consolidated Mahantango formation. We attribute this to the smaller pore throat sizes within the Marcellus formation compared to the Mahantango formation. Since organic matter in the sediments is also one of the key sources of energy for microbial metabolism, bulk 13C and CSIA of the lipids will be used to understand the source(s) and pathways of the carbon cycling within the microbial communities.

  14. Microbial diversity and complexity in hypersaline environments: a preliminary assessment.

    PubMed

    Litchfield, C D; Gillevet, P M

    2002-01-01

    The microbial communities in solar salterns and a soda lake have been characterized using two techniques: BIOLOG, to estimate the metabolic potential, and amplicon length heterogeneity analysis, to estimate the molecular diversity of these communities. Both techniques demonstrated that the halophilic Bacteria and halophilic Archaea populations in the Eilat, Israel saltern are dynamic communities with extensive metabolic potentials and changing community structures. Halophilic Bacteria were detected in Mono Lake and the lower salinity ponds at the Shark Bay saltern in Western Australia, except when the crystallizer samples were stressed by exposure to Acid Green Dye #9899. At Shark Bay, halophilic Archaea were found only in the crystallizer samples. These data confirm both the metabolic diversity and the phylogenetic complexity of the microbial communities and assert the need to develop more versatile media for the cultivation of the diversity of bacteria in hypersaline environments.

  15. Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry

    NASA Astrophysics Data System (ADS)

    Hunter, Kimberley S.; Wang, Yifeng; Van Cappellen, Philippe

    1998-08-01

    This paper deals with the treatment of subsurface environments as reactive biogeochemical transport systems. We begin with an overview of the effects of microbial activity on the chemical dynamics in these environments. Then, after a review of earlier modeling efforts, we introduce a one-dimensional, multi-component reactive transport model that accounts for the reaction couplings among the major redox and acid-base elements, O, C, H, N, S, Mn, Fe and Ca. The model incorporates kinetic descriptions for the microbial degradation pathways of organic matter, as well as for the secondary redox reactions and mineral precipitation-dissolution reactions. Local equilibrium only applies to fast homogeneous speciation reactions and sorption processes. The model is used to simulate the distributions of chemical species and reaction rates along flow paths in two subsurface environments. In the first case, waters containing moderate levels of natural soil-derived organics supply a regional groundwater system. In the second case, a pristine aquifer is contaminated by an organic-rich leachate from a landfill. In both environments, the microbial oxidation of organic matter causes the disappearance of dissolved and solid oxidants and the appearance of reduced species, albeit over very different spatial scales. In the second case, a pronounced reaction front develops at the downstream edge of the contaminant plume. The reactivity, or biodegradability, of the organic matter is shown to be a major factor governing the biogeochemical dynamics in the plume. The simulations predict different distributions of the biodegradation pathways, depending on whether the organics of the leachate have uniform or variable reactivity. The secondary reactions also have a significant impact on the concentration profiles of inorganic species and the spatial distributions of the biodegradation pathways. Within the downstream reaction front, large fractions of O 2, Mn(IV), Fe(III) and SO 2-4 are reduced

  16. Measuring family food environments in diverse families with young children.

    PubMed

    McCurdy, Karen; Gorman, Kathleen S

    2010-06-01

    This study reports the development and validation of the 20 item Family Food Behavior Survey, a measure designed to assess broad components of the family food environment that may contribute to child overweight. In a diverse sample of 38 parents, factor analyses verified 4 domains: (1) maternal control of child eating behavior; (2) maternal presence during eating; (3) child choice, and (4) organization of eating environment. All domains achieved acceptable internal reliability (alphas= .73, -.83), and test-retest reliability. Mothers of overweight children scored significantly lower on maternal presence and somewhat higher on maternal control than mothers of normal weight children.

  17. A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc

    NASA Astrophysics Data System (ADS)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kolditz, O.; Naumov, D.; Kalbacher, T.

    2015-03-01

    This technical paper presents an efficient and performance-oriented method to model reactive mass transport processes in environmental and geotechnical subsurface systems. The open source scientific software packages OpenGeoSys and IPhreeqc have been coupled, to combine their individual strengths and features to simulate thermo-hydro-mechanical-chemical coupled processes in porous and fractured media with simultaneous consideration of aqueous geochemical reactions. Furthermore, a flexible parallelization scheme using MPI (Message Passing Interface) grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand, and the underlying processes such as for groundwater flow or solute transport on the other hand. The coupling interface and parallelization scheme have been tested and verified in terms of precision and performance.

  18. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    SciTech Connect

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  19. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    SciTech Connect

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.; Yabusaki, Steven B.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.

  20. Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S(zero)-reducing bacteria in a sulfate-rich environment.

    PubMed

    Kovacik, William P; Takai, Ken; Mormile, Melanie R; McKinley, James P; Brockman, Fred J; Fredrickson, James K; Holben, William E

    2006-01-01

    A multilevel sampler (MLS) was emplaced in a borehole straddling anaerobic, sulfate-rich Cretaceous-era shale and sandstone rock formations approximately 200 m below ground surface at Cerro Negro, New Mexico. Sterile quartzite sand contained in chambers in the sampler allowed in situ colonization and recovery of nucleic acids for molecular analyses. Denaturing gradient gel electrophoresis and 16S rRNA gene cloning results indicated a homogeneously distributed bacterial community across the shale-sandstone interface. delta-Proteobacteria sequences were common at all depths, and were dominated by members of the Geobacteraceae family (Pelobacter, Desulphuromonas and Geobacter). Other members of this group are capable of dissimilatory Fe(III) and/or S degrees reduction, but not sulfate reduction. RNA hybridization data also suggested that Fe(III)-/S degrees -reducing bacteria were predominant. These findings are striking considering the lack of significant concentrations of these electron acceptors in this environment. The next most abundant bacterial group indicated was the sulfate reducers, including Desulfobacterium, Desulfocapsa and Desulfobulbus. Sequences related to fermenters, denitrifiers and acetogens were also recovered. The presence of a phylogenetically and functionally diverse microbial community in this deep subsurface environment likely reflects the complex nature of the primary energy and carbon sources, kerogen associated with the shale.

  1. Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S°-reducing bacteria in a sulfate-rich environment

    SciTech Connect

    Kovacik, William P.; Takai, Ken; Mormile, Melanie R.; McKinley, James P.; Brockman, Fred J.; Fredrickson, Jim K.; Holben, William E.

    2006-01-01

    A multi-level sampler (MLS) was emplaced in a borehole straddling anaerobic, sulfate-rich Cretaceous-era shale and sandstone rock formations {approx}200 m below ground surface at Cerro Negro, New Mexico. Sterile quartzite sand contained in chambers in the sampler allowed in situ colonization and recovery of nucleic acids for molecular analyses. DGGE and 16S rRNA gene cloning results indicated a homogeneously distributed bacterial community across the shale/sandstone interface. ?-Proteobacteria sequences were common at all depths, and were dominated by members of the Geobacteraceae family (Pelobacter, Desulfuromonas, and Geobacter). Other members of this group are capable of dissimilatory Fe(III) and/or S0 reduction, but not sulfate reduction. RNA hybridization data also suggested that Fe(III)/S0 reducing bacteria were predominant. These findings are striking considering the lack of significant concentrations of these electron acceptors in this environment. The next most abundant bacterial group indicated was the sulfate reducers, including Desulfobacterium, Desulfocapsa and Desulfobulbus. Sequences related to fermenters, denitrifiers and acetogens were also recovered. The presence of a phylogenetically and functionally diverse microbial community in this deep subsurface environment likely reflects the complex nature of the primary energy and carbon sources, kerogen associated with the shale.

  2. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines)

    PubMed Central

    Woycheese, Kristin M.; Meyer-Dombard, D'Arcy R.; Cardace, Dawn; Argayosa, Anacleto M.; Arcilla, Carlo A.

    2015-01-01

    In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca2+-OH−-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes. PMID:25745416

  3. The Hebrus Valles Exploration Zone: Access to the Martian Surface and Subsurface

    NASA Astrophysics Data System (ADS)

    Davila, A.; Fairén, A. G.; Rodríguez, A. P.; Schulze-Makuch, D.; Rask, J.; Zavaleta, J.

    2015-10-01

    The Hebrus Valles EZ represents a diverse setting with multiple geological contacts and layers, possible remnant water ice and protected subsurface environments, which could be critical for the establishment of long-term human settlements.

  4. Geochemical investigations of polychlorinated dibenzo-p-dioxins in the subsurface environment at an abandoned wood-treatment facility

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Sisak, M.E.

    1985-01-01

    The discharge of effluents containing creosote and pentachlorophenol into two unlined surface impoundments at a wood-treatment facility in Pensacola, Florida, resulted in contamination of the underlying sand and gravel aquifer. These wastes contained significant amounts of chlorinated dioxins, such as isomers of hexa- and heptachlorodibenzo-p-dioxins and octachlorodibenzo-p-dioxin, probably derived from commercial pentachlorophenol. Geochemical investigations of pond sludge, groundwater and porous media from the unsaturated and saturated zones indicated that these geologic materials were contaminated by chlorinated dioxins. The fate and movement of these compounds in the subsurface environment were studied using the technique of GC-MS-MS. Chlorinated dioxins migrated both vertically and horizontally in the subsurface and were present at considerable distances from the source of contamination. Concentrations of chlorinated dioxins in groundwater were several orders of magnitude lower than in porous media from the unsaturated and saturated zones. Ratios of the various isomers remained relatively constant in highly contaminated areas. However, in less contaminated areas, isomer ratios changed dramatically; at certain locations, one hexachlorodibenzo-p-dioxin isomer predominated. The environmental significance of these compounds is discussed. ?? 1985.

  5. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment

    NASA Astrophysics Data System (ADS)

    Pazzi, Veronica; Tapete, Deodato; Cappuccini, Luca; Fanti, Riccardo

    2016-11-01

    Scientific interest in mounds as geomorphological features that currently represent topographic anomalies in flat urban landscapes mainly lies on the understanding of their origin, either purely natural or anthropogenic. In this second circumstance, another question is whether traces of lost buildings are preserved within the mound subsurface and can be mapped as remnants testifying past settlement. When these landforms have been modified in centuries for civilian use, structural stability is a further element of concern. To address these issues we applied a geophysical approach based on a very low frequency electromagnetic (VLF-EM) technique and two-dimensional electrical resistivity tomography (2D-ERT) and integrated it with well-established surface survey methods within a diagnostic workflow of structural assessment. We demonstrate the practical benefits of this method in the English Cemetery of Florence, Italy, whose mixed nature and history of morphological changes are suggested by archival records. The combination of the two selected geophysical techniques allowed us to overcome the physical obstacles caused by tomb density and to prevent interference from the urban vehicular traffic on the geophysical signals. Eighty-two VLF-EM profiles and five 2D-ERTs were collected to maximise the spatial coverage of the subsurface prospection, while surface indicators of instability (e.g., tomb tilt, location, and direction of ground fractures and wall cracks) were mapped by standard metric survey. High resistive anomalies (> 300 and 400 Ωm) observed in VLF-EM tomographies are attributed to remnants of the ancient perimeter wall that are still buried along the southern side of the mound. While no apparent correlation is found between the causes of tomb and ground movements, the crack pattern map supplements the overall structural assessment. The main outcome is that the northern portion of the retaining wall is classed with the highest hazard rate. The impact of this

  6. Bacterial diversity in the indoor air of pharmaceutical environment.

    PubMed

    Park, H K; Han, J-H; Joung, Y; Cho, S-H; Kim, S-A; Kim, S B

    2014-03-01

    To monitor bacterial diversity of ISO Class 8 pharmaceutical clean room environment using conventional culture-based methods and pyrosequencing analysis. Bacterial isolates were obtained through viable particulate air monitoring, passive air monitoring and surface-monitoring procedures. A total of 157 bacterial isolates were obtained and assigned to four different phyla, Actinobacteria, Firmicutes, Proteobacteria and Deinococcus-Thermus, encompassing 52 species of 24 genera based on 16S rRNA gene sequence analysis. The genera Micrococcus and Staphylococcus were found as the main bacterial groups among the isolates. However, a big discrepancy was found between the culture based and pyrosequencing results. A total of 11 409 quality reads were obtained from the pyrosequencing analysis, and the subsequent phylogenetic analysis indicated that Proteobacteria was the most abundant group at phylum level, followed by Actinobacteria and Firmicutes. Bacillus, Propionibacterium and Acinetobacter were identified as the most abundant genera by the pyrosequencing analysis. The culture-based results were in line with previous reports on the airborne bacterial composition of various environments, but the pyrosequencing analysis revealed a unique diversity of bacteria in this case. No significant pathogens above Riskgroup 2 were found from either culture based or pyrosequencing studies. The presence of various bacterial taxa including a number of groups, whose presence in air is previously unknown, was confirmed through this analysis. The main source of bacteria in the indoor air environment of pharmaceutical processes is likely human, but no significant primary pathogens were detected. Culture-based analysis may give limited information on the bacterial diversity of air environment. © 2013 The Society for Applied Microbiology.

  7. Modeling of Subsurface Lagrangian Sensor Swarms for Spatially Distributed Current Measurements in High Energy Coastal Environments

    NASA Astrophysics Data System (ADS)

    Harrison, T. W.; Polagye, B. L.

    2016-02-01

    Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.

  8. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    PubMed

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

  9. Soil microbial diversity patterns of a lowland spring environment.

    PubMed

    Vasileiadis, Sotirios; Puglisi, Edoardo; Arena, Maria; Cappa, Fabrizio; van Veen, Johannes A; Cocconcelli, Pier S; Trevisan, Marco

    2013-11-01

    The Po river plain lowland springs represent unique paradigms of managed environments. Their current locations used to be swamps that were drained 6-7 centuries ago, and they have been in constant use ever since. Our aims were to identify the effects of land use on the microbial communities of these soils, look for associated diversity drivers, and assess the applicability of ecology theories with respect to identified patterns. We screened the microbial diversity across a land use transect via high-throughput sequencing of partial 16S rrRNA gene amplicons. Land use had a major effect on soil properties and microbial community structures. Total organic carbon and pH were major diversity drivers for Bacteria, and pH was important for Archaea. We identified the potential contribution of soil amendments to the indigenous microbial communities, and also gained insights into potential roles of taxa in the organic carbon turnover. Verrucomicrobia coincided with the higher values of the recalcitrant organic carbon. Actinobacteria and Acidobacteria correlated with the more labile organic carbon. Finally, the higher diversity found in the soils less enzymatically active and relatively poorer in nutrients, may be explained to an extent by niche-based theories such as the resource heterogeneity hypothesis and Connell's intermediate disturbance hypothesis. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Diversity of Listeria species in urban and natural environments.

    PubMed

    Sauders, Brian D; Overdevest, Jon; Fortes, Esther; Windham, Katy; Schukken, Ynte; Lembo, Arthur; Wiedmann, Martin

    2012-06-01

    A total of 442 Listeria isolates, including 234 Listeria seeligeri, 80 L. monocytogenes, 74 L. welshimeri, 50 L. innocua, and 4 L. marthii isolates, were obtained from 1,805 soil, water, and other environmental samples collected over 2 years from four urban areas and four areas representing natural environments. Listeria spp. showed similar prevalences in samples from natural (23.4%) and urban (22.3%) environments. While L. seeligeri and L. welshimeri were significantly associated with natural environments (P ≤ 0.0001), L. innocua and L. monocytogenes were significantly associated with urban environments (P ≤ 0.0001). Sequencing of sigB for all isolates revealed 67 allelic types with a higher level of allelic diversity among isolates from urban environments. Some Listeria spp. and sigB allelic types showed significant associations with specific urban and natural areas. Nearest-neighbor analyses also showed that certain Listeria spp. and sigB allelic types were spatially clustered within both natural and urban environments, and there was evidence that these species and allelic types persisted over time in specific areas. Our data show that members of the genus Listeria not only are common in urban and natural environments but also show species- and subtype-specific associations with different environments and areas. This indicates that Listeria species and subtypes within these species may show distinct ecological preferences, which suggests (i) that molecular source-tracking approaches can be developed for Listeria and (ii) that detection of some Listeria species may not be a good indicator for L. monocytogenes.

  11. Diversity of Listeria Species in Urban and Natural Environments

    PubMed Central

    Overdevest, Jon; Fortes, Esther; Windham, Katy; Schukken, Ynte; Lembo, Arthur; Wiedmann, Martin

    2012-01-01

    A total of 442 Listeria isolates, including 234 Listeria seeligeri, 80 L. monocytogenes, 74 L. welshimeri, 50 L. innocua, and 4 L. marthii isolates, were obtained from 1,805 soil, water, and other environmental samples collected over 2 years from four urban areas and four areas representing natural environments. Listeria spp. showed similar prevalences in samples from natural (23.4%) and urban (22.3%) environments. While L. seeligeri and L. welshimeri were significantly associated with natural environments (P ≤ 0.0001), L. innocua and L. monocytogenes were significantly associated with urban environments (P ≤ 0.0001). Sequencing of sigB for all isolates revealed 67 allelic types with a higher level of allelic diversity among isolates from urban environments. Some Listeria spp. and sigB allelic types showed significant associations with specific urban and natural areas. Nearest-neighbor analyses also showed that certain Listeria spp. and sigB allelic types were spatially clustered within both natural and urban environments, and there was evidence that these species and allelic types persisted over time in specific areas. Our data show that members of the genus Listeria not only are common in urban and natural environments but also show species- and subtype-specific associations with different environments and areas. This indicates that Listeria species and subtypes within these species may show distinct ecological preferences, which suggests (i) that molecular source-tracking approaches can be developed for Listeria and (ii) that detection of some Listeria species may not be a good indicator for L. monocytogenes. PMID:22504820

  12. Evidence of Late Pliocene-Early Pleistocene marine environments in the deep subsurface of the Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, S.K.; Resig, J.M.

    2008-01-01

    Cuttings recovered from two deep exploratory wells in the Lihue Basin, Kauai, Hawaii, include fossiliferous marine deposits that offer an uncommon opportunity to study paleoenvironments from the deep subsurface in Hawaii and interpret the paleogeography and geologic history of Kauai. These deposits indicate that two marine incursions gave rise to protected shallow-water, low-energy embayments in the southern part of the Lihue Basin in the late Pliocene-early Pleistocene. During the first marine incursion, the embayment was initially zoned, with a variable-salinity environment nearshore and a normal-marine reef environment offshore. The offshore reef environment eventually evolved to a nearshore, variable-salinity environment as the outer part of the embayment shallowed. During the second marine incursion, the embayment had normal-marine to hypersaline conditions, which constitute a significant departure from the variable-salinity environment present during the first marine incursion. Large streams draining the southern Lihue Basin are a likely source of the freshwater that caused the salinity fluctuations evident in the fossils from the first marine incursion. Subsequent volcanic eruptions produced lava flows that buried the embayment and probably diverted much of the stream flow in the southern Lihue Basin northward, to its present point of discharge north of Kalepa Ridge. As a result, the embayment that formed during the second marine incursion received less freshwater, and a normal-marine to hypersaline environment developed. The shallow-water marine deposits, currently buried between 86 m and 185 m below present sea level, have implications for regional tectonics and global eustasy. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).

  13. Microbial Diversity in a Permanently Cold and Alkaline Environment in Greenland

    PubMed Central

    Glaring, Mikkel A.; Vester, Jan K.; Lylloff, Jeanette E.; Abu Al-Soud, Waleed; Sørensen, Søren J.; Stougaard, Peter

    2015-01-01

    The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California. PMID:25915866

  14. The Next Generation of Space Cells for Diverse Environments

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Raffaelle, Ryne

    2002-01-01

    Future science, military and commercial space missions are incredibly diverse. Military and commercial missions range from large arrays of hundreds of kilowatt to small arrays of ten watts in various Earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near-sun missions and planetary exploration including orbiters, landers and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. These mission requirements demand cells for low intensity, low temperature applications, high intensity, high temperature applications, dusty environments and often high radiation environments. This paper discusses mission requirements, the current state of the art of space solar cells, and a variety of both evolving thin-film cells as well as new technologies that may impact the future choice of space solar cells for a specific mission application.

  15. Enacting Diverse Learning Environments: Improving the Climate for Racial/Ethnic Diversity in Higher Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Milem, Jeffrey; Clayton-Pedersen, Alma; Allen, Walter

    This digest examines ways in which learning and educational objectives can be maximized to achieve diversity while improving social and learning environments for students from different racial/ethnic backgrounds. The digest examines the literature on campus climate for racial/ethnic diversity, looks at the impact on student diversity of the campus…

  16. RANGE AND DISTRIBUTION OF TECHNETIUM KD VALUES IN THE SRS SUBSURFACE ENVIRONMENT

    SciTech Connect

    Kaplan, D

    2008-10-28

    L/g. The E-Area subsurface is subdivided into three hydrostratigraphic layers: Upper Vadose Zone (11 to 30 ft depth), Lower Vadose Zone (30 to 51 ft depth), and aquifer (51 to 95 ft depth). The Upper Vadose Zone generally contains more clay than the Lower Vadose Zone, and the Aquifer tends to be made up of mostly sand layers with clay strata. The mean K{sub d} values of each of these zones did not differ significantly and the K{sub d} values from each zone were not from the Normal distribution. The ranges of values were greatest in the Upper Vadose Zone and least in the Lower Vadose Zone. Previous Best Estimate Tc K{sub d} values for Sandy Sediment and Clayey Sediment were 0.1 and 0.2 mL/g, respectively (Kaplan 2007a). A more thorough review indicates that the Best Estimates for Sandy Sediment is 0.1 mL/g and for Clayey Sediment is 0.8 mL/g (Kaplan 2007b). This current dataset greatly increases the number of Tc K{sub d} values measured with SRS sediments, but perhaps more importantly, provides a better estimate for E-Area sediments, and provides a measure of Tc K{sub d} distributions. Based on this dataset, the best overall Tc K{sub d} value for E-Area is the mean, 3.4 mL/g, with a log-normal distribution between the 95 percentile values of 2.4 to 4.4 mL/g. This document version differs from the earlier version, SRNS-STI-2008-00286, in that it includes some editorial corrections. This version does not contain any technical changes or changes to the conclusions presented in the earlier version.

  17. Connecting diverse molecular cloud environments with nascent protostars in Orion

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Megeath, S.; Fischer, W. J.; Ali, B.; Furlan, E.; Tobin, J. J.; Stanke, T.; Henning, T.; Krause, O.; Manoj, P.; Osorio, M.; Robitaille, T.; HOPS Team

    2014-01-01

    Understanding how the gas environment within molecular clouds influences the properties of protostars is a key step towards understanding the physical factors that control star formation. We report on an analysis of the connection between molecular cloud environment and protostellar properties using the Herschel Orion Protostar Survey (HOPS), a large multi-observatory survey of protostars in the Orion molecular clouds. HOPS has produced well sampled 1 um to 870 um SEDs of over 300 protostars in the Orion molecular clouds using images and spectra from 2MASS, Spitzer, Herschel and APEX. Furthermore, the combination of APEX 870 um continuum observations with the HOPS/PACS 160 um data over the same area allows for a determination of the temperatures and column densities in the often filamentary dense gas surrounding the Orion protostars. Based on these data, we link the protostellar properties with their environmental properties. Utilizing the diverse environments present within the Orion molecular clouds, we show how the luminosity and spacing of protostars in Orion depends on the local gas column density. Furthermore, we report an unusual concentration of the youngest known protostars (the Herschel identified PBRS, PACS Bright Red Sources) in the Orion B cloud, and we discuss possible reasons for this concentration.

  18. Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation

    SciTech Connect

    Hakim Boukhalfa; Gary A. Icopini; Sean D. Reilly; Mary P. Neu

    2007-04-19

    Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in solution is present as hexavalent plutonyl, PuO2 2+.

  19. Microbial pathways for the mobilization of mercury as Hg(O) in anoxic subsurface environments

    SciTech Connect

    Barkay, Tamar

    2005-06-01

    The goal of our project which was initiated in June 2005 is focused on the presence of merA in microbial communities of anoxic environments and the effect of anaerobic respiratory pathways on MR expression and activities. The following progress has been made to date: PCR primers were designed to span the known phylogenetic range of merA genes of Gram-negative bacteria. In control experiments, these primers successfully amplified a 288 bp region at the 3? end of previously characterized merA genes from Shewanella putrefaciens pMERPH, Acidithiobacillus ferrooxidans, Pseudomonas stutzeri pPB, Tn5041, Pseudomonas sp. K-62, and Serratia marcescens pDU1358.

  20. Enzyme-Cascade Analysis of the Rio Tinto Subsurface Environment: A Biosensor Experiment

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Lynch, Kennda; Wainwright, Norman; Child, Alice; Williams, Kendra; McKay, David; Amils, Ricardo; Gonzalez, Elena; Stoker, Carol

    2004-01-01

    The Portable Test System (PTS), designed & developed by Charles Rivers Laboratories, Inc. (Charleston, SC) is a portable instrument that was designed to perform analysis of enzymatic assays related to rapid assessment of microbial contamination (Wainwright, 2003). The enzymatic cascade of Limulus Amebocyte Lysate (LAL) is known to be one of the most sensitive techniques available for microbial detection, enabling the PTS to be evaluated as a potential life detection instrument for in situ Astrobiology missions. In the summer of 2003 the system was tested as a part of the Mars Astrobiology Research and Technology Experiment (MARTE) ground truth science campaign in the Rio Tinto Analogue environment near Nerva, Spain. The preliminary results show that the PTS analysis correlates well with the contamination control tests and the more traditional lab-based biological assays performed during the MARTE field mission. Further work will be conducted on this research during a second field campaign in 2004 and a technology demonstration of a prototype instrument that includes autonomous sample preparation will occur in 2005.

  1. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  2. Performance of subsurface flow constructed wetland mesocosms in enhancing nutrient removal from municipal wastewater in warm tropical environments.

    PubMed

    Bateganya, Najib Lukooya; Kazibwe, Alex; Langergraber, Guenter; Okot-Okumu, James; Hein, Thomas

    2016-01-01

    Nutrient-rich effluents from municipal wastewater treatment plants (WWTPs) have significantly contributed to eutrophication of surface waters in East Africa. We used vertical (VF, 0.2 m(2)) and horizontal (HF, 0.45 m(2)) subsurface flow (SSF) constructed wetland (CW) configurations to design single-stage mesocosms planted with Cyperus papyrus, and operating under batch hydraulic loading regime (at a mean organic loading rate of 20 g COD m(-2) d(-1) for HF and 77 g COD m(-2) d(-1) for VF beds). The aim of the investigation was to assess the performance of SSF CWs as hotspots of nutrient transformation and removal processes between the WWTP and the receiving natural urban wetland environment in Kampala, Uganda. C. papyrus coupled with batch loading enhanced aerobic conditions and high efficiency regarding the elimination of suspended solids, organic matter, and nutrients with significant performance (P < .05) in VF mesocosms. The mean N and P elimination rates (g m(-2) d(-1)) were 9.16 N and 5.41 P in planted VF, and 1.97 N and 1.02 P in planted HF mesocosms, respectively. The lowest mean nutrient elimination rate (g m(-2) d(-1)) was 1.10 N and 0.62 P found in unplanted HF controls. Nutrient accumulation in plants and sediment retention were found to be essential processes. It can be concluded that whereas the SSF CWs may not function as independent treatment systems, they could be easily adopted as flexible and technologically less intensive options at a local scale, to increase the resilience of receiving environments by buffering peak loads from WWTPs.

  3. Bacterial Diversity in a Nonsaline Alkaline Environment: Heterotrophic Aerobic Populations

    PubMed Central

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-01-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the α-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11. PMID:15574939

  4. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    PubMed

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  5. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments

    PubMed Central

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  6. Diversity and distribution of pigmented heterotrophic bacteria in marine environments.

    PubMed

    Du, Hailian; Jiao, Nianzhi; Hu, Yaohua; Zeng, Yonghui

    2006-07-01

    A systematic investigation of marine pigmented heterotrophic bacteria (PHB) based on the cultivation method and sequencing analysis of 16S rRNA genes was conducted in Chinese coastal and shelf waters and the Pacific Ocean. Both the abundance of PHB and the ratio of PHB to CFU decreased along trophic gradients from coastal to oceanic waters, with the highest values of 9.9 x 10(3) cell mL(-1) and 39.6%, respectively, in the Yangtze River Estuary. In contrast to the total heterotrophic bacteria (TB) and CFU, which were present in the whole water column, PHB were primarily confined to the euphotic zone, with the highest abundance of PHB and ratio of PHB to CFU occurring in surface water. In total, 247 pigmented isolates were obtained during this study, and the phylogenetic analysis showed a wide genetic diversity covering 25 genera of six phylogenetic classes: Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacilli, Flavobacteria and Sphingobacteria. PHB belonging to Alphaproteobacteria, Flavobacteria and Sphingobacteria were obtained mainly from the South China Sea and East China Sea; PHB from the Pacific Ocean water were predominantly affiliated with Gammaproteobacteria, and most isolates from the Yangtze River Estuary fell into the classes Actinobacteria and Bacilli. The isolates exhibited various colours (e.g. golden, yellow, red, pink and orange), with genus or species specificity. Furthermore, the pigment of PHB cells absorbed light mainly in the wavelength range between 450 and 550 nm. In conclusion, our work has revealed that PHB with broad genetic diversity are widely distributed in the marine environment, and may account for up to 39.6% of culturable bacteria, equivalent to 1.4% of the total microbial community. This value might even be underestimated because it is probable that not all pigmented bacteria were isolated. Their abundance and genetic distribution are heavily influenced by environmental properties, such as light and nutrition

  7. An improved criterion for new particle formation in diverse environments

    SciTech Connect

    Kuang, C.; Riipinen, I.; Sihto, S.-L.; Kulmala, M.; McCormick, A.; McMurry, P.

    2010-03-15

    A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter Lg, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiala (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of Lg as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to 77 NPF events and 19 non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of Lg = 0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when Lg < 0.7 and being suppressed when Lg > 0.7. Moreover, nearly 45% of measured Lg values associated with NPF fell in the relatively narrow range of 0.1 < Lg < 0.3.

  8. Process studies in modern glacial environments: An innovative method and tool for subsurface site characterization at U.S. Army Alaska installations

    NASA Astrophysics Data System (ADS)

    Evenson, E. B.; Lawson, D. E.; Kopczynski, S. E.; Finnegan, D. C.; Bigl, S. R.; Fosbrook, C.

    2002-12-01

    Subsurface stratigraphy in previously glaciated terrain is complex and difficult to interpret. Textbook models illustrating glacial and periglacial environments are often too idealized to serve as adequate analogs to interpret site-specific subsurface data. Models of emplacement generally provide the perspective of glacial and periglacial processes at synoptic scales. While these models are useful to understand general principles, these models are insufficient to provide geologic information at resolutions necessary for quantitative environmental remediation efforts. Contaminated sites on U.S. Army Alaska Installations are characterized by glacially driven complex subsurface stratigraphy. These subsurface conditions cannot entirely be defined through boreholes, nor can geophysical data (ground penetrating radar, shallow seismics, etc.) be readily interpreted through existing conceptual models, especially in areas of discontinuous permafrost (Fort Wainwright, central Alaska) or formerly glaciated terrains (Fort Richardson, South Central Alaska; Haines Fuel Terminal, Southeast Alaska). Process studies at modern glacier locales, such as the Matanuska Glacier and Glacier Bay, allow us to apply actual field-process observations at a variety of scales to characterize site-specific stratigraphy. This work has led us to refine our geophysical approaches to detect the presence of buried ice, permafrost and sediment layers in active terrestrial and tidewater glacial environments, which has greatly enhanced our ability to map the vertical and lateral distribution of confining layers in our investigative areas (i.e. permafrost and sediments). These data and process observations are synthesized as three-dimensional models allowing us to predict the probable spatial distribution and relationships that exist among aquifers and their confining units. This approach allows us the ability to accurately develop subsurface models that are essential in developing groundwater models to

  9. Characterization of active members in C and N cycles in the subsurface environment of the Witwatersrand Basin

    NASA Astrophysics Data System (ADS)

    Lindsay, M. R.; Lau, C. M.; Tetteh, G.; Snyder, L.; Kieft, T. L.; Lollar, B. S.; Li, L.; Maphanga, S.; van Heerden, E.; Onstott, T. C.

    2012-12-01

    Fracture fluid from various depths and locations in Beatrix gold mine (Gold Fields Ltd.), located in the Welkom region on the 2.9 Ga Witwatersrand Basin of South Africa has been previously studied. Research has shown differential geochemistry data and distinctive community structure which varies from the dominance of different Proteobacterial classes in waters with paleometeoric 18O and 2H signatures including methanotrophs to one dominated by Firmicutes including Candidatus Desulforudis audaxviator-like taxa, which are associated with more saline waters with high concentrations of dissolved H2, hydrocarbons from water-rock reaction and 18O and 2H signatures above the Global Meteoric Water Line. Archaea seem to be a minority and all are euryarchaeota including methanogenic genera. The question is:Which of them are actively driving the subsurface C and N cycles? At shaft 3 on level 26, 1.3 kmbls, fracture water from 42 m behind the tunnel wall located in the Main quartzite formation was collected and analyzed. The temperature, pH, Eh, dissolved O2 and salinity of this hydrocarbon-containing fracture water ranged from 35 to 38°C, 8.2 to 8.8, -30 to -100 mV, 0.3 to 30 μM and 4.2 to 4.3 ppt, respectively. Gas comprised 60% CH4 and 20% N2. The same fracture formerly yielded Halicephalobus mephisto, the first reported subsurface nematode. Microorganisms were captured on filters in two field seasons. Defined by 16S rDNA, 2011 January sample contains β-Proteobacteria (50%), Firmicutes (39%) and α- and γ-Proteobacteria (7%). Of the Firmicutes, 90% were represented by Ca. D. audaxviator. All archaea detected are closestly related to sequences also reported from South African gold mines, with Crenarchaeota accounting for 77% of the clones. Prospective methane-oxidation and production were assessed by amplifying genes encoding for particulate methane monooxygenase alpha subunit (pmoA) and methyl-coenzyme M reductase alpha subunit (mcrA). PmoA genes of Type II

  10. Ecology and distribution of a new biomarker linked to 1,2-dichloropropane dechlorination in subsurface environments

    NASA Astrophysics Data System (ADS)

    Padilla-Crespo, E.; Loeffler, F. E.

    2011-12-01

    of dehalospiring populations in subsurface environments.

  11. Laboratory controls of precursor and temperature on the kinetics and isotopic fractionations of microbial methane for deep subsurface environments

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Lin, L.; Wang, P.; Sun, C.

    2009-12-01

    In subsurface environments, the mineralization of organic carbon involves complex interactions among geological and microbial processes. As the most reduced form and the shortest hydrocarbon chain, methane, is the final product of both microbial degradation and thermal-cracking of organic matter, it serves as the connection of carbon cycles between different reservoirs. Of various mechanisms for methane formation, microbial methane constitutes 85% of the total methane inventory investigated by far. However, the mechanisms and resultant carbon isotope fingerprints of methanogenesis in environments still remained largely unknown. The types of precursors and temperature might be the most critical factors governing methanogenesis. Lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, but it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. The effect of temperature is especially prominent for anoxic sediments within which the temperature increases with depth in accordance with the local geotherm. Commonly observed temperatures for methanogenesis span from ambient temperature to 90OC, a temperature range for most diagenetic reactions. In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at temperatures up to 90OC. Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit fermentation, and were monitored together with methane production through time. Results of this experiments indicated that methanogenesis was positive at temperatures from room temperature to 80OC and precursors investigated despite substantial variations in the maximum rates and yields. In the experiment supplied with hydrogen and formate

  12. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    NASA Astrophysics Data System (ADS)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  13. Improving the biodegradative capacity of subsurface bacteria

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  14. Preparing the Future STEM Workforce for Diverse Environments

    ERIC Educational Resources Information Center

    Daily, Shaundra Bryant; Eugene, Wanda

    2013-01-01

    Following the belief that diversity breeds innovation in scientific endeavors, there is a national push for more diversity in the science, technology, engineering, and mathematics (STEM) workforce in order to maintain national economic competitiveness. Currently, STEM-related employment is only 28% non-White; however, greater efforts to recruit…

  15. Preparing the Future STEM Workforce for Diverse Environments

    ERIC Educational Resources Information Center

    Daily, Shaundra Bryant; Eugene, Wanda

    2013-01-01

    Following the belief that diversity breeds innovation in scientific endeavors, there is a national push for more diversity in the science, technology, engineering, and mathematics (STEM) workforce in order to maintain national economic competitiveness. Currently, STEM-related employment is only 28% non-White; however, greater efforts to recruit…

  16. Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?

    PubMed

    Pakeman, Robin J; Stockan, Jenni A

    2014-05-01

    Understanding how community assembly is controlled by the balance of abiotic drivers (environment or management) and biotic drivers (community composition of other groups) is important in predicting the response of ecosystems to environmental change. If there are strong links between plant assemblage structure and carabid beetle functional traits and functional diversity, then it is possible to predict the impact of environmental change propagating through different functional and trophic groups. Vegetation and pitfall trap beetle surveys were carried out across twenty four sites contrasting in land use, and hence productivity and disturbance regime. Plant functional traits were very successful at explaining the distribution of carabid functional traits across the habitats studied. Key carabid response traits appeared to be body length and wing type. Carabid functional richness was significantly smaller than expected, indicating strong environmental filtering, modulated by management, soil characteristics, and by plant response traits. Carabid functional divergence was negatively related to plant functional evenness, while carabid functional evenness was positively correlated to plant functional evenness and richness. The study shows that there are clear trait linkages between the plant and the carabid assemblage that act not only through the mean traits displayed, but also via their distribution in trait space; powerful evidence that both the mean and variance of traits in one trophic group structure the assemblage of another.

  17. Microbial methanogenesis in subsurface oil and coal.

    PubMed

    Meslé, Margaux; Dromart, Gilles; Oger, Philippe

    2013-11-01

    It is now clear that active methanogens are present in the deep-subsurface. This paper reviews microbial population structures and the biodegradation of organic compounds to methane in situ within oil reservoirs and coal deposits. It summarizes our current knowledge of methanogenes and methanogenesis, fermenters, synthrophs and microbial metabolism of complex organic compounds in these two widely occurring organic-rich subsurface environments. This review is not intended to be an exhaustive report of microbial diversity. Rather, it illustrates the similarities and differences between the two environments with specific examples, from the nature of the organic molecules to the methanogenic metabolic pathways and the structure of the microbial populations to demonstrate that widely diverging microbial populations show surprisingly similar metabolic capabilities.

  18. Quantifying and relating land-surface and subsurface variability in permafrost environments using lidar and surface geophsical datasets

    SciTech Connect

    Hubbard, Susan S; Gangodagmage, C; Dafflon, B; Wainwright, H; Peterson, J; Gusmeroli, A; Ulrich, Craig; Wu, Yuxin; Wilson, Cathy; Rowland, J; Tweedie, Craig; Wullschleger, Stan D

    2013-01-01

    The complexity of permafrost dynamics and its critical impact on climate feedbacks warrant continued development of advanced high-latitude terrestrial ecosystem characterization and monitoring approaches. In this study, we explore the value of remote sensing and surface geophysical data for characterizing land surface and subsurface properties and their linkages in an Alaskan Coastal Plain ecosystem. We base our study on data collected at the end of the 2011 growing season in the Barrow Environmental Observatory, where a nested suite of measurements were collected within a polygon-dominated region including: surface ground penetrating radar, electromagnetic, and electrical resistance tomography data; thaw depth, soil temperature and moisture content, soil texture, soil carbon and nitrogen content, and major and trace cations. Previously-collected lidar data were also available for the study. Analysis of the datasets, individually and in combination, revealed the utility of the methods for characterizing critical land-surface and subsurface properties and associated spatial zonation. Lidar analysis was performed to extract geomorphic metrics (such as slope, curvature, and directed distance of polygons), which potentially indicate drainage potential and permafrost deformation state. Cluster analysis of these lidar-obtained attributes suggested that the land surface can be grouped into three spatially coherent zones, each having a dominant geomorphic expression including: a high centered polygon zone, a low centered polygon zone and a transitional zone. Comparison of the geophysical attributes from radar, electrical resistance tomography, and electromagnetic data with point measurements suggests that the surface geophysical data can provide very high-resolution information about subsurface properties that affect ecosystem feedbacks to climate, such as thaw depth and moisture content. Cluster analysis suggested that the geophysical attributes also varied spatially in a

  19. Characterization of rhizosphere prokaryotic diversity in a horizontal subsurface flow constructed wetland using a PCR cloning-sequencing based approach.

    PubMed

    Bouali, Moez; Pelletier, Eric; Chaussonnerie, Sébastien; Le Paslier, Denis; Bakhrouf, Amina; Sghir, Abdelghani

    2013-05-01

    Performance of biological wastewater treatment systems may be related to the composition and activity of microbial populations they contain. However, little information is known regarding microbial community inhabiting these ecosystems. The purpose of this study was to investigate archaeal and bacterial diversity, using cultivation-independent molecular techniques, in a constructed wetland receiving domestic wastewater. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by PCR using primers specific for archaeal and bacterial domains. A high microbial diversity was detected. The Proteobacteria phylum is the most abundant and diversified phylogenetic group representing 31.3 % of the OTUs, followed by the Bacteroidetes (14.8 %), Planctomycetales (13.8 %), Actinobacteria (12 %), and Chloroflexi (8.2 %). Sequences affiliated with minor phylogenetic divisions such as the TM7, Nitrospira, OP10, and BRC1 are represented by <6 % of total OTUs. The Archaea domain was represented by the Thaumarchaeota phylum dominated by the Candidatus Nitrososphaera genus.

  20. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  1. High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA).

    PubMed

    Oregaard, Gunnar; Sørensen, Søren J

    2007-09-01

    DNA was extracted from different depth soils (0-5, 45-55 and 90-100 cm below surface) sampled at Lower East Fork Poplar Creek floodplain (LEFPCF), Oak Ridge (TN, USA). The presence of merA genes, encoding the mercuric reductase, the key enzyme in detoxification of mercury in bacteria, was examined by PCR targeting Actinobacteria, Firmicutes or beta/gamma-Proteobacteria. beta/gamma-Proteobacteria merA genes were successfully amplified from all soils, whereas Actinobacteria were amplified only from surface soil. merA clone libraries were constructed and sequenced. beta/gamma-Proteobacteria sequences revealed high diversity in all soils, but limited vertical similarity. Less than 20% of the operational taxonomic units (OTU) (DNA sequences > or = 95% identical) were shared between the different soils. Only one of the 62 OTU was > or = 95% identical to a GenBank sequence, highlighting that cultivated bacteria are not representative of what is found in nature. Fewer merA sequences were obtained from the Actinobacteria, but these were also diverse, and all were different from GenBank sequences. A single clone was most closely related to merA of alpha-Proteobacteria. An alignment of putative merA genes of genome sequenced mainly marine alpha-Proteobacteria was used for design of merA primers. PCR amplification of soil alpha-Proteobacteria isolates and sequencing revealed that they were very different from the genome-sequenced bacteria (only 62%-66% identical at the amino-acid level), although internally similar. In light of the high functional diversity of mercury resistance genes and the limited vertical distribution of shared OTU, we discuss the role of horizontal gene transfer as a mechanism of bacterial adaptation to mercury.

  2. A geological model for the management of subsurface data in the urban environment of Barcelona and surrounding area

    NASA Astrophysics Data System (ADS)

    Vázquez-Suñé, Enric; Ángel Marazuela, Miguel; Velasco, Violeta; Diviu, Marc; Pérez-Estaún, Andrés; Álvarez-Marrón, Joaquina

    2016-09-01

    The overdevelopment of cities since the industrial revolution has shown the need to incorporate a sound geological knowledge in the management of required subsurface infrastructures and in the assessment of increasingly needed groundwater resources. Additionally, the scarcity of outcrops and the technical difficulty to conduct underground exploration in urban areas highlights the importance of implementing efficient management plans that deal with the legacy of heterogeneous subsurface information. To deal with these difficulties, a methodology has been proposed to integrate all the available spatio-temporal data into a comprehensive spatial database and a set of tools that facilitates the analysis and processing of the existing and newly added data for the city of Barcelona (NE Spain). Here we present the resulting actual subsurface 3-D geological model that incorporates and articulates all the information stored in the database. The methodology applied to Barcelona benefited from a good collaboration between administrative bodies and researchers that enabled the realization of a comprehensive geological database despite logistic difficulties. Currently, the public administration and also private sectors both benefit from the geological understanding acquired in the city of Barcelona, for example, when preparing the hydrogeological models used in groundwater assessment plans. The methodology further facilitates the continuous incorporation of new data in the implementation and sustainable management of urban groundwater, and also contributes to significantly reducing the costs of new infrastructures.

  3. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands.

    PubMed

    Deng, Huanhuan; Ge, Liyun; Xu, Tan; Zhang, Minghua; Wang, Xuedong; Zhang, Yalei; Peng, Hong

    2011-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands. To improve the performance of constructed wetlands, it is very important to know the metabolic properties and functional diversity of the microbial communities. The purpose of this study is to analyze the metabolic properties and functional diversity of the microbial community in a horizontal subsurface-flow constructed wetland (CW) in a laboratory study through the sole-carbon-source utilization profiles using Biolog-ECO microplates. The technique has advantages over traditional cell culture techniques, such as molecular-level techniques-RNA amplification, which are time-consuming, expensive, and only applicable to the small number of species that may be cultured. This CW was designed to treat rural eutrophic water in China, using the plant L. This study showed that the metabolic activities of upper front substrate microorganisms (UF) were greater than those of the lower back substrate microorganisms (LB) in the CW. Integrated areas under average well color development (AWCD) curves of substrate microorganisms in the UF were 131.9, 4.8, and 99.3% higher than in the lower front part (LF), the upper back part (UB), and the LB part of the CW, respectively. Principal components analysis showed significant differences in both community structure and metabolic utilization of carbon sources between substrate microorganisms from different sampling sites. Carbon source utilization of polymers, carbohydrates, carboxylic acids, and amino acids was higher in UF than in LF, but that of amines and phenolic compounds was very similar in UF and LF. The richness, evenness, and diversity of upper substrate microbial communities were significantly higher than those of lower substrate. The LF substrate microbial communities had lower evenness than the other sampling plots, and the lowest richness of substrate microbial community was found in the LB part of the CW.

  4. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  5. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    SciTech Connect

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  6. Techniques for Assessing the Performance of In Situ Bioreduction and Immobilization of Metals and Radionuclides in Contaminated Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Watson, D. B.; Jardine, P. M.

    2005-05-01

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this presentation is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  7. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  8. Population genetic diversity and fitness in multiple environments

    EPA Science Inventory

    When a large number of alleles are lost from a population, increases in homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations t...

  9. Redefining Diversity: Political Responses to the Post-PICS Environment

    ERIC Educational Resources Information Center

    Siegel-Hawley, Genevieve; Frankenberg, Erica

    2011-01-01

    This article examines the federal and local political response to the "Parents Involved" decision. At the federal level, developments suggest a reaction to "Parents Involved" that, since President Obama has taken office, has been largely supportive of voluntary efforts to promote racial diversity. The administration has also…

  10. Population genetic diversity and fitness in multiple environments

    EPA Science Inventory

    When a large number of alleles are lost from a population, increases in homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations t...

  11. Population Genetic Diversity and Fitness in Multiple Environments(BMCEB)

    EPA Science Inventory

    When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of p...

  12. Population Genetic Diversity and Fitness in Multiple Environments(BMCEB)

    EPA Science Inventory

    When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of p...

  13. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments.

    PubMed

    Miller, Christopher S; Handley, Kim M; Wrighton, Kelly C; Frischkorn, Kyle R; Thomas, Brian C; Banfield, Jillian F

    2013-01-01

    In microbial ecology, a fundamental question relates to how community diversity and composition change in response to perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA libraries), or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing). Here, we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured, there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal electron accepting process. However, community membership was altered significantly. The method allows for sensitive, accurate profiling of the "long tail" of low abundance organisms that exist in many microbial communities, and can resolve population dynamics in response to environmental change.

  14. Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate

    SciTech Connect

    Nash, K.L.; Jensen, M.P.; Schmidt, M.A.

    1997-12-31

    In addition to naturally occurring uranium and thorium, actinide ions exist in the subsurface environment as a result of accidental releases and intentional disposal practices associated with nuclear weapons production. These species present a significant challenge to cost-effective remediation of contaminated environments. An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into a less mobile form by remote treatment. We have under development a process which relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term, and to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms in the long term. Studies to date include identification of a suitable organophosphorus reagent, profiling of its decomposition kinetics, verification of the formation of phosphate mineral phases upon decomposition of the reagent, and extensive comparison of the actinide uptake ability of the calcium salt of the reagent as compared with hydroxyapatite. In this report, we briefly describe the process with focus on the cation exchange behavior of the calcium salt of the organophosphorus sequestrant.

  15. Engineers' Perceptions of Diversity and the Learning Environment at Work: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Firestone, Brenda L.

    2012-01-01

    The purpose of this dissertation research study was to investigate engineers' perceptions of diversity and the workplace learning environment surrounding diversity education efforts in engineering occupations. The study made use of a mixed methods methodology and was theoretically framed using a critical feminist adult education lens and…

  16. Engineers' Perceptions of Diversity and the Learning Environment at Work: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Firestone, Brenda L.

    2012-01-01

    The purpose of this dissertation research study was to investigate engineers' perceptions of diversity and the workplace learning environment surrounding diversity education efforts in engineering occupations. The study made use of a mixed methods methodology and was theoretically framed using a critical feminist adult education lens and…

  17. Mobile user environment and satellite diversity for NGSO S-PCN's

    NASA Technical Reports Server (NTRS)

    Werner, Markus; Bischl, Hermann; Lutz, Erich

    1995-01-01

    The performance of satellite diversity under the influence of the mobile user environment is analyzed. To this end, a digital channel model is presented which takes into account the elevation angle as well as the user mobility in a given environment. For different LEO and MEO systems and for varying mobile user environments, some crucial benefits and drawbacks of satellite diversity are discussed. Specifically, the important GW service area concept is introduced. The conclusions are validated by numerical results from computer simulations. Globalstar (LEO) and Inmarsat (MEO) are compared in terms of visibility, service availability and equivalent handover complexity for different environments and user mobility.

  18. Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments.

    PubMed

    Leon Morales, Carlos Felipe; Strathmann, Martin; Flemming, Hans-Curt

    2007-05-01

    Colloid transport through porous media can be influenced by the presence of biofilms. Sterile and non-sterile sand columns were investigated using Laponite RD as model colloid and a highly mucoid strain of Pseudomonas aeruginosa as model biofilm former. Laponite RD was marked specifically by fluorescent complexes with rhodamine 6G. Breakthrough curves (BTCs) were used as parameters for determination of colloid transport characteristics. In the sterile columns, the colloid was mobile (collision efficiencies from 0.05 to 0.08) both after the presence of Na(+) and Ca(2+) ions followed by deionised water influent. In the biofilm-grown column, the same treatment did not result in colloid retention in the case of Na(+) exposure, but in altered or enhanced colloid transport. In the case of Ca(2+) ions exposure, colloid retention increased with biofilm age. After 3 weeks, almost complete retention was observed. Similar observations were made in columns packed with material from slow sand filtration units. These data reveal the complex interactions between biofilms, cations and colloid transport. Changes in the electrolyte composition of water percolating the subsurface can frequently occur and will result in different colloid transport characteristics with regard to the dominating species of ions and the relative abundance of microbial biofilms. This has to be considered when modelling colloid transport through the subsurface.

  19. Microbial-sized, carboxylate-modified microspheres as surrogate tracers in a variety of subsurface environments: An overview

    USGS Publications Warehouse

    Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.

    2017-01-01

    Since 1986, fluorescent carboxylate-modified polystyrene/latex microspheres (FCM) have been co-injected into aquifers along with conservative tracers and viruses, bacteria, and (or) protozoa. Use of FCM has resulted in new information about subsurface transport behaviors of microorganisms in fractured crystalline rock, karst limestone, soils, and granular aquifers. FCM have been used as surrogates for oocysts of the pathogenic protist Cryptosporidium parvum in karst limestone and granular drinking-water aquifers. The advantages of FCM in subsurface transport studies are that they are safe in tracer applications, negatively charged, easy to detect, chemically inert, and available in wide range of sizes. The limitations of FCM are that the quantities needed for some field transport studies can be prohibitively expensive and that their surface characteristics may not match the microorganisms of interest. These limitations may be ameliorated, in part by using chemically modified FCM so that their surface characteristics are a better match to that of the organisms. Also, more sensitive methods of detection may allow using smaller quantities of FCM. To assess how the transport behaviors of FCM and pathogens might compare at the field scale, it is helpful to conduct side-by-side comparisons of their transport behaviors using the geologic media and site-specific conditions that characterize the field site.

  20. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  1. Embracing Diversity: Toolkit for Creating Inclusive Learning-Friendly Environments

    ERIC Educational Resources Information Center

    Harris, Ray; Miske, Shirley; Attig, George

    2004-01-01

    An inclusive, learning-friendly environment (ILFE) welcomes, nurtures, and educates all children regardless of their gender, physical, intellectual, socio-economic, emotional, linguistic and other characteristics. "Inclusive" in the school setting generally refers to the inclusion or children with disabilities into regular classrooms designed for…

  2. Protostellar Luminosity Functions in 11 Diverse Star Forming Environments

    NASA Astrophysics Data System (ADS)

    Kryukova, Erin; Megeath, S. T.; Gutermuth, R.; Pipher, J.; Allen, T. S.; Allen, L. E.; Myers, P. C.; Muzerolle, J.; Cygnus-X Legacy Team

    2012-01-01

    Protostars exist in a variety of environments, ranging from clouds with dispersed low-mass stars, such as Taurus, to clustered regions in clouds forming high-mass stars, like Orion. The effect these different environments have on protostar properties such as mass or luminosity is uncertain. One way to probe the effects of cloud environment on the observable property, protostar luminosity is to compare protostellar luminosity functions of clouds hosting varied populations of protostars. In this dissertation talk I will discuss the protostellar luminosity functions from 11 star forming clouds including Lupus, Chamaeleon, Ophiuchus, Perseus, Serpens, Orion, Cep OB3, Mon R2, Cygnus-X, and Maddalena's Cloud, which encompass a wide range of star forming environments. The luminosity functions are constructed from Spitzer surveys of these molecular clouds. I employ a new technique for estimating the bolometric luminosity from near and mid-IR fluxes alone and for subtracting contamination from galaxies, reddened pre-main sequence stars with disks, and edge-on disk systems. The clouds which are forming massive stars show a significant peak at low luminosity and a tail extending toward luminosities above 10 solar luminosities, while the luminosity functions of clouds which are not forming massive stars have no significant peak down to the sensitivity limit and do not exhibit the tail. I compare these luminosity functions to existing models of protostellar evolution. I also compare the luminosity functions of protostars in distributed and clustered environments, as determined using nearest-neighbor distances. In Orion and Cygnus-X, the clouds which contain the largest populations of protostars there is a clear difference in luminosity functions between protostars incrowded and distributed regions, with the luminosity function biased towards higher luminosities in more luminous regions. I will discuss the implications of these variations and the possibility that the IMF is

  3. Exploratory data analysis on data generated in the DOE subsurface microbiology program

    SciTech Connect

    Meglen, R.R.

    1990-06-01

    The preliminary results from the innovative subsurface microbiology research program indicate that new data on the nature of the link between the geosphere and biosphere have been generated. The diversity of scientific disciplines represented in the subsurface microbiology program reflects the complexity of the system under study. The research carried out by national laboratory and university research scientists is addressing fundamental questions about the abundance of microorganisms and factors controlling microbial activity in the complex subsurface hydrologic and geochemical environment. Long-term implications of this research for mitigating contamination are clear and researchers share the broader objective of linking the basic science with applied work.

  4. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  5. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-11-16

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  6. A palette of fluorescent proteins optimized for diverse cellular environments

    PubMed Central

    Costantini, Lindsey M.; Baloban, Mikhail; Markwardt, Michele L.; Rizzo, Mark; Guo, Feng; Verkhusha, Vladislav V.; Snapp, Erik L.

    2015-01-01

    To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into use of red FPs in the secretory pathway. Our monomeric "oxFPs" finally resolve long standing, underappreciated, and important problems of cell biology and should be useful for a number of applications. PMID:26158227

  7. Subsurface Samples: Collection and Processing

    SciTech Connect

    Long, Philip E.; Griffin, W. Timothy; Phelps, Tommy J.

    2002-12-01

    Microbiological data, interpretation, and conclusions from subsurface samples ultimately depend on the quality and representative character of the samples. Subsurface samples for environmental microbiology ideally contain only the microbial community and geochemical properties that are representative of the subsurface environment from which the sample was taken. To that end, sample contamination by exogenous microorganisms or chemical constituents must be eliminated or minimized, and sample analyses need to begin before changes in the microbial community or geochemical characteristics occur. This article presents sampling methods and sample processing techniques for collecting representative samples from a range of subsurface environments. Factors that should be considered when developing a subsurface sampling program are discussed, including potential benefits, costs, and limitations enabling researchers to evaluate the techniques that are presented and match them to their project requirements. Methods and protocols to address coring, sampling, processing and quality assessment issues are presented.

  8. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    NASA Astrophysics Data System (ADS)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  9. The Interest of the Diversity of Perspectives and Methodologies in Evaluating the Science Laboratory Learning Environment

    ERIC Educational Resources Information Center

    Membiela, Pedro; Vidal, Manuel

    2017-01-01

    The importance of researching the opinions of students and teachers has been pointed out concerning the improvement of teaching and learning in laboratory environments. In this regard, a study of the laboratory environment was carried out from a diversity of perspectives and methodologies. By means of a questionnaire it was learned that the…

  10. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  11. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  12. Gamma-irradiation aggravates stress concentration along subsurface grain boundary of ultra-high molecular weight polyethylene (UHMWPE) under sliding fatigue environment.

    PubMed

    Shibata, Nobuyuki; Tomita, Naohide; Ikeuchi, Ken

    2003-01-01

    Numerical simulations were carried out using a DEM-based model under a sliding fatigue environment to investigate the influences of differences of mechanical properties between intra-granular portions and inter-granular portions on local stress-strain fields and to determine the effect of gamma-irradiative degradation of UHMWPE components on delamination. The predicted stress fields in the gamma-irradiated UHMWPE component were highly nonuniform and were quite different from those predicted in the non-irradiated UHMWPE component. The stress distributions were intensely affected by the structural inhomogeneousness of networked grain boundaries. Marked stress concentrations were observed along subsurface grain boundaries in the gamma-irradiated UHMWPE. The gamma-irradiated UHMWPE showed a steep increase in the maximum equivalent stresses for an increase in the number of sliding. As the number of sliding increased, moreover, the region where the maximum equivalent stress was observed, moved deep into the specimen. These findings suggest that fatigue damage with plastic deformation proceeds mainly at a subsurface region in the gamma-irradiated UHMWPE and at a superficial region in the non-irradiated one. Therefore, gamma-irradiation is an important factor in accelerating fatigue crack initiation resulting in delamination.

  13. Subsurface characterization of an oxidation-induced phase transformation and twinning in nickel-based superalloy exposed to oxy-combustion environments

    SciTech Connect

    Zhu, Jingxi; Holcomb, Gordon R.; Jablonski, Paul D.; Wise, Adam; Li, Jia; Laughlin, David E.; Sridhar, Seetharaman

    2012-07-30

    In the integration of oxy-fuel combustion to turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO{sub 2} and O{sub 2}. While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation. In this study, bare metal coupons of Ni-base superalloys were exposed in oxy-fuel combustion environment for up to 1000 h and the oxidation-related microstructures were examined. Phase transformation occurred in the subsurface region in Ni-based superalloy and led to twinning. The transformation product phases were analyzed through thermodynamic equilibrium calculations and various electron microscopy techniques, including scanning electron microscopy (SEM), orientation imaging microscopy (OIM) and transmission electron microscopy (TEM). The mechanism by which the phase transformation and the formation of the microstructure occurred was also discussed. The possible effects of the product phases on the performance of the alloy in service were discussed.

  14. Intraspecific diversity of Aureobasidium pullulans strains from different marine environments

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Zhiqiang; Chi, Zhenming; Zhang, Liang; Zhang, Dechao

    2009-09-01

    Totally more than 500 yeast strains were isolated from seawater, sea sediments, mud of sea salterns, marine fish guts and marine algae. The results of routine and molecular biology identification methods show that nine strains among these marine yeasts belong to Aureobasidium pullulans, although the morphologies of their colonies are very different. The marine yeasts isolated from different marine environments indicate that A. pullulans is widely distributed in different environmental conditions. These Aureobasidium pullulans strains include A. pullulans 4#2, A. pullulans N13d, A. pullulans HN3-11, A. pullulans HN2-3, A. pullulans JHSc, A. pullulans HN4.7, A. pullulans HN5.3, A. pullulans HN6.2 and A. pullulans W13a. A. pullulans 4#2 could produce cellulase and single cell protein. A. pullulans N13d could produce protease, lipase, amylase and cellulase. Both A. pullulans HN3-11 and A. pullulans HN2-3 were able to produce protease, lipase and cellulase. A. pullulans JHSc could secrete cellulase and killer toxin. Both A. pullulans HN4.7 and A. pullulans HN5.3 could yield lipase and cellulase. A. pullulans W13a was able to secrete extracellular amylase and cellulase while A. pullulans HN4.7 and A. pullulans N13d could produce siderophores. This means that different A. pullulans strains from different marine environments have different physiological characteristics, which may be applied in many different biotechnological industries.

  15. The role of the dental school environment in promoting greater student diversity.

    PubMed

    Pendleton, Darryl D; Graham, Bruce S

    2010-10-01

    This chapter describes the strategies implemented by one dental school during the past decade to establish an environment that supports a culture of diversity. The school audited its initial diversity milieu, authored a strategic plan for diversity, fully participated in university-wide diversity initiatives, and created an administrative infrastructure for underrepresented minority (URM) student support. Mentoring and counseling programs were established for URM students, and a schoolwide diversity committee was formed to make cultural competence a high priority for all students, faculty, and staff. URM faculty members were recruited and retained through a minority faculty development program. Student professional organizations were established and supported by mentoring partnerships with members of the corresponding organizations in the practicing community. The school's diversity culture is continuously evaluated and nurtured within the context of evolving human interactions in society, dental education, and dental practice.

  16. Ubiquity of Deep-Sea Hydrothermal Vent Archaea in the Global Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Recent microbiological surveys of terrestrial and oceanic subsurface biosphere have revealed that sizable microbial populations are present in the global subsurface environments. However, little is known about the community structure, the genetic diversity and the distribution pattern of the subsurface bacteria and archaea since these surveys are mainly dependent on microscopic observations and conventional cultivation techniques. Culture-independent, molecular phylogenetic techniques are now applied to explore microbial communities in various subsurface environments such as underground mines, subterrestrial rocks, continental and ocean oil reservoirs, subseafloor pelagic sediments and methane hydrates, and subvent microbial ecosystems. It becomes apparent that unique archaeal components are commonly present in these subsurface microbial habitats whereas archaea are always less abundant than bacteria. Most frequently recovered genetic signatures are of hyperthermophiles Thermococcus and extreme halophiles Haloarcula members. Unexpected ubiquity of them even in non-extreme, subsurface environments may represent the great mass potential of probably dormant extremophilic archaea in the global subsurface biosphere. Archaeal populations in deep-sea hydrothermal vents and the subvent environments might serve as sources of the dormant extremophiles, the silent majority of archaea. It seems likely therefore that the global and local ocean hydrothermal activities persistently have a great impact on the formation of subsurface microbial communities and the distribution of subsurface microorganisms. In the KR01-09 cruise which was named ?geomicrobiological investigation of subseafloor biosphere associated with deep-sea hydrothermal activity in the Okinawa Trough?, active populations of hyperthermophilic archaea Thermococcus were detected from non-hydrothermal subseafloor sediments. Their viability was likely correlated with the distance and the duration from the deep

  17. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    SciTech Connect

    Gu, April Z.; Wan, Kai-tak

    2014-09-02

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell

  18. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    DOE PAGES

    Hwang, C.; Copeland, A.; Lucas, Susan; ...

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  19. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    SciTech Connect

    Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; Brettin, T.; Bruce, David; Detter, J. C.; Han, Cliff F.; Schmutz, Jeremy; Larimer, F.; Land, M.; Hauser, L.; Kyrpides, Nikos C.; Lykidis, Athanasios; Richardson, P. M.; Beliaev, Alex S.; Sanford, Robert A.; Loeffler, Frank E.; Fields, Matthew W.

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  20. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    PubMed Central

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  1. Microbial Diversity in Surface Iron-Rich Aqueous Environments: Implications for Seeking Signs of Life on Mars

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Allen, C. C.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2010-01-01

    The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.

  2. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks.

    PubMed

    Li, Wei; Zhang, Yan; Cui, Lijuan; Zhang, Manyin; Wang, Yifei

    2015-08-01

    A horizontal subsurface flow constructed wetland (HSSF-CW) was designed to improve the water quality of an artificial lake in Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China. Artificial neural networks (ANNs), including multilayer perceptron (MLP) and radial basis function (RBF), were used to model the removal of total phosphorus (TP). Four variables were selected as the input parameters based on the principal component analysis: the influent TP concentration, water temperature, flow rate, and porosity. In order to improve model accuracy, alternative ANNs were developed by incorporating meteorological variables, including precipitation, air humidity, evapotranspiration, solar heat flux, and barometric pressure. A genetic algorithm and cross-validation were used to find the optimal network architectures for the ANNs. Comparison of the observed data and the model predictions indicated that, with careful variable selection, ANNs appeared to be an efficient and robust tool for predicting TP removal in the HSSF-CW. Comparison of the accuracy and efficiency of MLP and RBF for predicting TP removal showed that the RBF with additional meteorological variables produced the most accurate results, indicating a high potentiality for modeling TP removal in the HSSF-CW.

  3. Relationship between the adhesive properties of bacteria and their transport and colonization in the subsurface environment. Final report for period September 15, 1996 - September 30, 1999

    SciTech Connect

    Madilyn Fletcher

    2000-04-06

    This research has focused on the attachment of bacteria to solid surfaces and the significance of their adhesion properties in their transport through porous media. Our work has focused on strains of Pseudomonas and a related species Burkholderia cepacia. Most of our experimental strains were isolated from subsurface environments at USDOE experimental field sites. The first portion of this project was conducted at the University of Maryland during 1994-1996, during which two graduates and one graduate student were supported by the award. The project was then continued under contract number DE-FG02-96ER62302 at the University of South Carolina, where one postdoctoral associate has been supported by the award.

  4. Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen

    NASA Astrophysics Data System (ADS)

    Hunter, K. S.; Van Cappellen, P.

    2000-01-01

    Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.

  5. Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy.

    PubMed

    Kwon, Man Jae; Boyanov, Maxim I; Yang, Jung-Seok; Lee, Seunghak; Hwang, Yun Ho; Lee, Ju Yeon; Mishra, Bhoopesh; Kemner, Kenneth M

    2017-07-01

    Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weathering resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. This study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genetic diversity among cotton cultivars in two environments in the State of Mato Grosso.

    PubMed

    Santos, I G; Teodoro, P E; Farias, F C; Farias, F J C; Carvalho, L P; Rodrigues, J I S; Cruz, C D

    2017-04-13

    Using commercial cultivars to compose crossing blocks in cotton is a promising strategy, because these materials have desirable agronomic and technological characteristics. The objective of this study was to evaluate the genetic diversity among 16 cotton cultivars cultivated in two environments in the State of Mato Grosso, the largest national producer, using agronomical and technological traits. There was significant effect to cultivars for all traits, while genotype x environment interaction was significant only for average boll weight, short fiber index, and maturity of fibers. Therefore, because of the presence of genotype x environment interaction for three traits, we chose to study genetic diversity among cotton cultivars separately in each environment and investigate the interaction impact on the diversity among genotype pairs. Based on agronomical and technological performance and genetic diversity among cultivars in both environments, the most promising cross involves FM 910 and LD CV 02. We also observed that lint percentage and average boll weight presented a higher discrimination capacity in both environments.

  7. SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS

    SciTech Connect

    Abercrombie, R E; Mayeda, K; Walter, W R; Viegas, G M; Murphy, K

    2007-07-10

    The objectives of this study are to improve low-magnitude regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge of source scaling at small magnitudes (i.e., m{sub b} < {approx}4.0) is poorly resolved. It is not clear whether different studies obtain contradictory results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods. We begin by developing and improving the two different methods, and then in future years we will apply them both to each set of earthquakes. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But there are only a limited number of earthquakes that are recorded locally, by sufficient stations to give good azimuthal coverage, and have very closely located smaller earthquakes that can be used as an empirical Green's function (EGF) to remove path effects. In contrast, coda waves average radiation from all directions so single-station records should be adequate, and

  8. SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS

    SciTech Connect

    Abercrombie, R E; Mayeda, K; Walter, W R; Viegas, G M; Murphy, K

    2008-07-08

    The objectives of this study are to improve low-magnitude (concentrating on M2.5-5) regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge at small magnitudes (i.e., m{sub b} < {approx} 4.0) is poorly resolved, and source scaling remains a subject of on-going debate in the earthquake seismology community. Recently there have been a number of empirical studies suggesting scaling of micro-earthquakes is non-self-similar, yet there are an equal number of compelling studies that would suggest otherwise. It is not clear whether different studies obtain different results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods that both make use of empirical Green's function (EGF) earthquakes to remove path effects. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But finding well recorded earthquakes with 'perfect' EGF events for direct wave analysis is difficult, limits the number of earthquakes

  9. Field-scale investigations on the biodegradation of chlorinated aromatic compounds and HCH in the subsurface environment

    NASA Astrophysics Data System (ADS)

    Feidieker, Doris; Kämpfer, Peter; Dott, Wolfgang

    1995-08-01

    The biological in situ remediation of a former pesticide production site, highly contaminated with chlorobenzenes, chlorophenols and hexachlorocyclohexanes, was studied for a period of one year. Field experiments testing the remediation technology were carried out in the subsurface to a depth of 5.5 m. Detailed monitoring of several chemical and microbiological parameters was made in order to evaluate the remediation success. The initial pollution of this site ranged from 0.03-0.30 g EOX (extractable halogenated organic compounds)/kg soil in the saturated layer to 1-20 g kg -1 EOX in the unsaturated layer, whereas the impounded water was polluted with 8-13 mg L -1 AOX (adsorbable halogenated organic compounds). No significant decrease of the pollutants in the subsoil was observed, although oxygen and nutrients were supplied in sufficient concentrations. In contrast, several of the chlorinated organic compounds were eliminated from the water treatment plant, either by physical or biological processes. Based on measurements of AOX in different parts of the plant, 26% of the pollutants was found adsorbed on the activated carbon and 3% was found in the sludge of the filter back-wash. Dependent on these measurements, elimination of ˜ 70% of the pollutants was attributed to microbial degradation. The latter fact is supported by oxygen consumption data, by increase in the microbial counts and by changes in the distribution of the pollutants in the plant effluent. Among the chlorobenzenes, 1,2,4-trichlorobenzene, and among the hexachlorocyclohexanes, a-hexachlorocyclohexane were eliminated preferentially. The results suggest that an in situ remediation of a site polluted with chlorinated organic compounds cannot be recommended; however, an on site circulation water treatment is possible by a combination of physical and biological processes.

  10. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments

    PubMed Central

    Yabe, Shuhei; Sakai, Yasuteru; Abe, Keietsu; Yokota, Akira

    2017-01-01

    Bacteria with an actinomycetes-like morphology have recently been discovered, and the class Ktedonobacteria was created for these bacteria in the phylum Chloroflexi. They may prove to be a valuable resource with the potential to produce unprecedented secondary metabolites. However, our understanding of their diversity, richness, habitat, and ecological significance is very limited. We herein developed a 16S rRNA gene-targeted, Ktedonobacteria-specific primer and analyzed ktedonobacterial amplicons. We investigated abundance, diversity, and community structure in forest and garden soils, sand, bark, geothermal sediment, and compost. Forest soils had the highest diversity among the samples tested (1181–2934 operational taxonomic units [OTUs]; Chao 1 estimate, 2503–5613; Shannon index, 4.21–6.42). A phylogenetic analysis of representative OTUs revealed at least eight groups within unclassified Ktedonobacterales, expanding the known diversity of this order. Ktedonobacterial communities markedly varied among our samples. The common mesic environments (soil, sand, and bark) were dominated by diverse phylotypes within the eight groups. In contrast, compost and geothermal sediment samples were dominated by known ktedonobacterial families (Thermosporotrichaceae and Thermogemmatisporaceae, respectively). The relative abundance of Ktedonobacteria in the communities, based on universal primers, was ≤0.8%, but was 12.9% in the geothermal sediment. These results suggest that unknown diverse Ktedonobacteria inhabit common environments including forests, gardens, and sand at low abundances, as well as extreme environments such as geothermal areas. PMID:28321007

  11. Architectural design influences the diversity and structure of the built environment microbiome.

    PubMed

    Kembel, Steven W; Jones, Evan; Kline, Jeff; Northcutt, Dale; Stenson, Jason; Womack, Ann M; Bohannan, Brendan Jm; Brown, G Z; Green, Jessica L

    2012-08-01

    Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome--the community of microorganisms that live indoors--is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors.

  12. Architectural design influences the diversity and structure of the built environment microbiome

    PubMed Central

    Kembel, Steven W; Jones, Evan; Kline, Jeff; Northcutt, Dale; Stenson, Jason; Womack, Ann M; Bohannan, Brendan JM; Brown, G Z; Green, Jessica L

    2012-01-01

    Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome—the community of microorganisms that live indoors—is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors. PMID:22278670

  13. Microbial Diversity in Engineered Haloalkaline Environments Shaped by Shared Geochemical Drivers Observed in Natural Analogues

    PubMed Central

    Warren, Lesley A.; Kendra, Kathryn E.

    2015-01-01

    Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, geochemically comparable contexts. In this study, the microbial community structure and geochemical characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to geochemical and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by geochemical drivers. PMID:25979895

  14. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  15. Human impact on genetic diversity of Toxoplasma gondii: example of the anthropized environment from French Guiana.

    PubMed

    Mercier, A; Ajzenberg, D; Devillard, S; Demar, M P; de Thoisy, B; Bonnabau, H; Collinet, F; Boukhari, R; Blanchet, D; Simon, S; Carme, B; Dardé, M-L

    2011-08-01

    In French Guiana, severe cases of toxoplasmosis in immunocompetent patients are associated with atypical strains of Toxoplasma gondii linked to a wild neotropical rainforest cycle and a higher genetic diversity than usually observed for T. gondii isolates from anthropized environment. This raises the question of the impact of anthropization of the natural environment, on genetic diversity and on the population structure of T. gondii. However, few data are available on strains circulating in the anthropized areas from French Guiana. Seropositive animals originating mainly from anthropized sub-urban areas and punctually from wild environment in French Guiana were analyzed for T. gondii isolation and genotyping. Thirty-three strains were obtained by bioassay in mice and compared with 18 previously reported isolates chiefly originating from the Amazon rainforest. The genotyping analysis performed with 15 microsatellite markers located on 12 different chromosomes revealed a lower genetic diversity in the anthropized environment. Results were analyzed in terms of population structure by clustering methods, Neighbor-joining trees reconstruction based on genetic distances, F(ST,) Mantel's tests and linkage disequilibrium. They clearly showed a genetic differentiation between strains associated to the anthropized environment and those associated to the wild, but with some inbreeding between them. The majority of strains from the anthropized environment were clustered into additional lineages of T. gondii that are common in the Caribbean. In conclusion the two environmental populations "wild" and "anthropized" were genetically well differentiated. The anthropization of the environment seems to be accompanied with a decreased diversity of T. gondii associated with a greater structure of the populations. We detected potential interpenetration and genetic exchanges between these two environmental populations. As a higher pathogenicity in human of "wild" genotypes has been

  16. [Culicidae in bromeliads: diversity of species by anthropic environments, coastal area of Southeastern Brazil].

    PubMed

    Marques, Gisela R A M; Forattini, Oswaldo Paulo

    2008-12-01

    To compare diversity of Culicidae species collected from ground bromeliads in an urban, and periurban area and primitive forest. Study carried out in the city of Ilhabela, northern stretch of the coast of the State of São Paulo, Southeastern Brazil, from March 1998 to July 1999. Fortnightly immature Culicidae collections were undertaken in bromeliad tanks located in urban, and periurban areas, and primitive forest. The frequencies of species collected in the different environments were compared based on the estimated diversity to assess their richness, dominance and variance (ANOVA). A total of 31,134 immature mosquitoes from seven different genera and 37 species were collected from ground bromeliads. The urban environment had the greatest abundance (14,575 specimens), followed by the periurban (10,987) and then the forest environment (5,572). There were collected 30 species in the urban habitat, 32 in the periurban and 33 in the forest. The most dominant species were: Culex (Microculex) pleuristriatus in the urban and periurban areas, and Culex ocellatus in the forest. There was no difference in the frequency of mosquitoes in bromeliads in the different environments studied using ANOVA (F=0.5564; p=0.5769). The diversity of immature mosquitoes was greater in the forest and similar in the urban and periurban environments. The specific composition of Culicidae mosquitoes in ground bromeliads was greatly diversified and higher in those located in the forest environment. Cx. (Mcx.) pleuristriatus and Cx. ocellatus were the dominant species.

  17. Creating a School Environment for the Effective Management of Cultural Diversity

    ERIC Educational Resources Information Center

    Grobler, B. R.; Moloi, K. C.; Loock, C. F.; Bisschoff, T. C.; Mestry, R. J.

    2006-01-01

    This article examines the factors which impact upon the creation of a school environment for the effective management of cultural diversity as legislated for in the directive principles of the South African Schools Act of 1996 and the Schools Education Act of 1995. The two Acts determine that every person shall have the right to basic education…

  18. Homeostasis of Complementary Pair Theory: Ecological Comparisons in Diverse Universal Design for Learning Environments

    ERIC Educational Resources Information Center

    Ianneo, Brittany

    2014-01-01

    Accommodation~assimilation relations were theorized by Kelso and Engstrom (2006) as independent and dependent complementary pairs. This study defined relationships between organisms that experienced complementary interactions of accommodation~assimilation in diverse ecologies designed with universal design for learning environments (UDLE) compared…

  19. The microbial diversity of Polar environments is a fertile ground for bioprospecting.

    PubMed

    de Pascale, Donatella; De Santi, Concetta; Fu, Juan; Landfald, Bjarne

    2012-12-01

    The term bioprospecting has been adopted for systematic searches in nature for new bioactive compounds, genes, proteins, microorganisms and other products with potential for commercial use. Much effort has been focused on microorganisms able to thrive under harsh conditions, including the Polar environments. Both the lipid and protein cellular building blocks of Polar microorganisms are shaped by their adaptation to the permanently low temperatures. In addition, strongly differing environments, such as permafrost, glaciers and sea ice, have contributed to additional functional diversity. Emerging massive-parallel sequencing technologies have revealed the existence of a huge, hitherto unseen diversity of low-abundance phylotypes--the rare biosphere--even in the Polar environments. This realization has further strengthened the need to employ cultivation-independent approaches, including metagenomics and single-cell genomic sequencing, to get comprehensive access to the genetic diversity of microbial communities for bioprospecting purposes. In this review, we present an updated snapshot of recent findings on the molecular basis for adaptation to the cold and the phylogenetic diversities of different Polar environments. Novel approaches in bioprospecting are presented and we conclude by showing recent bioprospecting outcomes in terms of new molecules patented or applied by some biotech companies.

  20. Homeostasis of Complementary Pair Theory: Ecological Comparisons in Diverse Universal Design for Learning Environments

    ERIC Educational Resources Information Center

    Ianneo, Brittany

    2014-01-01

    Accommodation~assimilation relations were theorized by Kelso and Engstrom (2006) as independent and dependent complementary pairs. This study defined relationships between organisms that experienced complementary interactions of accommodation~assimilation in diverse ecologies designed with universal design for learning environments (UDLE) compared…

  1. Creating a School Environment for the Effective Management of Cultural Diversity

    ERIC Educational Resources Information Center

    Grobler, B. R.; Moloi, K. C.; Loock, C. F.; Bisschoff, T. C.; Mestry, R. J.

    2006-01-01

    This article examines the factors which impact upon the creation of a school environment for the effective management of cultural diversity as legislated for in the directive principles of the South African Schools Act of 1996 and the Schools Education Act of 1995. The two Acts determine that every person shall have the right to basic education…

  2. Cotton Flowers: Pollen and Petal Humidity Sensitivities Determine Reproductive Competitiveness in Diverse Environments

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity in reproductive abiotic stress tolerance has been reported for cotton [Gossypium hirsutum (L.)] based upon the percentage of anther dehiscence of mature pollen in adverse environments. This study investigated the abiotic stress tolerance of mature pollen and identified genetic vari...

  3. Hydrogen Utilization Potential in Subsurface Sediments

    PubMed Central

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  4. Hydrogen Utilization Potential in Subsurface Sediments.

    PubMed

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  5. Subsurface Ventilation System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  6. Subsurface Ventilation System Description Document

    SciTech Connect

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  7. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    SciTech Connect

    Daly, Michael J.

    2005-06-01

    Natural selection in highly radioactive waste sites may yield bacteria with favorable bioremediating characteristics. However, until recently the microbial ecology of such environments has remained unexplored because of the high costs and technical complexities associated with extracting and characterizing samples from such sites. We have examined the bacterial ecology within radioactive sediments from a high-level nuclear waste plume in the vadose zone on the DOE?s Hanford Site in south-central Washington state (Fredrickson et al, 2004). Manganese-dependent, radiation resistant bacteria have been isolated from this contaminated site including the highly Mn-dependent Deinococcus and Arthrobacter spp.

  8. Canada: A Regionally Diverse and Northern Environment. Understanding the Canadian Environment.

    ERIC Educational Resources Information Center

    Brown, Rex B.; And Others

    One of a series of student booklets on the Canadian environment, this unit presents Canada from a geomorphological perspective of the six major regions: the Western Cordillera, the Interior Plains, the Canadian Shield, the Far North, the Great Lakes-St. Lawrence Lowlands, and Appalachian Canada. Intended to help secondary students understand the…

  9. Canada: A Regionally Diverse and Northern Environment. Understanding the Canadian Environment.

    ERIC Educational Resources Information Center

    Brown, Rex B.; And Others

    One of a series of student booklets on the Canadian environment, this unit presents Canada from a geomorphological perspective of the six major regions: the Western Cordillera, the Interior Plains, the Canadian Shield, the Far North, the Great Lakes-St. Lawrence Lowlands, and Appalachian Canada. Intended to help secondary students understand the…

  10. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    SciTech Connect

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers

  11. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments

    PubMed Central

    Yang, Desirée C.; Blair, Kris M.

    2016-01-01

    SUMMARY Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition. PMID:26864431

  12. Microbiome interplay: plants alter microbial abundance and diversity within the built environment.

    PubMed

    Mahnert, Alexander; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    The built indoor microbiome has importance for human health. Residents leave their microbial fingerprint but nothing is known about the transfer from plants. Our hypothesis that indoor plants contribute substantially to the microbial abundance and diversity in the built environment was experimentally confirmed as proof of principle by analyzing the microbiome of the spider plant Chlorophytum comosum in relation to their surroundings. The abundance of Archaea, Bacteria, and Eukaryota (fungi) increased on surrounding floor and wall surfaces within 6 months of plant isolation in a cleaned indoor environment, whereas the microbial abundance on plant leaves and indoor air remained stable. We observed a microbiome shift: the bacterial diversity on surfaces increased significantly but fungal diversity decreased. The majority of cells were intact at the time of samplings and thus most probably alive including diverse Archaea as yet unknown phyllosphere inhabitants. LEfSe and network analysis showed that most microbes were dispersed from plant leaves to the surrounding surfaces. This led to an increase of specific taxa including spore-forming fungi with potential allergic potential but also beneficial plant-associated bacteria, e.g., Paenibacillus. This study demonstrates for the first time that plants can alter the microbiome of a built environment, which supports the significance of plants and provides insights into the complex interplay of plants, microbiomes and human beings.

  13. Diversity of Chromobacterium violaceum isolates from aquatic environments of state of Pará, Brazilian Amazon.

    PubMed

    Dall'Agnol, L T; Martins, R N; Vallinoto, A C R; Ribeiro, K T S

    2008-11-01

    The present study intended to characterize the phenotypic and genetic diversity of Brazilian isolates of Chromobacterium violaceum from aquatic environments within the Amazon region. Nineteen isolates showed morphological properties of C. violaceum and the majority grew at 44 degrees C. Low temperatures, in contrast, showed to be inhibitory to their growth, as eleven isolates did not grow at 10 degrees C and nine did not produce pigmentation, clearly indicating an inhibition of their metabolism. The largest variation among isolates was observed in the citrate test (Simmons), in which 12 isolates were positive, and in the oxidation/fermentation of sucrose, with six positives isolates. Chloramphenicol, gentamicin and sulfonamides efficiently inhibited bacterial growth. Amplified products of the recA gene were digested with HindII or PstI, which produced three or four restriction fragments patterns, respectively. The combined analysis arranged the isolates into six genospecies. The higher diversity observed in Belém (genotypes C, D, E and F) may be a consequence of intense human occupation, pollution of the aquatic environment or due to the higher diversity of the environments sampled in that region. In conclusion, a high level of genetic and phenotypic diversity was observed, and four new genospecies were described.

  14. Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA.

    PubMed

    Brown, Patricia B; Wolfe, Gordon V

    2006-01-01

    We examined eukaryote genetic diversity in the hydrothermal environments of Lassen Volcanic National Park (LVNP), Northern California. We sampled hydrothermal areas of the Bumpass Hell, Sulfur Works, Devil's Kitchen, and Boiling Springs Lake sites, all of which included diverse acidic pools, mud pots, and streams with visible algal mats and biofilms. Temperatures varied from 15 to 85 degrees C and pH from 1.7 to 5.8. DNA extraction methods compared by denaturing gradient gel electrophoresis fingerprinting exhibited similar patterns, and showed limited diversity of eukaryotic small subunit (SSU) rRNA genes compared with prokaryotes. We successfully amplified eukaryotic SSU rRNA genes from most environments up to 68 degrees C. Cloned rDNA sequences reveal acidophilic protists dominate eukaryotes in LVNP hydrothermal environments. Most sites showed phototrophic assemblages dominated by chlorophytes and stramenopiles (diatoms and chrysophytes). Heterotrophic taxa, though less abundant, included diverse alveolates (ciliates), amoebae, and flagellates. Fungi were also found at most sites, and metazoans (hexapods, nematodes, platyhelminths) were sometimes detected in less acidic environments, especially in algal mats. While many cloned rDNA sequences showed 95%-99% identity to known acidophilic isolates or environmental clones from other acidic sites (Rio Tinto), sequence diversity generally declined both with decreasing pH and increasing temperature, and both were controlling physical variables on the abundance and distribution of organisms at our sites. However, a pool at 68 degrees C with pH 1.7 yielded the greatest number of distinct sequences. While some were likely contaminants from nearby cooler sites, we suggest that Lassen's acidic hydrothermal features may harbor novel protists.

  15. The West African Mauritanid metamorphic suite of Proterozoic age in the subsurface of peninsular Florida and environs

    SciTech Connect

    Winston, G.O.

    1993-03-01

    A high and low-grade Gondwanan metamorphic terrane is revealed by 14 wells in Florida and environs. Two high-grade metamorphics (gneiss and schist) are located in central Florida and are probably Early Proterozoic in age. The 12 other wells contain low-grade metamorphic suites, principally composed of inter-bedded argillites, acid volcanics and quartzites belonging to the Mauritanid sequence of West Africa. These suites are present in south Georgia, north Florida and offshore; a 3,975-foot section was penetrated in one well. These widespread metamorphic rocks are probably the terrane into which the Cambrian Osceola granite of central Florida was intruded. The two grades of metamorphics represent Early and Late Proterozoic episodes of sedimentation, each followed by metamorphism and erosion. Lower Ordovician to Devonian sediments were deposited on this terrane in southern Georgia and northern Florida. In the Early Jurassic, volcanics completely covered southern Florida, concealing the nature of the old underlying surface. Younger Mesozoic sediments eventually buried the entire Pre-Cambrian-Lower Jurassic terrane.

  16. Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms

    NASA Astrophysics Data System (ADS)

    Taylor, Brian Kyle

    The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of

  17. Ecogenomic characterization of a marine microorganism belonging to a Firmicutes lineage that is widespread in both terrestrial and oceanic subsurface environments

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Glavina del Rio, T.; Tringe, S. G.; Stepanauskas, R.; Rappe, M. S.

    2015-12-01

    Large-volumes of basalt-hosted fluids from the sediment-covered subseafloor were collected in July 2011 from a horizon extending 29-117 meters below the sediment-rock interface at borehole 1362B, as well as from a deep horizon extending 193-292 meters below the sediment-rock interface at borehole 1362A, which are two of the latest generation of borehole observatories on the Juan de Fuca Ridge flank in the Northeast Pacific Ocean. Environmental DNA was sequenced from one fluid sample collected from each borehole, and a genomic bin related to the terrestrial Candidatus Desulforudis audaxviator lineage within the Firmicutes phylum of bacteria was identified. The near-complete bacterial genome, herein named Candidatus Desulfopertinax inferamarinus, is composed of six scaffolds totaling 1.78 Mbp in length. Despite vast differences in geography and environment of origin, phylogenomic analysis indicate that D. inferamarinus and D. audaxviator form a monophyletic clade to the exclusion of all other sequenced genomes. Similar to its terrestrial relative, the draft genome of the marine D. inferamarinus revealed a motile, sporulating, sulfate-reducing, chemoautotrophic thermophile that is capable of synthesizing all amino acids and fixing inorganic carbon via the Wood-Ljungdahl pathway. Unlike the terrestrial clade, relatively few integrases and transposases were identified. The marine genome described here provides evidence that a life-style adapted to the isolated deep subsurface environment is a general feature of the broader, globally-distributed Desulforudis/Desulfopertinax lineage and provides insight into the adaptations required for microbial life in the marine versus terrestrial deep biospheres.

  18. Distribution and Diversity of Symbiotic Thermophiles, Symbiobacterium thermophilum and Related Bacteria, in Natural Environments

    PubMed Central

    Ueda, Kenji; Ohno, Michiyo; Yamamoto, Kaori; Nara, Hanae; Mori, Yujiro; Shimada, Masafumi; Hayashi, Masahiko; Oida, Hanako; Terashima, Yuko; Nagata, Mitsuyo; Beppu, Teruhiko

    2001-01-01

    Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment. PMID:11525967

  19. Yeast diversity in the acidic Rio Agrio-Lake Caviahue volcanic environment (Patagonia, Argentina).

    PubMed

    Russo, Gabriel; Libkind, Diego; Sampaio, José P; van Broock, Maria R

    2008-09-01

    The Rio Agrio and Lake Caviahue system (RAC), in Northwestern Patagonia, is a natural acidic environment. The aims of this study were to characterize the yeast community and to provide the first ecological assessment of yeast diversity of this extreme aquatic environment. Yeast occurrence and diversity were studied at seven sites where the water pH varied between 1.8 and 6.7. Yeast CFU counts in the river ranged from 30 to 1200 CFU L(-1), but in the Lake the values were lower (30-60 CFU L(-1)). A total of 25 different yeast species were found, 11 of which belonged to undescribed taxa. Among these was an unusual strongly acidophilic Cryptococcus species. The RAC yeast community resembles that of acidic aquatic environments resulting from anthropic activities such as the São Domingos mines in Portugal and the Rio Tinto in Spain, respectively. The isolated yeast species were organized into different grades of adaptation to the RAC aquatic system. Based on the proposed grades, Rhodotorula mucilaginosa, Rhodosporidium toruloides and two novel Cryptococcus species were the most adapted species. These Cryptococcus species are apparently specialists of acidic aquatic environments, and might bear physiological features that possibly account for their ability to thrive in such extreme environments.

  20. Increased genetic diversity of Viola tricolor L. (Violaceae) in metal-polluted environments.

    PubMed

    Słomka, A; Sutkowska, A; Szczepaniak, M; Malec, P; Mitka, J; Kuta, E

    2011-04-01

    Changes in DNA sequences affecting cryptic intraspecific variability are very important mechanisms of plant microevolutionary processes, initiating species diversification. In polluted environments, intra- and interpopulation changes at the molecular level proceed rapidly and lead to the formation of new ecotypes in a relatively short time. We used ISSR PCR fingerprinting data to analyze the genetic diversity and genetic structure of seven populations of Viola tricolor: four growing on soil contaminated with heavy metals (Zn, Pb, Cd; waste heaps) and three from control soil. The populations from the polluted sites showed higher genetic polymorphism (%(poly)=84%) and gene diversity (H(T)=0.1709) than the control populations (%(poly)=75% and H(T)=0.1448). The number of private markers we detected within metallicolous (MET) populations was more than double that found within non-metallicolous (NON) populations (15 vs. 7). The STRUCTURE and UPGMA analyses showed clear genetic differences between the NON and MET populations. Based on broad analyses of the genetic parameters, we conclude that the effect of these polluted environments on the genetic diversity of the MET populations, separating them from the NON populations, is evidence of microevolutionary processes at species level, leading to species divergence and the emergence of local ecotypes better adapted to their different environments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database.

    PubMed

    Bissett, Andrew; Fitzgerald, Anna; Meintjes, Thys; Mele, Pauline M; Reith, Frank; Dennis, Paul G; Breed, Martin F; Brown, Belinda; Brown, Mark V; Brugger, Joel; Byrne, Margaret; Caddy-Retalic, Stefan; Carmody, Bernie; Coates, David J; Correa, Carolina; Ferrari, Belinda C; Gupta, Vadakattu V S R; Hamonts, Kelly; Haslem, Asha; Hugenholtz, Philip; Karan, Mirko; Koval, Jason; Lowe, Andrew J; Macdonald, Stuart; McGrath, Leanne; Martin, David; Morgan, Matt; North, Kristin I; Paungfoo-Lonhienne, Chanyarat; Pendall, Elise; Phillips, Lori; Pirzl, Rebecca; Powell, Jeff R; Ragan, Mark A; Schmidt, Susanne; Seymour, Nicole; Snape, Ian; Stephen, John R; Stevens, Matthew; Tinning, Matt; Williams, Kristen; Yeoh, Yun Kit; Zammit, Carla M; Young, Andrew

    2016-01-01

    Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The 'Biomes of Australian Soil Environments' (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project's data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the 'Atlas of Living Australia'. Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services.

  2. Multilocus Sequence Analysis for Assessment of Phylogenetic Diversity and Biogeography in Thalassospira Bacteria from Diverse Marine Environments

    PubMed Central

    Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177

  3. Applications of subsurface microscopy.

    PubMed

    Tetard, Laurene; Passian, Ali; Farahi, Rubye H; Voy, Brynn H; Thundat, Thomas

    2012-01-01

    Exploring the interior of a cell is of tremendous importance in order to assess the effects of nanomaterials on biological systems. Outside of a controlled laboratory environment, nanomaterials will most likely not be conveniently labeled or tagged so that their translocation within a biological system cannot be easily identified and quantified. Ideally, the characterization of nanomaterials within a cell requires a nondestructive, label-free, and subsurface approach. Subsurface nanoscale imaging represents a real challenge for instrumentation. Indeed the tools available for high resolution characterization, including optical, electron or scanning probe microscopies, mainly provide topography images or require taggants that fluoresce. Although the intercellular environment holds a great deal of information, subsurface visualization remains a poorly explored area. Recently, it was discovered that by mechanically perturbing a sample, it was possible to observe its response in time with nanoscale resolution by probing the surface with a micro-resonator such as a microcantilever probe. Microcantilevers are used as the force-sensing probes in atomic force microscopy (AFM), where the nanometer-scale probe tip on the microcantilever interacts with the sample in a highly controlled manner to produce high-resolution raster-scanned information of the sample surface. Taking advantage of the existing capabilities of AFM, we present a novel technique, mode synthesizing atomic force microscopy (MSAFM), which has the ability to probe subsurface structures such as non-labeled nanoparticles embedded in a cell. In MSAFM mechanical actuators (PZTs) excite the probe and the sample at different frequencies as depicted in the first figure of this chapter. The nonlinear nature of the tip-sample interaction, at the point of contact of the probe and the surface of the sample, in the contact mode AFM configuration permits the mixing of the elastic waves. The new dynamic system comprises new

  4. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    PubMed

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Subsurface Biogeochemistry of Actinides

    SciTech Connect

    Kersting, Annie B.; Zavarin, Mavrik

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  6. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.

    PubMed

    Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T

    2016-01-01

    Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The little bacteria that can - diversity, genomics and ecophysiology of 'Dehalococcoides' spp. in contaminated environments.

    PubMed

    Taş, Neslihan; van Eekert, Miriam H A; de Vos, Willem M; Smidt, Hauke

    2010-07-01

    The fate and persistence of chlorinated organics in the environment have been a concern for the past 50 years. Industrialization and extensive agricultural activities have led to the accumulation of these pollutants in the environment, while their adverse impact on various ecosystems and human health also became evident. This review provides an update on the current knowledge of specialized anaerobic bacteria, namely 'Dehalococcoides' spp., which are dedicated to the transformation of various chlorinated organic compounds via reductive dechlorination. Advances in microbiology and molecular techniques shed light into the diversity and functioning of Dehalococcoides spp. in several different locations. Recent genome sequencing projects revealed a large number of genes that are potentially involved in reductive dechlorination. Molecular approaches towards analysis of diversity and expression especially of reductive dehalogenase-encoding genes are providing a growing body of knowledge on biodegradative pathways active in defined pure and mixed cultures as well as directly in the environment. Moreover, several successful field cases of bioremediation strengthen the notion of dedicated degraders such as Dehalococcoides spp. as key players in the restoration of contaminated environments. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    PubMed

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  9. Potential for horizontal gene transfer in microbial communities of the terrestrial subsurface.

    PubMed

    Coombs, Jonna M

    2009-01-01

    The deep terrestrial subsurface is a vast, largely unexplored environment that is oligotrophic, highly heterogeneous, and may contain extremes of both physical and chemical factors. In spite of harsh conditions, subsurface studies at several widely distributed geographic sites have revealed diverse communities of viable organisms, which have provided evidence of low but detectable metabolic activity. Although much of the terrestrial subsurface may be considered to be distant and isolated, the concept of horizontal gene transfer (HGT) in this environment has far-reaching implications for bioremediation efforts and groundwater quality, industrial harvesting of subsurface natural resources such as petroleum, and accurate assessment of the risks associated with DNA release and transport from genetically modified organisms. This chapter will explore what is known about some of the major mechanisms of HGT, and how the information gained from surface organisms might apply to conditions in the terrestrial subsurface. Evidence for the presence of mobile elements in subsurface bacteria and limited retrospective studies examining genetic signatures of potential past gene transfer events will be discussed.

  10. Mobility of arsenic in the sub-surface environment: An integrated hydrogeochemical study and sorption model of the sandy aquifer materials

    NASA Astrophysics Data System (ADS)

    Nath, Bibhash; Chakraborty, Sudipta; Burnol, André; Stüben, Doris; Chatterjee, Debashis; Charlet, Laurent

    2009-01-01

    SummaryGroundwater and aquifer materials have been characterized geochemically at a field site located in the Chakdaha municipality of West Bengal, India. Sorption experiments were also carried out on a sandy aquifer material to understand the mobility of arsenic (As) in the sub-surface environments. The result shows that the areas associated with high groundwater As (mean: 1.8 μM) is typically associated with low Eh (mean: -129 mV), and high Fe (mean: 0.11 mM), where Fe 2+/Fe(OH) 3 couple is controlling groundwater redox potential. Analysis of the aquifer material total concentrations showed the dominance of As (range: 8.9-22 mg kg -1), Fe (range: 3.0-9.7% as Fe 2O 3) and Mn (range: 0.05-0.18% as MnO) in the silt-/clay-rich sediments; whereas fine-/medium-sand rich sediment contains considerably lower amount of As (<8.1 mg kg -1), Fe (range: 1.6-3.9% as Fe 2O 3) and Mn (range: 0.02-0.08% as MnO). The acid extractable As do not correlate with ascorbate extractable Fe-oxyhydroxide, however Fe-oxyhydroxide is generally high in the sediments from low groundwater As areas. Chemical speciation computations indicated Fe(II), Ca(II), Mg(II) and Mn(II) to be at equilibrium (with respect to calcite, dolomite and rhodochrosite) or slightly over-saturated (with respect to siderite). These carbonate minerals may therefore participate to the As immobilization. The measured total organic carbon (˜1%) and groundwater temperature (26-32 °C) coupled with sorption studies strongly favors microbially mediated Fe(III)-oxyhydroxide reduction as the dominant mechanism for the release of As in the groundwater. Oscillations of As, Mn and Fe concentrations with depth reflected pCO 2 oscillations consecutive to microbial respiration intensity.

  11. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.

    PubMed

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2015-09-01

    The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs.

  12. [Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina].

    PubMed

    Belén Cava, Maria; Antonio Corronca, José; José Echeverría, Alejandro

    2013-12-01

    The essential role of the National Parks is to protect nature, in order to prevent the deterioration and loss of the ecosystem under protection. Very few records about the diversity of arthropods are known from Los Cardones National Park, where three eco-regions are protected: Puna and Monte eco-regions and the High Andean Grassland of the Yungas. Here, we aimed to compare the alpha and beta diversity of arthropods in these eco-regions, and to prove if sites from the same ecoregion, show greater similarity between them in their assemblages, than with sites of the other eco-regions. We also identified arthropod orders with higher species richness, and indicated the families that contribute the most to the registered beta diversity. Three sampling sites were established on each eco-region and the arthropods were sampled using pitfall traps and suction samples. We evaluated the obtained inventory through nonparametric estimators of species richness, and compared diversity among eco-regions through "diversity profiles" and "effective number of species". Beta diversity was assessed by different methods such as the Morisita Index, nonmetric multidimentional scaling analysis, a multiple permutation procedure, and a Similarity Percentage analysis. We recorded 469 spp/morphospecies and recognized three arthropod orders (spiders, dipterans and hymenopterans) that are diverse and abundant in the Park. Besides, the diversity in Los Cardones National Park was found to be high, but it was observed higher in the High Andean Grassland of the Yungas, and lower in the Puna. The inventory obtained was good, reached up to the 81% of the species richness estimated by nonparametric estimators. Each eco-region of the park showed a very particular arthropod community that was tested by a multi-response permutation procedure. The species turnover between eco-regions was high, so that the different environments of the protected area are contributing to the maintenance of the regional

  13. Genetically Diverse Clostridium difficile Strains Harboring Abundant Prophages in an Estuarine Environment

    PubMed Central

    Hargreaves, K. R.; Colvin, H. V.; Patel, K. V.; Clokie, J. J. P.

    2013-01-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in health care settings across the world. Despite its pathogenic capacity, it can be carried asymptomatically and has been found in terrestrial and marine ecosystems outside hospital environments. Little is known about these environmental strains, and few studies have been conducted on estuarine systems. Although prophage abundance and diversity are known to occur within clinical strains, prophage carriage within environmental strains of C. difficile has not previously been explored. In this study, we isolated C. difficile from sites sampled in two consecutive years in an English estuarine system. Isolates were characterized by PCR ribotype, antibiotic resistance, and motility. The prevalence and diversity of prophages were detected by transmission electron microscopy (TEM) and a phage-specific PCR assay. We show that a dynamic and diverse population of C. difficile exists within these sediments and that it includes isolates of ribotypes which are associated with severe clinical infections and those which are more frequently isolated from outside the hospital environment. Prophage carriage was found to be high (75%), demonstrating that phages play a role in the biology of these strains. PMID:23913427

  14. Lipids biomarkers of the deep terrestrial subsurface biosphere

    NASA Astrophysics Data System (ADS)

    Osburn, M. R.; Momper, L.; Schubotz, F.; Summons, R. E.; Amend, J.

    2014-12-01

    Lipid biomarkers are key tools for the interpretation of past and present environments, and specifically, intact polar lipids (IPLs) reflect contributions from the living biosphere. While several studies have documented intact polar lipid (IPL) distributions in the marine subsurface, the organic geochemistry of terrestrial subsurface communities remains poorly characterized. Here we present IPL distributions from a portal into deep terrestrial biosphere, the former Homestake Mine, SD USA. Interpretation of IPL distributions can be hampered by a lack of comparative pure culture information or comparative molecular and geochemical data, thus we performed IPL analysis in conjunction with detailed geochemistry and DNA sequencing. A large diversity of lipid structures is observed including phospholipids, aminolipids, glycolipids, GDGTs, and a number of unidentified compounds. Variability in lipid distributions is not random with individual samples clustering based on physical and geochemical parameters. For instance, biofilm samples contain abundant aminolipids relative to filtered subsurface fluid samples. Does this difference reflect phosphorus scarcity in the biofilms, or production of aminolipids by specific microbial phyla? Using comparative analysis between the IPL, molecular, and geochemical datasets we address this, and similar questions, as well as identify potential microbial sources of unknown biomarkers. In the case of the aminolipids, we observe strong covariation between the lipid distribution and that of the bacteroidetes, epsilonproteobacteria, and spirochaetes, but no correlation with P concentration. We can also extend this comparison globally; asking how similar IPL distributions of the deep terrestrial subsurface are previously studied sites. A surprising finding from this work is the total lack of similarity between deep marine and terrestrial subsurface sites. This contribution will help to define the phylogenetic and geochemical mechanisms driving

  15. Plant diversity effects on ecosystem evapotranspiration and carbon uptake: a controlled environment (Ecotron) and modeling approach

    NASA Astrophysics Data System (ADS)

    Milcu, Alexandru; Roy, Jacques

    2016-04-01

    Effects of species and functional diversity of plants on ecosystem evapotranspiration and carbon fluxes have been rarely assessed simultaneously. Here we present the results from an experiment that combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/ monoliths originating from a long-term biodiversity experiment ("The Jena Experiment") and a modelling approach. We aimed at (1) quantifying the impact of plant species richness (4 vs. 16 species) on day- and night-time ecosystem water vapor fluxes and carbon uptake, (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model, and (3) identifying the most parsimonious predictors of water vapor vapor and CO2 fluxes using plant functional trait-based metrics such as functional diversity and community weighted means. The SW model indicated that at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while at higher species richness the proportion of ecosystem transpiration (a production-related water flux) increased. This led to an increased carbon gain per amount of water vapor loss (i.e. increased water use efficiency). While the LAI controlled the carbon and water fluxes, we also found that the diversity of plant functional traits, and in particular of leaf nitrogen concentration are potential important predictors of ecosystem transpiration and carbon uptake and consequently significantly contributed to increase in water use efficiency in communities with higher plant diversity.

  16. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    NASA Astrophysics Data System (ADS)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could

  17. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments.

    PubMed

    Masneuf-Pomarede, Isabelle; Juquin, Elodie; Miot-Sertier, Cécile; Renault, Philippe; Laizet, Yec'han; Salin, Franck; Alexandre, Hervé; Capozzi, Vittorio; Cocolin, Luca; Colonna-Ceccaldi, Benoit; Englezos, Vasileios; Girard, Patrick; Gonzalez, Beatriz; Lucas, Patrick; Mas, Albert; Nisiotou, Aspasia; Sipiczki, Matthias; Spano, Giuseppe; Tassou, Chrysoula; Bely, Marina; Albertin, Warren

    2015-08-01

    The yeast Candida zemplinina (Starmerella bacillaris) is frequently isolated from grape and wine environments. Its enological use in mixed fermentation with Saccharomyces cerevisiae has been extensively investigated these last few years, and several interesting features including low ethanol production, fructophily, glycerol and other metabolites production, have been described. In addition, molecular tools allowing the characterization of yeast populations have been developed, both at the inter- and intraspecific levels. However, most of these fingerprinting methods are not compatible with population genetics or ecological studies. In this work, we developed 10 microsatellite markers for the C. zemplinina species that were used for the genotyping of 163 strains from nature or various enological regions (28 vineyards/wineries from seven countries). We show that the genetic diversity of C. zemplinina is shaped by geographical localization. Populations isolated from winemaking environments are quite diverse at the genetic level: neither clonal-like behaviour nor specific genetic signature were associated with the different vineyards/wineries. Altogether, these results suggest that C. zemplinina is not under selective pressure in winemaking environments. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments

    PubMed Central

    McRose, Darcy L.; Zhang, Xinning; Kraepiel, Anne M. L.; Morel, François M. M.

    2017-01-01

    The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4+, occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient ‘canonical’ Mo-nitrogenase, whereas Fe-only and V-(‘alternative’) nitrogenases are often considered ‘backup’ enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation. PMID:28293220

  19. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    Eubacterial DNA show that diverse microbial communities, including autotrophic microorganisms and animal symbionts, are contained within the vent structures. In concert, these results indicate that abundant and varied microbial communities inhabit different regions of the chimney structure and may be specifically adapted to the reducing, volatile-rich fluids percolating through the chimneys. In addition to expanding the range of known deep-sea ecosystems, the microbial ecology of carbonate structures associated with hydrothermal venting at the LCHF may provide key insights into the microbiology of subsurface environments near this site. Studying the microbial communities within these systems will enable us to better understand geo-microbial processes associated with serpentinite environments and perhaps allow us to expand our search for life elsewhere in the universe.

  20. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.

  1. Identity and Metabolic Potential of the Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Twing, K. I.; Brazelton, W. J.; Kloysuntia, A.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.; Schrenk, M. O.

    2012-12-01

    Serpentinization is a widespread geochemical process involving the alteration of ultramafic rocks in the presence of water, resulting in a highly reducing environment containing large quantities of dissolved hydrogen and potentially abiogenic organic molecules, which can serve as energy sources for microbes in the subsurface. Habitability models predict that these environments can sustain microbial life, however little work has been done directly characterize the microbial communities utilizing the energy generated from this process. A recent drilling project at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California has supplied rock cores from up to 30 m below the surface and provided a window into an actively serpentinizing system. Microbial communities in rock cores and fluid samples were analyzed by pyrotag sequencing of V4-V6 region of bacterial 16S rRNA genes. These studies found low diversity communities and a predominance of Betaproteobacterial sequences related to the genus Hydrogenophaga, a hydrogen-oxidizing autotroph, in subsurface drill cores. Interestingly, closely-related isolates of Hydrogenophaga were obtained from the same samples. Concerted analyses of the physiology and metabolism of these new isolates, and quantitative PCR of protein-coding genes from the CROMO drill cores is being used to assess the potential of microbes in the serpentinite subsurface to utilize the geochemical products of serpentinization in this harsh environment.

  2. Acidic mine drainage abatement in an anaerobic sub-surface flow wetland environment - case history of the treatment system at Corsica, PA

    SciTech Connect

    Dietz, J.M.; Stidinger, D.M.

    1996-12-31

    Wetland Treatment Systems (WTS) have been constructed over the past decade for the treatment of Acidic Mine Drainage (AMD). Potential benefits of anaerobic sub-surface flow treatment were initially identified from attempts to improve effectiveness of a surface flow wetland at the Jennings Environmental Education Center in western Pennsylvania which, although not completely successful, resulted in acidity removal rates two to four times greater than pre-modification rates. This study was conducted to investigate the potential benefits of sub-surface flow design, which utilizes a sub-surface collection system, in comparison to conventional surface flow design. Two field-scale WTS, each containing anaerobic surface flow and sub-surface flow treatment cells (approximately 100 m{sup 2} each), were constructed along an existing AMD discharge, near Corsica, Pennsylvania, with a 3-4 pH, 250-400 mg/L (as CaCO{sub 3}) acidity, 20-40 mg/L iron, 15-40 mg/L manganese and 10-30 mg/L aluminum. Sampling of the WTS included two elements: a weekly monitoring program from March 1992 through November 1992 to collect discharge water quality data; and a post-flow design was found to provide statistically greater acidity removal with an average rate of 61.8 grams per day per square meter (GDM), in comparison to surface flow which had an average rate of 4.78 GDM, and provided effluent alkalinities greater than 100 mg/L (as CaCO{sub 3}) and pH greater than 6.5 at the flows and loading evaluated. Removal rates for iron and aluminum removal of 3.02 and 2.48 GDM in the sub-surface flow design were also significantly greater than surface flow design which had removal rates of 1.89 and 0.20 GDM, respectively. Manganese removal was ineffective in both surface and sub-surface flow designs.

  3. Studying the deep subsurface biosphere: Emerging technologies and applications

    NASA Astrophysics Data System (ADS)

    Craig Cary, S.; Campbell, Barbara J.; DeLong, Edward F.

    Discoveries from seafloor hydrothermal vent environments continue to challenge accepted notions about microbial metabolism and survivability, geochemical and biochemical interactions, and the limits to and origins of life itself. Recent evidence suggests that a significant and extensive subsurface biosphere exists associated with these vent systems that may support bacteria of unique and unknown lineages using as yet uncharacterized metabolic pathways. With restricted access to the subsurface environment and availability of an extremely limited biomass, microbiologists have resorted to powerful molecular approaches to survey, characterize, and even assist in the later cultivation of these novel subsurface bacteria. Advances in molecular phylogenetic techniques (molecular microbial systematics) based on the small subunit rRNA (16S rRNA) and a knowledge of certain diagnostic metabolic genes have provided an alternative and more comprehensive framework to study microbial populations and communities without the necessity of cultivation. These approaches have been used by a number of investigators in deep-sea hydrothermal vents and terrestrial hot springs with astonishing results. In this paper we introduce some of these current and emerging molecular techniques and demonstrate their efficacy in the context of the subsurface biosphere. Simple gene amplification methods coupled with more sophisticated genomic approaches and fine resolution in situ geochemical tools (see Luther et al., this volume) provides a new-found capability to more fully characterize the diversity of metabolic strategies used by these complex subsurface microbial communities. Understanding these unique microbial communities is not only important from the basic biological perspective but has ramifications for possible industrial applications.

  4. Subsurface Controls on Habitability of Hydrothermal Waters

    NASA Astrophysics Data System (ADS)

    Fristad, K. E.; Som, S. M.; Hoehler, T. M.

    2014-12-01

    Liquid water alone does not make an environment habitable. Environmental settings dominated by water-rock reactions such as in hydrothermal vents and springs are natural targets for astrobiological investigation of waterworlds because the rich geochemical diversity at these locales provides abundant energy in solvent to support microbial life. Hydrogen oxidizers are of particular interest because H2-based metabolisms are widespread and deeply rooted throughout the phylogenetic tree of life, implying they may have emerged extremely early in the evolution, and possibly even the origin, of life on Earth and potentially any other rocky bodies bearing liquid water. Dihydrogen (H2) can be lithogenically produced by the hydrolytic oxidation of the ferrous iron component in Fe-bearing minerals as well as by radiolytic cleavage of water by α, β, or γ radiation produced during the decay of radioactive isotopes. Lithogenic H2 production mechanisms operate across a range of rock types, but the concentration of dissolved H2 available to life is controlled by a number of subsurface factors such as surface geometry, water to rock ratio, production rate, and fluid flux. These factors are often controlled by the larger geologic and structural context of a particular site. We present results of an ongoing project that surveys H2 concentrations from terrestrial hydrothermal waters in diverse chemical and physical settings. Aqueous H2 concentrations and potential subsurface controls are presented for sites across the western U.S. including Yellowstone National Park, Lassen Volcanic National Park, and Iceland. In coordination with field data, we also investigate the habitability of various sites numerically by coupling a geochemical model of water-rock interaction with that of single-cell methanogenesis and compute a habitability index for the given environment. In particular, we investigate the control that temperature, rock composition, water composition, and water to rock ratio

  5. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes.

    PubMed

    Diniz, Daniel Guerreiro; de Oliveira, Marcus Augusto; de Lima, Camila Mendes; Fôro, César Augusto Raiol; Sosthenes, Marcia Consentino Kronka; Bento-Torres, João; da Costa Vasconcelos, Pedro Fernando; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço

    2016-10-10

    and that the detrimental effects of aging on memory in mice from a standard environment may be associated with a reduction of astrocytes morphological diversity.

  6. Detection of bacterial diversity in rat's periodontitis model under imitational altitude hypoxia environment.

    PubMed

    Xiao, Xian; Li, Yan; Zhang, Gang; Gao, Yuqi; Kong, Yan; Liu, Min; Tan, Yinghui

    2012-01-01

    Oral epidemiologic investigations in China western territory have showed that the immigrants in the plateau have a higher morbidity with periodontitis. To find the possible relationship between the pathogenesis of periodontitis and altitude hypoxia, we designed a periodontitis rat model via housed in low pressure oxygen chamber and investigated the bacterial diversity in the gingival crevicular fluid (GCF). Eighty Sprague-Dawley rats were divided into CON-normal, CON-hypoxia, EXP-normal and EXP-hypoxia group, without or with periodontal induce, breeding in normal environment or altitude hypoxia environment. Periodontal parameters (including gingival index, GI, and tooth mobility, TM) were measured after 2, 4, 6 and 8 weeks; periodontal samples were collected for histological analysis after rats were sacrificed at the 8th week. The 16S rDNA of bacteria in GCF was amplified by PCR at the 8th week, and separated by the denaturing gradient gel electrophoresis (DGGE) approach. EXP-hypoxia group's GI and TM showed later and more severe periodontal tissue damage than EXP-normal (p<0.05 or 0.01). The histologic analyses did not find any pathologic difference between EXP-hypoxia and EXP-normal groups except for a slight difference on the lesion degree. By the DGGE analyses, the bacteria of five samples in the same group showed high concordance, but the bacteria in the different groups showed a great diversity. The course of periodontitis in altitude hypoxia environment is later than normal, but the degree of periodontal lesion was more severe and microbial community in GCF can be affected by the altitude hypoxia environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. [Correlative analysis of the diversity patterns of regional surface water, NDVI and thermal environment].

    PubMed

    Duan, Jin-Long; Zhang, Xue-Lei

    2012-10-01

    Taking Zhengzhou City, the capital of Henan Province in Central China, as the study area, and by using the theories and methodologies of diversity, a discreteness evaluation on the regional surface water, normalized difference vegetation index (NDVI), and land surface temperature (LST) distribution was conducted in a 2 km x 2 km grid scale. Both the NDVI and the LST were divided into 4 levels, their spatial distribution diversity indices were calculated, and their connections were explored. The results showed that it was of operability and practical significance to use the theories and methodologies of diversity in the discreteness evaluation of the spatial distribution of regional thermal environment. There was a higher overlap of location between the distributions of surface water and the lowest temperature region, and the high vegetation coverage was often accompanied by low land surface temperature. In 1988-2009, the discreteness of the surface water distribution in the City had an obvious decreasing trend. The discreteness of the surface water distribution had a close correlation with the discreteness of the temperature region distribution, while the discreteness of the NDVI classification distribution had a more complicated correlation with the discreteness of the temperature region distribution. Therefore, more environmental factors were needed to be included for a better evaluation.

  8. Cranial biomechanics underpins high sauropod diversity in resource-poor environments

    PubMed Central

    Button, David J.; Rayfield, Emily J.; Barrett, Paul M.

    2014-01-01

    High megaherbivore species richness is documented in both fossil and contemporary ecosystems despite their high individual energy requirements. An extreme example of this is the Late Jurassic Morrison Formation, which was dominated by sauropod dinosaurs, the largest known terrestrial vertebrates. High sauropod diversity within the resource-limited Morrison is paradoxical, but might be explicable through sophisticated resource partitioning. This hypothesis was tested through finite-element analysis of the crania of the Morrison taxa Camarasaurus and Diplodocus. Results demonstrate divergent specialization, with Camarasaurus capable of exerting and accommodating greater bite forces than Diplodocus, permitting consumption of harder food items. Analysis of craniodental biomechanical characters taken from 35 sauropod taxa demonstrates a functional dichotomy in terms of bite force, cranial robustness and occlusal relationships yielding two polyphyletic functional ‘grades’. Morrison taxa are widely distributed within and between these two morphotypes, reflecting distinctive foraging specializations that formed a biomechanical basis for niche partitioning between them. This partitioning, coupled with benefits associated with large body size, would have enabled the high sauropod diversities present in the Morrison Formation. Further, this provides insight into the mechanisms responsible for supporting the high diversities of large megaherbivores observed in other Mesozoic and Cenozoic communities, particularly those occurring in resource-limited environments. PMID:25297869

  9. Single cell genomics of subsurface microorganisms

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  10. MODELING CONTAMINANT TRANSPORT THROUGH SUBSURFACE SYSTEMS

    EPA Science Inventory

    Modeling of contaminant transport through soil to groundwater to a receptor requires that consideration be given to the many processes which control the transport and fate of chemical constituents in the subsurface environment. These processes include volatilization, degradation,...

  11. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments.

    PubMed

    Butterfield, B J; Cavieres, L A; Callaway, R M; Cook, B J; Kikvidze, Z; Lortie, C J; Michalet, R; Pugnaire, F I; Schöb, C; Xiao, S; Zaitchek, B; Anthelme, F; Björk, R G; Dickinson, K; Gavilán, R; Kanka, R; Maalouf, J-P; Noroozi, J; Parajuli, R; Phoenix, G K; Reid, A; Ridenour, W; Rixen, C; Wipf, S; Zhao, L; Brooker, R W

    2013-04-01

    Biotic interactions can shape phylogenetic community structure (PCS). However, we do not know how the asymmetric effects of foundation species on communities extend to effects on PCS. We assessed PCS of alpine plant communities around the world, both within cushion plant foundation species and adjacent open ground, and compared the effects of foundation species and climate on alpha (within-microsite), beta (between open and cushion) and gamma (open and cushion combined) PCS. In the open, alpha PCS shifted from highly related to distantly related with increasing potential productivity. However, we found no relationship between gamma PCS and climate, due to divergence in phylogenetic composition between cushion and open sub-communities in severe environments, as demonstrated by increasing phylo-beta diversity. Thus, foundation species functioned as micro-refugia by facilitating less stress-tolerant lineages in severe environments, erasing a global productivity - phylogenetic diversity relationship that would go undetected without accounting for this important biotic interaction. © 2013 Blackwell Publishing Ltd/CNRS.

  12. Community Audit of Social, Civil, and Activity Domains in Diverse Environments (CASCADDE).

    PubMed

    Knapp, Emily A; Nau, Claudia; Brandau, Sy; DeWalle, Joseph; Hirsch, Annemarie G; Bailey-Davis, Lisa; Schwartz, Brian S; Glass, Thomas A

    2017-02-10

    There are currently no direct observation environmental audit tools that measure diverse aspects of the obesity-related environment efficiently and reliably in a variety of geographic settings. The goal was to develop a new instrument to reliably characterize the overall properties and features of rural, suburban, and urban settings along multiple dimensions. The Community Audit of Social, Civil, and Activity Domains in Diverse Environments (CASCADDE) is an iPad-based instrument that incorporates GPS coordinates and photography and comprises 214 items yielding seven summary indices. A comprehensive spatial sampling strategy, training manual, and supporting data analysis code were also developed. Random geospatial sampling using GIS was used to capture features of the community as a whole. A single auditor collected 510 observation points in 30 communities (2013-2015). This analysis was done in 2015-2016. Correlation coefficients were used to compare items and indices to each other and to standard measures. Multilevel unconditional means models were used to calculate intraclass correlation coefficients to determine if there was significant variation between communities. Results suggest that CASCADDE measures aspects of communities not previously captured by secondary data sources. Additionally, seven summary indices capture meaningful differences between communities based on 15 observations per community. Community audit tools such as CASCADDE complement secondary data sources and have the potential to offer new insights about the mechanisms through which communities affect obesity and other health outcomes.

  13. Correlating Microbial Diversity Patterns with Geochemistry in an Extreme and Heterogeneous Environment of Mine Tailings

    PubMed Central

    Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng

    2014-01-01

    Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions

  14. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    PubMed

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  15. Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?

    PubMed Central

    Anderson, Rika E.; Brazelton, William J.; Baross, John A.

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639

  16. Diversity and impact of prokaryotic toxins on aquatic environments: a review.

    PubMed

    Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério

    2010-10-01

    Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water

  17. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    PubMed Central

    Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério

    2010-01-01

    Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water

  18. The subsurface biosphere at Mid-Ocean Ridges: Issues and challenges

    NASA Astrophysics Data System (ADS)

    Baross, John A.; Wilcock, William S. D.; Kelley, Deborah S.; DeLong, Edward F.; Craig Cary, S.

    A recent growth of interest in subsurface microbiology has been fueled by the recognition that the subsurface may have played an important role in the origin and early evolution of life, and may presently sustain a substantial fraction of Earth's biomass. The uppermost igneous oceanic crust is likely to be one of the most habitable subsurface environments because it is porous and the locus of extensive hydrothermal circulation. This circulation is most vigorous at spreading centers where it is driven by the volcanic accretion of oceanic crust. Hot reduced hydrothermal fluids created by water-rock reactions above magma bodies mix with cold seawater in the subsurface and the resulting chemical disequilibria provide energy and carbon sources that support diverse microbial communities. These communities can be sampled in chronic low-temperature hydrothermal vents and in the hydrothermal fluids released following volcanic eruptions. Investigations of the subseafloor environment at mid-ocean ridges integrate biological and geological approaches to understand the characteristics of hydrothermal circulation and how they are modulated by geological events; the sources of carbon, nutrients and energy; and the types and functions of subsurface organisms. They also utilize analogies with accessible sulfide edifices and comparisons with similar subsurface environments elsewhere. Future studies will combine increasingly sophisticated shore-based studies with data from long-term observatories comprising networks of instruments for measuring key physical, chemical and microbial parameters. They will require the development of technology to drill bare rock mid-ocean ridge sites, collect uncontaminated subsurface samples and deploy instruments at different depths in the crust.

  19. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    PubMed Central

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface. PMID:26074880

  20. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    PubMed

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  1. Unraveling the Evolution of Protostars in Diverse Environments: The Herschel Orion Protostar Survey

    NASA Astrophysics Data System (ADS)

    Megeath, S. Thomas; the Herschel Orion Protostar Survey Team

    2014-01-01

    The Herschel Orion Protostar Survey (HOPS), a 200 hour PACS imaging and spectroscopy OTKP, is the cornerstone of a large multi-observatory campaign combining Herschel data with observations from Spitzer,Hubble, APEX, and other facilities. HOPS has produced well sampled 1-870 micron SEDs of over 300 protostars in the Orion molecular clouds, the most extensive such survey of a single cloud complex to date, and has obtained PACS spectra of 36 protostars to observe line emission from CO, OH, and H2O. We will present the major HOPS discoveries that demonstrate Herschel's contributions to an emerging picture of protostellar evolution within the diverse environments of the Orion A & B molecular clouds. Among these, the HOPS team has discovered protostars undetected by Spitzer that appear to be the youngest protostars in Orion (Stutz et al. 2013). We have found that the luminosities of high-J CO lines are correlated with protostellar luminosities, but the excitation temperatures are not, indicating that these lines form in high-temperature gas within outflows (Manoj et al. 2013). We have also constructed and modeled the first 1-70 um SED of a protostellar FU Ori object before and after its outburst, finding an atypically low post-outburst luminosity (Fischer et al. 2012). Finally, we have identified systematic variations in the spacing and luminosity of protostars between the different environments found in Orion (Megeath, Stanke, in prep.). More generally, the HOPS team is now determining the fundamental protostellar properties (envelope mass and density, system luminosity, and outflow cavity geometry) of the 300 Orion protostars by a comparison of the SEDs to radiative transfer models. We will summarize the prospects of using these fundamental properties to construct a detailed sequence for the physical evolution of protostars as they dissipate their envelopes, accounting for the influence of the diverse environments found within Orion.

  2. Detection of microbial Life in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Dornmayr-Pfaffenhuemer, M.; Legat, A.; Gruber, C.; Weidler, G.; Gerbl, F.

    2007-08-01

    In recent years microbial communities were detected, which dwell in rocks, soil and caves deep below the surface of the Earth. This has led to a new view of the diversity of the terrestrial biosphere and of the physico-chemical boundaries for life. Two types of subterranean environments are Permo-Triassic salt sediments and thermal radioactive springs from igneous rocks in the Alps. Viable extremely halophilic archaea were isolated from ancient salt sediments which are estimated to be about 250 million years old (1). Chemotaxonomic and molecular characterization showed that they represent novel species, e. g. Halococcus salifodinae, Hcc. dombrowskiiand Halobacterium noricense. Simulation experiments with artificial halite suggested that these microorganisms probably survived while embedded in fluid inclusions. In the thermal springs, evidence for numerous novel microorganisms was found by 16S rDNA sequencing and probing for some metabolic genes; in addition, scanning electron microscopy of biofilms on the rock surfaces revealed great diversity of morphotypes (2). These communities appear to be active and growing, although their energy and carbon sources are entirely unknown. The characterization of subsurface inhabitants is of astrobiological relevance since extraterrestrial halite has been detected (3) and since microbial life on Mars, if existent, may have retreated into the subsurface. As a long-term goal, a thorough census of terrestrial microorganisms should be taken and their survival potential be determined in view of future missions for the search for extraterrestrial life, including planning precautions against possible forward contamination by space probes. (1) Fendrihan, S., Legat, A., Gruber, C., Pfaffenhuemer, M., Weidler, G., Gerbl, F., Stan-Lotter, H. (2006) Extremely halophilic archaea and the issue of long term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605. (2) Weidler, G.W., Dornmayr-Pfaffenhuemer, M., Gerbl

  3. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    NASA Astrophysics Data System (ADS)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  4. A Picture of the Healthful Food Environment in Two Diverse Urban Cities

    PubMed Central

    Lee, Rebecca E.; Heinrich, Katie M.; Medina, Ashley V.; Regan, Gail R.; Reese-Smith, Jacqueline Y.; Jokura, Yuka; Maddock, Jay E.

    2010-01-01

    Background: Local food environments influence fresh produce purchase and consumption, and previous research has found disparities in local food environments by income and ethnicity. Other existing studies have begun to quantify the distribution of food sources, but there has been limited attention to important features or types of healthful food that are available or their quality or cost. Two studies assessed the type, quantity, quality and cost of healthful food from two diverse urban cities, Kansas City, Kansas and Missouri and Honolulu, Hawaii, and evaluated differences by neighborhood income and ethnic composition. Method: A total of 343 food stores in urban neighborhoods were assessed using the one-page Understanding Neighborhood Determinants of Obesity (UNDO) Food Stores Assessment (FSA) measuring healthful foods. US Census data were used to define median household income and ethnic minority concentration. Results: In Study 1, most low socioeconomic status (SES), high ethnic minority neighborhoods had primarily convenience, liquor or small grocery stores. Quality of produce was typically lower, and prices of some foods were more than in comparison neighborhoods. In Study 2, low SES neighborhoods had more convenience and grocery stores. Farmers’ markets and supermarkets had the best produce availability and quality, and farmers’ markets and pharmacies had the lowest prices. Conclusions: Messages emphasizing eating more fruits and vegetables are not realistic in urban, low SES, high ethnic concentration neighborhoods. Farmers’ markets and supermarkets provided the best opportunities for fresh produce. Increasing access to farmers’ markets and supermarkets or reducing prices could improve the local food environment. PMID:20706621

  5. How Specific Microbial Communities Benefit the Oil Industry: Significant Contribution of Methyl/Methanol-Utilising Methanogenic Pathway in a Subsurface Biogas Environment

    NASA Astrophysics Data System (ADS)

    Strąpoć, Dariusz; Ashby, Matt; Wood, Ladonna; Levinson, Rick; Huizinga, Bradley

    Methanogenesis is considered the main terminal process of subsurface anaerobic organic-matter degradation. Previous geochemical studies have reported CO2-reducing and acetoclastic methanogenesis as the predominant subsurface methanogenic pathways for primary and secondary biogenic gas generation (i.e. in oil biodegradation or coalbed methane settings). In lab-scale experiments and microbiology literature, however, methanogens have been shown to be able to utilise a wider variety of substrates, typically containing methyl groups, i.e. dimethyl sulphide (DMS), methyl amines (e.g. TMA), formate, and methanol. Additional methanogenic substrates include CO and other primary alcohols and secondary alcohols (Whitman et al., 2006; Fig. 25.1). Here, we describe a volumetrically important natural biogenic gas field in which these methylotrophic pathways have contributed significantly to biomethane formation.

  6. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal

  7. Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach.

    PubMed

    Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina

    2016-05-01

    Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas.

  8. Microbial community structure and diversity within hypersaline Keke Salt Lake environments.

    PubMed

    Han, Rui; Zhang, Xin; Liu, Jing; Long, Qifu; Chen, Laisheng; Liu, Deli; Zhu, Derui

    2017-08-29

    Keke Salt Lake is located in the Qaidamu Basin of China, and is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3-V5 regions of 16S rRNA genes. A high diversity of OTUs were detected for Bacteria and Archaea (734 and 747, respectively) which comprised 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%-58.35% relative abundance), Lactococcus (9.52%-10.51%) and Oceanobacillus (8.82%-9.88%) within the Firmicutes phylum (74.81-80.99%) contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the abundant genera (>10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai-Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg2+, Cl-, Na+ and K+) most correlated to taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.

  9. Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs.

    PubMed

    Ransom-Jones, Emma; Jones, David L; Edwards, Arwyn; McDonald, James E

    2014-10-01

    The Fibrobacteres phylum contains two described species, Fibrobacter succinogenes and Fibrobacter intestinalis, both of which are prolific degraders of cellulosic plant biomass in the herbivore gut. However, recent 16S rRNA gene sequencing studies have identified novel Fibrobacteres in landfill sites, freshwater lakes and the termite hindgut, suggesting that members of the Fibrobacteres occupy a broader ecological range than previously appreciated. In this study, the ecology and diversity of Fibrobacteres was evaluated in 64 samples from contrasting environments where cellulose degradation occurred. Fibrobacters were detected in 23 of the 64 samples using Fibrobacter genus-specific 16S rRNA gene PCR, which provided their first targeted detection in marine and estuarine sediments, cryoconite from Arctic glaciers, as well as a broader range of environmental samples. To determine the phylogenetic diversity of the Fibrobacteres phylum, Fibrobacter-specific 16S rRNA gene clone libraries derived from 17 samples were sequenced (384 clones) and compared with all available Fibrobacteres sequences in the Ribosomal Database Project repository. Phylogenetic analysis revealed 63 lineages of Fibrobacteres (95% OTUs), with many representing as yet unclassified species. Of these, 24 OTUs were exclusively comprised of fibrobacters derived from environmental (non-gut) samples, 17 were exclusive to the mammalian gut, 15 to the termite hindgut, and 7 comprised both environmental and mammalian strains, thus establishing Fibrobacter spp. as indigenous members of microbial communities beyond the gut ecosystem. The data highlighted significant taxonomic and ecological diversity within the Fibrobacteres, a phylum circumscribed by potent cellulolytic activity, suggesting considerable functional importance in the conversion of lignocellulosic biomass in the biosphere.

  10. The Dynamic Arctic Snow Pack: An Unexplored Environment for Microbial Diversity and Activity

    PubMed Central

    Larose, Catherine; Dommergue, Aurélien; Vogel, Timothy M.

    2013-01-01

    The Arctic environment is undergoing changes due to climate shifts, receiving contaminants from distant sources and experiencing increased human activity. Climate change may alter microbial functioning by increasing growth rates and substrate use due to increased temperature. This may lead to changes of process rates and shifts in the structure of microbial communities. Biodiversity may increase as the Arctic warms and population shifts occur as psychrophilic/psychrotolerant species disappear in favor of more mesophylic ones. In order to predict how ecological processes will evolve as a function of global change, it is essential to identify which populations participate in each process, how they vary physiologically, and how the relative abundance, activity and community structure will change under altered environmental conditions. This review covers aspects of the importance and implication of snowpack in microbial ecology emphasizing the diversity and activity of these critical members of cold zone ecosystems. PMID:24832663

  11. Enhancing the Educational Environment for Diverse Nursing Students Through Mentoring and Shared Governance.

    PubMed

    Latham, Christine L; Singh, Harsimran; Ringl, Karen K

    2016-11-01

    A structured peer-mentoring program for diverse nursing students culminated in shared governance meetings between mentors and program coordinators to address mentees' concerns and issues. After informed consent, mentees reviewed mentor profiles online and selected mentors. Baseline data were collected on ethnic identity, lifestyle, social support, and academic habits. Outcome data included mentors' self-reflective journal themes and student satisfaction surveys and focus group evaluation of the program. Students reported weak scores in the areas of wellness, exercise, and stress management. Journaling revealed valuable information about challenges faced by mentees that could impair their success. Mentors' proactive suggestions to handle major mentee journal themes were shared with nursing school administrators using a shared governance approach. The mentoring program supported students and culminated in a shared governance process to discuss ways to address mentee challenges that might improve the educational environment for future students. [J Nurs Educ. 2016;55(11):605-614.]. Copyright 2016, SLACK Incorporated.

  12. Prevalence and genetic diversity of Salmonella spp. in a river in a tropical environment in Mexico.

    PubMed

    Jiménez, Maribel; Martinez-Urtaza, Jaime; Rodriguez-Alvarez, Maria Xose; Leon-Felix, Josefina; Chaidez, Cristobal

    2014-12-01

    The capability of Salmonella to survive outside a host is especially relevant in tropical regions, where the environmental conditions could be more suitable for its long-term persistence. This study investigated the prevalence and genetic diversity of salmonellae within rivers of the Culiacan Valley in the northwestern region of Mexico. From July 2008 to June 2009, a total of 138 water samples were evaluated for the presence of Salmonella spp.; additionally, its association with environmental parameters was determined using Generalized Additive Models (GAMs). Salmonella spp. were isolated from 111 (80.4%) samples without any statistical influence on the environmental parameters investigated, according to the GAM analysis. Twenty-four serotypes were identified; the most frequently isolated serotypes were Salmonella Oranienburg (25%), Salmonella Saintpaul (9%) and Salmonella Minnesota (6%). Diverse genetic variants of Salmonella Oranienburg were found distributed across the valley with no distinctive geographical or temporal patterns. The high persistence of Salmonella spp. and the lack of differentiation of types found along the river basins suggest the existence of non-point source contamination. Furthermore, the discrepancy between the prevailing serotypes in human infections and those identified in this study denotes a limited influence of these aquatic environments in bacterial dissemination and disease transmission.

  13. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    PubMed Central

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-01-01

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability. PMID

  14. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments.

    PubMed

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-06-01

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.

  15. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment.

    PubMed

    Blaak, Hetty; van Hoek, Angela H A M; Hamidjaja, Raditijo A; van der Plaats, Rozemarijn Q J; Kerkhof-de Heer, Lianne; de Roda Husman, Ana Maria; Schets, Franciska M

    2015-01-01

    This study aimed to discern the contribution of poultry farms to the contamination of the environment with ESBL-producing Escherichia coli and therewith, potentially to the spread of these bacteria to humans and other animals. ESBL-producing E. coli were detected at all investigated laying hen farms (n = 5) and broiler farms (n = 3) in 65% (46/71) and 81% (57/70) of poultry faeces samples, respectively. They were detected in rinse water and run-off water (21/26; 81%), other farm animals (11/14; 79%), dust (21/35; 60%), surface water adjacent to farms (20/35; 57%), soil (48/87; 55%), on flies (11/73; 15%), and in barn air (2/33; 6%). The highest prevalence and concentrations in the outdoor environment were observed in soil of free-range areas at laying hen farms (100% of samples positive, geometric mean concentration 2.4×10(4) cfu/kg), and surface waters adjacent to broiler farms during, or shortly after, cleaning between production rounds (91% of samples positive, geometric mean concentration 1.9×10(2) cfu/l). The diversity of ESBL-producing E. coli variants with respect to sequence type, phylogenetic group, ESBL-genotype and antibiotic resistance profile was high, especially on broiler farms where on average 16 different variants were detected, and the average Simpson's Indices of diversity (SID; 1-D) were 0.93 and 0.94 among flock and environmental isolates respectively. At laying hen farms on average nine variants were detected, with SIDs of 0.63 (flock isolates) and 0.77 (environmental isolates). Sixty percent of environmental isolates were identical to flock isolates at the same farm. The highest proportions of 'flock variants' were observed in dust (94%), run-off gullies (82%), and barn air (67%), followed by surface water (57%), soil (56%), flies (50%) and other farm animals (35%).The introduction of ESBL-producing E. coli from poultry farms to the environment may pose a health risk if these bacteria reach places where people may become exposed.

  16. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment

    PubMed Central

    Blaak, Hetty; van Hoek, Angela H. A. M.; Hamidjaja, Raditijo A.; van der Plaats, Rozemarijn Q. J.; Kerkhof-de Heer, Lianne; de Roda Husman, Ana Maria; Schets, Franciska M.

    2015-01-01

    This study aimed to discern the contribution of poultry farms to the contamination of the environment with ESBL-producing Escherichia coli and therewith, potentially to the spread of these bacteria to humans and other animals. ESBL-producing E. coli were detected at all investigated laying hen farms (n = 5) and broiler farms (n = 3) in 65% (46/71) and 81% (57/70) of poultry faeces samples, respectively. They were detected in rinse water and run-off water (21/26; 81%), other farm animals (11/14; 79%), dust (21/35; 60%), surface water adjacent to farms (20/35; 57%), soil (48/87; 55%), on flies (11/73; 15%), and in barn air (2/33; 6%). The highest prevalence and concentrations in the outdoor environment were observed in soil of free-range areas at laying hen farms (100% of samples positive, geometric mean concentration 2.4×104 cfu/kg), and surface waters adjacent to broiler farms during, or shortly after, cleaning between production rounds (91% of samples positive, geometric mean concentration 1.9×102 cfu/l). The diversity of ESBL-producing E. coli variants with respect to sequence type, phylogenetic group, ESBL-genotype and antibiotic resistance profile was high, especially on broiler farms where on average 16 different variants were detected, and the average Simpson’s Indices of diversity (SID; 1–D) were 0.93 and 0.94 among flock and environmental isolates respectively. At laying hen farms on average nine variants were detected, with SIDs of 0.63 (flock isolates) and 0.77 (environmental isolates). Sixty percent of environmental isolates were identical to flock isolates at the same farm. The highest proportions of ‘flock variants’ were observed in dust (94%), run-off gullies (82%), and barn air (67%), followed by surface water (57%), soil (56%), flies (50%) and other farm animals (35%).The introduction of ESBL-producing E. coli from poultry farms to the environment may pose a health risk if these bacteria reach places where people may become exposed. PMID

  17. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment.

    PubMed

    Costello, Elizabeth K; Schmidt, Steven K

    2006-08-01

    Cold, water-saturated soils play important biogeochemical roles, yet almost nothing is known about the identity and habitat of microbes active under such conditions. We investigated the year-round microenvironment of an alpine tundra wet meadow soil in the Colorado Rocky Mountains, focusing on the biogeochemistry and microbial diversity of spring snowmelt--a dynamic time for alpine ecosystems. In situ measurements revealed spring and autumn periods of long-term temperature stability near 0 degrees C, and that deeper soil (30 cm) was more stable than surface soil, with more moderate summers and winters, and longer isothermal phases. The soil was saturated and water availability was limited by freezing rather than drying. Analyses of bioavailable redox species showed a shift from Mn reduction to net Fe reduction at 2-3 cm depth, elevated SO4(2-) and decreased soluble Zn at spring snowmelt. Terminal restriction fragment length polymorphism profiles detected a correlated shift in bacterial community composition at the surface to subsurface transition. Bacterial and archaeal small-subunit rRNA genes were amplified from saturated spring soil DNA pooled along a depth profile. The most remarkable feature of these subsurface-biased libraries was the high relative abundance of novel, uncultivated Chloroflexi-related sequences comprising the third largest bacterial division sampled, and representing seven new Chloroflexi subdivisions, thereby dramatically expanding the known diversity of this bacterial division. We suggest that these novel Chloroflexi are active at near -0 degrees C temperatures, under likely anoxic conditions, and utilize geochemical inputs such as sulfide from upslope weathering.

  18. Diversity of squalene-hopene cyclases in a tropical carbonate-rich environment

    NASA Astrophysics Data System (ADS)

    Leavitt, W. D.; Pearson, A.

    2007-12-01

    Hopanoids are isoprenoid lipids which derive primarily from bacteria and are ubiquitous in contemporary Earth surface environments. In the geologic record, hopanes found in sedimentary rocks are used as proxies to help decipher ancient biological communities. However, in contrast to the ubiquity of these lipid products, biosynthesis of hopanoids appears to be a relatively rare physiological trait among bacteria in complex environmental communities. We have recently estimated that fewer than one in ten bacterial cells in soils and fewer than one in twenty bacterial cells in the ocean contains the gene squalene-hopene cyclase (sqhC) [1]. Biosynthesis of hopanoids is rarer in natural communities than it is among species that have been propagated in pure culture [2]. Here we continue our previous work to survey the phylogeny and diversity of hopanoid producers using culture-independent methods. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analyzed previously [1]. One possible explanation is that hopanoid-producing strains of cyanobacteria are regionally localized. It has been suggested that throughout the long-term sedimentary record there is a correlation between 2-methylhopanoid index (a putative indicator of cyanobacterial biomass) and the global prevalence of shallow carbonate platform environments [3], and in previous work we did not analyze any such environments. To address this question we surveyed a land-sea gradient across the Bahamian island of San Salvador. Samples were taken from upland soil, a hypersaline lake, a tidal creek, and the shallow open ocean. The data are remarkably similar to our previous results: environmental sqhCs average < 65% translated amino acid identity to their closest relatives in public databases, and non- cyanobacterial sequences continue to dominate. We will discuss the challenges these results pose for deciphering the global distribution of microbially

  19. Systematic review on embracing cultural diversity for developing and sustaining a healthy work environment in healthcare.

    PubMed

    Pearson, Alan; Srivastava, Rani; Craig, Dianna; Tucker, Donna; Grinspun, Doris; Bajnok, Irmajean; Griffin, Pat; Long, Leslye; Porritt, Kylie; Han, Thuzar; Gi, Aye A

    2007-03-01

    Objectives  The objective of this review was to evaluate evidence on the structures and processes that support development of effective culturally competent practices and a healthy work environment. Culturally competent practices are a congruent set of workforce behaviours, management practices and institutional policies within a practice setting resulting in an organisational environment that is inclusive of cultural and other forms of diversity. Inclusion criteria  This review included quantitative and qualitative evidence, with a particular emphasis on identifying systematic reviews and randomised controlled trials. For quantitative evidence, other controlled, and descriptive designs were also included. For qualitative evidence, all methodologies were considered. Participants were staff, patients, and systems or policies that were involved or affected by concepts of cultural competence in the nursing workforce in a healthcare environment. Types of interventions included any strategy that had a cultural competence component, which influenced the work environment, and/or patient and nursing staff in the environment. The types of outcomes of interest to this review included nursing staff outcomes, patient outcomes, organisational outcomes and systems level outcomes. Search strategy  The search sought both published and unpublished literature written in the English language. A comprehensive three-step search strategy was used, first to identify appropriate key words, second to combine all optimal key words into a comprehensive search strategy for each database and finally to review the reference lists of all included reviews and research reports. The databases searched were CINAHL, Medline, Current Contents, the Database of Abstracts of Reviews of Effectiveness, The Cochrane Library, PsycINFO, Embase, Sociological Abstracts, Econ lit, ABI/Inform, ERIC and PubMed. The search for unpublished literature used Dissertation Abstracts International. Methodological

  20. Systematic review on embracing cultural diversity for developing and sustaining a healthy work environment in healthcare.

    PubMed

    Pearson, Alan; Srivastava, Rani; Craig, Dianna; Tucker, Donna; Grinspun, Doris; Bajnok, Irmajean; Griffin, Pat; Long, Leslye; Porritt, Kylie; Han, Thuzar; Gi, Aye A

    2007-01-01

    The objective of this review was to evaluate evidence on the structures and processes that support development of effective culturally competent practices and a healthy work environment. Culturally competent practices are a congruent set of workforce behaviours, management practices and institutional policies within a practice setting resulting in an organisational environment that is inclusive of cultural and other forms of diversity. This review included quantitative and qualitative evidence, with a particular emphasis on identifying systematic reviews and randomised controlled trials. For quantitative evidence, other controlled, and descriptive designs were also included. For qualitative evidence, all methodologies were considered. Participants were staff, patients, and systems or policies that were involved or affected by concepts of cultural competence in the nursing workforce in a healthcare environment. Types of interventions included any strategy that had a cultural competence component, which influenced the work environment, and/or patient and nursing staff in the environment. The types of outcomes of interest to this review included nursing staff outcomes, patient outcomes, organisational outcomes and systems level outcomes. The search sought both published and unpublished literature written in the English language. A comprehensive three-step search strategy was used, first to identify appropriate key words, second to combine all optimal key words into a comprehensive search strategy for each database and finally to review the reference lists of all included reviews and research reports. The databases searched were CINAHL, Medline, Current Contents, the Database of Abstracts of Reviews of Effectiveness, The Cochrane Library, PsycINFO, Embase, Sociological Abstracts, Econ lit, ABI/Inform, ERIC and PubMed. The search for unpublished literature used Dissertation Abstracts International. Methodological quality was independently established by two reviewers

  1. Microbial life in the deep terrestrial subsurface

    SciTech Connect

    Fliermans, C.B.; Balkwill, D.L.; Beeman, R.E.

    1988-12-31

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  2. Temporally variable environments maintain more beta-diversity in Mediterranean landscapes

    NASA Astrophysics Data System (ADS)

    Martin, Beatriz; Ferrer, Miguel

    2015-10-01

    We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.

  3. Occurrence and Diversity of Clinically Important Vibrio Species in the Aquatic Environment of Georgia

    PubMed Central

    Kokashvili, Tamar; Whitehouse, Chris A.; Tskhvediani, Ana; Grim, Christopher J.; Elbakidze, Tinatin; Mitaishvili, Nino; Janelidze, Nino; Jaiani, Ekaterine; Haley, Bradd J.; Lashkhi, Nino; Huq, Anwar; Colwell, Rita R.; Tediashvili, Marina

    2015-01-01

    Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n = 657) and freshwater lakes around Tbilisi (n = 938). Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS) detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost 90% of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human-pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) were detected in 62.8, 37.8, and 21.4% of samples testing positive for Vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii), and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs. PMID:26528464

  4. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments

    PubMed Central

    Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito

    2016-01-01

    Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html. PMID:28066557

  5. Oligonucleotide Microarray for the Study of Functional Gene Diversity in the Nitrogen Cycle in the Environment

    PubMed Central

    Taroncher-Oldenburg, Gaspar; Griner, Erin M.; Francis, Chris A.; Ward, Bess B.

    2003-01-01

    The analysis of functional diversity and its dynamics in the environment is essential for understanding the microbial ecology and biogeochemistry of aquatic systems. Here we describe the development and optimization of a DNA microarray method for the detection and quantification of functional genes in the environment and report on their preliminary application to the study of the denitrification gene nirS in the Choptank River-Chesapeake Bay system. Intergenic and intragenic resolution constraints were determined by an oligonucleotide (70-mer) microarray approach. Complete signal separation was achieved when comparing unrelated genes within the nitrogen cycle (amoA, nifH, nirK, and nirS) and detecting different variants of the same gene, nirK, corresponding to organisms with two different physiological modes, ammonia oxidizers and denitrifying halobenzoate degraders. The limits of intragenic resolution were investigated with a microarray containing 64 nirS sequences comprising 14 cultured organisms and 50 clones obtained from the Choptank River in Maryland. The nirS oligonucleotides covered a range of sequence identities from approximately 40 to 100%. The threshold values for specificity were determined to be 87% sequence identity and a target-to-probe perfect match-to-mismatch binding free-energy ratio of 0.56. The lower detection limit was 10 pg of DNA (equivalent to approximately 107 copies) per target per microarray. Hybridization patterns on the microarray differed between sediment samples from two stations in the Choptank River, implying important differences in the composition of the denitirifer community along an environmental gradient of salinity, inorganic nitrogen, and dissolved organic carbon. This work establishes a useful set of design constraints (independent of the target gene) for the implementation of functional gene microarrays for environmental applications. PMID:12571043

  6. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments.

    PubMed

    Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito

    2016-01-01

    Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html.

  7. Growth phenology of coast Douglas-fir seed sources planted in diverse environments.

    PubMed

    Gould, Peter J; Harrington, Constance A; St Clair, J Bradley

    2012-12-01

    The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates.

  8. Learning Temporal Patterns of Risk in a Predator-Diverse Environment

    PubMed Central

    Bosiger, Yoland J.; Lonnstedt, Oona M.; McCormick, Mark I.; Ferrari, Maud C. O.

    2012-01-01

    Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. “Morning risk” treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). “Evening risk” treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk. PMID:22493699

  9. Constructivist Learning and Openness to Diversity and Challenge in Higher Education Environments

    ERIC Educational Resources Information Center

    Alt, Dorit

    2017-01-01

    The increasing calls for diversity research signal a need to explore contemporary learning and instruction strategies that respond to diversity in courses and curricula. The major objective of this research was to measure the level of openness to diversity and challenge (ODC) among college students as a function of their perceived constructivist…

  10. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  11. Stability of Cell Wall Composition and Saccharification Efficiency in Miscanthus across Diverse Environments

    PubMed Central

    van der Weijde, Tim; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

    2017-01-01

    To investigate the potential effects of differences between growth locations on the cell wall composition and saccharification efficiency of the bioenergy crop miscanthus, a diverse set of 15 accessions were evaluated in six locations across Europe for the first 3 years following establishment. High-throughput quantification of cellulose, hemicellulose and lignin contents, as well as cellulose and hemicellulose conversion rates was achieved by combining near-infrared reflectance spectroscopy (NIRS) and biochemical analysis. Prediction models were developed and found to predict biomass quality characteristics with high accuracy. Location significantly affected biomass quality characteristics in all three cultivation years, but location-based differences decreased toward the third year as the plants reached maturity and the effect of location-dependent differences in the rate of establishment reduced. In all locations extensive variation in accession performance was observed for quality traits. The performance of the different accessions in the second and third cultivation year was strongly correlated, while accession performance in the first cultivation year did not correlate well with performance in later years. Significant genotype-by-environment (G × E) interactions were observed for most traits, revealing differences between accessions in environmental sensitivity. Stability analysis of accession performance for calculated ethanol yields suggested that selection for good and stable performance is a viable approach. Environmental influence on biomass quality is substantial and should be taken into account in order to match genotype, location and end-use of miscanthus as a lignocellulose feedstock. PMID:28111583

  12. Stability of Cell Wall Composition and Saccharification Efficiency in Miscanthus across Diverse Environments.

    PubMed

    van der Weijde, Tim; Dolstra, Oene; Visser, Richard G F; Trindade, Luisa M

    2016-01-01

    To investigate the potential effects of differences between growth locations on the cell wall composition and saccharification efficiency of the bioenergy crop miscanthus, a diverse set of 15 accessions were evaluated in six locations across Europe for the first 3 years following establishment. High-throughput quantification of cellulose, hemicellulose and lignin contents, as well as cellulose and hemicellulose conversion rates was achieved by combining near-infrared reflectance spectroscopy (NIRS) and biochemical analysis. Prediction models were developed and found to predict biomass quality characteristics with high accuracy. Location significantly affected biomass quality characteristics in all three cultivation years, but location-based differences decreased toward the third year as the plants reached maturity and the effect of location-dependent differences in the rate of establishment reduced. In all locations extensive variation in accession performance was observed for quality traits. The performance of the different accessions in the second and third cultivation year was strongly correlated, while accession performance in the first cultivation year did not correlate well with performance in later years. Significant genotype-by-environment (G × E) interactions were observed for most traits, revealing differences between accessions in environmental sensitivity. Stability analysis of accession performance for calculated ethanol yields suggested that selection for good and stable performance is a viable approach. Environmental influence on biomass quality is substantial and should be taken into account in order to match genotype, location and end-use of miscanthus as a lignocellulose feedstock.

  13. Culturally and linguistically diverse healthcare students' experiences of learning in a clinical environment: A systematic review of qualitative studies.

    PubMed

    Mikkonen, Kristina; Elo, Satu; Kuivila, Heli-Maria; Tuomikoski, Anna-Maria; Kääriäinen, Maria

    2016-02-01

    Learning in the clinical environment of healthcare students plays a significant part in higher education. The greatest challenges for culturally and linguistically diverse healthcare students were found in clinical placements, where differences in language and culture have been shown to cause learning obstacles for students. There has been no systematic review conducted to examine culturally and linguistically diverse healthcare students' experiences of their learning in the clinical environment. This systematic review aims to identify culturally and linguistically diverse healthcare students' experiences of learning in a clinical environment. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The original studies were identified from seven databases (CINAHL, Medline Ovid, Scopus, Web of Science, Academic Search Premiere, Eric and Cochrane Library) for the period 2000-2014. Two researchers selected studies based on titles, abstracts and full texts using inclusion criteria and assessed the quality of studies independently. Twelve original studies were chosen for the review. The culturally and linguistically diverse healthcare students' learning experiences were divided into three influential aspects of learning in a clinical environment: experiences with implementation processes and provision; experiences with peers and mentors; and experiences with university support and instructions. The main findings indicate that culturally and linguistically diverse healthcare students embarking on clinical placements initially find integration stressful. Implementing the process of learning in a clinical environment requires additional time, well prepared pedagogical orientation, prior cultural and language education, and support for students and clinical staff. Barriers to learning by culturally and linguistically diverse healthcare students were not being recognized and individuals were not considered motivated; learners experienced the

  14. Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico

    SciTech Connect

    Lucia, F.J.; Ruppel, S.C.

    2001-02-01

    Characterization of cycle and facies architecture on lower Clear Fork and lowermost upper Clear Fork equivalent outcrops in Apache Canyon of Sierra Diablo was complete. The focus of detailed study in Apache Canyon has been the upper Clear Fork section because this interval contains the productive interval in South Wasson field, the preliminary subsurface study area. Parts of three high-frequency sequences (HFS), each 60 to 100 ft thick, are present on the south wall of Apache Canyon. HFS's display an upper-deepening or backstepping pattern associated with longer-term sea level rise. Each HFS is composed of upward-shallowing cycles whose thickness, facies composition, and continuity vary within and between HFS's.

  15. Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments.

    PubMed

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.

  16. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  17. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla.

    PubMed

    Emerson, Joanne B; Thomas, Brian C; Alvarez, Walter; Banfield, Jillian F

    2016-06-01

    Research on geologic carbon sequestration raises questions about potential impacts of subsurface microbiota on carbon cycling and biogeochemistry. Subsurface, high-CO2 systems are poorly biologically characterized, partly because of difficulty accessing high-volume, uncontaminated samples. CO2 -driven Crystal Geyser (CG, Utah, USA), an established geologic carbon sequestration analogue, provides high volumes of deep (∼ 200-500 m) subsurface fluids. We explored microbial diversity and metabolic potential in this high-CO2 environment by assembly and analysis of metagenomes recovered from geyser water filtrate. The system is dominated by neutrophilic, iron-oxidizing bacteria, including 'marine' Mariprofundus (Zetaproteobacteria) and 'freshwater' Gallionellales, sulfur-oxidizing Thiomicrospira crunogena and Thiobacillus-like Hydrogenophilales. Near-complete genomes were reconstructed for these bacteria. CG is notably populated by a wide diversity of bacteria and archaea from phyla lacking isolated representatives (candidate phyla) and from as-yet undefined lineages. Many bacteria affiliate with OD1, OP3, OP9, PER, ACD58, WWE3, BD1-5, OP11, TM7 and ZB2. The recovery of nearly 100 genes encoding ribulose-1,5 bisphosphate carboxylase-oxygenase subunit proteins of the Calvin cycle and AMP salvage pathways suggests a strong biological role in high-CO2 subsurface carbon cycling. Overall, we predict microbial impacts on subsurface biogeochemistry via iron, sulfur, and complex carbon oxidation, carbon and nitrogen fixation, fermentation, hydrogen metabolism, and aerobic and anaerobic respiration.

  18. Component-Based Framework for Subsurface Simulations

    SciTech Connect

    Palmer, Bruce J.; Fang, Yilin; Hammond, Glenn E.; Gurumoorthi, Vidhya

    2007-08-01

    Simulations in the subsurface environment represent a broad range of phenomena covering an equally broad range of scales. Developing modelling capabilities that can integrate models representing different phenomena acting at different scales present formidable challenges both from the algorithmic and computer science perspective. This paper will describe the development of an integrated framework that will be used to combine different models into a single simulation. Initial work has focused on creating two frameworks, one for performing smooth particle hydrodynamics (SPH) simulations of fluid systems, the other for performing grid-based continuum simulations of reactive subsurface flow. The SPH framework is based on a parallel code developed for doing pore scale simulations, the continuum grid-based framework is based on the STOMP (Subsurface Transport Over Multiple Phases) code developed at PNNL. Future work will focus on combining the frameworks together to perform multiscale, multiphysics simulations of reactive subsurface flow.

  19. The Potential Effect of Cultural Differences in a Culturally Diverse Work Environment

    DTIC Science & Technology

    1999-10-01

    for organizational renewal, finding strategic advantage, maintaining high standards of ethics and social responsibility , supporting diversity, and managing the new employee relationships that emphasize empowerment and team.

  20. Microbiology of sugar-rich environments: diversity, ecology and system constraints.

    PubMed

    Lievens, Bart; Hallsworth, John E; Pozo, Maria I; Belgacem, Zouhaier Ben; Stevenson, Andrew; Willems, Kris A; Jacquemyn, Hans

    2015-02-01

    Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt.

    PubMed

    Gadanho, Mário; Libkind, Diego; Sampaio, José Paulo

    2006-10-01

    In the Iberian Pyrite Belt (IPB), acid rock drainage gives rise to aquatic habitats with low pH and high concentrations of heavy metals, a situation that causes important environmental problems. We investigated the occurrence and diversity of yeasts in two localities of the IPB: São Domingos (Portugal) and Rio Tinto (Spain). Yeast isolation was performed on conventional culture media (MYP), acidified (pH 3) media (MYP3), and on media prepared with water from the study sites (MYPw). The main goal of the study was to determine the structure of the yeast community; a combination of molecular methods was used for accurate species identifications. Our results showed that the largest fraction of the yeast community was recovered on MYPw rather than on MYP and MYP3. Twenty-seven yeast species were detected, 48% of which might represent undescribed taxa. Among these, an undescribed species of the genus Cryptococcus required low pH for growth, a property that has not been observed before in yeasts. The communities of S. Domingos and R. Tinto showed a considerable resemblance, and eight yeast species were simultaneously found in both localities. Taking into consideration the physicochemical parameters studied, we propose a hierarchic organization of the yeast community in terms of high-, intermediate-, or low-stress conditions of the environment. According to this ranking, the acidophile yeast Cryptococcus sp. 5 is considered the most tolerant species, followed by Cryptococcus sp. 3 and Lecytophora sp. Species occurring in situations of intermediate environmental stress were Candida fluviatilis, Rhodosporidium toruloides, Williopsis californica, and three unidentified yeasts belonging to Rhodotorula and Cryptococcus.

  2. Multiple Oxygen Tension Environments Reveal Diverse Patterns of Transcriptional Regulation in Primary Astrocytes

    PubMed Central

    Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart

    2011-01-01

    The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745

  3. Early environments drive diversity and floristic composition in Mediterranean old fields: Insights from a long-term experiment

    NASA Astrophysics Data System (ADS)

    Cayuela, Luis; Rey Benayas, José María; Maestre, Fernando T.; Escudero, Adrián

    2008-11-01

    While many studies have explored how previous and current environmental conditions affect the performance of individual organisms, their relative importance as drivers of current diversity and composition of communities is virtually unknown. We evaluated the response of herbaceous communities to previous (experienced during early establishment) and current environmental conditions by comparing their composition and diversity in an abandoned Mediterranean cropland planted with Quercus ilex subsp. ballota L. seedlings. These seedlings received different experimental treatments (summer irrigation and artificial shading) during the first three years after planting, and were interrupted from then on. We tested two complementary hypotheses: (i) the previous environments experienced by the herbaceous communities during their establishment have a long-term carry-over effect on diversity and composition of species assemblages and (ii) these communities are influenced by their current environment, particularly by the woody layer and the soil conditions. Overall, we observed an important contribution of initial environmental conditions in determining the current diversity and composition of herbaceous communities. Amelioration of environmental conditions, particularly water stress, during community establishment resulted in a decrease in alpha and beta diversity, possibly as a consequence of decreasing environmental heterogeneity. Previous environments accounted for 26.3% of the explained variance in current community composition. Annuals, legumes and forbs also responded significantly to previous environments, which explained 27.9%, 36.2% and 30.1%, respectively, of the variance in their composition. Our results suggest that those species present at a particular site early in succession pre-empt the site and influence vegetation dynamics on that site for a long time. This study provides important insights for understanding the mechanisms underlying the ecological effects of

  4. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  5. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments

    PubMed Central

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-01-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481

  6. Quantifying silica reactivity in subsurface environments: Reaction affinity and solute matrix controls on quartz and SiO{sub 2} glass. 1997 annual progress report

    SciTech Connect

    Dove, P.M.

    1997-10-15

    'The author reports the preliminary results of the experiments on the dissolution behavior of vitreous silica (v-SiO{sub 2}) into aqueous solutions of variable pH and ionic strength. The experiments are being conducted in mixed flow reactors with a high circulation rate that simulates constant-stirred conditions, the efficacy of which the authors discuss below. The preliminary results indicate that v-SiO{sub 2} dissolves into aqueous solutions approximately two orders of magnitude more quickly than crystalline silica (e.g., quartz). With additional experiments, they will utilize the dissolution rate data as a framework for understanding the behavior of waste glass compositions in the subsurface. In other work related to the studies of glass reactivity, the author has written one book chapter that will be published as part of a proceedings for the CEA/VALRHO international nuclear waste disposal conference held in Mejannes le Clap, France. In separate work, she is presently writing a second book chapter for the volume entitled Adsorption on Silica Surfaces.'

  7. An appraisal of subsurface geology and groundwater resources of Owerri and environs based on electrical resistivity survey and borehole data evaluation.

    PubMed

    Ibe, K M; Uzoukwu, S C

    2001-09-01

    The research was aimed at determining the depth to the water table, aquifer thickness and subsurface geology of the study area thus revealing its groundwater distribution as well as its potential as a substitute to the surface water resources. Vertical electrical soundings were carried out in the study area with maximum electrode spread. The Schlumberger electrode configuration technique was adopted. VES data were processed using Schlumberger analysis package. Lithologic logs of already existing boreholes in the study area were collected, evaluated and comparison were carried out. The results reveal alternating layers of sands, sandstones, gravel and clay. The lithologic logs revealed that the study area is underlain by coastal sands (Benin formation). The water table varies from 10-64 m and thickness of the aquifer ranges from 20-80 m. Results show that the study area is underlain by a thick extensive aquifer that has a transmissivity of 2.8 x 10(-2) m2 s(-1) to 3.3 x 10(-1) m2 s(-1) and storativity 1.44 x 10(-4) to 1.68 x 10(-3) m s(-1) values. The specific yield is about 0.31. The sandy component of the study area forms more than 90% of the sequence, therefore the permeability, the transmissivity and the storage coefficient are high with an excellent source of groundwater resources.

  8. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    PubMed

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.

  9. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  10. The Changing Academic Environment and Diversity in Students' Study Philosophy, Beliefs and Attitudes in Higher Education

    ERIC Educational Resources Information Center

    Alauddin, Mohammad; Ashman, Adrian

    2014-01-01

    Student populations in higher education in Australia and elsewhere in the developed world have experienced significant diversity over the past two decades. The existing literature has provided limited clarity about the effects of this diversity on the dimensions underpinning students' study philosophy domain. Based on a large data set from a…

  11. Honoring Differences: Essential Features of Appropriate ECSE Services for Young Children from Diverse Sociocultural Environments.

    ERIC Educational Resources Information Center

    Barrera, Isaura

    2000-01-01

    This article describes six service features honoring diversity in early childhood special education (ECSE) programs as identified and piloted in the 3-year federally funded demonstration program, CROSSROADS. CROSSROADS provided technical assistance to ECSE programs with children from culturally and linguistically diverse backgrounds. Examples…

  12. Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments

    PubMed Central

    Graham, Catherine H.; Brooks, Thomas M.; Rondinini, Carlo; Hedges, S. Blair; Davidson, Ana D.; Costa, Gabriel C.

    2016-01-01

    The taxonomic, phylogenetic and trait dimensions of beta diversity each provide us unique insights into the importance of historical isolation and environmental conditions in shaping global diversity. These three dimensions should, in general, be positively correlated. However, if similar environmental conditions filter species with similar trait values, then assemblages located in similar environmental conditions, but separated by large dispersal barriers, may show high taxonomic, high phylogenetic, but low trait beta diversity. Conversely, we expect lower phylogenetic diversity, but higher trait biodiversity among assemblages that are connected but are in differing environmental conditions. We calculated all pairwise comparisons of approximately 110 × 110 km grid cells across the globe for more than 5000 mammal species (approx. 70 million comparisons). We considered realms as units representing geographical distance and historical isolation and biomes as units with similar environmental conditions. While beta diversity dimensions were generally correlated, we highlight geographical regions of decoupling among beta diversity dimensions. Our analysis shows that assemblages from tropical forests in different realms had low trait dissimilarity while phylogenetic beta diversity was significantly higher than expected, suggesting potential convergent evolution. Low trait beta diversity was surprisingly not found between isolated deserts, despite harsh environmental conditions. Overall, our results provide evidence for parallel assemblage structure of mammal assemblages driven by environmental conditions at a global scale. PMID:27559061

  13. Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests.

    PubMed

    Wu, Jin; Chavana-Bryant, Cecilia; Prohaska, Neill; Serbin, Shawn P; Guan, Kaiyu; Albert, Loren P; Yang, Xi; van Leeuwen, Willem J D; Garnello, Anthony John; Martins, Giordane; Malhi, Yadvinder; Gerard, France; Oliviera, Raimundo Cosme; Saleska, Scott R

    2017-05-01

    Leaf age structures the phenology and development of plants, as well as the evolution of leaf traits over life histories. However, a general method for efficiently estimating leaf age across forests and canopy environments is lacking. Here, we explored the potential for a statistical model, previously developed for Peruvian sunlit leaves, to consistently predict leaf ages from leaf reflectance spectra across two contrasting forests in Peru and Brazil and across diverse canopy environments. The model performed well for independent Brazilian sunlit and shade canopy leaves (R(2)  = 0.75-0.78), suggesting that canopy leaves (and their associated spectra) follow constrained developmental trajectories even in contrasting forests. The model did not perform as well for mid-canopy and understory leaves (R(2)  = 0.27-0.29), because leaves in different environments have distinct traits and trait developmental trajectories. When we accounted for distinct environment-trait linkages - either by explicitly including traits and environments in the model, or, even better, by re-parameterizing the spectra-only model to implicitly capture distinct trait-trajectories in different environments - we achieved a more general model that well-predicted leaf age across forests and environments (R(2)  = 0.79). Fundamental rules, linked to leaf environments, constrain the development of leaf traits and allow for general prediction of leaf age from spectra across species, sites and canopy environments.

  14. The subsurface origin of microbial life on the Earth.

    PubMed

    Trevors, J T

    2002-10-01

    Life on Earth can be divided into life on the surface made possible by photosynthesis and subsurface life with chemical energy as the driving force. An understanding of both environments is central to our understanding of the origin of life, the search for novel microbial species in the subsurface and for extraterrestrial life or life signatures. In this manuscript, the surface and subsurface worlds are examined with a focus on the origin or assembly of bacterial life.

  15. Electrical Subsurface Grounding Analysis

    SciTech Connect

    J.M. Calle

    2000-11-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  16. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  17. Subsurface Microbiology and Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Fletcher, Madilyn

    2001-05-01

    Jim contributed a chapter to this book, in addition to co-editing it with Madilyn Fletcher. Fredrickson, J. K., and M. Fletcher. (eds.) 2001 Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York.

  18. Geomicrobial Processes and Biodiversity in the Deep Terrestrial Subsurface

    SciTech Connect

    Fredrickson, Jim K.; Balkwill, David L.

    2005-09-01

    The concept of a deep microbial biosphere has advanced over the past several decades from a hypothesis viewed with considerable skepticism to being widely accepted. Phylogenetically diverse prokaryotes have been cultured from or detected via characterization of directly-extracted nucleic acids from a wide range of deep terrestrial environments. Recent advances have linked the metabolic potential of these microorganisms, determined directly or inferred from phylogeny, to biogeochemical reactions determined via geochemical measurements and modeling. Buried organic matter or kerogen is an important source of energy for sustaining anaerobic heterotrophic microbial communities in deep sediments and sedimentary rock although rates of respiration are among the slowest rates measured on the planet. In contrast, Subsurface Lithoautotrophic Microbial Ecosystems based on H2 as the primary energy source appear to dominate in many crystalline rock environments. These photosynthesis-independent ecosystems remain an enigma due to the difficulty in accessing and characterizing appropriate samples. Deep mines and dedicated rock laboratories, however, may offer unprecedented opportunities for investigating subsurface microbial communities and their interactions with the geosphere.

  19. Multilocus Sequence Analysis for the Assessment of Phylogenetic Diversity and Biogeography in Hyphomonas Bacteria from Diverse Marine Environments

    PubMed Central

    Li, Guizhen; Liu, Yang; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Hyphomonas, a genus of budding, prosthecate bacteria, are primarily found in the marine environment. Seven type strains, and 35 strains from our collections of Hyphomonas, isolated from the Pacific Ocean, Atlantic Ocean, Arctic Ocean, South China Sea and the Baltic Sea, were investigated in this study using multilocus sequence analysis (MLSA). The phylogenetic structure of these bacteria was evaluated using the 16S rRNA gene, and five housekeeping genes (leuA, clpA, pyrH, gatA and rpoD) as well as their concatenated sequences. Our results showed that each housekeeping gene and the concatenated gene sequence all yield a higher taxonomic resolution than the 16S rRNA gene. The 42 strains assorted into 12 groups. Each group represents an independent species, which was confirmed by virtual DNA-DNA hybridization (DDH) estimated from draft genome sequences. Hyphomonas MLSA interspecies and intraspecies boundaries ranged from 93.3% to 96.3%, similarity calculated using a combined DDH and MLSA approach. Furthermore, six novel species (groups I, II, III, IV, V and XII) of the genus Hyphomonas exist, based on sequence similarities of the MLSA and DDH values. Additionally, we propose that the leuA gene (93.0% sequence similarity across our dataset) alone could be used as a fast and practical means for identifying species within Hyphomonas. Finally, Hyphomonas' geographic distribution shows that strains from the same area tend to cluster together as discrete species. This study provides a framework for the discrimination and phylogenetic analysis of the genus Hyphomonas for the first time, and will contribute to a more thorough understanding of the biological and ecological roles of this genus. PMID:25019154

  20. Site Recommendation Subsurface Layout

    SciTech Connect

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  1. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment

    PubMed Central

    Ma, Zhi P.; Lao, Yong M.; Jin, Hui; Lin, Guang H.; Cai, Zhong H.; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health. PMID:27994584

  2. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment.

    PubMed

    Ma, Zhi P; Lao, Yong M; Jin, Hui; Lin, Guang H; Cai, Zhong H; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health.

  3. Unraveling the Diversity of Early Aqueous Environments and Climate on Mars Through the Phyllosilicate Record

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Baker, L. L.; Fairén, A. G.; Gross, C.; Velbel, M. A.; Rampe, E. B.; Michalski, J. R.

    2017-01-01

    Were Martian phyllosilicates formed on the surface or subsurface? Was early Mars warm or cold? How long was liquid water present on the surface of Mars? These are some of the many open questions about our neighboring planet. We propose that the mineralogy of the clay-bearing outcrops on Mars can help address these questions. Abundant phyllosilicates and aqueous minerals are observed nearly everywhere we can see the ancient rocks on Mars. Most bountiful among these is Fe/Mg-smectite. In this study we evaluate the nature and stratigraphy of clay outcrops observed on Mars and the presence of mixtures of other clays or other minerals with the ubiquitous Fe/Mg-smectite.

  4. Urban heat island in the subsurface

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2007-12-01

    The urban heat island effect has received significant attention in recent years due to the possible effect on long-term meteorological records. Recent studies of this phenomenon have suggested that this may not be important to estimates of regional climate change once data are properly corrected. However, surface air temperatures within urban environments have significant variation, making correction difficult. In the current study, we examine subsurface temperatures in an urban environment and the surrounding rural area to help characterize the nature of this variability. The results of our study indicate that subsurface temperatures are linked to land-use and supports previous work indicating that the urban heat island effect has significant and complex spatial variability. In most situations, the relationship between subsurface and surface processes cannot be easily determined, indicating that previous studies that relying on such a linkage may require further examination.

  5. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic].

    PubMed

    Xu, Hongxiu; Jiang, Lijing; Li, Shaoneng; Zhong, Tianhua; Lai, Qiliang; Shao, Zongze

    2016-01-04

    To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation. We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography. A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alpha-Proteobacteria (58.3%), Actinobacteria (22.9%) and gama-Proteobacteria (18.8%). Among them, the genus Thalassospira, Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis. The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.

  6. Drivers of morphological diversity and distribution in the Hawaiian fern flora: trait associations with size, growth form, and environment.

    PubMed

    Creese, Chris; Lee, Albert; Sack, Lawren

    2011-06-01

    Hawaii is home to 238 native and 35 alien fern and lycophyte taxa distributed across steep gradients in elevation and resource availability. The fern flora spans a wide range of growth forms, with extraordinary diversity in morphology and plant size. Yet the potential factors underlying this diversity have remained enigmatic. We used a trait database generated from the most recent and comprehensive survey of Hawaiian ferns and lycophytes to test hypotheses of size-scaling and trait associations with environment and growth form as factors underlying this diversity. We also tested relationships among morphology, taxon abundance and distribution and identified key differences between native and alien taxa. Strong trait-trait relationships included geometric scaling of plant dimensions with a tendency for more divided fronds in larger ferns. Trait-environment relationships independent of size included more divided fronds at higher elevation, longer blades in shaded habitats, and fronds with shorter stipes and fewer pinnae in drier habitats. Growth forms differed in mean size with epiphytic and epipetric taxa smaller than terrestrial ferns. Plant size was independent of taxon abundance and distribution across islands, and native and alien ferns did not differ in mean size. Alien taxa were more abundant, especially at lower elevations, apparently due to human land use. These relationships point to linkages of fern form and demography with biogeography and highlight potential flora-scale physiological and morphological adaptations in ferns across contrasting environments.

  7. Deep subsurface microbiology of 64-71 million year old inactive seamounts along the Louisville Seamount Chain

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Morono, Y.; Grim, S.; Inagaki, F.; Edwards, K. J.

    2013-12-01

    One of the objectives of IODP Expedition 330, Louisville Seamount Trail, was to sample and learn about the subsurface biosphere in the Louisville Seamount Chain (LSC). Seamounts are volcanic constructs that are ubiquitous along the seafloor - models suggest there are >100,000 seamounts of >1 km in height globally (Wessel et al., 2010). Therefore, knowledge about microbiology in the LSC subsurface can broadly be interpreted as representative of much the seafloor. In addition, despite the fact that the vast majority of the sea floor is comprised of crust >10 Ma, the majority of work to date has focused on young sites with active hydrology. Our presentation summarizes work focusing on subsurface microbiology from two different LSC seamounts: holes U1374A (65-71 Ma) and U1376A (64 Ma). We here present data for microbial biomass in the LSC subsurface using a method we developed to quantify microbial biomass in subseafloor ocean crust. We also present results from pyrotag analysis of 15 samples from holes U1374A and holes U1376A, representing several different lithologies from 40-491 meters below seafloor (mbsf) in hole U1374A and from 29-174 mbsf in hole U1376A. Finally, we present preliminary analysis of metagenomic sequencing from three of the samples from Hole U1376A. Biomass was low in the subsurface of both seamounts, ranging from below detection to ~104 cells cm-3. Bacteria comprised >99% of the prokaryotic community in LSC subsurface samples, therefore, bacterial diversity was assessed through 454 pyrosequencing of the V4V6 region of the 16S rRNA gene. Rarefaction analysis indicates that bacterial communities from the LSC subsurface are low diversity, on the order of a few hundred operational taxonomic units per sample. The phyla Actinobacteria, Bacteroidetes, Firmicutes and the classes α-, β- and γ-Proteobacteria are most abundant in the LSC subsurface. Within these, the orders Actinomycetales, Sphingobacteriales, Bacillales and Burkholderiales are the most

  8. The little bacteria that can – diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments

    PubMed Central

    Taş, Neslihan; Van Eekert, Miriam H. A.; De Vos, Willem M.; Smidt, Hauke

    2010-01-01

    Summary The fate and persistence of chlorinated organics in the environment have been a concern for the past 50 years. Industrialization and extensive agricultural activities have led to the accumulation of these pollutants in the environment, while their adverse impact on various ecosystems and human health also became evident. This review provides an update on the current knowledge of specialized anaerobic bacteria, namely ‘Dehalococcoides’ spp., which are dedicated to the transformation of various chlorinated organic compounds via reductive dechlorination. Advances in microbiology and molecular techniques shed light into the diversity and functioning of Dehalococcoides spp. in several different locations. Recent genome sequencing projects revealed a large number of genes that are potentially involved in reductive dechlorination. Molecular approaches towards analysis of diversity and expression especially of reductive dehalogenase‐encoding genes are providing a growing body of knowledge on biodegradative pathways active in defined pure and mixed cultures as well as directly in the environment. Moreover, several successful field cases of bioremediation strengthen the notion of dedicated degraders such as Dehalococcoides spp. as key players in the restoration of contaminated environments. PMID:21255338

  9. The effect of spatially correlated environments on genetic diversity-area relationships.

    PubMed

    Neto, Elias D C; de Oliveira, Viviane M; Rosas, Alexandre; Campos, Paulo R A

    2011-11-07

    Understanding the spatial patterns of genetic diversity and what causes them is an important outstanding question in ecology. Here we investigate the roles of spatial heterogeneity and system area in generating genome diversity, and study its dependence with sampled area. We study an individual-based model that incorporates natural selection on the habitat type and compare the effects of asexual and sexual reproductions. A key ingredient of the model is the possibility to tune the level of spatial heterogeneity among the habitats. Our results corroborate either the bi-phasic or tri-phasic scenarios, one phase corresponding to a power law regime, for the diversity-area relationship in both sexual and asexual populations, being the shape of the curve influenced by mutation rates and spatial correlation. These observations are verified for distinct sets of parameter values. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. EIAGRID: In-field optimization of seismic data acquisition by real-time subsurface imaging using a remote GRID computing environment.

    NASA Astrophysics Data System (ADS)

    Heilmann, B. Z.; Vallenilla Ferrara, A. M.

    2009-04-01

    The constant growth of contaminated sites, the unsustainable use of natural resources, and, last but not least, the hydrological risk related to extreme meteorological events and increased climate variability are major environmental issues of today. Finding solutions for these complex problems requires an integrated cross-disciplinary approach, providing a unified basis for environmental science and engineering. In computer science, grid computing is emerging worldwide as a formidable tool allowing distributed computation and data management with administratively-distant resources. Utilizing these modern High Performance Computing (HPC) technologies, the GRIDA3 project bundles several applications from different fields of geoscience aiming to support decision making for reasonable and responsible land use and resource management. In this abstract we present a geophysical application called EIAGRID that uses grid computing facilities to perform real-time subsurface imaging by on-the-fly processing of seismic field data and fast optimization of the processing workflow. Even though, seismic reflection profiling has a broad application range spanning from shallow targets in a few meters depth to targets in a depth of several kilometers, it is primarily used by the hydrocarbon industry and hardly for environmental purposes. The complexity of data acquisition and processing poses severe problems for environmental and geotechnical engineering: Professional seismic processing software is expensive to buy and demands large experience from the user. In-field processing equipment needed for real-time data Quality Control (QC) and immediate optimization of the acquisition parameters is often not available for this kind of studies. As a result, the data quality will be suboptimal. In the worst case, a crucial parameter such as receiver spacing, maximum offset, or recording time turns out later to be inappropriate and the complete acquisition campaign has to be repeated. The

  11. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  12. Workforce diversity in a research and development environment -- a model that works

    SciTech Connect

    McDavid, S.

    1993-11-17

    The Lawrence Livermore National Laboratory (LLNL) Engineering Directorate is in the third year of a diversity process that has changed the culture of the organization in many ways. This work outlines progress toward realizing the LLNL Engineering Diversity Model. Currently recommendations are being implemented that have been formulated through a problem resolution process, described in this work, in which employees helped identify problems, recommend solutions, and work with managers in focus groups. The process of arriving at the recommendations and the lessons learned through the problem resolution process are discussed. Ongoing actions, short-term goals, and long-term goals of the program are described.

  13. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    SciTech Connect

    Kostka, Joel E.; Prakash, Om; Green, Stefan J.; Akob, Denise; Jasrotia, Puja; Kerkhof, Lee; Chin, Kuk-Jeong; Sheth, Mili; Keller, Martin; Venkateswaran, Amudhan; Elkins, James G.; Stucki, Joseph W.

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  14. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  15. Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments

    PubMed Central

    Rittenour, William R.; Ciaccio, Christina E.; Barnes, Charles S.; Kashon, Michael L.; Lemons, Angela R.; Beezhold, Donald H.; Green, Brett J.

    2014-01-01

    Compared to traditional methods of fungal exposure assessment, molecular methods have provided new insight into the richness of fungal communities present in both indoor and outdoor environments. In this study, we describe the diversity of fungi in the homes of asthmatic children located in Kansas City. Fungal diversity was determined by sequencing the internal transcribed spacer (ITS) regions of ribosomal RNA derived from fungi collected in air and dust samples from 31 homes participating in the Kansas City Safe and Healthy Homes Program (KCSHHP). Sequencing results were then compared to data obtained using viable and non-viable fungal exposure assessment methods. ITS clone libraries were predominantly derived from the phylum Ascomycota in both air (68%) and dust (92%) samples and followed by the Basidiomycota and Zygomycota. The majority of Ascomycota clones belonged to four orders including the Pleosporales, Eurotiales, Capnodiales, and Dothideales. ITS sequencing revealed the presence of a number of rarely documented fungal species placed in the Pleosporales. Several species placed in the Basidiomycota were detected in ITS clone libraries but not by viable or non-viable methods. The prevalence of organizational taxonomic units (OTUs) was significantly higher in air than in dust samples (p < 0.0001); however, no differences between OTUs in air samples collected in the subjects’ room and basement were observed. These sequencing results demonstrate a much broader diversity of Ascomycota and Basidiomycota communities in KCSHHP indoor environments than previously estimated using traditional methods of assessment. PMID:24258337

  16. Environmental and taxonomic bacterial diversity of anaerobic uranium(IV) bio-oxidation.

    PubMed

    Weber, Karrie A; Thrash, J Cameron; Van Trump, J Ian; Achenbach, Laurie A; Coates, John D

    2011-07-01

    Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 μmol liter(-1)) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.

  17. Creating Culturally Responsive Environments: Ethnic Minority Teachers' Constructs of Cultural Diversity in Hong Kong Secondary Schools

    ERIC Educational Resources Information Center

    Hue, Ming-tak; Kennedy, Kerry John

    2014-01-01

    One of the challenges facing Hong Kong schools is the growing cultural diversity of the student population that is a result of the growing number of ethnic minority students in the schools. This study uses semi-structured interviews with 12 American, Canadian, Indian, Nepalese and Pakistani teachers working in three secondary schools in the public…

  18. Creating Culturally Responsive Environments: Ethnic Minority Teachers' Constructs of Cultural Diversity in Hong Kong Secondary Schools

    ERIC Educational Resources Information Center

    Hue, Ming-tak; Kennedy, Kerry John

    2014-01-01

    One of the challenges facing Hong Kong schools is the growing cultural diversity of the student population that is a result of the growing number of ethnic minority students in the schools. This study uses semi-structured interviews with 12 American, Canadian, Indian, Nepalese and Pakistani teachers working in three secondary schools in the public…

  19. Diversity and abundance of human-pathogenic fungi associated with pigeon faeces in urban environments.

    PubMed

    Lee, Won Dong; Fong, Jonathan J; Eimes, John A; Lim, Young Woon

    2017-09-01

    Pathogenic fungi are a growing health concern worldwide, particularly in large, densely populated cities. The dramatic upsurge of pigeon populations in cities has been implicated in the increased incidence of invasive fungal infections. In this study, we used a culture-independent, high-throughput sequencing approach to describe the diversity of clinically relevant fungi (CRF) associated with pigeon faeces and map the relative abundance of CRF across Seoul, Korea. In addition, we tested whether certain geographical, sociological and meteorological factors were significantly associated with the diversity and relative abundance of CRF. Finally, we compared the CRF diversity of fresh and old pigeon faeces to identify the source of the fungi and the role of pigeons in dispersal. Our results demonstrated that both the composition and relative abundance of CRF are unevenly distributed across Seoul. The green area ratio and the number of multiplex houses were positively correlated with species diversity, whereas wind speed and number of households were negatively correlated. The number of workers and green area ratio were positively correlated with the relative abundance of CRF, whereas wind speed was negatively correlated. Because many CRF were absent in fresh faeces, we inferred that most species cannot survive the gastrointestinal tract of pigeons and instead are likely transmitted through soil or air and use pigeon faeces as a substrate for proliferation. © 2017 John Wiley & Sons Ltd.

  20. Cotton flowers: Pollen and petal humidity sensitivities determine reproductive competitiveness in diverse environments

    USDA-ARS?s Scientific Manuscript database

    This study investigated the abiotic stress tolerance of mature cotton [Gossypium hirsutum (L.)] pollen and identified genetic variability among the six cotton lines studied. Genetic diversity in pollen viability was observed following a 6.5 h exposure to 25% relative humidity (RH). NM67, DP565, and...

  1. Twelve Commandments of Human Relations for the Diverse Academic Environment of Colleges and Universities

    ERIC Educational Resources Information Center

    Davis, William Young; Swartz, Caroline

    2008-01-01

    This paper focuses on applying proven industrial relations approaches and sound management practice to address a range of diversity issues in higher education. Issues addressed include the need to set a clear and consistent direction, the importance of effective policy setting and enforcement, the value of positive reinforcement, and the…

  2. Interaction Network Estimation: Predicting Problem-Solving Diversity in Interactive Environments

    ERIC Educational Resources Information Center

    Eagle, Michael; Hicks, Drew; Barnes, Tiffany

    2015-01-01

    Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…

  3. Ecosystems in the Backyard: Preparing a Diverse Outdoor Environment for Primary (Ages Three to Six) Children

    ERIC Educational Resources Information Center

    Verschuur, Mary B.

    2013-01-01

    Mary Verschuur chronicles the outdoor work of Lincoln Montessori School in prairie, forest, and indoor greenhouse environments, pointing out the application of the prepared environment principles to the natural world. Implicit to the design are opportunities for caring, including various practical life exercises with outdoor tools blended into…

  4. Ecosystems in the Backyard: Preparing a Diverse Outdoor Environment for Primary (Ages Three to Six) Children.

    ERIC Educational Resources Information Center

    Verschuur, Mary B.

    2003-01-01

    Chronicles the outdoor work of Lincoln Montessori School in Nebraska in prairie, forest, and indoor greenhouse environments, highlighting the application of prepared environment principles to the natural world. Highlights how implicit to the design are opportunities for caring, including practical life exercises with outdoor tools. Shows how…

  5. Ecosystems in the Backyard: Preparing a Diverse Outdoor Environment for Primary (Ages Three to Six) Children.

    ERIC Educational Resources Information Center

    Verschuur, Mary B.

    2003-01-01

    Chronicles the outdoor work of Lincoln Montessori School in Nebraska in prairie, forest, and indoor greenhouse environments, highlighting the application of prepared environment principles to the natural world. Highlights how implicit to the design are opportunities for caring, including practical life exercises with outdoor tools. Shows how…

  6. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  7. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  8. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  9. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    PubMed

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  10. The Home Environment and Family Asthma Management Among Ethnically Diverse Urban Youth with Asthma

    PubMed Central

    Sato, Amy F.; Kopel, Sheryl J.; McQuaid, Elizabeth L.; Seifer, Ronald; Esteban, Cynthia; Coutinho, Maria Teresa; Klein, Robert; Fritz, Gregory K.; Koinis-Mitchell, Daphne

    2013-01-01

    While the pediatric psychology literature underscores the importance of illness related aspects of the home environment for optimal family asthma management, little is known about the contribution of more global aspects of the home environment (e.g., family routines/schedule, quality of stimulation provided to child) to asthma management in ethnic minority and urban families. The goals of this study were to: 1) explore ethnic/racial group differences in global and specific dimensions of home environment quality among Latino, non-Latino white (NLW), and African American urban children with asthma; and 2) examine associations between the quality and quantity of support and stimulation within the home environment, as measured by the HOME Inventory, and family asthma management in this sample. Urban, low-income children (N=131) between the ages of 6 and 13 with asthma and a primary caregiver participated in a multi-modal assessment including an in home observation and semi structured interviews to assess aspects of home environment quality and family asthma management practices. While controlling for poverty, no ethnic group differences were found in the global home environment; however, there were significant differences in specific dimensions (e.g. Family Participation in Developmentally Stimulating Experiences, and Aspects of the Physical Environment) of home environment quality. Across the whole sample, home environment quality predicted family asthma management. When examining this association for specific ethnic groups, this finding did not hold for the Latino subsample. The results highlight the need to consider ethnic group differences in non-illness specific aspects of the home environment when addressing families’ asthma management strategies. PMID:23795627

  11. The home environment and family asthma management among ethnically diverse urban youth with asthma.

    PubMed

    Sato, Amy F; Kopel, Sheryl J; McQuaid, Elizabeth L; Seifer, Ronald; Esteban, Cynthia; Coutinho, Maria Teresa; Klein, Robert; Fritz, Gregory K; Koinis-Mitchell, Daphne

    2013-06-01

    Although the pediatric psychology literature underscores the importance of illness-related aspects of the home environment for optimal family asthma management, little is known about the contribution of more global aspects of the home environment (e.g., family routines/schedule, quality of stimulation provided to child) to asthma management in ethnic minority and urban families. The goals of this study were to (a) explore ethnic/racial group differences in global and specific dimensions of home environment quality among Latino, non-Latino White (NLW), and African American urban children with asthma; and (b) examine associations between the quality and quantity of support and stimulation within the home environment, as measured by the HOME Inventory, and family asthma management. Urban, low-income children (N = 131) between the ages of 6 and 13 with asthma and a primary caregiver participated in a multimodal assessment, including an in-home observation and semistructured interviews to assess aspects of home environment quality and family asthma management practices. While controlling for poverty, no ethnic group differences were found in the global home environment; however, there were significant differences in specific dimensions (e.g., Family Participation in Developmentally Stimulating Experiences, and Aspects of the Physical Environment) of home environment quality. Across the whole sample, home environment quality predicted family asthma management. When examining this association for specific ethnic groups, this finding did not hold for the Latino subsample. The results highlight the need to consider ethnic group differences in non-illness-specific aspects of the home environment when addressing families' asthma management strategies.

  12. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA.

    PubMed

    Osburn, Magdalena R; LaRowe, Douglas E; Momper, Lily M; Amend, Jan P

    2014-01-01

    The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to -328 mV), and concentrations of redox sensitive species (e.g., Fe(2+) from near 0 to 6.2 mg/L and Σ S(2-) from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly

  13. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA

    PubMed Central

    Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.

    2014-01-01

    The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly

  14. Phylogenetic Diversity and Environment-Specific Distributions of Glycosyl Hydrolase Family 10 Xylanases in Geographically Distant Soils

    PubMed Central

    Luo, Huiying; Wang, Yaru; Huang, Huoqing; Shi, Pengjun; Yang, Peilong; Zhang, Zhifang; Yao, Bin

    2012-01-01

    Background Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed. Methodology/Principal Findings Partial xylanase genes of glycoside hydrolase (GH) family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with our previous study, a total of 1084 gene fragments were obtained, representing 366 OTUs. More than half of the OTUs were novel (identities of <65% with known xylanases) and had no close relatives based on phylogenetic analyses. Xylanase genes from all the soil environments were mainly distributed in Bacteroidetes, Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Dictyoglomi and some fungi. Although identical sequences were found in several sites, habitat-specific patterns appeared to be important, and geochemical factors such as pH and oxygen content significantly influenced the compositions of xylan-degrading microbial communities. Conclusion/Significance These results provide insight into the GH 10 xylanases in various soil environments and reveal that xylan-degrading microbial communities are environment specific with diverse and abundant populations. PMID:22912883

  15. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments.

    PubMed

    Thakur, Madhav P; Tilman, David; Purschke, Oliver; Ciobanu, Marcel; Cowles, Jane; Isbell, Forest; Wragg, Peter D; Eisenhauer, Nico

    2017-07-01

    Climate warming is predicted to alter species interactions, which could potentially lead to extinction events. However, there is an ongoing debate whether the effects of warming on biodiversity may be moderated by biodiversity itself. We tested warming effects on soil nematodes, one of the most diverse and abundant metazoans in terrestrial ecosystems, along a gradient of environmental complexity created by a gradient of plant species richness. Warming increased nematode species diversity in complex (16-species mixtures) plant communities (by ~36%) but decreased it in simple (monocultures) plant communities (by ~39%) compared to ambient temperature. Further, warming led to higher levels of taxonomic relatedness in nematode communities across all levels of plant species richness. Our results highlight both the need for maintaining species-rich plant communities to help offset detrimental warming effects and the inability of species-rich plant communities to maintain nematode taxonomic distinctness when warming occur.

  16. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments

    PubMed Central

    Thakur, Madhav P.; Tilman, David; Purschke, Oliver; Ciobanu, Marcel; Cowles, Jane; Isbell, Forest; Wragg, Peter D.; Eisenhauer, Nico

    2017-01-01

    Climate warming is predicted to alter species interactions, which could potentially lead to extinction events. However, there is an ongoing debate whether the effects of warming on biodiversity may be moderated by biodiversity itself. We tested warming effects on soil nematodes, one of the most diverse and abundant metazoans in terrestrial ecosystems, along a gradient of environmental complexity created by a gradient of plant species richness. Warming increased nematode species diversity in complex (16-species mixtures) plant communities (by ~36%) but decreased it in simple (monocultures) plant communities (by ~39%) compared to ambient temperature. Further, warming led to higher levels of taxonomic relatedness in nematode communities across all levels of plant species richness. Our results highlight both the need for maintaining species-rich plant communities to help offset detrimental warming effects and the inability of species-rich plant communities to maintain nematode taxonomic distinctness when warming occur. PMID:28740868

  17. Diverse Early Aqueous Environments and Climate on Mars Revealed by the Phyllosilicate Record

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Baker, L. L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-10-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions.

  18. Characterization of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse Natural Environments

    USDA-ARS?s Scientific Manuscript database

    Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Molybdenum-independent nitrogenases from aquatic environments...

  19. The Origins of Diverse Domains of Mathematics: Generalist Genes but Specialist Environments

    ERIC Educational Resources Information Center

    Kovas, Y.; Petrill, S. A.; Plomin, R.

    2007-01-01

    The authors assessed 2,502 ten-year-old children, members of 1,251 pairs of twins, on a Web-based battery of problems from 5 diverse aspects of mathematics assessed as part of the U.K. national curriculum. This 1st genetic study into the etiology of variation in different domains of mathematics showed that the heritability estimates were moderate…

  20. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment.

    PubMed

    Jetz, Walter; Fine, Paul V A

    2012-01-01

    Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or "evolutionary arenas," characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day species richness of the world's main 32 bioregions is best explained by a model that integrates area and productivity over geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain. These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients.

  1. Global Gradients in Vertebrate Diversity Predicted by Historical Area-Productivity Dynamics and Contemporary Environment

    PubMed Central

    Jetz, Walter; Fine, Paul V. A.

    2012-01-01

    Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or “evolutionary arenas,” characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show