Sample records for subsurface feature detection

  1. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  2. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  3. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  4. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    PubMed

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  5. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  6. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587

  7. Infrared emission contrast for the visualization of subsurface graphical features in artworks

    NASA Astrophysics Data System (ADS)

    Mercuri, Fulvio; Paoloni, Stefano; Cicero, Cristina; Zammit, Ugo; Orazi, Noemi

    2018-03-01

    In this paper a method is presented based on the use of active infrared thermography for the detection of subsurface graphical features in artworks. A theoretical model for the thermographic signal describing the physical mechanisms which allow the identification of the buried features has been proposed and thereafter it has been applied to the analysis of the results obtained on specifically made test samples. It is shown that the proposed model predictions adequately describe the experimental results obtained on the test samples. A comparative analysis between the proposed technique and infrared reflectography is also presented. The comparison shows that active thermography can be more effective in the detection of features buried below infrared translucent layers and, in addition, that it can provide information about the depth of the detected features, particularly in highly IR diffusing materials.

  8. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  9. A STUDY TO DETERMINE THE FEASIBILITY OF USING A GROUND-PENETRATING RADAR FOR MORE EFFECTIVE REMEDIATION OF SUBSURFACE CONTAMINATION

    EPA Science Inventory

    A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...

  10. Detecting subsurface features and distresses of roadways and bridge decks with ground penetrating radar at traffic speed

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Birken, Ralf; Wang, Ming L.

    2017-04-01

    This paper presents the detections of the subsurface features and distresses in roadways and bridge decks from ground penetrating radar (GPR) data collected at traffic speed. This GPR system is operated at 2 GHz with a penetration depth of 60 cm in common road materials. The system can collect 1000 traces a second, has a large dynamic range and compact packaging. Using a four channel GPR array, dense spatial coverage can be achieved in both longitudinal and transversal directions. The GPR data contains significant information about subsurface features and distresses resulting from dielectric difference, such as distinguishing new and old asphalt, identification of the asphalt-reinforced concrete (RC) interface, and detection of rebar in bridge decks. For roadways, the new and old asphalt layers are distinguished from the dielectric and thickness discontinuities. The results are complemented by surface images of the roads taken by a video camera. For bridge decks, the asphalt-RC interface is automatically detected by a cross correlation and Hilbert transform algorithms, and the layer properties (e.g., dielectric constant and thickness) can be identified. Moreover, the rebar hyperbolas can be visualized from the GPR B-scan images. In addition, the reflection amplitude from steel rebar can be extracted. It is possible to estimate the rebar corrosion level in concrete from the distribution of the rebar reflection amplitudes.

  11. Layering extraction from subsurface radargrams over Greenland and the Martian NPLD by combining wavelet analysis with Hough transforms

    NASA Astrophysics Data System (ADS)

    Xiong, Si-Ting; Muller, Jan-Peter

    2017-04-01

    Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts, James A., and Blake H. Lewis. "Models of climate cycles recorded in Martian polar layered deposits." Icarus 50.2 (1982): 216-244. [3] Plaut J J, Picardi G, Safaeinili A, et al. Subsurface radar sounding of the south polar layered deposits of Mars[J]. science, 2007, 316(5821): 92-95. Acknowledgements: Part of the research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement No. 607379 as well as from the China Scholarship Council and the UCL Dean of MAPS fund.

  12. Identification and characterization of natural pipe systems in forested tropical soils

    NASA Astrophysics Data System (ADS)

    Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel

    2017-04-01

    Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.

  13. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  14. Image-based overlay and alignment metrology through optically opaque media with sub-surface probe microscopy

    NASA Astrophysics Data System (ADS)

    van Es, Maarten H.; Mohtashami, Abbas; Piras, Daniele; Sadeghian, Hamed

    2018-03-01

    Nondestructive subsurface nanoimaging through optically opaque media is considered to be extremely challenging and is essential for several semiconductor metrology applications including overlay and alignment and buried void and defect characterization. The current key challenge in overlay and alignment is the measurement of targets that are covered by optically opaque layers. Moreover, with the device dimensions moving to the smaller nodes and the issue of the so-called loading effect causing offsets between between targets and product features, it is increasingly desirable to perform alignment and overlay on product features or so-called on-cell overlay, which requires higher lateral resolution than optical methods can provide. Our recently developed technique known as SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) has shown the capability for high-resolution imaging of structures below a surface based on (visco-)elasticity of the constituent materials and as such is a promising technique to perform overlay and alignment with high resolution in upcoming production nodes. In this paper, we describe the developed SSURFM technique and the experimental results on imaging buried features through various layers and the ability to detect objects with resolution below 10 nm. In summary, the experimental results show that the SSURFM is a potential solution for on-cell overlay and alignment as well as detecting buried defects or voids and generally metrology through optically opaque layers.

  15. Explosive hazard detection using MIMO forward-looking ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian

    2015-05-01

    This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.

  16. Optical detection of tracer species in strongly scattering media.

    PubMed

    Brauser, Eric M; Rose, Peter E; McLennan, John D; Bartl, Michael H

    2015-03-01

    A combination of optical absorption and scattering is used to detect tracer species in a strongly scattering medium. An optical setup was developed, consisting of a dual-beam scattering detection scheme in which sample scattering beam overlaps with the characteristic absorption feature of quantum dot tracer species, while the reference scattering beam is outside any absorption features of the tracer. This scheme was successfully tested in engineered breakthrough tests typical of wastewater and subsurface fluid analysis, as well as in batch analysis of oil and gas reservoir fluids and biological samples. Tracers were detected even under highly scattering conditions, conditions in which conventional absorption or fluorescence methods failed.

  17. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  18. ExoMars WISDOM Left-Right-Evaluation of Subsurface Features

    NASA Astrophysics Data System (ADS)

    Plettemeier, Dirk; Ciarletti, Valerie; Benedix, Wolf-Stefan; Clifford, Stephen; Dorizon, Sophie; Statz, Christoph

    2013-04-01

    The Experiment "Water Ice and Subsurface Deposit Observations on Mars" (WISDOM) is a Ground Penetrating Radar (GPR) selected to be part of the Pasteur payload on board the rover of the ExoMars2018 mission. This experiment has been designed to characterize the shallow subsurface structure of Mars. The radar is a gated step frequency system covering a frequency range from 0.5 GHz to 3 GHz. The antenna system consists of two antennas sending and receiving two orthogonal polarizations each. Its particular arrangement on the rover enables a classification, whether a scattering object is located on the left or the right hand side of the rover path. The setting and the procedure for the left-right-detection of off-track buried objects is described. The method is applied to data from laboratory, test site and field measurements. The capability of WISDOM left-right-evaluation of scatters is based on the performance of the fully polarimetric antenna system. The ultra-light weight antenna system consists of two crosswise arranged Vivaldi arrays, which operate over a wide bandwidth of 6:1. The antenna is placed at the rear of the ExoMars rover in a way that the E- planes of each single Vivaldi antenna is rotated by 45 degrees with respect to the direction of motion. Moreover, the pattern of this Vivaldi antenna exhibits a narrow beam at the E-plane and a wide beam at the H-plane. Besides the simple detection of objects, these particular antenna and accommodation features allow the location of objects to the left or to the right of the rover path. In a first step the left-right-evaluation of objects and subsurface features is investigated on laboratory measurements for different geometrical configurations. As expected the radargrams exhibit a strong echo at the co-polar transfer functions. At each lateral distance the echo of each scatterer produces a hyperbola but the position of the maximum of magnitude depends on the lateral distance to the rover path. In the next step measurements in artificial environment with known material parameters is carried out to estimate the performance for buried objects. Finally, the procedure is applied to measurement data gained from a field test. The data were recorded during a campaign in a cave of the Dachstein mountain area in Austria. Since the echo interpretation of lots of subsurface features at once is not easy, the gray scale data of both polarizations has been set to different color channels and combined. The different colors allow also in a realistic environment the discrimination of subsurface features located on the left from those located on the right hand side of the rover path. This technique is interesting especially for the traverse mode, where the rover is moving long distances from one place of investigation to the next rather that following a grid like pattern necessary to get a real 3D mapping of the subsurface. Even in this case where radar measurements are done on the way one can get a more detailed (3D-like) insight of the subsurface structure.

  19. Detecting and characterizing unroofed caves by ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej

    2018-02-01

    The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to survey unroofed caves worldwide and the first detailed study of such karst features in Croatia. The low-frequency GPR proved to be an efficient method not only for detecting underground continuations but also for distinguishing and identifying surface features and transition zones between surface and subsurface segments of unroofed caves and can therefore be used for recognizing similar geomorphological features.

  20. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  1. Detection of sinkholes or anomalies using full seismic wave fields : [research summary].

    DOT National Transportation Integrated Search

    2013-04-01

    Sinkholes are a common feature of Floridas geology. The limestone that runs throughout the state is acted upon by the constant flow of water, both above and below ground, that changes with wet and dry seasons. Subsurface voids can form, causing ov...

  2. Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1997-01-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.

  3. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described.

  4. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2005-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.

  5. Determining the 3D Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    NASA Technical Reports Server (NTRS)

    Urbancic, N.; Ghent, R.; Stanley, S,; Johnson, C. L.; Carroll, K. A.; Hatch, D.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-01-01

    Surface gravity surveys can detect subsurface density variations that can reveal subsurface geologic features. In 1972, the Apollo 17 (A17) mission conducted the Traverse Gravimeter Experiment (TGE) using a gravimeter that measured the local gravity field near Taurus Littrow Valley (TLV), located on the south-eastern rim of the Serenitatis basin. TLV is hypothesized to be a basaltfilled radial graben resulting from the impact that formed Mare Serenitatis. It is bounded by both the North and South Massifs (NM and SM) as well as other smaller mountains to the East that are thought to be mainly composed of brecciated highland material. The TGE is the first and only successful gravity survey on the surface of the Moon. Other more recent satellite surveys, such as NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission (2011- 2012), have produced the best global gravity field to date (approx. 13km resolution). However, these satellite surveys are not sensitive enough to detect fine-scale (<1km) lunar subsurface structures. This underscores the value of the data collected at the surface by A17. In the original analysis of the data a 2D forward-modelling approach was used to derive a thickness of the subsurface basalt layer of 1.0 km by assuming a simple flat-faced rectangular geometry and using densities derived from Apollo lunar samples. We are investigating whether modern 3D modelling techniques in combination with high-resolution topographical and image datasets can reveal additional fine-scale subsurface structure in TLV.

  6. Subsurface structures of buried features in the lunar Procellarum region

    NASA Astrophysics Data System (ADS)

    Wang, Wenrui; Heki, Kosuke

    2017-07-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.

  7. Mars Analog Rio Tinto Experiment (MARTE): An Experimental Demonstration of Key Technologies for Searching for Life on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    2004-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms.

  8. Electromagnetic Induction Spectroscopy for the Detection of Subsurface Targets

    DTIC Science & Technology

    2012-12-01

    curves of the proposed method and that of Fails et al.. For the kNN ROC curve, k = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81...et al. [6] and Ramachandran et al. [7] both demonstrated success in detecting mines using the k-nearest-neighbor ( kNN ) algorithm based on the EMI...error is also included in the feature vector. The kNN labels an unknown target based on the closest targets in a training set. Collins et al. [2] and

  9. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    USGS Publications Warehouse

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  10. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.

    PubMed

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-02-17

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.

  11. Exploiting spectral content for image segmentation in GPR data

    NASA Astrophysics Data System (ADS)

    Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2011-06-01

    Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.

  12. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  13. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  14. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.

  15. Visible-Near Infrared Point Spectrometry of Drill Core Samples from Río Tinto, Spain: Results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) Drilling Exercise

    NASA Astrophysics Data System (ADS)

    Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  16. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    PubMed

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  17. Solar loading thermography: Time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Sfarra, Stefano; Klein, Matthieu; Maldague, Xavier

    2017-05-01

    The experimental results from infrared thermography surveys over two buildings externally exposed walls are presented. Data acquisition was performed on a static configuration by recording direct and indirect solar loading during several days and was processed using advanced signal processing techniques in order to increase signal-to-noise ratio and signature contrast of the elements of interest. It is demonstrated that it is possible to detect the thermal signature of large internal structures as well as surface features under such thermographic scenarios. Results from a long-wave microbolometer compared favorably to those from a mid-wave cooled infrared camera for the detection of large subsurface features from unprocessed images. In both cases, however, advanced signal processing greatly improved contrast of the internal features.

  18. Influence of bedrock topography on the runoff generation under use of ERT data

    NASA Astrophysics Data System (ADS)

    Kiese, Nina; Loritz, Ralf; Allroggen, Niklas; Zehe, Erwin

    2017-04-01

    Subsurface topography has been identified to play a major role for the runoff generation in different hydrological landscapes. Sinks and ridges in the bedrock can control how water is stored and transported to the stream. Detecting the subsurface structure is difficult and laborious and frequently done by auger measurements. Recently, the geophysical imaging of the subsurface by Electrical Resistivity Tomography (ERT) gained much interest in the field of hydrology, as it is a non-invasive method to collect information on the subsurface characteristics and particularly bedrock topography. As it is impossible to characterize the subsurface of an entire hydrological landscape using ERT, it is of key interest to identify the bedrock characteristics which dominate runoff generation to adapt and optimize the sampling design to the question of interest. For this study, we used 2D ERT images and auger measurements, collected on different sites in the Attert basin in Luxembourg, to characterize bedrock topography using geostatistics and shed light on those aspects which dominate runoff generation. Based on ERT images, we generated stochastic bedrock topographies and implemented them in a physically-based 2D hillslope model. With this approach, we were able to test the influence of different subsurface structures on the runoff generation. Our results highlight that ERT images can be useful for hydrological modelling. Especially the connection from the hillslope to the stream could be identified as important feature in the subsurface for the runoff generation whereas the microtopography of the bedrock seemed to be less relevant.

  19. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  20. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  1. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy

    PubMed Central

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-01-01

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field. PMID:28210001

  2. Using ground penetrating radar in levee assessment to detect small scale animal burrows

    NASA Astrophysics Data System (ADS)

    Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah

    2014-04-01

    Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.

  3. Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Williams, S.D.

    2002-01-01

    Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.

  4. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    NASA Astrophysics Data System (ADS)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  5. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa; Koike, Katsuaki

    2006-08-01

    Fracture zones on the Earth's surface are important elements in the understanding of plate motion forces, the dynamics of the subsurface fluid flow, and earthquake distributions. However, good exposures of these features are always lacking in arid regions, characterized by flat topography and where sand dunes extensively cover the terrain. During field surveys these conditions, in many cases, hinder the proper characterization of such features. Therefore, an approach that identifies the regional fractures as lineaments on remotely-sensed images or shaded digital terrain models, with its large scale synoptic coverage, could be promising. In the present work, a segment tracing algorithm (STA), for lineament detection from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery, and the data from the Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM), has been applied in the Siwa region, located in the northwest of the Western Desert of Egypt. The objectives are to analyze the spatial variation in orientation of the detected linear features and its relation to the hydrogeologic setting in the area and the underlying geology, and to evaluate the performance of the algorithm applied to the ETM+ and the DEM data. Detailed structural analysis and better understanding of the tectonic evolution of the area could provide useful tools for hydrologists for reliable groundwater management and development planning. The results obtained have been evaluated by the structural analysis of the area and field observations. Four major vertical fracture zones were detected corresponding to two conjugate sets of strike-slip faults that governed the surface, and subsurface environments of the lakes in the region, and these correlate well with the regional tectonics.

  6. Subsurface event detection and classification using Wireless Signal Networks.

    PubMed

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  7. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  8. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  9. Photoacoustic microscopy of human teeth

    NASA Astrophysics Data System (ADS)

    Rao, Bin; Cai, Xin; Favazza, Christopher; Yao, Junjie; Li, Li; Duong, Steven; Liaw, Lih-Huei; Holtzman, Jennifer; Wilder-Smith, Petra; Wang, Lihong V.

    2011-03-01

    Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp.

  10. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  11. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Extraction of Seabed/Subsurface Features in a Potential CO2 Sequestration Site in the Southern Baltic Sea, Using Wavelet Transform of High-resolution Sub-Bottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Tegowski, J.; Zajfert, G.

    2014-12-01

    Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).

  13. Strategic planning features of subsurface management in Kemerovo Oblast

    NASA Astrophysics Data System (ADS)

    Romanyuk, V.; Grinkevich, A.; Akhmadeev, K.; Pozdeeva, G.

    2016-09-01

    The article discusses the strategic planning features of regional development based on the production and subsurface management in Kemerovo Oblast. The modern approach - SWOT analysis was applied to assess the regional development strategy. The estimation of regional development plan implementation was given for the foreseeable future.

  14. Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa; Koike, Katsuaki

    2017-09-01

    Detection and analysis of linear features related to surface and subsurface structures have been deemed necessary in natural resource exploration and earth surface instability assessment. Subjectivity in choosing control parameters required in conventional methods of lineament detection may cause unreliable results. To reduce this ambiguity, we developed LINDA (LINeament Detection and Analysis), an integrated tool with graphical user interface in Visual Basic. This tool automates processes of detection and analysis of linear features from grid data of topography (digital elevation model; DEM), gravity and magnetic surfaces, as well as data from remote sensing imagery. A simple interface with five display windows forms a user-friendly interactive environment. The interface facilitates grid data shading, detection and grouping of segments, lineament analyses for calculating strike and dip and estimating fault type, and interactive viewing of lineament geometry. Density maps of the center and intersection points of linear features (segments and lineaments) are also included. A systematic analysis of test DEMs and Landsat 7 ETM+ imagery datasets in the North and South Eastern Deserts of Egypt is implemented to demonstrate the capability of LINDA and correct use of its functions. Linear features from the DEM are superior to those from the imagery in terms of frequency, but both linear features agree with location and direction of V-shaped valleys and dykes and reference fault data. Through the case studies, LINDA applicability is demonstrated to highlight dominant structural trends, which can aid understanding of geodynamic frameworks in any region.

  15. Automated real-time detection of defects during machining of ceramics

    DOEpatents

    Ellingson, W.A.; Sun, J.

    1997-11-18

    Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known ``feature masks`` representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified. 14 figs.

  16. Automated real-time detection of defects during machining of ceramics

    DOEpatents

    Ellingson, William A.; Sun, Jiangang

    1997-01-01

    Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known "feature masks" representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified.

  17. Ice in the northern lowlands and southern highlands of Mars and its enrichment beneath the Elysium Lavas

    NASA Technical Reports Server (NTRS)

    Cave, Julie A.

    1992-01-01

    The simultaneously examination of ejecta mobility, crater morphology, and surface features has enabled several conclusions to be drawn regarding the location of subsurface ice in the region. The ice distribution is shown to be highly dependent upon latitude and geological situation; in particular, pronounced differences in the distribution between the highland and lowlands are seen, and concentrations of ice were detected beneath the Elysium lavas.

  18. Paleokarst processes in the Eocene limestones of the Pyramids Plateau, Giza, Egypt

    NASA Astrophysics Data System (ADS)

    El Aref, M. M.; Refai, E.

    The Eocene limestones of the Pyramids plateau are characterized by landforms of stepped terraced escarpment and karst ridges with isolated hills. The carbonate country rocks are also dominated by minor surface, surface to subsurface and subsurface solution features associated with karst products. The systematic field observations eludicate the denudation trend of the minor solution features and suggest the origin of the regional landscapes. The lithologic and structural characters of the limestone country rocks comprise the main factors controlling the surface and subsurface karst evolution. The development of the karst features and the associated sediments in the study area provides information on the paleohydrolic, chemical and climatic environments involved in the origin of the karstification.

  19. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  20. Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric

    2012-01-01

    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.

  1. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  2. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    USGS Publications Warehouse

    Zhu, J.; Currens, J.C.; Dinger, J.S.

    2011-01-01

    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  3. Subsurface Mapping: A Question of Position and Interpretation

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2009-01-01

    This paper discusses the character and challenges inherent in the graphical portrayal of features in subsurface mapping. Subsurface structures are, by their nature, hidden and must be mapped based on drilling and/or geophysical data. Efficient use of graphical techniques is central to effectively communicating the results of expensive exploration…

  4. Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements

    NASA Astrophysics Data System (ADS)

    Bakker, M.

    2017-12-01

    Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.

  5. Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.

    2007-12-01

    A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.

  6. Using Muons to Image the Subsurface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consistsmore » of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .« less

  7. High resolution subsurface imaging using resonance-enhanced detection in 2nd-harmonic KPFM.

    PubMed

    Cadena, Maria Jose; Reifenberger, Ronald G; Raman, Arvind

    2018-06-28

    Second harmonic Kelvin probe force microscopy is a robust mechanism for subsurface imaging at the nanoscale. Here we exploit resonance-enhanced detection as a way to boost the subsurface contrast with higher force sensitivity using lower bias voltages, in comparison to the traditional off-resonance case. In this mode, the second harmonic signal of the electrostatic force is acquired at one of the eigenmode frequencies of the microcantilever. As a result, high-resolution subsurface images are obtained in a variety of nanocomposites. To further understand the subsurface imaging detection upon electrostatic forces, we use a finite element model that approximates the geometry of the probe and sample. This allows the investigation of the contrast mechanism, the depth sensitivity and lateral resolution depending on tip-sample properties. © 2018 IOP Publishing Ltd.

  8. The deep, hot biosphere: Twenty-five years of retrospection.

    PubMed

    Colman, Daniel R; Poudel, Saroj; Stamps, Blake W; Boyd, Eric S; Spear, John R

    2017-07-03

    Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a "deep, hot biosphere" in the Earth's crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H 2 , CH 4 , and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth's subsurface in the form of a deep subsurface microbiome initiative.

  9. Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery. [Arkansas Arkoma Basin

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.

    1980-01-01

    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.

  10. Object detection with a multistatic array using singular value decomposition

    DOEpatents

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  11. Geophysics of Martian Periglacial Processes

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.

    2004-01-01

    Through the examination of small-scale geologic features potentially related to water and ice in the martian subsurface (specifically small-scale polygonal ground and young gully-like features), determine the state, distribution and recent history of subsurface water and ice on Mars. To refine existing models and develop new models of near-surface water and ice, and develop new insights about the nature of water on Mars as manifested by these geologic features. Through an improved understanding of potentially water-related geologic features, utilize these features in addressing questions about where to best search for present day water and what space craft may encounter that might facilitate or inhibit the search for water.

  12. Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.

    2013-12-01

    Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.

  13. Buried object detection in GPR images

    DOEpatents

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  14. Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy

    USDA-ARS?s Scientific Manuscript database

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...

  15. Raman spectroscopy method for subsurface detection of food powders through plastic layers

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.; Bae, Abigail

    2017-05-01

    Proper chemical analyses of materials in sealed containers are important for quality control purpose. Although it is feasible to detect chemicals at top surface layer, it is relatively challenging to detect objects beneath obscuring surface. This study used spatially offset Raman spectroscopy (SORS) method to detect urea, ibuprofen and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785 nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. With increasing offset distance, the fraction of information from the deeper subsurface material increased compared to that from the top surface material. The series of measurements was analyzed to differentiate and identify the top surface and subsurface materials. Containing mixed contributions from the powder and capsule, the SORS of each sample was decomposed using self modeling mixture analysis (SMA) to obtain pure component spectra of each component and corresponding components were identified using spectral information divergence values. Results show that SORS technique together with SMA method has a potential for non-invasive detection of chemicals at deep subsurface layer.

  16. Laparoscopic optical coherence tomography imaging of human ovarian cancer

    PubMed Central

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Winkler, Amy M.; Korde, Vrushali; Hatch, Kenneth D.; Davis, John R.; Brewer, Molly A.; Barton, Jennifer K.

    2011-01-01

    Objectives Ovarian cancer is the fourth leading cause of cancer-related death among women in the US largely due to late detection secondary to unreliable symptomology and screening tools without adequate resolution. Optical coherence tomography (OCT) is a recently emerging imaging modality with promise in ovarian cancer diagnostics, providing non-destructive subsurface imaging at imaging depths up to 2 mm with near-histological grade resolution (10–20 μm). In this study, we developed the first ever laparoscopic OCT (LOCT) device, evaluated the safety and feasibility of LOCT, and characterized the microstructural features of human ovaries in vivo. Methods A custom LOCT device was fabricated specifically for laparoscopic imaging of the ovaries in patients undergoing oophorectomy. OCT images were compared with histopathology to identify preliminary architectural imaging features of normal and pathologic ovarian tissue. Results Thirty ovaries in 17 primarily peri or post-menopausal women were successfully imaged with LOCT: 16 normal, 5 endometriosis, 3 serous cystadenoma, and 4 adenocarcinoma. Preliminary imaging features developed for each category reveal qualitative differences in the homogeneous character of normal post-menopausal ovary, the ability to image small subsurface inclusion cysts, and distinguishable features for endometriosis, cystadenoma, and adenocarcinoma. Conclusions We present the development and successful implementation of the first laparoscopic OCT probe. Comparison of OCT images and corresponding histopathology allowed for the description of preliminary microstructural features for normal ovary, endometriosis, and benign and malignant surface epithelial neoplasms. These results support the potential of OCT both as a diagnostic tool and imaging modality for further evaluation of ovarian cancer pathogenesis. PMID:19481241

  17. Spot restoration for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2014-05-20

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  18. Real-time system for imaging and object detection with a multistatic GPR array

    DOEpatents

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  19. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging

    PubMed Central

    Orsinger, Gabriel V.; Watson, Jennifer M.; Gordon, Michael; Nymeyer, Ariel C.; de Leon, Erich E.; Brownlee, Johnathan W.; Hatch, Kenneth D.; Chambers, Setsuko K.; Barton, Jennifer K.; Kostuk, Raymond K.; Romanowski, Marek

    2014-01-01

    Abstract. Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis. PMID:24676382

  20. The deep, hot biosphere: Twenty-five years of retrospection

    PubMed Central

    Colman, Daniel R.; Poudel, Saroj; Stamps, Blake W.; Boyd, Eric S.; Spear, John R.

    2017-01-01

    Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a “deep, hot biosphere” in the Earth’s crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H2, CH4, and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth’s subsurface in the form of a deep subsurface microbiome initiative. PMID:28674200

  1. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  2. Spatially assisted down-track median filter for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N Reginald

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  3. Spatially adaptive migration tomography for multistatic GPR imaging

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Zero source insertion technique to account for undersampling in GPR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill

    USGS Publications Warehouse

    Nixon, Zachary; Michel, Jacqueline; Hayes, Miles O.; Irvine, Gail V.; Short, Jeffrey

    2013-01-01

    Oil from the 1989 Exxon Valdez oil spill has persisted along shorelines of Prince William Sound, Alaska, for more than two decades as both surface and subsurface oil residues. To better understand the distribution of persistent subsurface oil and assess the potential need for further restoration, a thorough and quantitative understanding of the geomorphic factors controlling the presence or absence of subsurface oil is required. Data on oiling and geomorphic features were collected at 198 sites in Prince William Sound to identify and quantify the relationships among these geomorphic factors and the presence and absence of persistent subsurface oil. Geomorphic factors associated with the presence of subsurface oil were initial oil exposure, substrate permeability, topographic slope, low exposure to waves, armoring on gravel beaches, tombolos, natural breakwaters, and rubble accumulations. Geomorphic factors associated with the absence of subsurface oil were impermeable bedrock; platforms with thin sediment veneer; fine-grained, well-sorted gravel beaches with no armor; and low-permeability, raised bay-bottom beaches. Relationships were found between the geomorphic and physical site characteristics and the likelihood of encountering persistent subsurface oiling at those sites. There is quantitative evidence of more complex interactions between the overall wave energy incident at a site and the presence of fine-scale geomorphic features that may have provided smaller, local wave energy sheltering of oil. Similarly, these data provide evidence for interactions between the shoreline slope and the presence of angular rubble, with decreased likelihood for encountering subsurface oil at steeply sloped sites except at high-angle sheltered rubble shoreline locations. These results reinforce the idea that the interactions of beach permeability, stability, and site-specific wave exposure are key drivers for subsurface oil persistence in exposed and intermittently exposed mixed gravel beach and rocky shoreline environments.

  7. Detection of Hazardous Cavities Below a Road Using Combined Geophysical Methods

    NASA Astrophysics Data System (ADS)

    De Giorgi, L.; Leucci, G.

    2014-07-01

    Assessment of the risk arising from near-surface natural hazard is a crucial step in safeguarding the security of the roads in karst areas. It helps authorities and other related parties to apply suitable procedures for ground treatment, mitigate potential natural hazards and minimize human and economic losses. Karstic terrains in the Salento Peninsula (Apulia region—South Italy) is a major challenge to engineering constructions and roads due to extensive occurrence of cavities and/or sinkholes that cause ground subsidence and both roads and building collapse. Cavities are air/sediment-filled underground voids, commonly developed in calcarenite sedimentary rocks by the infiltration of rainwater into the ground, opening up, over a long period of time, holes and tunnels. Mitigation of natural hazards can best be achieved through careful geoscientific studies. Traditionally, engineers use destructive probing techniques for the detection of cavities across regular grids or random distances. Such probing is insufficient on its own to provide confidence that cavities will not be encountered. Frequency of probing and depth of investigation may become more expensive. Besides, probing is intrusive, non-continuous, slow, expensive and cannot provide a complete lateral picture of the subsurface geology. Near-surface cavities usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismic, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities. The presented research focused on an integrated geophysical survey that was carried out in a near-coast road located at Porto Cesareo, a small village a few kilometers south west of Lecce (south Italy). The roads in this area are intensively affected by dangerous surface cracks that cause structural instability. The survey aimed to image the shallow subsurface structures, including karstic features, and evaluate their extent, as they may cause rock instability and lead to cracking of the road. Seismic refraction tomography and ground-penetrating radar surveys were carried out along several parallel traverses extending about 100 m on the cracked road. The acquired data were processed and interpreted integrally to elucidate the shallow structural setting of the site. Integrated interpretation led to the delineation of hazard zones rich with karstic features in the area. Most of these karstic features are associated with vertical and subvertical linear features and cavities. These features are the main reason of the rock instability that resulted in potentially dangerous cracking of road.

  8. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  9. An Analysis of MARSIS Radar Flash Memory Data from Lunae Planum, Mars: Searching for Subsurface Structures.

    NASA Astrophysics Data System (ADS)

    Caprarelli, G.; Orosei, R.; Mastrogiuseppe, M.; Cartacci, M.

    2017-12-01

    Lunae Planum is a Martian plain measuring approximately 1000 km in width and 2000 km in length, centered at coordinates 294°E-11°N. MOLA elevations range from +2500 m to +500 m in the south, gently sloping northward to -500 m. The plain is part of a belt of terrains located between the southern highlands and the northern lowlands, that are transitional in character (e.g., by elevation, age and morphology). These transitional terrains are poorly understood, in part because of their relative lack of major geomorphological features. They record however a very significant part of Mars's geologic history. The most evident features on Lunae Planum's Hesperian surface are regularly spaced, longitudinally striking, wrinkle ridges. These indicate the presence of blind thrust faults cutting through thick stacks of layers of volcanic or sedimentary rocks. The presence of fluidized ejecta craters scattered all over the region suggests also the presence of ice or volatiles in the subsurface. In a preliminary study of Lunae Planum's subsurface we used the Mars Express ground penetrating radar MARSIS dataset [1], in order to detect reflectors that could indicate the presence of fault planes or layering. Standard radargrams however, provided no evidence of changes in value of dielectric constant that could indicate possible geologic discontinuities or stratification of physically diverse materials. We thus started a new investigation based on processing of raw MARSIS data. Here we report on the preliminary results of this study. We searched the MARSIS archive for raw data stored in flash memory. When operating with flash storage, the radar collects 2 frequency bands along-track covering a distance = 100-250 km, depending on the orbiter altitude [2]. We found flash memory data from 24 orbits over the area. We processed the data focusing radar returns in off-nadir directions, to maximize the likelihood of detecting sloping subsurface structures, including those striking parallel to the Mars Express sub-polar orbits. We plan to follow this study by applying a new processor aimed at improving the resolution and signal to noise ratio of the data. [1] Caprarelli et al. (2017), LPSC 48, 1720. [2] Watters et al. (2017), LPSC 48, 1693.

  10. Data acquisition and processing system and method for investigating sub-surface features of a rock formation

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2015-01-27

    A system and a method includes generating a first signal at a first frequency; and a second signal at a second frequency. Respective sources are positioned within the borehole and controllable such that the signals intersect in an intersection volume outside the borehole. A receiver detects a difference signal returning to the borehole generated by a non-linear mixing process within the intersection volume, and records the detected signal and stores the detected signal in a storage device and records measurement parameters including a position of the first acoustic source, a position of the second acoustic source, a position of the receiver, elevation angle and azimuth angle of the first acoustic signal and elevation angle and azimuth angle of the second acoustic signal.

  11. Storm hydrograph comparisons of subsurface pipe and stream channel discharge in a small, forested watershed in northern California

    Treesearch

    Jeffrey S. Albright

    1992-01-01

    The term piping has been used to describe subsurface erosion processes and concentrated subsurface water discharge. Physical features created by piping have been termed pipes. Piping can occur in natural landscapes due to individual or combined effects of mechanical (e.g., corrasion), chemical (e.g., soil dispersion), or biotic (e.g., animal burrowing) forces...

  12. Prospecting for Martian Ice from Orbit

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Bell, M. S.; Allen, C. C.

    2003-01-01

    Recent data from the Gamma-Ray Spectrometer (GRS) on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in high latitudes on Mars. This hydrogen-rich layer correlates to previously determined regions of ice stability. It has been suggested that the subsurface hydrogen is ice and constitutes 35 plus or minus 15% by weight near the north and south polar regions. This study constrains the location of subsurface ice deposits on the scale of kilometers or smaller by combining GRS data with surface features indicative of subsurface ice. The most recognizable terrestrial geomorphic indicators of subsurface ice, formed in permafrost and periglacial environments, include thermokarst pits, pingos, pseudocraters and patterned ground. Patterned ground features have geometric forms such as circles, polygons, stripes and nets. This study focuses on the polygonal form of patterned ground, selected for its discernable shape and subsurface implications. Polygonal features are typically demarcated by troughs, beneath which grow vertical ice-wedges. Ice-wedges form in thermal contraction cracks in ice-rich soil and grow with annual freezing and thawing events repeated over tens of years. Ice wedges exist below the depth of seasonal freeze-thaw. Terrestrial ice wedges can be several meters deep and polygons can be tens of meters apart, and, on rare occasions, up to 1 km. The crack spacing of terrestrial polygons is typically 3 to 10 times the crack depth.

  13. Subsurface Contamination Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Yuan

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of themore » subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.« less

  14. Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Oney, Taylor

    2016-10-01

    Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.

  15. SIRE: A MIMO Radar for Landmine/IED Detection

    DTIC Science & Technology

    2013-04-30

    pursuit) for image formation. This technique has been used for subsurface imaging in the image domain, producing ’CLEANer’ images (where prior knowledge...Astronomy and Astrophysics Supplement 15 (1974). [22] Karpat, E., “CLEAN technique to classify and detect objects in subsurface imaging ,” International

  16. Investigation of the sensitivity of a cross-polarized light visualization system to detect subclinical erythema and dryness in women with vulvovaginitis.

    PubMed

    Farage, Miranda A; Singh, Mukul; Ledger, William J

    2009-07-01

    An enhanced visualization technique using polarized light (Syris v600 enhanced visualization system; Syris Scientific LLC, Gray, ME) detects surface and subsurface ( approximately 1 mm depth) inflammation. We sought to compare the Syris v600 system with unaided visual inspection and colposcopy of the female genitalia. Erythema and dryness of the vulva, introitus, vagina, and cervix were visualized and scored by each method in patients with and without vulvitis. Subsurface visualization was more sensitive in detecting genital erythema and dryness at all sites whether or not symptoms were present. Subsurface inflammation of the introitus, vagina, and cervix only was detected uniquely in women with vulvar vestibulitis syndrome (VVS). A subset of women presenting with VVS exhibited subclinical inflammation of the vulva vestibule and vagina (designated VVS/lichen sclerosus subgroup). Enhanced visualization of the genital epithelial subsurface with cross-polarized light may assist in diagnosing subclinical inflammation in vulvar conditions heretofore characterized as sensory syndromes.

  17. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.

    1996-01-01

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.

  18. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, A.L.; Cooper, J.F.; Daily, W.D.

    1996-02-27

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.

  19. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear. PMID:26579109

  20. Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vesta’s surface

    DOE PAGES

    Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.

    2014-10-13

    Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set ofmore » shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).« less

  1. Nondestructive evaluation of the condition of subsurface drainage in pavements using ground penetrating radar (GPR).

    DOT National Transportation Integrated Search

    2013-11-11

    Subsurface drainage features are routinely incorporated in the design of pavement systems as they are believed to increase pavement service life provided that they are installed correctly and maintained. Maintenance, however, is challenging in that l...

  2. Subsurface damage detection in non-ferrous systems using 3D synchronous magnetic inspection

    NASA Astrophysics Data System (ADS)

    Gray, David; Berry, David

    2018-04-01

    Prime Photonics is developing a non-destructive inspection (NDI) technology, 3-D synchronous magnetic imaging system (3-D SMIS), that uses synchronous detection of magnetic signatures resulting from ultrasonic excitation to measure both surface and subsurface flaws in conductive structures. 3-D SMIS is showing promise in a wide range of NDI/NDE uses including characterizing surface-breaking cracks in ferrous and non-ferrous materials, locating and characterizing subsurface cracks within nonferrous conductive materials (Ti 6-4 and carbon fiber composites), and characterization of subsurface residual stresses. The technology offers a non-contact, high resolution inspection technique that does not require austere environments, and can accommodate non-planar specimen geometries.

  3. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  4. Inter-comparison of Methods for Extracting Subsurface Layers from SHARAD Radargrams over Martian polar regions

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.; Carretero, R. C.

    2017-09-01

    Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.

  5. Device and nondestructive method to determine subsurface micro-structure in dense materials

    DOEpatents

    Sun, Jiangang [Westmont, IL

    2006-05-09

    A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.

  6. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    The purpose of the work was to determine the capability of various geophysical methods to detect PCE in the subsurface. Measurements were made with ten different geophysical techniques before, during, and after the PCE injection. This approach provided a clear identification of a...

  7. Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data

    NASA Astrophysics Data System (ADS)

    Alrefaee, H. A.

    2017-05-01

    The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.

  8. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.

    PubMed

    Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E

    2016-12-01

    The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

  9. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Hamilton, D. P.; McKinnon, W. B.; Schenk, P. M.; Binzel, R. P.; Bierson, C. J.; Beyer, R. A.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Binzel, R. P.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Ore, C. Dalle; Earle, A.; Gladstone, R.; Grundy, W.; Howard, A. D.; Lauer, T.; Linscott, I.; Nimmo, F.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D. P.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.

    2016-12-01

    The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

  10. Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin

    NASA Astrophysics Data System (ADS)

    Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.

    2017-10-01

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.

  11. Thermally anomalous features in the subsurface of Enceladus's south polar terrain

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Leyrat, C.; Janssen, M. A.; Choblet, G.; Tobie, G.; Bourgeois, O.; Lucas, A.; Sotin, C.; Howett, C.; Kirk, R.; Lorenz, R. D.; West, R. D.; Stolzenbach, A.; Massé, M.; Hayes, A. H.; Bonnefoy, L.; Veyssière, G.; Paganelli, F.

    2017-03-01

    Saturn's moon Enceladus is an active world. In 2005, the Cassini spacecraft witnessed for the first time water-rich jets venting from four anomalously warm fractures (called sulci) near its south pole1,2. Since then, several observations have provided evidence that the source of the material ejected from Enceladus is a large underground ocean, the depth of which is still debated3-6. Here, we report on the first and only opportunity that Cassini's RADAR instrument7,8 had to observe Enceladus's south polar terrain closely, targeting an area a few tens of kilometres north of the active sulci. Detailed analysis of the microwave radiometry observations highlights the ongoing activity of the moon. The instrument recorded the microwave thermal emission, revealing a warm subsurface region with prominent thermal anomalies that had not been identified before. These anomalies coincide with large fractures, similar or structurally related to the sulci. The observations imply the presence of a broadly distributed heat production and transport system below the south polar terrain with 'plate-like' features and suggest that a liquid reservoir could exist at a depth of only a few kilometres under the ice shell at the south pole. The detection of a possible dormant sulcus further suggests episodic geological activity.

  12. Geologic interpretation of Seasat SAR imagery near the Rio Lacantum, Mexico

    NASA Technical Reports Server (NTRS)

    Rebillard, PH.; Dixon, T.

    1984-01-01

    A mosaic of the Seasat Synthetic Aperture Radar (SAR) optically processed images over Central America is presented. A SAR image of the Rio Lacantum area (southeastern Mexico) has been digitally processed and its interpretation is presented. The region is characterized by low relief and a dense vegetation canopy. Surface is believed to be indicative of subsurface structural features. The Seasat-SAR system had a steep imaging geometry (incidence angle 23 + or - 3 deg off-nadir) which is favorable for detection of subtle topographic variations. Subtle textural features in the image corresponding to surface topography were enhanced by image processing techniques. A structural and lithologic interpretation of the processed images is presented. Lineaments oriented NE-SW dominate and intersect broad folds trending NW-SE. Distinctive karst topography characterizes one high relief area

  13. Detecting and characterizing ice units with the WISDOM Radar

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Plettemeier, D.; Dorizon, S.; Clifford, S. M.; Biancheri-Astier, M.; Dechambre, M.; Saintenoy, A. C.; Costard, F.

    2012-12-01

    The WISDOM (Water Ice Subsurface Deposit Observation on Mars) Ground Penetrating Radar (GPR) is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. WISDOM main objectives are to understand the geology and evolution of the landing site and to help identifying locations in the shallow subsurface where organic molecules are the most likely to be found and well-preserved. In the context of the ExoMars mission, the importance of the WISDOM GPR is particularly enhanced by its ability to investigate the distribution and state of subsurface water - both as a liquid and as ice. For example, within the diurnally active thermal layer of the subsurface (i.e., the top ~15 - 25 cm), the transient melting and freezing of subsurface ice and brine may be detectable by comparing day- and night-time radar observations at the same location. Moreover, while the biological significance of liquid water on Mars is obvious, a more readily accessible and enduring record of biological activity may be organic biomarkers preserved in subsurface ice. Unfortunately, the dielectric contrast between rock, soil and ice is small, and therefore, differentiating between mixtures of ice-rich and ice-poor regolith in the Martian subsurface is an extraordinarily difficult task. Preliminary tests in both natural (glacier in the Alps and caves in Austria) and artificial (cold chamber) icy environments have been performed with a prototype representative of the WISDOM instrument flight model. These investigations have demonstrated WISDOM's ability to detect and characterize subsurface ice in various forms. Specific examples will be discussed that demonstrate the instrument's depth of sounding, dielectric sensitivity, spatial resolution, full polarimetric and 3-D capability.

  14. Assessing the Ability of Vegetation Indices to Identify Shallow Subsurface Water Flow Pathways from Hyperspectral Imagery Using Machine Learning: Methodology

    NASA Astrophysics Data System (ADS)

    Byers, J. M.; Doctor, K.

    2017-12-01

    A common application of the satellite and airborne acquired hyperspectral imagery in the visible and NIR spectrum is the assessment of vegetation. Various absorption features of plants related to both water and chlorophyll content can be used to measure the vigor and access to underlying water sources of the vegetation. The typical strategy is to form hand-crafted features from the hyperspectral data cube by selecting two wavelengths to form difference or ratio images in the pixel space. The new image attempts to provide greater contrast for some feature of the vegetation. The Normalized Difference Vegetation Index (NDVI) is a widely used example formed from the ratio of differences and sums at two different wavelengths. There are dozens of these indices that are ostensibly formed using insights about the underlying physics of the spectral absorption with claims to efficacy in representing various properties of vegetation. In the language of machine learning these vegetation indices are features that can be used as a useful data representation within an algorithm. In this work we use a powerful approach from machine learning, probabilistic graphical models (PGM), to balance the competing needs of using existing hydrological classifications of terrain while finding statistically reliable features within hyperspectral data for identifying the generative process of the data. The algorithm in its simplest form is called a Naïve Bayes (NB) classifier and can be constructed in a data-driven estimation procedure of the conditional probability distributions that form the PGM. The Naïve Bayes model assumes that all vegetation indices (VI) are independent of one another given the hydrological class label. We seek to test its validity in a pilot study of detecting subsurface water flow pathways from VI. A more sophisticated PGM will also be explored called a tree-augmented NB that accounts for the probabilistic dependence between VI features. This methodology provides a general approach for classifying hydrological structures from hyperspectral data.

  15. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  16. Distribution, formation mechanisms, and significance of lunar pits

    NASA Astrophysics Data System (ADS)

    Wagner, Robert V.; Robinson, Mark S.

    2014-07-01

    Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.

  17. Searching for Life in the Martian Subsurface: Results from the MARTE Astrobiological Drilling Experiment and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2007-07-01

    Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.

  18. Detection in subsurface air of radioxenon released from medical isotope production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christine; Biegalski, Steven; Haas, Derek

    Abstract Under the Comprehensive Nuclear-Test-Ban Treaty, an On-Site Inspection (OSI) may be conducted to clarify whether a nuclear explosion has been carried out in violation of Article I of the Treaty. A major component of an OSI is the measurement of subsurface gases in order to detect radioactive noble gases that are produced in a nuclear explosion, particularly radioxenon and radioargon. In order to better understand potential backgrounds of these gases, a sampling campaign was performed near Canadian Nuclear Laboratories in the Ottawa River Valley, a major source of environmental radioxenon. First of their kind measurements of atmospheric radioxenon imprintedmore » into the shallow subsurface from an atmospheric pressure driven force were made using current OSI techniques to measure both atmospheric and subsurface gas samples which were analyzed for radioxenon. These measurements indicate that under specific sampling conditions, on the order of one percent of the atmospheric radioxenon concentration may be measured via subsurface sampling.« less

  19. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    PubMed Central

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.

    2017-01-01

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453

  20. Integration of real time kinematic satellite navigation with ground-penetrating radar surveys

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture, environmental mapping, and construction benefit from subsurface imaging by revealing the spatial variability of underground features. Features surveyed of agricultural interest are bedrock depth, soil horizon thicknesses, and buried–object features such as drainage pipe. For t...

  1. Force measurement-based discontinuity detection during friction stir welding

    DOE PAGES

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...

    2017-02-23

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  2. Force measurement-based discontinuity detection during friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  3. Entropy-Based Classification of Subsurface Scatterers: A Valuable Tool for the Analysis of Data Obtained by the Fully Polarimetric WISDOM Radar

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Statz, C.; Hahnel, R.; Benedix, W. S.; Hamran, S. E.; Ciarletti, V.

    2016-12-01

    The "Water Ice Subsurface Deposition on Mars" Experiment (WISDOM) is a Ground Penetrating Radar (GPR) and part of the 2020 ExoMars Rover payload. It will be the first GPR operating on a planetary rover and the first fully polarimetric radar tasked at probing the subsurface of Mars. WISDOM operates at frequencies between 500 MHz and 3 GHz yielding a centimetric resolution and a penetration depth of about 3 meters in Martian soil. Its prime scientific objective is the detailed characterization of the material distribution within the first few meters of the Martian subsurface as a contribution to the search for evidence of past life. For the first time, WISDOM will give access to the geological structure, electromagnetic nature, and hydrological state of the shallow subsurface by retrieving the layering and properties of the buried reflectors at an unprecedented resolution and, due to the fully polarimetric measurements, amount of information. Furthermore, a "real time" subsurface analysis will support the drill operations by identifying locations of high scientific interest and low risk. Key element in the WISDOM data analysis is the fast and reliable classification and correct localization of subsurface scatterers and layers. The fully polarimetric nature of the WISDOM measurements allows the use of the entropy-alpha decomposition (H-alpha). This method enables the classification of reconstructed images of the subsurface (obtained by inverse imaging algorithms, e.g. f-k migration) with regard to the main scattering mechanisms of geological features present in the image of the subsurface. It is, for example, possible to differentiate smooth surfaces, rough surfaces, isolated spherical scatterers, double- and bounce scattering, anisotropic scatterers, clouds of small scatterers of similar shape as well as layers of oblate spheroids. Preliminary tests under laboratory conditions suggest the feasibility and value of the approach for the classification of geological features in the Martian subsurface in the context of WISDOM data processing and operations. It is a fast and reliable tool leveraging the whole amount of information provided by the fully polarimetric WISDOM Radar.

  4. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.

  5. Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    NASA Astrophysics Data System (ADS)

    Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.

    2017-04-01

    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.

  6. Nature of a cone-shaped subsurface feature below a large seafloor depression on the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Waghorn, K. A.; Pecher, I. A.; Strachan, L. J.; Crutchley, G.; Coffin, R. B.; Rose, P. S.; Bialas, J.; Davy, B. W.; Kroeger, K.

    2013-12-01

    An area of extensive seafloor depressions occurs on the Southern Chatham Rise, New Zealand. The 2013 R/V Sonne SO-226 voyage aimed to investigate the formation and occurrences of these features and their possible relation to release of gas during glacial-interglacial cycles. The seafloor depressions occur in water depths of 500-1100m. This presentation focuses on a depression with a diameter of approximately 1km in a water depth of ~1000m. We present initial results from a high-resolution subsurface 3D seismic data cube collected across the seafloor depression. The data were collected using the P-Cable system, which has been developed specifically for imaging the shallow subsurface. The data shows an enigmatic conical-shaped feature underlying the seafloor depression with an area surrounding which has been initially interpreted as a giant gas chimney flow-zone. While geochemical results indicate no present day methane flux, the geophysical data shows a presence of blanking which may be associated with gas or gas hydrate close to the seafloor. We show first interpretations of the nature of this feature and its emplacement. Our preferred causes are either a volcanic cone or a mud diapir. We speculate that emplacement of this feature has been instrumental in forming the overlying seafloor depressions but are still evaluating the potential linkages.

  7. SHERLOC on Mars 2020

    NASA Astrophysics Data System (ADS)

    Beegle, L. W.; Bhartia, R.; DeFlores, L. P.; Abbey, W.; Asher, S. A.; Burton, A. S.; Fries, M.; Conrad, P. G.; Clegg, S. M.; Wiens, R. C.; Edgett, K. S.; Ehlmann, B. L.; Nealson, K. H.; Minitti, M. E.; Popp, J.; Langenhorst, F.; Sobron, P.; Steele, A.; Williford, K. H.; Yingst, R. A.

    2017-12-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) investigation is part of the Mars 2020 integrated payload. SHERLOC enables non-contact, spatially resolved, and highly sensitivity detection and characterization of organics and minerals in the Martian surface and near subsurface. SHERLOC is an arm-mounted, Deep UV (DUV) resonance Raman and fluorescence spectrometer utilizing a 248.6-nm DUV laser. Deep UV induced native fluorescence is very sensitive to condensed carbon and aromatic organics, enabling detection at or below 10-6 w/w (1 ppm) at <100 µm spatial scales. SHERLOC's deep UV resonance Raman enables detection and classification of aromatic and aliphatic organics with sensitivities of 10-2 to below 10-4 w/w. In addition to organics, the deep UV Raman enables detection and classification of minerals relevant to aqueous chemistry with grain sizes below 20 µm. SHERLOC will be able to map the distribution of organic material with respect to visible features and minerals that are identifiable with the Raman spectrometer. These maps will enable analysis of the distribution of organics with minerals.

  8. In situ high temperature microwave microscope for nondestructive detection of surface and sub-surface defects.

    PubMed

    Wang, Peiyu; Li, Zhencheng; Pei, Yongmao

    2018-04-16

    An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.

  9. Tier-scalable reconnaissance: the future in autonomous C4ISR systems has arrived: progress towards an outdoor testbed

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.

    2017-05-01

    Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).

  10. The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles

    2017-10-01

    We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.

  11. Subsurface metagenomes uncover a vast repertoire of hypervariable proteins encoded by genetic elements in uncultivated organisms and viruses

    NASA Astrophysics Data System (ADS)

    Paul, B. G.; Burstein, D.; Castelle, C. J.; Banfield, J. F.; Valentine, D. L.; Miller, J. F.; Ghosh, P.; Handa, S.; Arambula, D.; Czornyj, E.; Thomas, B. C.

    2016-12-01

    Uncultivated microorganisms primarily account for the remarkable diversity harbored in subsurface environments and represent an expansive subset of the current Tree of Life. Recent metagenomic efforts to investigate subsurface biomes have unveiled an array of bacterial and archaeal candidate phyla, whose members have minimal genomes and an apparent host-dependent existence. Still, little is known about the adaptive strategies that mediate host interactions in these organisms or their viruses. Genomic features known as diversity-generating retroelements (DGRs), which guide variability into targeted genes, were recently discovered in two single-cell genomes of uncultivated nanoarchaea, and independently in the genome of a marine virus from methane seep sediments. These prodigious drivers of protein hypervariability were first identified as the key force behind phage tail fiber diversification for binding different host receptors. Since their discovery, approximately 500 new DGRs have been found across a wide range of bacterial genomes representing various niches. We identified an unexpected 1136 distinct diversifiers from a single groundwater environment in reconstructed microbial genomes and genome fragments. The newly detected DGRs - predominantly linked to members of the candidate phyla radiation (CPR) - appear to target genes associated with cell-cell attachment, signaling, and transcription regulation. These findings suggest that targeted protein diversification may have an important role in regulating symbiotic or parasitic associations in groundwater microbiomes.

  12. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  13. Deep convolutional neural networks for classifying GPR B-scans

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.; Stimac, Philip J.

    2015-05-01

    Symmetric and asymmetric buried explosive hazards (BEHs) present real, persistent, deadly threats on the modern battlefield. Current approaches to mitigate these threats rely on highly trained operatives to reliably detect BEHs with reasonable false alarm rates using handheld Ground Penetrating Radar (GPR) and metal detectors. As computers become smaller, faster and more efficient, there exists greater potential for automated threat detection based on state-of-the-art machine learning approaches, reducing the burden on the field operatives. Recent advancements in machine learning, specifically deep learning artificial neural networks, have led to significantly improved performance in pattern recognition tasks, such as object classification in digital images. Deep convolutional neural networks (CNNs) are used in this work to extract meaningful signatures from 2-dimensional (2-D) GPR B-scans and classify threats. The CNNs skip the traditional "feature engineering" step often associated with machine learning, and instead learn the feature representations directly from the 2-D data. A multi-antennae, handheld GPR with centimeter-accurate positioning data was used to collect shallow subsurface data over prepared lanes containing a wide range of BEHs. Several heuristics were used to prevent over-training, including cross validation, network weight regularization, and "dropout." Our results show that CNNs can extract meaningful features and accurately classify complex signatures contained in GPR B-scans, complementing existing GPR feature extraction and classification techniques.

  14. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  15. Introduction of a Ground Penetrating Radar System for Subsurface Investigation in Balik Pulau, Penang Island

    NASA Astrophysics Data System (ADS)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    Ground penetrating radar (GPR) are non-invasive geophysical techniques that enhance studies of the shallow subsurface. The purposes of this work are to study the subsurface composition of Balik Pulau area in Penang Island and to identify shallow subsurface geology features. Data acquisition for GPR is by using 250 MHz antenna to cover 200m survey line at Jalan Tun Sardon, Balik Pulau. GPR survey was divided into ten sections at 20 m each. Results from GPR shows that there is low EM reflection along the first 40 m of the survey line. Intense EM reflections were recorded along the distance 40 m to 100 m. Less noticeable radar reflections recorded along 100 m to 200 m distance of the survey line. As a conclusion, clear signal of radar wave reflection indicates dry region of the subsurface. Meanwhile, low signal of radar wave reflection indicates highly weathered granitic soil or clay of the subsurface.

  16. Terahertz imaging for subsurface investigation of art paintings

    NASA Astrophysics Data System (ADS)

    Locquet, A.; Dong, J.; Melis, M.; Citrin, D. S.

    2017-08-01

    Terahertz (THz) reflective imaging is applied to the stratigraphic and subsurface investigation of oil paintings, with a focus on the mid-20th century Italian painting, `After Fishing', by Ausonio Tanda. THz frequency-wavelet domain deconvolution, which is an enhanced deconvolution technique combining frequency-domain filtering and stationary wavelet shrinkage, is utilized to resolve the optically thin paint layers or brush strokes. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed. Specifically, THz C-scans and B-scans are analyzed based on different types of deconvolved signals to investigate the subsurface features of the painting, including the identification of regions with more than one paint layer, the refractive-index difference between paint layers, and the distribution of the paint-layer thickness. In addition, THz images are compared with X-ray images. The THz image of the thickness distribution of the paint exhibits a high degree of correlation with the X-ray transmission image, but THz images also reveal defects in the paperboard that cannot be identified in the X-ray image. Therefore, our results demonstrate that THz imaging can be considered as an effective tool for the stratigraphic and subsurface investigation of art paintings. They also open up the way for the use of non-ionizing THz imaging as a potential substitute for ionizing X-ray analysis in nondestructive evaluation of art paintings.

  17. Prospects of passive radio detection of a subsurface ocean on Europa with a lander

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-09-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  18. Studies on evaluating and removing subsurface damage on the ground surface of CLEARCERAM-Z HS

    NASA Astrophysics Data System (ADS)

    Akitaya, Hiroshi; Yamashita, Takuya; Ohshima, Norio; Iye, Masanori; Maihara, Toshinori; Tokoro, Hitoshi; Takahashi, Keisuke

    2010-07-01

    We evaluated depth of subsurface damage on a ground surface of the ultra low expansion glass-ceramics CLEARCERAMR®-Z HS (CC-Z HS) by Ohara Inc., which is one of the candidates for material for segmented mirrors of the Thirty Meter Telescope. We made polishing spots of Magnetorheological Finishing on the ground surface of CC-Z HS and measured exposed subsurface damage features on the spot surface. We also studied on hydrofluoric acid etching of the CC-Z HS ground surface, which is expected to be an effective method to remove a subsurface damage layer compared with time-consuming polishing. We etched small ground surfaces of CC-Z HS and evaluated its uniformity.

  19. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars.

    PubMed

    Mickol, Rebecca L; Laird, Sarah K; Kral, Timothy A

    2018-04-23

    Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii , were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  20. In Situ Biotreatment of TBA with Recirculation/Oxygenation

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  1. In Situ Biotreatment of TBA with Recirculation/Oxygenation.

    PubMed

    North, Katharine P; Mackay, Douglas M; Kayne, Julian S; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B; Scow, Kate M

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants.

  2. Applying model abstraction techniques to optimize monitoring networks for detecting subsurface contaminant transport

    USDA-ARS?s Scientific Manuscript database

    Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...

  3. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  4. Roadside IED detection using subsurface imaging radar and rotary UAV

    NASA Astrophysics Data System (ADS)

    Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang

    2016-05-01

    Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.

  5. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  6. Detection of microbes in the subsurface

    NASA Technical Reports Server (NTRS)

    White, David C.; Tunlid, Anders

    1989-01-01

    The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.

  7. Infrared Photothermal Radiometry.

    DTIC Science & Technology

    1984-04-10

    changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects, and Busse found that...15 In the flash excitation, the excitation beam is modulated by a broad spectrum of Fourier modulation frequencies. In all cases of subsurface imaging , the...technique of Nordal and Kanstad 2 1t 23 is not only good for spectroscopic detection, but also for subsurface imaging applications as well. 2.4 Pulsed

  8. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  9. Methane Seepage on Mars: Where to Look and Why

    NASA Astrophysics Data System (ADS)

    Oehler, Dorothy Z.; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available.

  10. Evidence of large empty lava tubes on the Moon using GRAIL gravity

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic; Sood, Rohan; Melosh, Henry J.; Howell, Kathleen C.; Blair, David M.; Milbury, Colleen; Zuber, Maria T.

    2017-01-01

    NASA's GRAIL mission employed twin spacecraft in polar orbits around the Moon to measure the lunar gravity field at unprecedentedly high accuracy and resolution. The low spacecraft altitude in the extended mission enables the detection of small-scale surface or subsurface features. We analyzed these data for evidence of empty lava tubes beneath the lunar maria. We developed two methods, gradiometry and cross correlation, to isolate the target signal of long, narrow, sinuous mass deficits from a host of other features present in the GRAIL data. Here we report the discovery of several strong candidates that are either extensions of known lunar rilles, collocated with the recently discovered "skylight" caverns, or underlying otherwise unremarkable surfaces. Owing to the spacecraft polar orbits, our techniques are most sensitive to east-west trending near-surface structures and empty lava tubes with minimum widths of several kilometers, heights of hundreds of meters, and lengths of tens of kilometers.

  11. Topographic Map of Chryse Planitia with Location of Possible Buried Basin

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This topographic map, based on data from the Mars Orbiter Laser Altimeter, shows the ground track of the 1,892nd and the 1,903rd orbits of Mars Express and the arc structures detected by that orbiter's Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). The arc structures are interpreted to be part of a buried impact basin about 250 kilometers (155 miles) in diameter.

    The topographic relief represented in the image is 1 kilometer (0.6 mile), from low (purple) to high (red). The projected arcs are shown in red for orbit 1892 and white for orbit 1903. There is no obvious feature in the surface topography that corresponds to the buried feature identified with MARSIS data.

    NASA and the Italian Space Agency jointly funded the MARSIS instrument on the European Space Agency's Mars Express orbiter. The Mars Orbiter Laser Altimeter is an instrument on NASA's Mars Global Surveyor orbiter.

  12. A survey of surface structures and subsurface developments for lunar bases

    NASA Technical Reports Server (NTRS)

    Hypes, Warren D.; Wright, Robert L.

    1990-01-01

    Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.

  13. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  14. Integrated study of Mississippian Lodgepole Waulsortian Mounds, Williston Basin, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupecz, J.A.; Arestad, J.F.; Blott, J. E.

    1996-06-01

    Waulsortian-type carbonate buildups in the Mississippian Lodgepole Formation, Williston Basin, constitute prolific oil reservoirs. Since the initial discovery in 1993, five fields have been discovered: Dickinson Field (Lodgepole pool); Eland Field; Duck Creek Field, Versippi Field; and Hiline Field. Cumulative production (October, 1995) is 2.32 million barrels of oil and 1.34 BCF gas, with only 69,000 barrels of water. Oil gravity ranges from 41.4 to 45.3 API. Both subsurface cores from these fields as well as outcrop (Bridget Range, Big Snowy and Little Belt Mountains, Montana) are composed of facies representing deposition in mound, reworked mound, distal reworked mound, proximalmore » flank, distal flank, and intermound settings. Porosity values within the mound and reworked mound facies are up to 15%; permeability values (in places fracture-enhanced) are up to tens of Darcies. Geometries of the mounds are variable. Mound thicknesses in the subsurface range from approximately 130-325 feet (40-100 meters); in outcrop thicknesses range from less than 30 ft (9 m) to over 250 ft (76 m). Subsurface areal dimensions range from approximately 0.5 x 1.0 mi (0.8 x 1.6 km) to 3.5 x 5.5 mi (5.6 x 8.8 km). Integration of seismic data with core and well-log models sheds light on the exploration for Lodgepole mounds. Seismic modeling of productive mounds in the Dickinson and Eland fields identifies characteristics useful for exploration, such as local thickening of the Lodgepole to Three Forks interval. These observations are confirmed in reprocessed seismic data across Eland field and on regional seismic data. Importantly, amplitude versus offset modeling identifies problems with directly detecting and identifying porosity within these features with amplitude analyses. In contrast, multicomponent seismic data has great potential for imaging these features and quantifying porous zones within them.« less

  15. COUPLED GEOPHYSICAL-HYDROLOGICAL MODELING OF A CONTROLLED NAPL SPILL

    EPA Science Inventory

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data

    ...

  16. Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt - Case study

    NASA Astrophysics Data System (ADS)

    Helaly, Ahmad Sobhy

    2017-12-01

    Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.

  17. Understanding the rapidity of subsurface storm flow response from a fracture-oriented shallow vadose through a new perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Zhao, Pei; Liang, Chuan; Li, Tianyang; Zhou, Baojia

    2017-01-01

    Velocity and celerity in hydrologic systems are controlled by different mechanisms. Efforts were made through joint sample collection and the use of hydrographs and tracers to understand the rapidity of the subsurface flow response to rainstorms on hourly time scales. Three deep subsurface flows during four natural rainstorm events were monitored. The results show that (1) deeper discharge was observed early in responding rainfall events and yielded a high hydrograph amplitude; (2) a ratio index, k, reflecting the dynamic change of the rainfall perturbation intensity in subsurface flow, might reveal inner causal relationships between the flow index and the tracer signal index. Most values of k were larger than 1 at the perturbation stage but approximated 1 at the no-perturbation stage; and (3) for statistical analysis of tracer signals in subsurface flows, the total standard deviation was 17.2, 11.9, 7.4 and 3.5 at perturbation stages and 4.4, 2.5, 1.1, and 0.95 at the non-perturbation stage for observed events. These events were 3-7 times higher in the former rather than the later, reflecting that the variation of tracer signals primarily occurred under rainfall perturbation. Thus, we affirmed that the dynamic features of rainfall have a key effect on rapid processes because, besides the gravity, mechanical waves originating from dynamic rainfall features are another driving factor for conversion between different types of rainfall mechanical energy. A conceptual model for pressure wave propagation was proposed, in which virtual subsurface flow processes in a heterogeneous vadose zone under rainfall are analogous to the water hammer phenomenon in complex conduit systems. Such an analogy can allow pressure in a shallow vadose to increase and decrease and directly influence the velocity and celerity of the flow reflecting a mechanism for rapid subsurface hydrologic response processes in the shallow vadose zone.

  18. Visual texture for automated characterisation of geological features in borehole televiewer imagery

    NASA Astrophysics Data System (ADS)

    Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali

    2015-08-01

    Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.

  19. Near-Infrared Imaging for Detecting Caries and Structural Deformities in Teeth

    PubMed Central

    Angelino, Keith; Edlund, David A.

    2017-01-01

    2-D radiographs, while commonly used for evaluating sub-surface hard structures of teeth, have low sensitivity for early caries lesions, particularly those on tooth occlusal surfaces. Radiographs are also frequently refused by patients over safety concerns. Translucency of teeth in the near-infrared (NIR) range offers a non-ionizing and safe approach to detect dental caries. We report the construction of an NIR (850 nm) LED imaging system, comprised of an NIR source and an intraoral camera for rapid dental evaluations. The NIR system was used to image teeth of ten consenting human subjects and successfully detected secondary, amalgam–occluded and early caries lesions without supplementary image processing. The camera-wand system was also capable of revealing demineralized areas, deep and superficial cracks, and other clinical features of teeth usually visualized by X-rays. The NIR system’s clinical utility, simplistic design, low cost, and user friendliness make it an effective dental caries screening technology in conjunction or in place of radiographs. PMID:28507826

  20. Near-Infrared Imaging for Detecting Caries and Structural Deformities in Teeth.

    PubMed

    Angelino, Keith; Edlund, David A; Shah, Pratik

    2017-01-01

    2-D radiographs, while commonly used for evaluating sub-surface hard structures of teeth, have low sensitivity for early caries lesions, particularly those on tooth occlusal surfaces. Radiographs are also frequently refused by patients over safety concerns. Translucency of teeth in the near-infrared (NIR) range offers a non-ionizing and safe approach to detect dental caries. We report the construction of an NIR (850 nm) LED imaging system, comprised of an NIR source and an intraoral camera for rapid dental evaluations. The NIR system was used to image teeth of ten consenting human subjects and successfully detected secondary, amalgam-occluded and early caries lesions without supplementary image processing. The camera-wand system was also capable of revealing demineralized areas, deep and superficial cracks, and other clinical features of teeth usually visualized by X-rays. The NIR system's clinical utility, simplistic design, low cost, and user friendliness make it an effective dental caries screening technology in conjunction or in place of radiographs.

  1. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  2. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  3. Helicopter- and ship-based measurements of mesoscale ocean color and thermal features in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Tanis, Fred J.; Manley, Thomas O.; Mitchell, Brian G.

    1990-09-01

    Eddies along the Polar Front/Marginal Ice Zone (MIZ) in Fram Strait are thought to make important contributions to nutrient flux and stimulation of primary productivity. During the Coordinated Eastern Arctic Regional Experiment (CEAREX) helicopter-based measurements of upwelling radiance were made in four visible spectral bands and in the thermal IR across mesoscale features associated with the MIZ. These structures were mapped by flying a grid pattern over the ocean surface to define eddy boundaries. Subsequently, the area was also sampled vertically with CTD and spectral radiometer profilers. Data obtained from a single structure were integrated to construct a three dimensional picture of physical and optical properties. Volume modeling of temperature, salinity, and density fields obtained from CTD survey define the subsurface eddy structure and are in good agreement with infrared derived characteristics. Maximum temperature in the core was found to be four degrees higher than the surrounding water. Volume modeling further indicates that a subsurface layer of Arctic Intermediate Water is intrinsically associated with the surface expression of the eddy. The ratio of upwelling radiances, L(44l)/L(565), was found to be correlated to surface chlorophyll, particulate absorption coefficient, and in water determinations of L using the optical profiling system. The remote sensing reflectance ratio along with the IR sea surface temperature were found to be useful to detect the surface expression of the eddy and to indicate near surface biological and physical processes.

  4. Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximillian C.

    2016-01-01

    Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.

  5. Occurrence and Detectability of Thermal Anomalies on Europa

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Christensen, Philip R.; Spencer, John R.; Abramov, Oleg; Howett, Carly; Mellon, Michael; Nimmo, Francis; Piqueux, Sylvain; Rathbun, Julie A.

    2017-10-01

    Endogenic activity is likely on Europa, given its young surface age of and ongoing tidal heating by Jupiter. Temperature is a fundamental signature of activity, as witnessed on Enceladus, where plumes emanate from vents with strongly elevated temperatures. Recent observations suggest the presence of similar water plumes at Europa. Even if plumes are uncommon, resurfacing may produce elevated surface temperatures, perhaps due to near-surface liquid water. Detecting endogenic activity on Europa is one of the primary mission objectives of NASA’s planned Europa Clipper flyby mission.Here, we use a probabilistic model to assess the likelihood of detectable thermal anomalies on the surface of Europa. The Europa Thermal Emission Imaging System (E-THEMIS) investigation is designed to characterize Europa’s thermal behavior and identify any thermal anomalies due to recent or ongoing activity. We define “detectability” on the basis of expected E-THEMIS measurements, which include multi-spectral infrared emission, both day and night.Thermal anomalies on Europa may take a variety of forms, depending on the resurfacing style, frequency, and duration of events: 1) subsurface melting due to hot spots, 2) shear heating on faults, and 3) eruptions of liquid water or warm ice on the surface. We use numerical and analytical models to estimate temperatures for these features. Once activity ceases, lifetimes of thermal anomalies are estimated to be 100 - 1000 yr. On average, Europa’s 10 - 100 Myr surface age implies a resurfacing rate of ~3 - 30 km2/yr. The typical size of resurfacing features determines their frequency of occurrence. For example, if ~100 km2 chaos features dominate recent resurfacing, we expect one event every few years to decades. Smaller features, such as double-ridges, may be active much more frequently. We model each feature type as a statistically independent event, with probabilities weighted by their observed coverage of Europa’s surface. Our results show that if Europa is resurfaced continuously by the processes considered, there is a >99% chance that E-THEMIS will detect a thermal anomaly due to endogenic activity. Therefore, if no anomalies are detected, these models can be ruled out, or revised.

  6. Nematoda from the terrestrial deep subsurface of South Africa.

    PubMed

    Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C

    2011-06-02

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

  7. Effects of antenna orientation on 3-D ground penetrating radar surveys: an archaeological perspective

    NASA Astrophysics Data System (ADS)

    Lualdi, Maurizio; Lombardi, Federico

    2014-02-01

    This paper investigates the impact that the GPR antenna orientation, or survey direction, has on migrated image resulting from 3-D georadar acquisitions carried out on heterogeneous and anisotropic subsurface. This feature is related to the directional dependency of wave propagation effects, such as dispersion, absorption, depolarization, and scattering phenomena. We provide a proof of this with two field examples, demonstrating that a 3-D survey performed along a single direction could bring weak results in terms of target detection and reconstruction. To overcome this risk, we show the improvements that the combination of GPR 3-D data acquired along different directions on the same area can obtain: an enhancement of target detection probability and the practical advantage for the end-user of looking through a single image. Further on, we develop a stacking scheme that employs a threshold associated with amplitude comparison to adaptively handle the combination of georadar data volumes.

  8. Application of nonlinear ultrasonics to inspection of stainless steel for dry storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.

    This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less

  9. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.

  10. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  11. Nde of Frp Wrapped Columns Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.

    2008-02-01

    This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.

  12. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.

    PubMed

    Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco

    2017-05-04

    Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.

  13. Ultrahigh-Resolution 3-Dimensional Seismic Imaging of Seeps from the Continental Slope of the Northern Gulf of Mexico: Subsurface, Seafloor and Into the Water Column

    NASA Astrophysics Data System (ADS)

    Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.

    2016-02-01

    Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.

  14. A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2003-12-01

    Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.

  15. Complex landslides in the Trans-Mexican Volcanic Belt - a case study in the State of Veracruz

    NASA Astrophysics Data System (ADS)

    Wilde, M.; Terhorst, B.; Schwindt, D.; Rodriguez Elizarrarás, S. R.; Morales Barrera, W. V.; Bücker, M.; Flores Orozco, A.; García García, E.; Pita de la Paz, C.

    2017-12-01

    The State of Veracruz (Mexico) is a region which is highly affected by landslides, therefore detailed studies on triggering factors and process dynamics of landslides are required. Profound insights are essential for further hazard assessments and compilation of susceptibility maps. Exemplary landslide sites were investigated in order to determine characteristic features of specific regions. In the Chiconquiaco Mountain Range numerous damaging landslide events occurred in the year of 2013 and our case study corresponds to a deep-seated landslide originating from this slide-intensive year. The main scientific aspects are placed on the reconstruction of the landslides geometry and its process dynamics. Therefore, surface and subsurface analysis form the base of a multimethodological approach. In order to perform surface analysis, aerial photographs were collected by an unmanned aerial vehicle (UAV) aiming at the generation of a 3D model with the Structure from Motion (SfM) work routine. Ground control points (GCP) were used to ensure the geometric accuracy of the model. The obtained DEM of the 2013 slide mass as well as an elevation model representing the topographic situation before the event (year 2011) were used to detect surface changes. The data enabled determination of the most affected areas as well as areas characterized by secondary movements. Furthermore, the volume of the slide mass could be calculated. Geophysical methods, as electrical resistivity tomography (ERT) as well as seismic refraction tomography (SRT), were applied for subsurface analysis. Differences in subsurface composition, respectively density, allowed for separation of the slide mass and the underlying unit. Most relevant for our studies is the detection of an earlier landslide leading to the assumption that the 2013 landslide event corresponds to a reactivation process. This multimethodological approach enables a far-reaching visualization of complex landslides and strongly supports the reconstruction of interior structures and process dynamics.

  16. SPECIATION OF SUBSURFACE CONTAMINANTS BY CONE PENETROMETRY GAS CHROMATOGRAPHY/MASS SPECTROMETRY. (R826184)

    EPA Science Inventory

    A thermal extraction cone penetrometry gas chroma tography/mass spectrometry system (TECP GC/MS) has been developed to detect subsurface contaminants in situ. The TECP can collect soil-bound organics up to depths of 30 m. In contrast to traditional cone penetrometer sample collec...

  17. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  18. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME I: SOLIDS AND GROUND WATER - APPENDICES A AND B

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...

  19. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    USGS Publications Warehouse

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality single-sample criterion of 235 colony forming units per 100 milliliters in only 3 of 56 samples. Of these three samples, two were collected within 1 day post-LDME application from the treatment receiving 8,000 gal/acre LDME with no tillage (NT8000). The third sample was from the rolling-tine aerator treatment with 4,000 gal/acre LDME application rate after the first significant rainfall. Two wastewater chemicals and two bacterial genes (eaeA and stx1) detected in the LDME, but absent in field blank or pre-application samples, were detected in the 4-hour or 1-day postapplication NT8000 samples. No LDME-associated chemicals were detected in later samples from the NT8000 treatment, and none were detected in samples from other treatments after the first significant rainfall. Results of this field trial were somewhat equivocal with respect to the influence of LDME concentration and tillage practices on subsurface-drain water quality, both immediately after LDME application and in the longer term, after significant rainfall. Interpretation of study findings is limited by the fact that treatments were not replicated, and flow rate or discharge from the subsurface drains was not measured. Nevertheless, study results provide useful information about nutrient and bacteria concentrations in subsurface drains during the non-growing season. In addition, study results demonstrate some potential for the use of chemical and microbiological indicators of LDME transport to subsurface drains.

  20. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-02-01

    A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less

  1. An Estimation Of The Geoelectric Features Of Planetary Shallow Subsurfaces With TAPIR Antennae

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Reineix, A.; Ciarletti, V.; Jean-Jacques, B.; Ney, R.; Dolon, F.; Corbel, C.

    2005-12-01

    Exploring the interior of Mars and searching for water reservoirs, either in the form of ice or of liquid water, was one of the main scientific objectives of the NETLANDER project. In that frame, the CETP (Centre d'Etude des Environnements Terrestre et Planetaires) has developed an imaging ground penetrating radar (GPR), called TAPIR (Terrestrial And Planetary Investigation by Radar). Operating from a fixed position and at low frequencies (from 2 to 4MHz), this instrument allows to retrieve not only the distance but also the inclination of deep subsurface reflectors by measuring the two horizontal electrical components and the three magnetic components of the reflected waves. In 2004, ground tests have been successfully carried out on the Antarctic Continent; the bedrock, lying under a thick layer of ice (until 1200m), was detected and part of its relief was revealed. Yet, knowing the electric parameters of the close subsurface is required to correctly process the measured electric and magnetic components of the echoes and deduce their propagation vector. In addition, these electric parameters can bring a very interesting piece of information on the nature of the material in the shallow underground. We have therefore looked for a possible method (appropriate for a planetary mission) to evaluate them using a special mode of operation of the radar. This method relies on the fact that the electrical characteristics of the transmitting electric antennas (current along the antenna, driving-point impedance.) depend on the nature of the ground on which the radar is lying. If this dependency is significant enough, geological parameters of the subsurface can be deduced from the analysis of specific measurements. We have thus performed a detailed experimental and theoretical study of the TAPIR resistively loaded electrical dipoles to get a precise understanding of the radar transmission and assess the role of the electric parameters of the underground. In this poster, we will analytically prove the sensitivity of TAPIR antennae to subsurface nature. Besides, a numerical code, based on the FDTD method, has been built to simulate with accuracy radar operation and its coupling with the environment. Results from simulations will be then compared to in-situ measurements collected in three different sites. Eventually, we will see that the inferred geoelectrical values characterize only a thin layer of the subsurface.

  2. Multi-geophysical approaches to detect karst channels underground - A case study in Mengzi of Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Gan, Fuping; Han, Kai; Lan, Funing; Chen, Yuling; Zhang, Wei

    2017-01-01

    Mengzi locates in the south 20 km away from the outlet of Nandong subsurface river, and has been suffering from water deficiency in recent years. It is necessary to find out the water resources underground according to the geological characteristics such as the positions and buried depths of the underground river to improve the civil and industrial environments. Due to the adverse factors such as topographic relief, bare rocks in karst terrains, the geophysical approaches, such as Controlled Source Audio Magnetotellurics and Seismic Refraction Tomography, were used to roughly identify faults and fracture zones by the geophysical features of low resistivity and low velocity, and then used the mise-a-la-masse method to judge which faults and fracture zones should be the potential channels of the subsurface river. Five anomalies were recognized along the profile of 2.4 km long and showed that the northeast river system has several branches. Drilling data have proved that the first borehole indicated a water bearing channel by a characteristics of rock core of river sands and gravels deposition, the second one encountered water-filled fracture zone with abundant water, and the third one exposed mud-filled fracture zone without sustainable water. The results from this case study show that the combination of Controlled Source Audio Magnetotellurics, Seismic Refraction Tomography and mise-a-la-Masse is one of the effective methods to detect water-filled channels or fracture zones in karst terrains.

  3. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  4. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  5. In-situ Subsurface Soil Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmer, Chris

    The Department of Energy’s (DOE’s) Terrestrial Ecosystem Science (TES) program is seeking improved sensor systems for monitoring hydro-biogeochemical processes in complex subsurface environments. The TES program is specifically interested in acquiring chemical and structural information regarding the type and nature of the hydration and redox states of subsurface chemical species. The technology should be able to perform on-site and real-time measurements to provide information not available using current sample acquisition and preservation processes. To address the needs of the DOE and the terrestrial science community, Physical Optics Corporation (POC) worked on the development of a new In-Situ Subsurface Soil Analyzermore » (ISSA) based on magnetic resonance technologies. Benchtop testing was performed to assess the feasibility of continuous wave electron pair resonance (CW-EPR) detection of chemical species in subsurface soil systems.« less

  6. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  7. Cave speleothems as repositories of microbial biosignatures

    NASA Astrophysics Data System (ADS)

    Miller, Ana Z.; Jurado, Valme; Pereira, Manuel F. C.; Fernández, Octavio; Calaforra, José M.; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2015-04-01

    The need to better understand the biodiversity, origins of life on Earth and on other planets, and the wide applications of the microbe-mineral interactions have led to a rapid expansion of interest in subsurface environments. Recently reported results indicated signs of an early wet Mars and rather recent volcanic activity which suggest that Mars's subsurface can house organic molecules or traces of microbial life, making the search for microbial life on Earth's subsurface even more compelling. Caves on Earth are windows into the subsurface that harbor a wide variety of mineral-utilizing microorganisms, which may contribute to the formation of biominerals and unusual microstructures recognized as biosignatures. These environments contain a wide variety of redox interfaces and stable physicochemical conditions, which enhance secondary mineral precipitation and microbial growth under limited organic nutrient inputs. Enigmatic microorganisms and unusual mineral features have been found associated with secondary mineral deposits or speleothems in limestone caves and lava tubes. In this study, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray spectroscopy (EDS) analyses were conducted on cave speleothem samples to assess microbe-mineral interactions, evaluate biogenicity, as well as to describe unusual mineral formations and microbial features. Microbial mats, extracellular polymeric substances, tubular empty sheaths, mineralized cells, filamentous fabrics, as well as "cell-sized" etch pits or microborings produced by bacterial cells were observed on minerals. These features evidence microbe-mineral interactions and may represent mineralogical signatures of life. We can thus consider that caves on Earth are plausible repositories of terrestrial biosignatures where we can look for microbial signatures. Acknowledgments: AZM acknowledges the support from the Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-328689- DECAVE). The authors acknowledge the Spanish Ministry of Economy and Competitiveness (project CGL2013-41674-P) for financial support.

  8. Exposed Fractured Bedrock in the Central Pit of a Crater

    NASA Image and Video Library

    2016-11-09

    This HiRISE image shows the central pit feature of an approximately 20-kilometer diameter complex crater in located at 304.480 degrees east, -11.860 degrees south, just north of the Valles Marineris. Here we can observe a partial ring of light-toned, massive and fractured bedrock, which has been exposed by the impact-forming event, and via subsequent erosion that typically obscure the bedrock of complex central features. Features such as this one are of particular interest as they provide scientists with numerous exposures of bedrock that can be readily observed from orbit and originate from the deep Martian subsurface. Unlike on Earth, plate tectonics do not appear to be active on Mars. Thus, much of the Martian subsurface is not directly observable through uplift, erosion and exposure of mountain chains, which provide the majority of bedrock exposures on Earth. Exposures of subsurface materials generated by these features provides us with some of the only "windows" into the subsurface geology. This makes the study of impact craters an invaluable source of information when trying to understand, not only the impact process, but also the composition and history of Mars. Although much of what we see here is composed of massive and fractured bedrock, there are zones of rock fragmentation, called "brecciation." These fragmented rocks (a.k.a., breccias) are best viewed in the eastern portion of the central pit, which was captured in a previous HiRISE image. Additionally, we see some occurrences of impact melt-bearing deposits that surround and coat the bedrock exposed within the central pit. Several dunes are on the surface throughout the central pit and surrounding crater floor. The mechanisms behind the formation of central features, particularly central pits, are not completely understood. Geologic mapping of these circumferential "mega" blocks of bedrock indicate radial and concentric fracturing that is consistent with deformation through uplift. The exposed bedrock shows well-expressed lineament features that are likely fractures and faults formed during the uplift process. Studies of the bedrock, and such structures in this image, allows us better to understand the formative events and physical processes responsible for their formation. Current research suggests that their formation is the result of some component of uplift followed by collapse. http://photojournal.jpl.nasa.gov/catalog/PIA21205

  9. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  10. Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective

    NASA Astrophysics Data System (ADS)

    Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.

    2010-06-01

    A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.

  11. Mineralization of Bacteria in Terrestrial Basaltic Rocks: Comparison With Possible Biogenic Features in Martian Meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Gibson, E. K., Jr.; Romanek, C. S.

    1998-01-01

    The identification of biogenic features altered by diagenesis or mineralization is important in determining whether specific features in terrestrial rocks and in meteorites may have a biogenic origin. Unfortunately, few studies have addressed the formation of biogenic features in igneous rocks, which may be important to these phenomena, including the controversy over possible biogenic features in basaltic martian meteorite ALH84001. To explore the presence of biogenic features in igneous rocks, we examined microcosms growing in basaltic small-scale experimental growth chambers or microcosms. Microbial communities were harvested from aquifers of the Columbia River Basalt (CRB) group and grown in a microcosm containing unweathered basalt chips and groundwater (technique described in. These microcosms simulated natural growth conditions in the deep subsurface of the CRB, which should be a good terrestrial analog for any putative martian subsurface ecosystem that may have once included ALH84001. Here we present new size measurements and photomicrographs comparing the putative martian fossils to biogenic material in the CRB microcosms. The range of size and shapes of the biogenic features on the CRB microcosm chips overlaps with and is similar to those on ALH84001 chips. Although this present work does not provide evidence for the biogenicity of ALH84001 features, we believe that, based on criteria of size, shape, and general morphology, a biogenic interpretation for the ALH84001 features remains plausible.

  12. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME II: THE VADOSE ZONE, FIELD SCREENING AND ANALYTICAL METHODS - APPENDICES C AND D

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to deve...

  14. Comparing ground-penetrating radar (GPR) techniques in 18th-century yard spaces

    NASA Astrophysics Data System (ADS)

    Carducci, Christiane M.

    Yards surrounding historical homesteads are the liminal space between private houses and public space, and contain artifactural and structural remains that help us understand how the residents interfaced with the world. Comparing different yards means collecting reliable evidence, and what is missing is just as important as what is found. Excavations can rely on randomly placed 50-cm shovel test pits to locate features, but this can miss important features. Shallow geophysics, in particular ground-penetrating radar (GPR), can be used to identify features and reliably and efficiently collect evidence. GPR is becoming more integrated into archaeological investigations due to the potential to quickly and nondestructively identify archaeological features and to recent advancements in processing software that make these methods more user-friendly. The most efficacious GPR surveys must take into consideration what is expected to be below the surface, what features look like in GPR outputs, the best methods for detecting features, and the limitations of GPR surveys. Man-made landscape features are expected to have existed within yard spaces, and the alteration of these features shows how the domestic economy of the residence changed through time. This study creates an inventory of these features. By producing a standardized sampling method for GPR in yard spaces, archaeologists can quickly map subsurface features and carry out broad comparisons between yards. To determine the most effective sampling method, several GPR surveys were conducted at the 18th-century Durant-Kenrick House in Newton, Massachusetts, using varied line spacing, line direction, and bin size. Examples of the GPR signatures of features, obtained using GPR-Slice software, from the Durant-Kenrick House and similar sites were analyzed. The efficacy of each method was determined based on the number of features distinguished, clarity of the results, and the time involved. The survey at Newton showed that ground surface conditions are extremely important when using GPR. Furthermore, GPR and archaeological excavations together provide the most complete interpretation because GPR has the ability to detect large-scale features that might be missed with test units, while excavation provides more detailed information, finds small-scale objects, and can be used to test false negatives seen in GPR surveys.

  15. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  16. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  17. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  18. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  19. Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS)

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Milos, Frank S.; Huestis, Dave; Arnold, James O. (Technical Monitor)

    1999-01-01

    Commercialization of a competitive reusable launch vehicle (RLV) is a primary goal for both NASA and the U.S. aerospace industry. To expedite achievement of this goal, the Bantam-X Technology Program is funding development of innovative technologies to lower costs for access to space. Ground operations is one area where significant cost reduction is required. For the Shuttle fleet, ground operations account for over 80% of the life cycle costs, and TPS recertification accounts for 27% of the operation costs ($4.5M per flight). Bantam Task TPS-7, Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS), is a joint effort between NASA centers and industry partners to develop rapid remote detection and scanning technology for inspection of TPS and detection of subsurface defects. This short paper will provide a general overview of the SmarTPS concept.

  20. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  1. The Discovery of Deep Oil Plumes at the Deepwater Horizon Oil Spill Site (Invited)

    NASA Astrophysics Data System (ADS)

    Diercks, A. R.; Asper, V. L.; Highsmith, R. C.; Woolsey, M.; Lohrenz, S. E.; McLetchie, K.; Gossett, A.; Lowe, M., III; Joung, D.; McKay, L.

    2010-12-01

    In May 2010, the National Institute for Undersea Science and Technology (NIUST), a partnership of the University of Mississippi, the University of Southern Mississippi and NOAA, had a 17-day research cruise aboard the UNOLS vessel R/V Pelican scheduled. Two weeks before departure, the Deepwater Horizon oil platform burned and sank, resulting in an uncontrolled oil spill at a depth of ~1500 m at Mississippi Canyon Block 252. The initial mission plan to do AUV surveys of wrecks and hydrate outcrops in the northern Gulf of Mexico, some of them very close to the site of the accident, was abandoned in favor of responding to the still uncontrolled oil spill. The primary goals of the redefined cruise were to acquire baseline and early impact data for seafloor sediments and subsurface distribution of oil and gas hydrates as close as possible in time and space to the origin of the oil spill. Investigating an oil spill nearly a mile deep in the ocean presents special benthic sampling and subsurface oil detection challenges. NIUST’s AUV’s were unloaded from the ship and a large main winch installed to allow operation of a full ocean depth box corer for collecting sediment samples in water depths up to 2000 m. During the first five-day leg of the cruise, a total of 28 box cores were collected. The Pelican returned to port (Cocodrie, LA) to drop off sediment and water samples for immediate analyses, and to take on more sampling gear and supplies for the second leg of the cruise, including an Acrobat, a CDOM fluorometer, a Video Ray ROV, and a CO2 sensor in addition to the already installed CTD Rosette with O2 sensor and beam transmissometer. During Leg 2, CTD stations were plotted to cover the area surrounding the wreck site and at various water depths to map the subsurface water column structure and chemistry as baseline values for future investigations and especially to look for submerged oil and/or gas hydrates. Early in the water column sampling, a subsurface feature was discovered at 1200 to 1400 m depth. This layer was detected by three independent sensors, CDOM (colored dissolved organic matter) fluorometer, beam transmissometer, and dissolved oxygen sensor. All three instruments responded in unison with greater fluorescence and beam attenuation and decreased O2 concentration. These signals were first observed at a station 5 miles from the accident site. Second and third station measurements at 2.5 miles, and at 1.25 miles from the spill site, showed the same signal but with significantly greater magnitude. Following this discovery, the sampling plan for the remaining days of the cruise was changed to map the newly discovered feature. This paper will discuss our data acquired during this cruise aboard the RV Pelican and its original discovery of the deep oil plumes from the Deepwater Horizon well.

  2. Enhancement of OCT images with vinyl polysiloxane (VPS)

    NASA Astrophysics Data System (ADS)

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Several studies have shown that optical coherence tomography (OCT) can be used to measure the remaining enamel thickness and detect the location of subsurface lesions hidden under the sound enamel. Moreover studies have shown that high refractive index liquids can be used to improve the visibility of subsurface lesions in OCT images. In this study, we demonstrate that vinyl polysiloxane (VPS) impression materials which are routinely used in dentistry can be used to enhance the detection of dentinal lesions on tooth occlusal surfaces. Lesion presence was confirmed with polarized light microscopy and microradiography.

  3. Fiber Optic Thermographic Detection of Flaws in Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  4. Effects of 6 months of aging in water on hardness and surface roughness of two microhybrid dental composites.

    PubMed

    de Moraes, Rafael Ratto; Marimon, José Laurindo Machado; Schneider, Luis Felipe; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço; Bueno, Márcia

    2008-06-01

    This study assessed the effect of 6 months of aging in water on surface roughness and surface/subsurface hardness of two microhybrid resin composites. Filtek Z250 and Charisma were tested. Cylindrical specimens were obtained and stored in distilled water for 24 hours or 6 months, at 37 degrees C. For Knoop hardness evaluation, the specimens were transversely wet-flattened, and indentations were made on surface and subsurface layers. Data were submitted to three-way ANOVA and Tukey's test (alpha < or = 0.05). Surface roughness baseline measurements were made at 24 hours and repeated after 6 months of storage. Data were submitted to repeated measures ANOVA and Tukey's test (alpha < or = 0.05). Surface hardness (KHN, kg/mm(2)) means (+/- standard deviation) ranged from 55 +/- 1 to 49 +/- 4 for Z250 and from 50 +/- 2 to 41 +/- 3 for Charisma, at 24 hours and 6 months, respectively. Subsurface means ranged from 58 +/- 2 to 61 +/- 3 for Z250 and from 50 +/- 1 to 54 +/- 2 for Charisma, at 24 hours and 6 months. For both composites, the aged specimens presented significantly softer surfaces (p < 0.01). For the subsurface hardness, alteration after storage was detected only for Charisma, which presented a significant rise in hardness (p < 0.01). Z250 presented significantly harder surface and subsurface layers in comparison with Charisma. Surface roughness (Ra, mum) means ranged from 0.07 +/- 0.00 to 0.07 +/- 0.01 for Z250 and from 0.06 +/- 0.01 to 0.07 +/- 0.01 for Charisma, at 24 hours and 6 months, respectively. For both composites, no significant roughness alteration was detected during the study (p= 0.386). The 6-month period of storage in water presented a significant softening effect on the surfaces of the composites, although no significant deleterious alteration was detected for the subsurface hardness. In addition, the storage period had no significant effect on the surface roughness of the materials.

  5. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.

  6. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  7. 36 CFR 6.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...

  8. 36 CFR 6.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...

  9. 36 CFR 6.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...

  10. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  11. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1986-01-01

    The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  12. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1985-01-01

    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  13. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    NASA Astrophysics Data System (ADS)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  14. DEVELOPMENT OF AN IN SITU THERMAL EXTRACTION DETECTION SYSTEM (TEDS) FOR RAPID, ACCURATE, QUANTITATIVE ANALYSIS OF ENVIRONMENTAL POLLUTANTS IN THE SUBSURFACE - PHASE I

    EPA Science Inventory

    Ion Signature Technology, Inc. (IST) will develop and market a collection and analysis system that will retrieve soil-bound pollutants as well as soluble and non-soluble contaminants from groundwater as the probe is pushed by cone penetrometry of Geoprobe into the subsurface. ...

  15. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    USDA-ARS?s Scientific Manuscript database

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  16. Magnetic perturbation inspection of inner bearing races

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Lankford, J.

    1972-01-01

    Approximately 100 inner race bearings were inspected nondestructively prior to endurance testing. Two of the bearings which failed during testing spalled at the sites of subsurface inclusions previously detected by using magnetic field perturbation. At other sites initially judged to be suspect, subsurface inclusion-nucleated cracking was observed. Inspection records and metallurgical sectioning results are presented and discussed.

  17. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang

    2010-05-01

    Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.

  18. NONDESTRUCTIVE TESTING (NDT) TECHNIQUES TO DETECT CONTAINED SUBSURFACE HAZARDOUS WASTE

    EPA Science Inventory

    The project involves the detection of buried containers with NDT (remote-sensing) techniques. Seventeen techniques were considered and four were ultimately decided upon. They were: electromagnetic induction (EMI); metal detection (MD); magnetometer (MAG); and ground penetrating r...

  19. A New Sensitive GC-MS-based Method for Analysis of Dipicolinic Acid and Quantifying Bacterial Endospores in Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2015-12-01

    Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.

  20. Subsurface damage distribution in the lapping process.

    PubMed

    Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi

    2008-04-01

    To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.

  1. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    PubMed

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C

    2014-07-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all relevant legislation and not only in environmental legislation. Other aspects to be considered are the reversibility of the impacts from subsurface activities and the abandonment of installations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Working Smarter Not Harder - Developing a Virtual Subsurface Data Framework for U.S. Energy R&D

    NASA Astrophysics Data System (ADS)

    Rose, K.; Baker, D.; Bauer, J.; Dehlin, M.; Jones, T. J.; Rowan, C.

    2017-12-01

    The data revolution has resulted in a proliferation of resources that span beyond commercial and social networking domains. Research, scientific, and engineering data resources, including subsurface characterization, modeling, and analytical datasets, are increasingly available through online portals, warehouses, and systems. Data for subsurface systems is still challenging to access, discontinuous, and varies in resolution. However, with the proliferation of online data there are significant opportunities to advance access and knowledge of subsurface systems. The Energy Data eXchange (EDX) is an online platform designed to address research data needs by improving access to energy R&D products through advanced search capabilities. In addition, EDX hosts private, virtualized computational workspaces in support of multi-organizational R&D. These collaborative workspaces allow teams to share working data resources and connect to a growing number of analytical tools to support research efforts. One recent application, a team digital data notebook tool, called DataBook, was introduced within EDX workspaces to allow teams to capture contextual and structured data resources. Starting with DOE's subsurface R&D community, the EDX team has been developing DataBook to support scientists and engineers working on subsurface energy research, allowing them to contribute and curate both structured and unstructured data and knowledge about subsurface systems. These resources span petrophysical, geologic, engineering, geophysical, interpretations, models, and analyses associated with carbon storage, water, oil, gas, geothermal, induced seismicity and other subsurface systems to support the development of a virtual subsurface data framework. The integration of EDX and DataBook allows for these systems to leverage each other's best features, such as the ability to interact with other systems (Earthcube, OpenEI.net, NGDS, etc.) and leverage custom machine learning algorithms and capabilities to enhance user experience, make access and connection to relevant subsurface data resources more efficient for research teams to use, analyze and draw insights. Ultimately, the public and private resources in EDX seek to make subsurface energy research more efficient, reduce redundancy, and drive innovation.

  3. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).

  4. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    USGS Publications Warehouse

    Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.

    1999-01-01

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.

  5. Methane Seepage on Mars: Where to Look and Why

    PubMed Central

    Etiope, Giuseppe

    2017-01-01

    Abstract Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as “gas seepage.” Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key Words: Mars—Methane—Seepage—Clathrate—Fischer-Tropsch—Serpentinization. Astrobiology 17, 1233–1264. PMID:28771029

  6. Methane Seepage on Mars: Where to Look and Why.

    PubMed

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key Words: Mars-Methane-Seepage-Clathrate-Fischer-Tropsch-Serpentinization. Astrobiology 17, 1233-1264.

  7. A high frequency electromagnetic impedance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less

  8. Regolith-atmosphere exchange of water in Mars' recent past

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.

    2017-03-01

    We investigate the exchange of water vapour between the regolith and atmosphere of Mars, and how it varies with different orbital parameters, atmospheric dust contents and surface water ice reservoirs. This is achieved through the coupling of a global circulation model (GCM) and a regolith diffusion model. GCM simulations are performed for hundreds of Mars years, with additional one-dimensional simulations performed for 50 kyr. At obliquities ɛ =15∘ and 30°, the thermal inertia and albedo of the regolith have more control on the subsurface water distribution than changes to the eccentricity or solar longitude of perihelion. At ɛ =45∘ , atmospheric water vapour abundances become much larger, allowing stable subsurface ice to form in the tropics and mid-latitudes. The circulation of the atmosphere is important in producing the subsurface water distribution, with increased water content in various locations due to vapour transport by topographically-steered flows and stationary waves. As these circulation patterns are due to topographic features, it is likely the same regions will also experience locally large amounts of subsurface water at different epochs. The dustiness of the atmosphere plays an important role in the distribution of subsurface water, with a dusty atmosphere resulting in a wetter water cycle and increased stability of subsurface ice deposits.

  9. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  10. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  11. Surface and subsurface sensor performance in acoustically detecting western drywood termites in naturally infested boards.

    Treesearch

    V.R. Lewis; A.B. Power; M.I. Haverty

    2004-01-01

    Field-collected boards showing visual signs of damage by the western drywood termite, Incisitermes minor, were searched with a portable acoustic emission (AE) device. Depending on cross-sectional size, boards were either searched with a flat sensor that was hot-melt-glued to the wood surface or a subsurface sensor that wasthreaded 20 mm into the...

  12. Subsurface ice and brine sampling using an ultrasonic/sonic gopher for life detection and characterization in the McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.; hide

    2004-01-01

    There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.

  13. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  14. Methane clathrate stability zone variations and gas transport in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.; Temel, O.

    2016-12-01

    During the last years, several detections of methane in the atmosphere of Mars were reported from Earth-based and Mars orbit instruments with abundances ranging to tens of parts-per-billion by volume (ppbv). Recently, the Curiosity rover detected methane with background levels of 0.7 ppbv and episodic releases of 7 ppbv. Although the methane sources are still unknown, this gas may have been stored in reservoirs of clathrate hydrate in the Martian subsurface where thermodynamics conditions are favourable to their presence. Clathrate hydrates are crystalline compounds constituted by cages formed by hydrogen-bonded water molecules inside of which guest gas molecules are trapped. In this study, methane clathrate stability in the Martian subsurface are investigated and their temporal and spatial variations are studied. Present-day maps of methane clathrate stability zone are produced by coupling the stability conditions of methane clathrate with a subsurface model using the available observations such as the the thermal inertia derived from TES MGS data. Then, a gas transport model has been used to study the methane flux at the surface due to the diffusion of different plausible methane volumes released by clathrate hydrates at variable depths under the Martian surface.

  15. Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif

    2017-06-01

    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significantly large thickness are detected in the otherwise unusually well-documented geological environment. The results significantly improve the imaging of some geologic features, which would have been undetected or misinterpreted otherwise, and combines the images by means of cluster analysis into a conceptual subsurface model.

  16. Quantifying shallow and deep permafrost changes using radar remote sensing

    NASA Astrophysics Data System (ADS)

    Teshebaeva, K.; van Huissteden, K. J.

    2017-12-01

    Widespread thawing of permafrost in the northern Eurasian continent cause severe problems for infrastructure and global climate. Permafrost thaw by climate warming creates land surface instability, resulting in severe problems for infrastructure, and release of organic matter to the atmosphere as CO2 and CH4. Recent discoveries of CH4 seeps in lakes, in the Arctic Ocean, and CH4 emitting craters in the permafrost. These features indicate that permafrost destabilization might no longer be a surface feature only, but that also deeper layers of the permafrost, up to tens of meters, may be affected by warming. We study two potential areas in Siberian arctic; one of the test site is the Kytalyk research station near Chokurdagh town affected with a recent inundation of the Indigirka river in July 2017, which resulted in standing surface water for the period over a month. The wet soil and standing water may cause changes in active layer thickness and influence the thermal regime of the permafrost for the next decades in the region. The second test site is Yamal peninsula with recently CH4 emitting craters, which may start to contribute to emission hotspots. We hypothesize that these deeper subsurface processes also can be detected by mapping surface elevation changes using advanced SAR techniques. We test the potential of SAR imagery to enhance detection of these features, including surface movement related to permafrost active layer changes using InSAR time-series analysis. We also apply radar backscatter signal to detect seasonal changes related to the freeze-thaw cycles. The PRISM elevation data are used to estimate elevation changes in the region along with ground-based geophysical and geodetical fieldwork.

  17. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane [Pleasanton, CA; Stolz, Christopher J [Lathrop, CA; Wu, Zhouling [Pleasanton, CA; Huber, Robert [Discovery Bay, CA; Weinzapfel, Carolyn [Tracy, CA

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  18. Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California

    USGS Publications Warehouse

    Ponce, David A.; Denton, Kevin M.; Watt, Janet T.

    2016-09-12

    IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.

  19. Detection of emerging sunspot regions in the solar interior.

    PubMed

    Ilonidis, Stathis; Zhao, Junwei; Kosovichev, Alexander

    2011-08-19

    Sunspots are regions where strong magnetic fields emerge from the solar interior and where major eruptive events occur. These energetic events can cause power outages, interrupt telecommunication and navigation services, and pose hazards to astronauts. We detected subsurface signatures of emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large sunspot regions before they become visible, improving space weather forecast.

  20. Mapping Subsurface Structure at Guar Kepah by using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Mansor, Hafizuddin; Rosli, Najmiah; Ismail, N. A.; Saidin, M.; Masnan, S. S. K.

    2018-04-01

    A Ground Penetrating Radar (GPR) survey was conducted at Guar Kepah to detect buried object before commencement of archaeological gallery construction. The study area covered around 20 m length and 14 m width. 15 GPR lines were constructed from north to south with 20 m length, 1 m spacing and parallel to each other. The 500 MHz closed antenna had been used in this study. The surface findings were noticed before started GPR survey. The data was analysed and interpreted by using Groundvision software and several filters were applied to radargrams to enhance the data. Based on the result, several anomalies were detected. The surface findings also detected by GPR which cause hyperbolic curve in radargrams. The subsurface layer was detected by GPR survey. The anomalies are assigned to several classes based on the pattern of signals obtained in radargrams.

  1. Ground Penetrating Radar Investigation of Sinter Deposits at Old Faithful Geyser and Immediately Adjacent Hydrothermal Features, Yellowstone National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Foley, D.; Lynne, B. Y.; Jaworowski, C.; Heasler, H.; Smith, G.; Smith, I.

    2015-12-01

    Ground Penetrating Radar (GPR) was used to evaluate the characteristics of the shallow subsurface siliceous sinter deposits around Old Faithful Geyser. Zones of fractures, areas of subsurface alteration and pre-eruption hydrologic changes at Old Faithful Geyser and surrounding hydrothermal mounds were observed. Despite being viewed directly by about 3,000,000 people a year, shallow subsurface geologic and hydrologic conditions on and near Old Faithful Geyser are poorly characterized. GPR transects of 5754 ft (1754m) show strong horizontal to sub-horizontal reflections, which are interpreted as 2.5 to 4.5 meters of sinter. Some discontinuities in reflections are interpreted as fractures in the sinter, some of which line up with known hydrothermal features and some of which have little to no surface expression. Zones with moderate and weak amplitude reflections are interpreted as sinter that has been hydrothermally altered. Temporal changes from stronger to weaker reflections are correlated with the eruption cycle of Old Faithful Geyser, and are interpreted as post-eruption draining of shallow fractures, followed by pre-eruption fracture filling with liquid or vapor thermal fluids.

  2. Development of anomaly detection models for deep subsurface monitoring

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  3. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    PubMed

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Correlating High Resolution Radar Reflectors with Visible Layering of the Polar Layered Deposits, Mars

    NASA Astrophysics Data System (ADS)

    Christian, S.; Holt, J. W.; Choudhary, P.; Fishbaugh, K. E.; Plaut, J. J.

    2010-12-01

    The Shallow Radar (SHARAD) onboard NASA’s Mars Reconnaissance Orbiter (MRO) has successfully detected many subsurface reflectors in the North Polar Layered Deposits (NPLD) of Mars. Confirming that these reflectors are caused by varying fractions of dust within the ice will be of primary importance in any attempt to model the composition of the NPLD, particularly if such a study incorporates optical data based on the assumption of a shared mechanism between layering and radar reflectance. As a first step towards examining this assumption, we have quantitatively studied the relationship between radar reflectors and adjacent visible layers exposed in an NPLD outcrop using statistical analyses and geometric comparisons. A clustering analysis of vertical separation distances between radar reflectors returned strong values at 11.8, 15.8, 20.3, 27.9, and 35.3 m, which strongly agree with published visible layer clusters [Fishbaugh et al., LPSC, 2009] and known frequency analysis results [Milkovich and Head, JGR, 2005]. Furthermore, in order to understand subsurface structures and reflector geometry we have gridded reflector surfaces in three dimensions, taking into account the influence of surface slopes to obtain accurate subsurface geometries. These geometries reveal average reflector dips of 0.4°, which are consistent with optical layer slopes on the order of 1.0°. Unexpected long wavelength topography resulting from subsurface structures visible to SHARAD complicated the attempt to compare radar reflector geometries with layer boundary elevation profiles obtained from the stratigraphic column produced using a digital elevation model (DEM) of High Resolution Imaging Science Experiment (HiRISE) stereo imagery [Fishbaugh et al., GRL, 2010]. The limitation imposed by the small extent of the DEM was resolved by increasing exposure coverage through the incorporation of images from Context Camera (CTX), also on MRO. In doing so, we were able to resolve the disparity between geometries and have now determined visible layers demonstrate similar subsurface topographic features as those revealed by SHARAD. Direct elevation comparisons between individual reflectors and discrete optical layers, while considered necessary for a correlation, are complicated by variations in subsurface structure that exist between the outcrop and the SHARAD tracks, as inferred from our mapping. While a direct correlation has not yet been accomplished, we have confirmed a genetic link between radar reflectors and visible layers; furthermore, we have generalized and improved the techniques for conducting such correlations so this can be undertaken at additional locations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbiest, G. J., E-mail: Verbiest@physik.rwth-aachen.de; Zalm, D. J. van der; Oosterkamp, T. H.

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, wemore » support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.« less

  6. Genetic Analysis of Stress Responses in Soil Bacteria for Enhanced Bioremediation of Mixed Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kwong-Kwok

    The purpose of this project is to provide fundamental knowledge on environment stress response of subsurface bacteria and a radiation-resistant bacterium (Deinococcus radiodurans). This information will be particularly useful in the development of successful bioremediation strategies. These organisms represent two phylogenetically distinct groups of soil bacteria, each of which has specific features of interest for bioremediation. The subsurface bacteria, Sphingomonas spp (Savannah River Site), have unique degradative capabilities of organic waste. The study of subsurface bacteria will serve as a model for bioremediation using indigenous bacteria. D. radiodurans exhibits high resistance to external stress such as ionizing radiation and organicmore » solvent. The study of D. radiodurans will serve as a model for the use of genetically engineered bacteria for bioremediation.« less

  7. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).

  8. Isolated molecular dopants in pentacene observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Kahn, Antoine

    2009-11-01

    Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.

  9. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  10. Integrated system for investigating sub-surface features of a rock formation

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  11. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  12. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  13. The impact of runoff and surface hydrology on Titan's climate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs.

  14. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  15. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi archaeological area (southern Italy). We identify, for the selected sites, three main land cover overlying the buried structures: (a) photosynthetic (i.e. green low vegetation), (b) non-photosynthetic vegetation (i.e. yellow, dry low vegetation), and (c) dry bare soil. Afterwards, we analyse the spectral regions showing an inherent potential for the archaeological detection as a function of the land cover characteristics. The classified land cover units have been used in a spectral mixture analysis to assess the land cover fractional abundance surfacing the buried structures (i.e. mark-background system). The classification and unmixing results for the CASI, MIVIS and ATM remote sensing data processing showed a good accordance both in the land cover units and in the subsurface structures identification. The integrated analysis of the unmixing results for the three sensors allowed us to establish that for the land cover characterized by green and dry vegetation (occurrence higher than 75%), the visible and near infrared (VNIR) spectral regions better enhance the buried man-made structures. In particular, if the structures are covered by more than 75% of vegetation the two most promising wavelengths for their detection are the chlorophyll peak at 0.56 m (Visible region) and the red edge region (0.67 to 0.72 m; NIR region). This result confirms that the variation induced by the subsurface structures (e.g., stone walls, tile concentrations, pavements near the surface, road networks) to the natural vegetation growth and/or colour (i.e., for different stress factors) is primarily detectable by the chlorophyll peak and the red edge region applied for the vegetation stress detection. Whereas, if dry soils cover the structures (occurrence higher than 75%), both the VNIR and thermal infrared (TIR) regions are suitable to detect the subsurface structures. This work demonstrates that airborne reflectances and emissivities data, even though at different spatial/spectral resolutions and acquisition time represent an effective and rapid tool to detect subsurface structures within different land cover contexts. As concluding results, this study reveals that the airborne multi/hyperspectral image processing can be an effective and cost-efficient tool to perform a preliminary analysis of those areas where large cultural heritage assets prioritising and localizing the sites where to apply near surface geophysics surveys. Spectral Region Spectral Resolution ( m )Spectral Range ( m) Spatial Resolution (m)IFOV (deg) ATM VIS-NIR SWIR-TIR (tot 12 ch) variable from 24 to 3100 0.42 - 1150 2 0.143 CASI VNIR (48 ch.) 0.01 0.40-0.94 2 0.115 MIVIS VNIR (28ch.) 0.02 (VIS) 0.05 (NIR) 0.43-0.83 (VIS) 1.15-1.55 (NIR) 6 - 7 0.115 SWIR (64ch.) 0.09 1.983-2.478 TIR (10ch.) 0.34-0.54 8.180-12.700 Table 1. Characteristics of airborne sensors used for the Arpi test area. 1 References 2 [1] Beck, A., Philip, G., Abdulkarim, M. and Donoghue, D., 2007. Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity, 81: 161-175. 3 [2] Altaweel, M., 2005. The Use of ASTER Satellite Imagery in Archaeological Contexts. Archaeological Prospection, 12: 151- 166. 4 [3] Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. of Cultural Heritage 2007, 8, 272-283. 5 [4] Kucukkaya, A.G. Photogrammetry and remote sensing in archaeology. J. Quant. Spectrosc. Radiat. Transfer 2004, 97(1-3), 83-97. [5] Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. of Archaeological Science 2007, 34, 795-803.

  16. Simulated laser fluorosensor signals from subsurface chlorophyll distributions

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Khatun, S.; Punjabi, A.; Poole, L.

    1986-01-01

    A semianalytic Monte Carlo model has been used to simulate laser fluorosensor signals returned from subsurface distributions of chlorophyll. This study assumes the only constituent of the ocean medium is the common coastal zone dinoflagellate Prorocentrum minimum. The concentration is represented by Gaussian distributions in which the location of the distribution maximum and the standard deviation are variable. Most of the qualitative features observed in the fluorescence signal for total chlorophyll concentrations up to 1.0 microg/liter can be accounted for with a simple analytic solution assuming a rectangular chlorophyll distribution function.

  17. Imaging of Subsurface Corrosion Using Gradient-Field Pulsed Eddy Current Probes with Uniform Field Excitation

    PubMed Central

    Ren, Shuting; Yan, Bei; Zainal Abidin, Ilham Mukriz; Wang, Yi

    2017-01-01

    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size. PMID:28758985

  18. Imaging of Subsurface Corrosion Using Gradient-Field Pulsed Eddy Current Probes with Uniform Field Excitation.

    PubMed

    Li, Yong; Ren, Shuting; Yan, Bei; Zainal Abidin, Ilham Mukriz; Wang, Yi

    2017-07-31

    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.

  19. Structural adjustment for accurate conditioning in large-scale subsurface systems

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman

    2017-03-01

    Most of the current subsurface simulation approaches consider a priority list for honoring the well and any other auxiliary data, and eventually adopt a middle ground between the quality of the model and conditioning it to hard data. However, as the number of datasets increases, such methods often produce undesirable features in the subsurface model. Due to their high flexibility, subsurface modeling based on training images (TIs) is becoming popular. Providing comprehensive TIs remains, however, an outstanding problem. In addition, identifying a pattern similar to those in the TI that honors the well and other conditioning data is often difficult. Moreover, the current subsurface modeling approaches do not account for small perturbations that may occur in a subsurface system. Such perturbations are active in most of the depositional systems. In this paper, a new methodology is presented that is based on an irregular gridding scheme that accounts for incomplete TIs and minor offsets. Use of the methodology enables one to use a small or incomplete TI and adaptively change the patterns in the simulation grid in order to simultaneously honor the well data and take into account the effect of the local offsets. Furthermore, the proposed method was used on various complex process-based models and their structures are deformed for matching with the conditioning point data. The accuracy and robustness of the proposed algorithm are successfully demonstrated by applying it to models of several complex examples.

  20. Electrical Conductivity Imaging Using Controlled Source Electromagnetics for Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Miller, C. R.; Routh, P. S.; Donaldson, P. R.

    2004-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.

  1. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy

    PubMed Central

    Goetz, Martin; Memadathil, Beena; Biesterfeld, Stefan; Schneider, Constantin; Gregor, Sebastian; Galle, Peter R; Neurath, Markus F; Kiesslich, Ralf

    2007-01-01

    AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation. RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice. Real time microscopic imaging with the confocal mini-microscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging. CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients. PMID:17465494

  2. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aklujkar, Muktak; Young, Nelson D; Holmes, Dawn

    2010-01-01

    Background. Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results. Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurfacemore » Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion. Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in subsurface environments, compared to non-subsurface Geobacter species, such as the ability to disproportionate fumarate, more efficient oxidation of propionate, enhanced responses to oxygen stress, and dependence on the environment for a vitamin requirement. Therefore, an understanding of the activity of Geobacter species in the subsurface is more likely to benefit from studies of subsurface isolates such as G. bemidjiensis than from the non-subsurface model species studied so far.« less

  3. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  4. Microstructural investigation of vintage pipeline steels highly susceptible to stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Torres, Monica

    The use of pipelines for the transmission of gas offers not only efficiency, but a number of economic advantages. Nevertheless, pipelines are subject to aggressive operating conditions and environments which can lead to in-service degradation [1] and thus to failures. These failures can have catastrophic consequences, such as environmental damage and loss of life [2]. One of the most dangerous threats to pipeline integrity is stress corrosion cracking (SCC). Despite the substantial progress that has been achieved in the field, due to the complex nature of this phenomenon there is still not a complete understanding of this form of external corrosion. This makes its detection and prevention a challenge and therefore a risk to pipeline integrity, and most importantly, to the safety of the population. SCC cracks are the result of the interaction between a corrosive environment, applied stresses, and a susceptible microstructure. To date, what defines a susceptible microstructure remains ambiguous, as SCC has been observed in a range of steel grades, microstructures, chemical composition, and grain sizes. Therefore, in order to be able to accurately predict and prevent this hazardous form of corrosion, it is imperative to advance our knowledge on the subject and gain a better understanding on the microstructural features of highly susceptible pipeline materials, especially in the subsurface zone where crack nucleation must take place. Therefore, a microstructural characterization of the region near the surface layer was carried-out utilizing TEM. TEM analysis revealed the dislocation character, ferrite morphology, and apparent carbide precipitation in some grain boundaries. Furthermore, light microscopy, SEM, and hardness testing were performed to expand our knowledge on the microscopical features of highly SCC susceptible service components. This investigation presents a new approach to SCC characterization, which exposed the sub-surface region microscopical characteristics of service components with confirmed SCC.

  5. Examining Mars at Many Levels (Artist Concept)

    NASA Image and Video Library

    2005-03-23

    This artist's concept represents the "Follow the Water" theme of NASA's Mars Reconnaissance Orbiter mission. The orbiter's science instruments monitor the present water cycle in the Mars atmosphere and the associated deposition and sublimation of water ice on the surface, while probing the subsurface to see how deep the water-ice reservoir detected by Mars Odyssey extends. At the same time, Mars Reconnaissance Orbiter will search for surface features and minerals (such as carbonates and sulfates) that record the extended presence of liquid water on the surface earlier in the planet's history. The instruments involved are the Shallow Subsurface Radar, the Compact Reconnaissance Imaging Spectrometer for Mars, the Mars Color Imager, the High Resolution Imaging Science Experiment, the Context Camera and the Mars Climate Sounder. To the far left, the radar antenna beams down and "sees" into the first few hundred feet (up to 1 kilometer) of Mars' crust. Just to the right of that, the next beam highlights the data received from the imaging spectrometer, which identifies minerals on the surface. The next beam represents the high-resolution camera, which can "zoom in" on local targets, providing the highest-resolution orbital images yet of features such as craters and gullies and rocks. The beam that shines almost horizontally is that of the Mars Climate Sounder. This instrument is critical to analyzing the current climate of Mars since it observes the temperature, humidity, and dust content of the martian atmosphere, and their seasonal and year-to-year variations. Meanwhile, the Mars Color Imager observes ice clouds, dust clouds and hazes, and the ozone distribution, producing daily global maps in multiple colors to monitor daily weather and seasonal changes. The electromagnetic spectrum is represented on the top right and individual instruments are placed where their capability lies. http://photojournal.jpl.nasa.gov/catalog/PIA07241

  6. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    USDA-ARS?s Scientific Manuscript database

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  7. Autonomous microexplosives subsurface tracing system final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less

  8. Development of hand-held thermographic inspection technologies.

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...

  9. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    NASA Astrophysics Data System (ADS)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a petroleum production plant, MS profiles consistent with the addition products of methylcycloalkenes were observed. This work helps attests to: 1) the extrapolatability of laboratory results to the field, 2) the unifying metabolic features for the anaerobic destruction of diverse types of hydrocarbons, and 3) how this information can be used to assess the intrinsic bioremediation processes in petroleum-contaminated environments.

  10. Seismic Characterization of the Blue Mountain Geothermal Site

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Matzel, E.; Cladouhos, T. T.

    2017-12-01

    All fluid injection activities have the potential to induce earthquakes by modifying the state of stress in the subsurface. In geothermal areas, small microearthquakes can be a beneficial outcome of these stress perturbations by providing direct subsurface information that can be used to better understand and manage the underground reservoir. These events can delineate the active portions of the subsurface that have slipped in response to pore fluid pressure changes or temperature changes during and after fluid injection. Here we investigate the seismic activity within the Blue Mountain Geothermal Power Plant located in Humboldt County, Nevada between December 2015 to May 2016. We compare the effectiveness of direct spatial-temporal cross-correlation templates with Matched Field Processing (MFP) derived templates and compare these results with earthquake detection results from a traditional STA/LTA algorithm. Preliminary results show significant clustering of microearthquakes, most probably influenced by plant operations. The significant increase in data availability that advanced earthquake detection methods can provide improves the statistical analyses of induced seismicity sequences, reveal critical information about the ongoing evolution of the subsurface reservoir, and better informs the construction of models for hazard assessments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    NASA Astrophysics Data System (ADS)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  12. Subsurface site conditions and geology in the San Fernando earthquake area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, C.M.; Johnson, J.A.; Kharraz, Y.

    1971-12-01

    The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less

  13. iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems

    NASA Astrophysics Data System (ADS)

    Finsterle, S.; Commer, M.; Edmiston, J. K.; Jung, Y.; Kowalsky, M. B.; Pau, G. S. H.; Wainwright, H. M.; Zhang, Y.

    2017-11-01

    iTOUGH2 is a simulation-optimization framework for the TOUGH suite of nonisothermal multiphase flow models and related simulators of geophysical, geochemical, and geomechanical processes. After appropriate parameterization of subsurface structures and their properties, iTOUGH2 runs simulations for multiple parameter sets and analyzes the resulting output for parameter estimation through automatic model calibration, local and global sensitivity analyses, data-worth analyses, and uncertainty propagation analyses. Development of iTOUGH2 is driven by scientific challenges and user needs, with new capabilities continually added to both the forward simulator and the optimization framework. This review article provides a summary description of methods and features implemented in iTOUGH2, and discusses the usefulness and limitations of an integrated simulation-optimization workflow in support of the characterization and analysis of complex multiphysics subsurface systems.

  14. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    PubMed

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  15. Detection of subsurface-intensified eddies from observations of the sea-surface: a case study for Mediterranean Water Eddies in a long-term high-resolution simulation

    NASA Astrophysics Data System (ADS)

    Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand

    2017-04-01

    Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.

  16. Solfatara volcano subsurface imaging: two different approaches to process and interpret multi-variate data sets

    NASA Astrophysics Data System (ADS)

    Bernardinetti, Stefano; Bruno, Pier Paolo; Lavoué, François; Gresse, Marceau; Vandemeulebrouck, Jean; Revil, André

    2017-04-01

    The need to reduce model uncertainty and produce a more reliable geophysical imaging and interpretations is nowadays a fundamental task required to geophysics techniques applied in complex environments such as Solfatara Volcano. The use of independent geophysical methods allows to obtain many information on the subsurface due to the different sensitivities of the data towards parameters such as compressional and shearing wave velocities, bulk electrical conductivity, or density. The joint processing of these multiple physical properties can lead to a very detailed characterization of the subsurface and therefore enhance our imaging and our interpretation. In this work, we develop two different processing approaches based on reflection seismology and seismic P-wave tomography on one hand, and electrical data acquired over the same line, on the other hand. From these data, we obtain an image-guided electrical resistivity tomography and a post processing integration of tomographic results. The image-guided electrical resistivity tomography is obtained by regularizing the inversion of the electrical data with structural constraints extracted from a migrated seismic section using image processing tools. This approach enables to focus the reconstruction of electrical resistivity anomalies along the features visible in the seismic section, and acts as a guide for interpretation in terms of subsurface structures and processes. To integrate co-registrated P-wave velocity and electrical resistivity values, we apply a data mining tool, the k-means algorithm, to individuate relationships between the two set of variables. This algorithm permits to individuate different clusters with the objective to minimize the sum of squared Euclidean distances within each cluster and maximize it between clusters for the multivariate data set. We obtain a partitioning of the multivariate data set in a finite number of well-correlated clusters, representative of the optimum clustering of our geophysical variables (P-wave velocities and electrical resistivities). The result is an integrated tomography that shows a finite number of homogeneous geophysical facies, and therefore permits to highlight the main geological features of the subsurface.

  17. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa’s subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  18. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  19. Astrobiology of Jupiter's icy moons

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.; Delory, Gregory; Pitman, Joseph T.; Rieboldt, Sarah

    2004-11-01

    Jupiter's Icy Moons, Europa, Ganymede and Callisto, may possess energy sources, biogenic molecules, and oceans below their icy crusts, thus indicating a strong possibility that they were abodes for present or past life. Life in Earth's icy areas lives in a wide variety of habitats associated with the ice, in the water column below the ice, and on the floor of the ocean below the ice. Similar habitats may exist on JIM, have been transported to the icy crust, and be exposed in tectonic or impact features. Europa has a young, dynamic surface with many outcrops exposing older ice, fresh ice, possible materials from the subsurface ocean, and a few impact craters. Ganymede has older, darker, tectonized terrains surrounded by light ice. Callisto has a much older, heavily impacted surface devoid of significant tectonic structures. Past and present life habitats may be exposed in these features, making Europa the most favorable target while Ganymede is of interest, and Callisto seems more unlikely to have detectable life. A proper search strategy requires detailed orbital imaging and spectrometry of the likely places, and surface data collection with microscopic, spectrometric, and biochemical instruments.

  20. An electromagnetic induction method for underground target detection and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect amore » drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.« less

  1. Geological evidence for solid-state convection in Europa's ice shell.

    PubMed

    Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L

    1998-01-22

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  2. Geological evidence for solid-state convection in Europa's ice shell

    USGS Publications Warehouse

    Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.

    1998-01-01

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  3. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  4. The potential of audiomagnetotellurics in the study of geothermal fields: A case study from the northern segment of the La Candelaria Range, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Barcelona, Hernan; Favetto, Alicia; Peri, Veronica Gisel; Pomposiello, Cristina; Ungarelli, Carlo

    2013-01-01

    Despite its reduced penetration depth, audiomagnetotelluric (AMT) studies can be used to determine a broad range of features related to little studied geothermal fields. This technique requires a stepwise interpretation of results taking into consideration diverse information (e.g. topographic, hydrological, geological and/or structural data) to constrain the characteristics of the study area. In this work, an AMT study was performed at the hot springs in the northern segment of the La Candelaria Range in order to characterize the area at depth. Geometric aspects of the shallow subsurface were determined based on the dimensional and distortion analysis of the impedance tensors. Also, the correlation between structural features and regional strikes allowed us to define two geoelectric domains, useful to determine the controls on fluid circulation. The subsurface resistivity distribution was determined through 1D and 2D models. The patterns of the 1D models were compared with the morpho-structure of the range. Shallow and deep conductive zones were defined and a possible shallow geothermal system scheme proposed. A strong correlation was found between the AMT results and the geological framework of the region, showing the relevance of using AMT in geothermal areas during the early stages of subsurface prospecting.

  5. Subsurface Investigation using 2D Resistivity and Ground Penetrating Radar at Teluk Kumbar, Penang

    NASA Astrophysics Data System (ADS)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    The objective of this study is to determine the structure and condition of the subsurface by using 2D resistivity and Ground Penetrating Radar (GPR) methods. The study was conducted at SK Sungai Batu, Teluk Kumbar, Penang Island. For 2D resistivity method, Wenner-Schlumberger array was used while for GPR, 250 MHz antenna was used at the site. The survey consists of 200m length survey line. GPR result shows that there is high intensity of EM. 2D resistivity result shows that the low resistivity region (200 Ωm to 340 Ωm) appears to be at the centre of the survey line from depth 7 m to 13 m. Meanwhile, the higher resistivity region (4000 Ωm to 6000 Ωm) may indicate the bedrock structure of the subsurface, which is the granitic rock. This region is bedrock which rested at depth 14 m and below. In conclusion, data obtained from GPR and 2D resistivity methods can be easily correlated to determine the features of the subsurface.

  6. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications.

    PubMed

    Jehlicka, J; Edwards, H G M; Culka, A

    2010-07-13

    Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.

  7. Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark D. McKay; Matthew O. Anderson

    2011-08-01

    Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide areamore » assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of dynamic acquisition, i.e. survey mission in-flight reprioritization).« less

  8. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype.

    PubMed

    Edwards, Howell G M; Hutchinson, Ian; Ingley, Richard

    2012-10-01

    The molecular specificity of Raman spectroscopy provides a powerful tool for the analytical interrogation of mineralogical and many biological specimens. The Raman Laser Spectrometer (RLS) is a compact Raman spectrometer under development for deployment on the Martian surface as part of the forthcoming ESA ExoMars mission. This will be the first Raman instrument deployed in space. The scientific interpretation of the data emerging from such an instrument not only addresses the geological and mineral composition of the specimens but also enables an assessment to be made of organic biomaterials that may be preserved in the planetary geological record. The latter evidence centres on the residual and distinctive chemistry relating to the biological adaptation of the geological matrix that has occurred as a result of extremophilic organisms colonizing suitable geological niches for their survival in environmentally stressed habitats on Mars. These biogeological modifications have been studied terrestrially for Mars analogue sites and consist of both a geological component and residual key organic biomarkers, the recognition of which would be a prime factor in life detection surveys of a planetary surface and subsurface. In this paper, the protocols required for the Raman spectral discrimination of key biogeological features that may be detectable on the Martian planetary surface or subsurface are developed using the UK breadboard (UKBB) instrument. This instrument has been constructed to be functionally equivalent to the RLS flight instrument design in order to evaluate the feasible science return of the instrument which will finally be delivered to Mars. Initial Raman measurements using the UKBB are presented and compared with the performance of a commercial laboratory Raman microscope. The initial measurements reported here demonstrate this flight-like prototype achieves straightforward detection of biological signatures contained in geological matrices with Raman band signal to noise ratios high enough to determine sample composition by inspection and without the need for deconvolution or further processing.

  9. Determination of anisotropic karst features in the Biscayne Aquifer using multi electrical resistivity imaging techniques

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, A.; Whitman, D.

    2012-12-01

    The Biscayne Aquifer of Southeast Florida is characterized by limestone cavities and solution hole features that are often beneath the surface and are difficult to detect and quantify accurately. Electrical resistivity imaging (ERI) is often used to image the subsurface for detection of cavities and other karst features. A recent regional study of electrical anisotropy derived from rotated square array measurements measured coefficients of anisotropy of 1.12 or less. At one particular site however, the coefficient of anisotropy was found to be as high as 1.36 with the average minimum resistivity direction trending 105°. The highest values of anisotropy are found at squares array sizes equivalent to effective depths of 4-9m. The cause of this higher anisotropy and its associated orientation was investigated using a combination of azimuthal 2-D profiles and a 3-D tomography survey using a mixed dipole gradient array. Results indicate a low resistivity zone at a depth of 5-10 m in the saturated zone (10-40Ωm) trending 109° in the 2-D profiles and the presence of low resistivity zone (14-43Ωm) trending 90-105° in the 3-D model. This observed lower resistivity zone is at least 50% lower than the surrounding resistivity. Although further geophysical studies are planned at the site, the primary analysis from these three contrasting ERI techniques indicates that the cause of higher anisotropy might be due to the presence of a solution cavity oriented in the E-SE direction.

  10. User’s guide to the collection and analysis of tree cores to assess the distribution of subsurface volatile organic compounds

    USGS Publications Warehouse

    Vroblesky, Don A.

    2008-01-01

    Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.

  11. An Evaluation of Subsurface Plumbing of a Hydrothermal Seep Field and Possible Influence from Local Seismicity from New Time-Series Data Collected at the Davis-Schrimpf Seep Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Rao, A.; Onderdonk, N.

    2016-12-01

    The Davis­-Schrimpf Seep Field (DSSF) is a group of approximately 50 geothermal mud seeps (gryphons) in the Salton Trough of southeastern California. Its location puts it in line with the mapped San Andreas Fault, if extended further south, as well as within the poorly-understood Brawley Seismic Zone. Much of the geomorphology, geochemistry, and other characteristics of the DSSF have been analyzed, but its subsurface structure remains unknown. Here we present data and interpretations from five new temperature time­series from four separate gryphons at the DSSF, and compare them both amongst themselves, and within the context of all previously collected data to identify possible patterns constraining the subsurface dynamics. Simultaneously collected time-series from different seeps were cross-correlated to quantify similarity. All years' time-series were checked against the record of local seismicity to identify any seismic influence on temperature excursions. Time-series captured from the same feature in different years were statistically summarized and the results plotted to examine their evolution over time. We found that adjacent vents often alternate in temperature, suggesting a switching of flow path of the erupted mud at the scale of a few meters or less. Noticeable warming over time was observed in most of the features with time-series covering multiple years. No synchronicity was observed between DSSF features' temperature excursions, and seismic events within a 24 kilometer radius covering most of the width of the surrounding Salton Trough.

  12. Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Shelegedin, V. N.; Vdovina, M. A.; Pavlov, A. A.

    2010-01-01

    Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01-0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith.

  13. Interpretation of Data from Uphole Refraction Surveys

    DTIC Science & Technology

    1980-06-01

    Seismic refraction Seismic refraction method Seismic surveys Subsurface exploration ""-. 20, AI0SrRACT -(CmtuamU 00MvaO eL If naaaaamr and Identlfyby...by the presence of subsurface cavities and large cavities are identifiable, the sensitivity of the method is marginal for practical use in cavity...detection. Some cavities large enough to be of engineering signifi- cance (e.g., a tunnel of h-m diameter) may be practically undetectable by this method

  14. Subsurface-channeling-like energy loss structure of the skipping motion on an ionic crystal.

    PubMed

    Villette, J; Borisov, A G; Khemliche, H; Momeni, A; Roncin, P

    2000-10-09

    The skipping motion of Ne+ ions in grazing scattering from the LiF(001) surface is studied for velocity below 0.1 a.u. with a time-of-flight technique. It is demonstrated that suppression of electronic excitation and dominance of optical phonon excitation in the projectile stopping results in an odd 1,3,5,... progression of the energy loss peaks, a feature usually ascribed to subsurface channeling. The experimental findings are well reproduced by parameter-free model calculations where thermal vibrations are the dominant cause for the ion trapping and detrapping.

  15. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  16. Statistical analysis of the horizontal divergent flow in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Hayashi, Keiji; Yokoyama, Takaaki, E-mail: shin.toriumi@nao.ac.jp

    Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23more » flux emergence events over a period of 14 months, the total flux of which ranges from 10{sup 20} to 10{sup 22} Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s{sup –1}. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s{sup –1}. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is a rather common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has the capability of determining the subsurface properties of emerging fields that cannot be directly measured.« less

  17. Exploration for fractured petroleum reservoirs using radar/Landsat merge combinations

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Borengasser, M.; Tolman, D.; Elachi, C.

    1981-01-01

    Since fractures are commonly propagated upward and reflected at the earth's surface as subtle linears, detection of these surface features is extremely important in many phases of petroleum exploration and development. To document the usefulness of microwave analysis for petroleum exploration, the Arkansas part of the Arkoma basin is selected as a prime test site. The research plan involves comparing the aircraft microwave imagery and Landsat imagery in an area where significant subsurface borehole geophysical data are available. In the northern Arkoma basin, a positive correlation between the number of linears in a given area and production from cherty carbonate strata is found. In the southern part of the basin, little relationship is discernible between surface structure and gas production, and no correlation is found between gas productivity and linear proximity or linear density as determined from remote sensor data.

  18. Soil and Water Pollution in a Banana Production Region in Tropical Mexico

    PubMed Central

    Ramos, Franzisco Que; de J. Bastidas-Bastidas, Pedro; Díaz-González, Gilberto; Bello-Mendoza, Ricardo; Huerta-Lwanga, Esperanza; Ruiz-Suárez, Luz E.

    2010-01-01

    The effects of abundant Mancozeb (Mn, Zn—bisdithiocarbamate) applications (2.5 kg ha−1week−1 for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 μg L−1, respectively), but not with manganese. In deep ground water, no ethylenethiourea was detected. The level of pollution in the region presents a worrisome risk for aquatic life and for human health. PMID:20734023

  19. Soil and water pollution in a banana production region in tropical Mexico.

    PubMed

    Geissen, Violette; Ramos, Franzisco Que; de J Bastidas-Bastidas, Pedro; Díaz-González, Gilberto; Bello-Mendoza, Ricardo; Huerta-Lwanga, Esperanza; Ruiz-Suárez, Luz E

    2010-10-01

    The effects of abundant Mancozeb (Mn, Zn-bisdithiocarbamate) applications (2.5 kg ha⁻¹week⁻¹ for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 μg L⁻¹, respectively), but not with manganese. In deep ground water, no ethylenethiourea was detected. The level of pollution in the region presents a worrisome risk for aquatic life and for human health.

  20. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  1. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  2. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  3. Understanding Subsurface Geoelectrical and Structural Constrains for Low Frequency Radar Sounding of Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Heggy, Essam; Bruzzone, Lorenzo; Beck, Pierre; Doute, Sylvain; Gim, Youngyu; Herique, Alain; Kofman, Wlodek; Orosei, Roberto; Plaut, Jeffery; Rosen, Paul; Seu, Roberto

    2010-05-01

    Thermally stable Ice sheets on earth are known to be among the most favorable geophysical contexts for deep subsurface sounding radars. Penetrations ranging from few to several hundreds of meters have been observed at 10 to 60 MHz when sounding homogenous and pure ice sheets in Antarctica and in Alaskan glaciers. Unlike the terrestrial case, ice sheets on Jovian satellites are older formations with a more complex matrix of mineral inclusions with an even three dimensional distribution on the surface and subsurface that is yet to be understood in order to quantify its effect on the dielectric attenuation at the experiment sounding frequencies. Moreover, ridges, tectonic and shock features, may results in a complex and heterogeneous subsurface structure that can induce scattering attenuation with different amplitudes depending on the subsurface heterogeneity levels. Such attenuation phenomena's has to be accounted in the instrument design and future data analysis in order to optimize the science return, reduce mission risk and define proper operation modes. In order to address those challenges in the current performance studies and instrument design of the proposed radar sounding experiments, we present an attempt to quantify both the dielectric and scattering losses on both icy satellites, Ganymede and Europa, based on experimental dielectric characterization of relevant icy-dust mixtures samples, field work from analog environment and radar propagation simulations in parametric subsurface geophysical models representing potential geological scenarios of the two Jovian satellites. Our preliminary results suggest that the use of a dual band radar enable to overcome several of these constrains and reduces ambiguities associated subsurface interface mapping. Acknowledgement. This research is carried out by the Jet Propulsion Laboratory/Caltech, under a grant from the National Aeronautics and Space Administration.

  4. Temporal GPR Imaging of an Ethanol Release Within a Laboratory-Scaled Sand Tank

    EPA Science Inventory

    Within the last decade efforts in geophysical detection and monitoring of fossil fuel releases into the subsurface have shown increasing success, including the ability to geophysically detect and delineate enhanced and natural biodegradation and remediation activities. The subst...

  5. Partitioning Tracer Test for Detection, Estimation, and Remediation Performance Assessment of Subsurface Nonaqueous Phase Liquids

    NASA Astrophysics Data System (ADS)

    Jin, Minquan; Delshad, Mojdeh; Dwarakanath, Varadarajan; McKinney, Daene C.; Pope, Gary A.; Sepehrnoori, Kamy; Tilburg, Charles E.; Jackson, Richard E.

    1995-05-01

    In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer tests results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations.

  6. Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, M.; Delshad, M.; Dwarakanath, V.

    1995-05-01

    In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypotheticalmore » two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.« less

  7. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller,more » the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.« less

  9. Long-Wave Infrared Thermophotonic Imaging of Demineralization in Dental Hard Tissue

    NASA Astrophysics Data System (ADS)

    Ojaghi, A.; Parkhimchyk, A.; Tabatabaei, N.

    2016-08-01

    Dental caries remains the most prevalent chronic disease in both children and adults worldwide. To address this prevalence through disease prevention and management, dentists need tools capable of detecting caries at early stages of formation. Looking into the physics of light propagation in teeth, this study presents a clinically and commercially viable platform technology for thermophotonic detection of early dental caries using an inexpensive long-wavelength infrared (LWIR; 8 μm to 14 μm) camera. The developed system incorporates intensity-modulated light to generate a thermal-wave field inside enamel and uses the subsequent infrared emission of the thermal-wave field to detect early caries. It was found that the greater light absorption at caries sites shifts the thermal-wave field centroid, providing contrast between early caries and intact enamel. Use of LWIR detection band in dental samples is novel and beneficial over the conventional mid-wavelength infrared band (3 μm to 5 μm) as it suppresses the masking effect of the instantaneous radiative emission from subsurface features due to the minimal transmittance of enamel in the LWIR band. The efficacy of the LWIR system is verified though experiments carried out on nonbiological test samples as well as on teeth with natural and artificially induced caries. The results suggest that the developed LWIR technology is an affordable early dental caries detection system suitable for commercialization/translation to Dentistry.

  10. Detection and Localization of Subsurface Two-Dimensional Metallic Objects

    NASA Astrophysics Data System (ADS)

    Meschino, S.; Pajewski, L.; Schettini, G.

    2009-04-01

    "Roma Tre" University, Applied Electronics Dept.v. Vasca Navale 84, 00146 Rome, Italy Non-invasive identification of buried objects in the near-field of a receiver array is a subject of great interest, due to its application to the remote sensing of the earth's subsurface, to the detection of landmines, pipes, conduits, to the archaeological site characterization, and more. In this work, we present a Sub-Array Processing (SAP) approach for the detection and localization of subsurface perfectly-conducting circular cylinders. We consider a plane wave illuminating the region of interest, which is assumed to be a homogeneous, unlossy medium of unknown permittivity containing one or more targets. In a first step, we partition the receiver array so that the field scattered from the targets result to be locally plane at each sub-array. Then, we apply a Direction of Arrival (DOA) technique to obtain a set of angles for each locally plane wave, and triangulate these directions obtaining a collection of crossing crowding in the expected object locations [1]. We compare several DOA algorithms such as the traditional Bartlett and Capon Beamforming, the Pisarenko Harmonic Decomposition (PHD), the Minimum-Norm method, the Multiple Signal Classification (MUSIC) and the Estimation of Signal Parameters via Rotational Techinque (ESPRIT) [2]. In a second stage, we develop a statistical Poisson based model to manage the crossing pattern in order to extract the probable target's centre position. In particular, if the crossings are Poisson distributed, it is possible to feature two different distribution parameters [3]. These two parameters perform two density rate for the crossings, so that we can previously divide the crossing pattern in a certain number of equal-size windows and we can collect the windows of the crossing pattern with low rate parameters (that probably are background windows) and remove them. In this way we can consider only the high rate parameter windows (that most probably locate the target) and extract the center position of the object. We also consider some other localization-connected aspects. For example how to obtain a likely estimation of the soil permittivity and of the cylinders radius. Finally, when multiple objects are present, we refine our localization procedure by performing a Clustering Analysis of the crossing pattern. In particular, we apply the K-means algorithm to extract the coordinates of the objects centroids and the clusters extension. References [1] Şahin A., Miller L., "Object Detection Using High Resolution Near-Field Array Processing", IEEE Trans. on Geoscience and Remote Sensing, vol.39, no.1, Jan. 2001, pp. 136-141. [2] Gross F.B., "Smart Antennas for Wireless Communications", Mc.Graw-Hill 2005. [3] Hoaglin D.C., "A Poisonnes Plot", The American Statistician, vol.34, no.3 August 1980, pp.146-149.

  11. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  12. Time-Resolved Data Acquisition for In Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julia Gates; Burger, Dan M.; Burger, Arnold; Evans, Larry G.; Parsons, Ann M.; Starr, Richard D.; Stassun, Keivan G.

    2012-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface geochemistry of planetary bodies in situ. All previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on a constant neutron source produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  13. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  14. Terrestrial rock glaciers: a potential analog for Martian lobate flow features (LFF)

    NASA Astrophysics Data System (ADS)

    Sinha, Rishitosh K.; Vijayan, Sivaprahasam; Bharti, Rajiv R.

    2016-05-01

    Rock glaciers, regarded as cryospheric ice/water resource in the terrestrial-glacial systems based on their tongue/lobate-shaped flow characteristic and subsurface investigation using ground-penetrating radar. We examined the subsurface, geomorphology, climate-sensitivity and thermophysical properties of a Lobate Flow Feature (LFF) on Mars (30°-60° N and S hemispheres) to compare/assess the potentials of rock glaciers as an analog in suggesting LFFs to be a source of subsurface ice/water. LFFs are generally observed at the foot of impact craters' wall. HiRISE/CTX imageries from MRO spacecraft were used for geomorphological investigation of LFF using ArcMap-10.0 and subsurface investigation was carried out using data from MRO-SHARAD (shallow radar) after integrating with SiesWare-8.0. ENVI-5.0 was used to retrieve thermophysical properties of LFF from nighttime datasets (12.57 μm) acquired by THEMIS instrument-onboard the Mars Odyssey spacecraft and derive LFFs morphometry from MOLA altimeter point tracks onboard MGS spacecraft. Integrating crater chronology tool (Craterstats) with Arc Map, we have derived the formation age of LFF. Our investigation and comparison of LFF to rock glaciers revealed: (1) LFFs have preserved ice at depth 50m as revealed from SHARAD radargram and top-layer composed of rocky-debris material with thermal inertia ( 300-350 Jm-2 K-1s-1/2). (2) LFF formation age ( 10-100 Ma) corresponds to moderate scale debris covered glaciation of a shorter-span suggesting high sensitivity to obliquity-driven climatic shifts. (3) Presence of polygon cracks and high linear-arcuate furrow-and-ridges on the surface indicates presence of buried ice. This work is a significant step towards suggesting LFF to be a potential source of present-day stored ice/water on Mars.

  15. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.

    2012-01-01

    Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.

  16. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer

    PubMed Central

    Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R

    2015-01-01

    Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoak, T.E.; Klawitter, A.L.

    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau,more » Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.« less

  18. Reactive Oxygen Species are Ubiquitous along Subsurface Redox Gradients

    NASA Astrophysics Data System (ADS)

    Nico, P. S.; Yuan, X.; Davis, J. A.; Dwivedi, D.; Williams, K. H.; Bhattacharyya, A.; Fox, P. M.

    2016-12-01

    Reactive oxygen species (hydroxyl radical, superoxide, hydrogen peroxide, etc.) are known to be important intermediates in many biological and earth system processes. They have been particularly well studied in the realms of atmospheric chemistry and aquatic photochemistry. However, recently there is increasing evidence that they are also present in impactful quantities in dark systems as a result of both biotic and abiotic reactions. Herein we will present a complementary suite of laboratory and field studies examining the presence and production of hydrogen peroxide under relevant subsurface conditions. The laboratory work examines the redox cycling between reduced organic matter, molecular oxygen, and Fe which results in not only the production of hydrogen peroxide and oxidation of organic functional groups but also the maintenance of steady-state concentration of Fe(II) under fully oxygenated aqueous conditions. The field studies involve three distinct locations, namely a shallow subsurface aquifer, a hyporheic zone redox gradient across a river meander, and a hillside shale seep. In all cases detectable quantities (tens of nanomolar) of hydrogen peroxide were measured. In general, concentrations peak under transitional redox conditions where there is the simultaneous presence of reduced Fe, organic matter, and at least trace dissolved oxygen. Many, but not all, of the observed dynamics in hydrogen peroxide production can be reproduced by a simple kinetic model representing the reactions between Fe, organic matter, and molecular oxygen, but many questions remain regarding the role of microorganisms and other redox active chemical species in determining the detected hydrogen peroxide concentrations. The consistent detection of hydrogen peroxide at these disparate locations supports the hypothesis that hydrogen peroxide, and by extension, the entire suite of reactive oxygen species are ubiquitous along subsurface redox gradients.

  19. Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paggel, J.J.; Hasselblatt, M.; Horn, K.

    1997-04-01

    The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted inmore » terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.« less

  20. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  1. Mapping soil features from multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1974-01-01

    In being able to identify quickly gross variations in soil features, the computer-aided classification of multispectral scanner data can be an effective aid to soil surveying. Variations in soil tone are easily seen as well as variations in features related to soil tone, e.g., drainage patterns and organic matter content. Changes in surface texture also affect the reflectance properties of soils. Inasmuch as conventional soil classes are based on both surface and subsurface soil characteristics, the technique described here can be expected only to augment and not replace traditional soil mapping.

  2. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasrotia, Puja; Green, Stefan; Canion, Andy

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungalmore » communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.« less

  3. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  4. Washington Geothermal Play Fairway Analysis Data From Potential Field Studies

    DOE Data Explorer

    Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William

    2017-12-20

    A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.

  5. Large-scale fluid-deposited mineralization in Margaritifer Terra, Mars

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.; Potter-McIntyre, Sally L.; Hynek, Brian M.

    2017-07-01

    Mineral deposits precipitated from subsurface-sourced fluids are a key astrobiological detection target on Mars, due to the long-term viability of the subsurface as a habitat for life and the ability of precipitated minerals to preserve biosignatures. We report morphological and stratigraphic evidence for ridges along fractures in impact crater floors in Margaritifer Terra. Parallels with terrestrial analog environments and the regional context indicate that two observed ridge types are best explained by groundwater-emplaced cementation in the shallow subsurface and higher-temperature hydrothermal deposition at the surface, respectively. Both mechanisms have considerable astrobiological significance. Finally, we propose that morphologically similar ridges previously documented at the Mars 2020 landing site in NE Syrtis Major may have formed by similar mechanisms.

  6. Evaluation of subsurface damage in concrete deck joints using impact echo method

    DOE PAGES

    Rickard, Larry; Choi, Wonchang

    2016-01-01

    Many factors can affect the overall performance and longevity of highway bridges, including the integrity of their deck joints. This study focuses on the evaluation of subsurface damage in deteriorated concrete deck joints, which includes the delamination and corrosion of the reinforcement. Impact echo and surface wave technology, mainly a portable seismic property analyzer (PSPA), were employed to evaluate the structural deficiency of concrete joints. Laboratory tests of core samples were conducted to verify the nondestructive test results. As a result, the primary advantage of the PSPA as a bridge assessment tool lies in its ability to assess the concrete’smore » modulus and to detect subsurface defects at a particular point simultaneously.« less

  7. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2010-01-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).

  8. Contrasting styles of large-scale displacement of unconsolidated sand: examples from the early Jurassic Navajo Sandstone on the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Bryant, Gerald

    2015-04-01

    Large-scale soft-sediment deformation features in the Navajo Sandstone have been a topic of interest for nearly 40 years, ever since they were first explored as a criterion for discriminating between marine and continental processes in the depositional environment. For much of this time, evidence for large-scale sediment displacements was commonly attributed to processes of mass wasting. That is, gravity-driven movements of surficial sand. These slope failures were attributed to the inherent susceptibility of dune sand responding to environmental triggers such as earthquakes, floods, impacts, and the differential loading associated with dune topography. During the last decade, a new wave of research is focusing on the event significance of deformation features in more detail, revealing a broad diversity of large-scale deformation morphologies. This research has led to a better appreciation of subsurface dynamics in the early Jurassic deformation events recorded in the Navajo Sandstone, including the important role of intrastratal sediment flow. This report documents two illustrative examples of large-scale sediment displacements represented in extensive outcrops of the Navajo Sandstone along the Utah/Arizona border. Architectural relationships in these outcrops provide definitive constraints that enable the recognition of a large-scale sediment outflow, at one location, and an equally large-scale subsurface flow at the other. At both sites, evidence for associated processes of liquefaction appear at depths of at least 40 m below the original depositional surface, which is nearly an order of magnitude greater than has commonly been reported from modern settings. The surficial, mass flow feature displays attributes that are consistent with much smaller-scale sediment eruptions (sand volcanoes) that are often documented from modern earthquake zones, including the development of hydraulic pressure from localized, subsurface liquefaction and the subsequent escape of fluidized sand toward the unconfined conditions of the surface. The origin of the forces that produced the lateral, subsurface movement of a large body of sand at the other site is not readily apparent. The various constraints on modeling the generation of the lateral force required to produce the observed displacement are considered here, along with photodocumentation of key outcrop relationships.

  9. Profilometry and subsurface imaging in point of care diagnosis in ocular disease and lymphedema after breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Sayegh, Samir I.; Taghian, Alphonse

    2013-03-01

    Breast cancer-related lymphedema (BCRL) can be irreversible with profound negative impact on patients' quality of life. Programs that provide screening and active surveillance for BCRL are essential to determine whether early detection and intervention influences the course of lymphedema development. Established methods of quantitatively assessing lymphedema at early stages include "volume" methods such as perometry and bioimpedance spectroscopy. Here we demonstrate 1) Use of topographical techniques analogous to those used in corneal topography 2) Development of point-of-care lymphedema detection and characterization based on off-the-shelf hardward 3) The role of subsurface imaging 4) Multimodal diagnostics and integration yielding higher sensitivity/ specificity.

  10. Method and Apparatus for Computed Imaging Backscatter Radiography

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Meng, Christopher (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  11. Low Elevation Old Channel Features of the Willamette River Floodplain Support High Subsurface Denitrification Rates

    EPA Science Inventory

    Background/Question/Methods: Large river floodplains are poor nitrate pollution buffers when polluted groundwater moves beneath biogeochemically retentive zones prior to entering the main channel. However, in floodplain regions with extensive backwaters and organic carbon acc...

  12. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  13. Impacts of microtopographic snow-redistribution and lateral subsurface processeson hydrologic and thermal states in an Arctic polygonal ground ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  14. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    DOE PAGES

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...

    2018-01-08

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  15. Impacts of microtopographic snow-redistribution and lateral subsurface processeson hydrologic and thermal states in an Arctic polygonal ground ecosystem

    DOE PAGES

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...

    2018-01-08

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  16. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; Dafflon, Baptiste; Yuan, Fengming; Romanovsky, Vladimir E.

    2018-01-01

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ˜ 10 cm shallower and ˜ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ˜ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.

  17. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    PETERSEN SW

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associatedmore » with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground measurements to refine interpretations of AEM data; and (3) Improve the calibration and correlation of AEM information. The potential benefits of this project are as follows: (1) Develop a tool to map subsurface units at the Hanford Site in a rapid and cost effective manner; (2) Map groundwater pathways within the River Corridor; and (3) Aid development of the conceptual site model. If anomalies observed in the AEM data can be correlated with subsurface geology, then the rapid scanning and non-intrusive capabilities provided by the airborne surveys can be used at the Hanford Site to screen for areas that warrant further investigation.« less

  19. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  20. Measuring ground movement in geothermal areas of Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Lofgren, B. E.

    1974-01-01

    Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.

  1. Radio-interferometric imaging of the subsurface emissions from the planet Mercury

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; Zeilik, M.; Gisler, G. R.; Borovsky, J. E.; Baker, D. N.

    1987-01-01

    The distribution of total and polarized intensities from Mercury's subsurface layers have been mapped using VLA observations. The first detection of a hot pole along the Hermean equator is reported and modeled as black-body reradiation from preferential diurnal heating. These observations appear to rule out any internal sources of heat within Mercury. Polarized emission from the limb of the planet is also found, and is understood in terms of the dielectric properties of the Hermean surface.

  2. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less

  3. Analysis

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Maha; El-Sawy, El-Sawy K.; Gobashy, Mohamed M.

    2013-06-01

    Ar Rika fault zone constitutes one of the two major parts of the NW-SE Najd fault system (NFS), which is one of the most prominent structural features located in the east of the center of the Arabian Shield, Saudi Arabia. By using Enhancement Thematic Mapper data (ETM+) and Principle Component Analysis (PCA), surface geological characteristics, distribution of rock types, and the different trends of linear features and faults are determined in the study area. First and second order magnetic gradients of the geomagnetic field at the North East of Wadi Ar Rika have been calculated in the frequency domain to map both surface and subsurface lineaments and faults. Lineaments as deduced from previous studies, suggest an extension of the NFS beneath the cover rocks in the study area. In the present study, integration of magnetic gradients and remote sensing analysis that resulted in different valuable derivative maps confirm the subsurface extension of some of the surface features. The 3D Euler deconvolution, the total gradient, and the tilt angle maps have been utilized to determine accurately the distribution of shear zones, the tectonic implications, and the internal structures of the terranes in the Ar Rika quadrangle in three dimensions.

  4. Approach for computing 1D fracture density: application to fracture corridor characterization

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette

    2016-04-01

    Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.

  5. Preliminary interpretation of high resolution 3D seismic data from offshore Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Gross, F.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Cukur, D.; Bialas, J.; Papenberg, C. A.; Crutchley, G.; Koch, S.

    2013-12-01

    In order to gain knowledge about subsurface structures and its correlation to seafloor expressions, a hydro-acoustic dataset was collected during RV Meteor Cruise M86/2 (December 2011/January 2012) in Messina Straits and offshore Mt. Etna. Especially offshore Mt. Etna, the data reveals an obvious connection between subsurface structures and previously known morphological features at the sea floor. Therefore a high resolution 3D seismic dataset was acquired between Riposto Ridge and Catania Canyon close to the shore of eastern Sicily. The study area is characterized by a major structural high, which hosts several ridge-like features at the seafloor. These features are connected to a SW-NE trending fault system. The ridges are bended in their NE-SW direction and host major escarpments at the seafloor. Furthermore they are located directly next to a massive amphitheater structure offshore Mt. Etna with slope gradients of up to 35°, which is interpreted as remnants of a massive submarine mass wasting event off Sicily. The new 3D seismic dataset allows an in depth analysis of the ongoing deformation of the east flank of Mt. Etna.

  6. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  7. Constraint on subsurface structures beneath Reiner Gamma on the Moon using the Kaguya Lunar Radar Sounder

    NASA Astrophysics Data System (ADS)

    Bando, Yuichi; Kumamoto, Atsushi; Nakamura, Norihiro

    2015-07-01

    Reiner Gamma is a sinuous feature in Oceanus Procellarum; it has a higher reflectance of the visible wavelength than the surrounding flat mare basalt, and displays a high crustal magnetic field. Previous studies relating to the origin of Reiner Gamma have provided contradictory depths of magnetic source bodies in the lunar crust as either shallow or deep. If a shallow ejecta layer existed beneath the Reiner Gamma formation, a subsurface lithological boundary between the denser mare basalt and the less dense ejecta blanket would be expected. This study examines subsurface stratifications using the Lunar Radar Sounder (LRS) onboard the Kaguya spacecraft. Taking into account the LRS-determined dielectric constants, the influence of surface clutter, and the energy loss of the LRS radar pulses in the high frequency band (5 MHz), no evidence was found of subsurface boundaries down to a depth of 1000-m at Reiner Gamma. Given the LRS range resolution of 75-m, the source of the magnetic anomaly is considered to be either strongly magnetized thin breccia layers at depths shallower than 75-m, or less magnetized thick layers at depths deeper than 1000-m.

  8. A multi-scale experimental and simulation approach for fractured subsurface systems

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  9. Microbial community assembly and evolution in subseafloor sediment.

    PubMed

    Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U

    2017-03-14

    Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.

  10. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2016-05-01

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.

  11. Sub-micron elastic property characterization of materials using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Spicer, James B.

    2001-12-01

    The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface mechanical property variations. The use of an ANSOM for sensing ultrasonic wave arrivals reduces the detection footprint allowing any nanometer scale variations in the microstructure of a material to be detected. In an ANSOM, the ultrasonic displacement is manifested as perturbations on the near-field signal due to the small variations in the tip-sample caused by the wave arrival. Due to the linear dependence of the near-field signal on tip-sample separation, these perturbations can be interpreted using methods identical to those for conventional ultrasonic techniques. In this paper, we report results using both contact transducer (5 MHz) and laser-generated ultrasound.

  12. On the detection of adobe buried archaeological structures using multiscale remote sensing techniques : Piramide Naranja in Cahuachi (Peru)

    NASA Astrophysics Data System (ADS)

    Masini, N.; Rizzo, E.; Lasaponara, R.; Orefici, G.

    2009-04-01

    The detection of buried adobe structures is a crucial issue for the remote sensing (ground, aerial and satellite) applied to archaeology for the widespread of sun-dried earth as building material in several ancient civilizations in Central and Southern America, Middle East and North Africa. Moreover it is complex, due to the subtle contrast existing between the archaeological features and the surrounding, especially in arid setting, as in the case of the well know Nazca Ceremonial Centre of Cahuachi, located in the desert of Nazca (Southern Peru) . During the last two decades of excavations adobe monuments dating back from the 6th century B.C. to the 4th century A.D have been highlighted by the Centro de Estudios Arqueológicos Precolombinos (CEAP), an italian-peruvian mission directed by Giuseppe Orefici. Actually, the archaeologists are excavating and restoring the core of the Ceremonial centre where is located a great pyramid (kown as Gran Piramide). Beginning from 2007 the two institutes of CNR, IMAA and IBAM, have been involved by CEAP, in order to provide a scientific and technological support for the archaeological research. Therefore, a multi-scale approach based on the integration of aerial and satellite remote sensing with geophysical techniques was employed in order to provide data useful for archaeological excavations. The abstract refers to the last investigations performed on a mound, known as "Piramide Naranja", during the 2008. The processing of an aerial imagery time series and two QuickBird satellite images acquired in 2002 and 2005, allowed for identifying some features related to shallow and buried structures. Such features were verified by means of geophysical prospections, performed by using the magnetometric method which observed changes in the magnetic field within the first few metres beneath the subsurface detecting buried walls and anomalies linked to ceramic deposits referable to possible tombs. Finally, the integration of all data acquired by the different remote sensing techniques allowed for spatially characterizing the archaeological features, thus providing important information for the planning of the next archaeological campaign scheduled on July 2009

  13. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  14. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resultingmore » from linear interaction and the three dimensional image of is generated.« less

  15. Microwave based civil structure inspection device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohns, C.W.; Bible, D.W.

    1994-06-01

    A microwave based ``wall probe`` has been developed which is capable of nondestructive evaluation of architectural structures. By using microwaves in the 8 to 12 GHz range this probing instrument can detect subsurface characteristics through concrete, brick, wood or other building materials to depths in excess of 12 inches. The instrument interrogates a structure from a single side by transmitting a microwave signal into the surface at some angle of incidence and receiving the reflected signal some distance away on the same side of the structure. The transmitted signal is partially reflected at each internal boundary of different dielectric constant,more » giving a composite reflection which contains information from each internal layer. The reflected composite signal is compared in phase and amplitude to the transmitted signal and that reading is considered the ``signature`` of the structure under test. Computer algorithms analyze the signature for recognizable features and nonstandard construction.« less

  16. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  17. Laser Inspection Or Soldered Connections

    NASA Astrophysics Data System (ADS)

    Alper, Richard I.; Traub, Alan C.

    1986-07-01

    A sensitive infrared detection system monitors the slight warming and cooling of a solder joint on a PWB in response to a focused laser beam pulse lasting for 30 milliseconds. Heating and cooling rates depend on the surface finish of the solder and also upon its interr.1 features. Joints which are alike show similar heating rates; defects behave differently and are flagged as showing abnormal thermal signatures Defects include surface voids, cold solder, insufficient or missing solder, residual solder flux, contamination and large subsurface voids. Solder bridges can usually be found by targeting at suspected bridge locations. Feed-through joints at DIPs and lap joints at flat-pack ICs are readily inspected by this method. By use of computer-controlled tiltable optics, access is had to the "harder to see" joints such as at leadless chip carriers and other surface mounts. Inspection rates can be up to 10 joints per second.

  18. A Bike Built for Magnetic Mapping

    NASA Astrophysics Data System (ADS)

    Schattner, U.; Segev, A.; Lyakhovsky, V.

    2017-12-01

    Understanding the magnetic signature of the subsurface geology is crucial for structural, groundwater, earthquake propagation, and mineral studies. The cheapest measuring method is by walking with sensors. This approach yields high-resolution maps, yet its coverage is limited. We invented a new design that records magnetic data while riding a bicycle. The new concept offers an efficient, low-cost method of collecting high-resolution ground magnetic field data over rough terrain where conventional vehicles dare not venture. It improves the efficiency of the traditional method by more than five times. The Bike-magnetic scales up ground magnetism from a localized site survey to regional coverage. By now we covered 3300 square KM (about the size of Rhode Island) across northern Israel, in profile spacing of 1-2 km. Initial Total Magnetic Intensity maps reveal a myriad of new features that were not detected by the low-resolution regional aeromagnetic survey that collected data from 1000 m height.

  19. Depth and Horizontal Distribution of Volatiles in Lunar Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Hurley, D. M.; Bussey, B.; Lawrence, D. J.; Gladstone, R.; Elphic, R. C.; Vondrak, R. R.

    2011-12-01

    Neutron spectroscopy from Lunar Prospector returned data consistent with the presence of water ice in the near-subsurface of the Moon in permanently shadowed regions (PSRs) at low spatial resolution. Clementine and ground-based radar returned tantalizing, but inconclusive evidence of ice in lunar PSRs. Later, Mini-RF on Chandrayaan-1 and LRO detected a signature consistent with water ice in some polar craters on the Moon, but not all PSRs. Similarly, LEND on LRO detected a heterogeneous distribution of hydrogen among lunar PSRs. In addition, LAMP on LRO detected FUV spectra consistent with a heterogeneous distribution of frost on the surface of permanently shadowed regions. Yet the weakest spectral feature from LAMP was associated with the crater with the strongest hydrogen feature from LEND. The impact of LCROSS into Cabeus released water and other volatiles, but abundances were higher than the background amounts detected by neutron spectroscopy implying heterogeneity within that PSR. Data from any one instrument taken alone would lead one to a different conclusion about the distribution of volatiles than data taken from any other single instrument. Although the data from different instrumentation can seem to be disparate, the apparent discrepancy results from the different fields of view and sensitivities of the detection techniques. The complementary nature of these data can be exploited to provide a multi-dimensional view of volatiles in lunar PSRs. We apply a Monte Carlo model to describe the retention and redistribution of volatiles within lunar cold traps. The model runs constrain the coherence of volatile deposits with depth, area, and time, which allows us to examine how a given volatile distribution would appear to remote sensing experiments. This provides a big picture framework for integrating the observations of volatiles on the surface and at depth at the poles of the Moon with the goal of finding a distribution of volatiles in lunar PSRs consistent with all of the data.

  20. Detection of Silver Nanoparticles in Vadose Zone Environments using Complex ConductivityMeasurements

    EPA Science Inventory

    The emergence of engineered nano-materials (ENMs) in the global marketplace and their accidental introduction into the subsurface pose a potential risk to the environment and public health. There is a need for the development of techniques to detect their presence and transport i...

  1. SOIL GAS SENSING FOR DETECTION AND MAPPING OF VOLATILE ORGANICS

    EPA Science Inventory

    The document is an attempt at compiling all pertinent information on the current state of the art of soil gas sensing as it relates to the detection of subsurface organic contaminants. It is hoped that such a document will better assist all those individuals who are faced with as...

  2. Structured-illumination reflectance imaging for enhanced detection of subsurface tissue bruising in apples

    USDA-ARS?s Scientific Manuscript database

    In this research, a novel method of fresh bruise detection was developed using a structured illumination reflectance imaging (SIRI) system. The SIRI system projects sinusoidal patterns of illumination onto samples, and image demodulation is then used to recover depth-specific information through var...

  3. Direct measurement of the propagation velocity of defects using coherent X-rays

    DOE PAGES

    Ulbrandt, Jeffrey G.; Rainville, Meliha G.; Wagenbach, Christa; ...

    2016-03-28

    The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during realtime studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interferencemore » between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Moreover, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.« less

  4. Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith

    USGS Publications Warehouse

    Hayes, A.; Aharonson, O.; Callahan, P.; Elachi, C.; Gim, Y.; Kirk, R.; Lewis, K.; Lopes, R.; Lorenz, R.; Lunine, J.; Mitchell, Ken; Mitri, Giuseppe; Stofan, E.; Wall, S.

    2008-01-01

    Synthetic Aperture Radar (SAR) images of Titan's north polar region reveal quasi-circular to complex features which are interpreted to be liquid hydrocarbon lakes. We investigate methane transport in Titan's hydrologic cycle using the global distribution of lake features. As of May 2007, the SAR data set covers ???22% of the surface and indicates multiple lake morphologies which are correlated across the polar region. Lakes are limited to latitudes above 55??N and vary from <10 to more than 100,000 km2. The size and location of lakes provide constraints on parameters associated with subsurface transport. Using porous media properties inferred from Huygens probe observations, timescales for flow into and out of observed lakes are shown to be in the tens of years, similar to seasonal cycles. Derived timescales are compared to the time between collocated SAR observations in order to consider the role of subsurface transport in Titan's hydrologic cycle. Copyright 2008 by the American Geophysical Union.

  5. Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.

    2016-12-01

    Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.

  6. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    NASA Astrophysics Data System (ADS)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For cross-validation, the database is compared with radargrams simulated from the analysis of radio wave propagation through geo-electrical models representing the subsurface hypotheses for the RIME targets.

  7. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (< 4 days) and slow (> 4 days) drainages are investigated for both small (< 0.125 km2, the minimum size detectable by MODIS) and large (≥ 0.125 km2) lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  8. Gas Transport and Detection Following Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Sun, Y.; Wagoner, J. L.; Zucca, J. J.

    2011-12-01

    Some extremely rare radioactive noble gases are by-products of underground nuclear explosions, and the detection of significant levels of these gases (e.g., Xe-133 and Ar-37) at the surface is a very strong indicator of the occurrence of an underground nuclear event. Because of their uniqueness, such noble gas signatures can be confirmatory of the nuclear nature of an event while signatures from other important detection methods, such as anomalous seismicity, are generally not. As a result, noble gas detection at a suspected underground nuclear test site is considered to be the most important technique available to inspectors operating under the On-Site-Inspection protocol of the Comprehensive Nuclear Test Ban Treaty. A one-kiloton chemical underground explosion, the Non-Proliferation Experiment (NPE), was carried out at the Nevada Test Site in 1993 and represented the first On-Site-Inspection oriented test of subsurface gas transport with subsequent detection at the surface using soil gas sampling methods. A major conclusion of the experiment was that noble gases from underground nuclear tests have a good possibility of being detected even if the test is well contained. From this experiment and from computer simulations, we have also learned significant lessons about the modes of gas transport to the surface and the importance of careful subsurface sampling to optimize the detected noble gas signature. Understanding transport and sampling processes for a very wide range of geologic and testing scenarios presents significant challenges that we are currently addressing using sensitivity studies, which we attempt to verify using experiments such as the NPE and a new subsurface gas migration experiment that is now being undertaken at the National Center for Nuclear Security. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Vertical distribution of the subsurface microorganisms in Sagara oil reservoir

    NASA Astrophysics Data System (ADS)

    Nunoura, T.; Oida, H.; Masui, N.; Ingaki, F.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    The recent microbiological studies reported that active microbial habitat for methanogen, sulfate reducers (Archaeoglobus, d-Proteobacteria, gram positives), fermenters (Thermococcus, Thermotogales, gram positives etc.) and other heterotrophs (g-Proteobacteria etc.) are in subsurface petroleum oil reservoirs. However, microbial distribution at vertical distances in depth has not been demonstrated since the samples in previous studies are only to use oil and the formation water. Here, we show the vertical profile of microbial community structure in Japanese terrestrial oil reservoir by a combination of molecular ecological analyses and culture dependent studies. The sequential WRC (Whole Round Core) samples (200 mbsf) were recovered from a drilling project for Sagara oil reservoir, Shizuoka Prefecture, Japan, conducted in Jar. -Mar. 2002. The lithology of the core samples was composed of siltstone, sandstone, or partially oil containing sand. The major oil components were gasoline, kerosene and light oil, that is a unique feature observed in the Sagara oil reservoir. The direct count of DAPI-stained cells suggested that the biomass was relatively constant, 1.0x104cells/g through the core of the non-oil layers, whereas the oil-bearing layers had quite higher population density at a range of 1.0x105 ? 3.7x107cells/g. The vertical profile of microbial community structures was analyzed by the sequence similarity analysis, phylogenetic analysis and T-RFLP fingerprinting of PCR-amplified 16S rDNA. From bacterial rDNA clone libraries, most of the examined rDNA were similar with the sequence of genera Pseudomanas, Stenotrophomonas and Sphingomonas within g-Proteobacteria. Especially, Pseudomonas stutzeri was predominantly present in all oil-bearing layers. From archaeal rDNA clone libraries, all rDNA clone sequences were phylogenetically associated with uncultured soil group in Crenarchaeota. We detected none of the sequences of sulfate reducers, sulfur dependent fermenters and methanogens that have been previously detected as dominant microbial components in other oil reservoir environments. The absence of methanogen was consistent with the results from the stable isotopic analysis that major hydrocarbon components including methane in Sagara oil reservoir are thermogenic origin. In this presentation, we will also show the activity of the subsurface microbial components by the cultivation assays and discuss about the relationship between the microbial community structure and the formation process of petroleum in Sagara oil reservoir.

  10. Influence of Si wafer thinning processes on (sub)surface defects

    NASA Astrophysics Data System (ADS)

    Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira

    2017-05-01

    Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.

  11. Clays and Carbonates in a Groundwater-Fed 3.8 Ga Martian Lake: Insights to Subsurface Habitability on Mars

    NASA Technical Reports Server (NTRS)

    Michalski, Joseph; Niles, Paul

    2015-01-01

    On Earth, the deep biosphere remains a largely unexplored, but clearly important carbon reservoir. Results from some uplifted central peaks in craters on Mars indicate that substantial carbon was also present at depth and might have helped sustain a deep biosphere. In fact, many factors relevant to deep biosphere habitability are more favorable on Mars than on Earth (e.g. porosity of the crust, geothermal gradient). Future exploration of Mars should include landing sites where materials have been exhumed from depth by meteor impact or basins where subsurface fluids have emerged, carrying clues to subsurface habitability. One of the most astrobiologically interesting sites on Mars McLaughlin Crater, a 93 km-diameter impact crater that formed approximately 4 b.y. ago. On the floor of the crater is a stratigraphic section of subhorizontal, layered sedimentary rocks with strong spectroscopic evidence for Fe-rich clay minerals and Mg-rich carbonates, which we interpret as ancient lacustrine deposits. The fluids that formed these materials likely originated in the subsurface, based on the paucity of channels leading into the crater basin and the fact that this is one of the deepest basins on Mars - a good candidate to have experienced upwelling of subsurface fluids. Therefore, the deposits within McLaughlin crater provide insight into subsurface processes on Mars. In this presentation, we will discuss the habitability of the martian subsurface as well as the geology of McLaughlin Crater and the possibility to detect biomarkers at that site with a future landed mission.

  12. Geophysical Analysis of Young Monogenetic Volcanoes in the San Francisco Volcanic Field, Arizona

    NASA Astrophysics Data System (ADS)

    Rees, S.; Porter, R. C.; Riggs, N.

    2017-12-01

    The San Francisco Volcanic Field (SFVF), located in northern Arizona, USA, contains some of the youngest intracontinental volcanism within the United States and, given its recent eruptive history, presents an excellent opportunity to better understand how these systems behave. Geophysical techniques such as magnetics, paleomagnetics, and seismic refraction can be used to understand eruptive behavior and image shallow subsurface structures. As such, they present an opportunity to understand eruptive processes associated with the monogenetic volcanism that is common within the SFVF. These techniques are especially beneficial in areas where erosion has not exposed shallow eruptive features within the volcano. We focus on two volcanoes within the SFVF, Merriam Crater and Crater 120 for this work. These are thought to be some of the youngest volcanoes in the field and, as such, are well preserved. Aside from being young, they both exhibit interesting features such as multiple vents, apparent vent alignment, and lack of erosional features that are present at many of the other volcanoes in the SFVF, making them ideal for this work. Initial results show that shallow subsurface basaltic masses can be located using geophysical techniques. These masses are interpreted as dikes or lava flows that are covered by younger scoria. Propagating dikes drive eruptions at monogenetic volcanoes, which often appear in aligned clusters. Locating these features will further the understanding of how magma is transported and how eruptions may have progressed.

  13. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  14. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    PubMed Central

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-01-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746

  15. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  16. Mars penetrator umbilical. [to study geophysical properties of Mars

    NASA Technical Reports Server (NTRS)

    Barns, C. E.

    1979-01-01

    The device proposed to gather subsurface data on the planet Mars is a ballistic probe which penetrates the soil after a free fall through the Martian atmosphere. Highlights of the design, development, and testing of several features of the Mars Surface Penetration Probe are outlined.

  17. 3-D GPR data analysis for high-resolution imaging of shallow subsurface faults: the Mt Vettore case study (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ercoli, Maurizio; Pauselli, Cristina; Frigeri, Alessandro; Forte, Emanuele; Federico, Costanzo

    2014-07-01

    The activation of Late Quaternary faults in the Central Apennines (Italy) could generate earthquakes with magnitude of about 6.5, and the Monte Vettore fault system probably belongs to the same category of seismogenetic faults. Such structure has been defined `silent', because of its geological and geomorphological evidences of past activation, but the absence of historical records in the seismic catalogues to be associated with its activation. The `Piano di Castelluccio' intramountain basin, resulting from the Quaternary activity of normal faults, is characterized by a secondary fault strand highlighted by a NW-SE fault scarp: it has been already studied through palaeoseismological trenches, which highlighted evidences of Quaternary shallow faulting due to strong earthquakes, and through a 2-D ground penetrating radar (GPR) survey, showing the first geophysical signature of faulting for this site. Within the same place, a 3-D GPR volume over a 20 × 20 m area has been collected. The collection of radar echoes in three dimensions allows to map both the vertical and lateral continuity of shallow geometries of the fault zone (Fz), imaging features with high resolution, ranging from few metres to centimetres and therefore imaging also local variations at the microscale. Several geophysical markers of faulting, already highlighted on this site, have been taken as reference to plan the 3-D survey. In this paper, we provide the first 3-D subsurface imaging of an active shallow fault belonging to the Umbria-Marche Apennine highlighting the subsurface fault geometry and the stratigraphic sequence up to a depth of about 5 m. From our data, geophysical faulting signatures are clearly visible in three dimensions: diffraction hyperbolas, truncations of layers, local attenuated zones and varying dip of the layers have been detected within the Fz. The interpretation of the 3-D data set provided qualitative and quantitative geological information in addition to the fault location, like its geometry, boundaries and an estimation of the fault throw.

  18. Geophysical Investigation of Subsurface Characteristics of Icy Debris Fans with Ground Penetrating Radar in the Wrangell Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Smith, T. D.; Jacob, R. W.

    2013-12-01

    Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR surveys provided the GPR signal velocity through the subsurface material and allowed transformation of two-way traveltimes (TWTT) in GPR profiles to be converted to depth. In addition, the eight WARR surveys spaced on the fans and on the glacier provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more energy returning to the surface and therefore many more reflections than profiles done on the McCarthy Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are produced by the events depositing material to an ablated icy debris fan surface. The GPR profiles on the West and Middle fans show multiple point scatters at TWTT of less than 200ns. The Middle fan is distinguished from the West fan by its multiple point scatters at TWTT greater than 200ns, clearly showing the Middle fan with a greater thickness. The observations from the GPR profiles correlate with the photographic evidence for types of processes and the composition of their deposits on each fan respectively.

  19. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  20. Continuous monitoring of the lunar or Martian subsurface using on-board pattern recognition and neural processing of Rover geophysical data

    NASA Technical Reports Server (NTRS)

    Mcgill, J. W.; Glass, C. E.; Sternberg, B. K.

    1990-01-01

    The ultimate goal is to create an extraterrestrial unmanned system for subsurface mapping and exploration. Neural networks are to be used to recognize anomalies in the profiles that correspond to potentially exploitable subsurface features. The ground penetrating radar (GPR) techniques are likewise identical. Hence, the preliminary research focus on GPR systems will be directly applicable to seismic systems once such systems can be designed for continuous operation. The original GPR profile may be very complex due to electrical behavior of the background, targets, and antennas, much as the seismic record is made complex by multiple reflections, ghosting, and ringing. Because the format of the GPR data is similar to the format of seismic data, seismic processing software may be applied to GPR data to help enhance the data. A neural network may then be trained to more accurately identify anomalies from the processed record than from the original record.

  1. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was effective in producing a high resolution subsurface model in a large and complex study area that extends well beyond the field scale.

  2. The Search for Subsurface Ice Caps on Mercury

    NASA Astrophysics Data System (ADS)

    Allen, R. A.; Barlow, N. G.; Vilas, F.

    1996-03-01

    Recent ground-based radar observations of Mercury have detected strong, highly depolarized echoes from the north and south polar regions which have been interpreted as possible polar ice deposits. These radar echoes have been correlated with a number of impact craters. Theoretical studies indicate that such surface ice can be stable within permanently shadowed areas, such as the floors of high latitude impact craters. One proposed hypothesis suggests that stable subsurface ice caps exist at the poles of Mercury, and that several of the impact events that created the high latitude craters exposed this subsurface ice. Thus, our study focused on the possibility of ice caps extending below the mercurian surface, down to some unknown latitude in the polar regions. We used the experiences from Mars, where the depth/diameter ratio (d/D) is smaller for ice rich areas, to investigate whether a comparable latitudinal change in d/D is detectable on Mercury. We found no significant latitudinal differences within the two polar regions of our study or between the north polar and equatorial quadrangles, but craters in the south polar region tend to have slightly lower d/D than those in the north polar region.

  3. Quantum dots as contrast agents for endoscopy: mathematical modeling and experimental validation of the optimal excitation wavelength

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; DaCosta, Ralph S.; Weersink, Robert; Netchev, George; Davidson, Sean R. H.; Chan, Warren; Wilson, Brian C.

    2007-02-01

    Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling. Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface) ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA) microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set at 400+/-20 μm for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs further modifications to be accurate in the sub-surface configuration.

  4. Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?

    NASA Astrophysics Data System (ADS)

    Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian

    2018-02-01

    Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.

  5. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    USGS Publications Warehouse

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  6. Arsenic Detoxification by Geobacter Species.

    PubMed

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM). Copyright © 2017 American Society for Microbiology.

  7. Arsenic Detoxification by Geobacter Species

    PubMed Central

    Walker, David J. F.; Vautour, Kaitlin E.; Dixon, Steven

    2016-01-01

    ABSTRACT Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM). PMID:27940542

  8. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  9. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  10. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer

    Templeton, Dennise

    2013-11-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  11. Environmental Assessment, Change in C-17 Flight Training Operations at Grant County International Airport, Washington by Joint Base Lewis-McChord

    DTIC Science & Technology

    2011-10-01

    ground (subsurface) deposits. Examples of prehistoric archaeological resources include village sites, campsites, lithic scatters, burials, hearths ...or hearth features), processing sites, caves and rock shelters, and petroglyph and pictograph sites. Examples of historic archaeological resources

  12. Radar Cuts Subsoil Survey Costs

    NASA Technical Reports Server (NTRS)

    Johnson, R.; Glaccum, R.

    1984-01-01

    Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.

  13. Aram Chaos: A Long Lived Subsurface Aqueous Environment with Strong Water Resource Potential for Human Missions on Mars

    NASA Astrophysics Data System (ADS)

    Sibille, L.; Mueller, R. P.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-10-01

    Aram Chaos is a 280-km-wide near-circular structure near the outflow channel Ares Vallis and Aureum Chaos. It is a compelling landing site for human explorers featuring multiple science ROIs with a compelling resource ROI with polyhydrated sulfates.

  14. Near‐surface void detection using a seismic landstreamer and horizontal velocity and attenuation tomography

    USGS Publications Warehouse

    Buckley, Sean F.; Lane, John W.

    2012-01-01

    The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.

  15. Some New Windows into Terrestrial Deep Subsurface Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Moser, D. P.

    2011-12-01

    Over the past several years, our group has surveyed the microbial ecology and biogeochemistry of a range of fracture rock subsurface ecosystems via deep mine boreholes in South Africa, the United States, and Canada; and boreholes from surface or deeply-sourced natural springs of the U.S. Great Basin. Collectively, these mostly unexplored habitats represent a wide range of geologic provinces, host rock types, aquatic chemistries, and the vast potential for biogeographic isolation. Thus, patterns of microbial diversity are of interest from the perspective of filling a fundamental knowledge gap; and while not necessarily expected, the detection of closely related microorganisms from geographically isolated settings would be noteworthy. Across these sample sets, microbial communities were invariably very low in biomass (e.g. 10e3 - 10e4 cells per mL) and dominated by deeply-branching bacterial lineages, particularly from the phyla Firmicutes and Nitrospira. In several cases, the Firmicutes have shown very close phylogenetic affiliations to lineages detected at divergent locations. For example, one abundant lineage from a new artesian well drilled into the Furnace Creek Fault of Death Valley, CA bears a very close phylogenetic relatedness to environmental DNA sequences (SSU rRNA gene) detected in one of the world's deepest mines (Tau Tona of South Africa) and what was North America's deepest gold mine (Homestake of South Dakota). Several radioactive wells from the Nevada National Security Site have produced rRNA gene sequences very close (e.g. greater than 99% identity) to that of Desulforudis audaxviator, a rarely detected microorganism thought to subsist as a single species ecosystem on the products of radiochemical reactions in deep crustal rocks from the South African Witwatersrand Basin. These sequences, along with more distantly related sequences from the marine subsurface (ridge flank basalt and mud volcanoes) and groundwater in Europe, hint at a role in certain hydrogen-rich subsurface settings for this group. Likewise, patterns of archaeal diversity across many of our Great Basin sites suggest shared deep lineages, particularly with the phylum, Thaumarchaeota. Here we will explore the possible significance of these patterns of diversity and discuss future research plans involving high throughput molecular techniques.

  16. Europa's shallow subsurface: lakes, layers and life? (Invited)

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Soderlund, K. M.; Gooch, B. T.; Blankenship, D. D.

    2013-12-01

    With an icy exterior covering a global ocean, Europa has long been a target of interest in the search for life beyond Earth. A critical question related to the habitability of this icy world is: how does the ice shell recycle? Recent detection of shallow subsurface water lenses or "lakes" joins the evidence that implies Europa is currently active, recycling its ice shell. This new perspective has important astrobiological implications. At a surface age of 40-90 Myr, and about 50% covered by chaos terrain, Europa's resurfacing rate is likely to be very high if water does play a significant role in their formation. Because of the vigor of overturn implied if chaos does form by the collapse of ice above subsurface lenses, it is likely that surface and subsurface materials are well-mixed within the largest and deepest lenses, providing a mechanism for bringing oxidants and other surface contaminants to the deeper ice shell where it can reach the ocean by convective or compositional effects. The timescales over which large lenses refreeze (a few hundred thousand years) are large compared to the timescales for vertical transport (a few tens of thousands of years), while the timescales for smaller lenses are comparable to or shorter than convective timescales but involving smaller impurity loads than for larger more well-mixed sources. Melt lenses are intriguing potential habitats, particularly the larger features. Moreover, their formation likely requires the existence of impurities within the upper ice shell that may be sources of energy for microorganisms. Geomorphic evidence also exists for brine percolation that can disperse fluids both vertically and horizontally through pores and fractures. This process, observed in terrestrial ice shelves, may preserve liquid water within the ice matrix over many kilometers from the source. Horizontal transport of material may produce interconnectivity between distinct regions of Europa, providing a pathway for transferring nutrients and biomass, thus preserving habitable conditions within the ice over a longer duration. From this point of view, we evaluate the habitability of Europa's ice and ocean in light of active processes, including the lifetime of liquid reservoirs, vertical and horizontal material transport, and the resurfacing rate of the body that may be responsible both for reenergizing and destroying shallow habitats.

  17. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.

    PubMed

    Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert

    2014-07-01

    Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.

  18. Topographic attributes as a guide for automated detection or highlighting of geological features

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves

    2015-04-01

    Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.

  19. Investigation of Coastal Hydrogeology Utilizing Geophysical and Geochemical Tools along the Broward County Coast, Florida

    USGS Publications Warehouse

    Reich, Christopher D.; Swarzenski, Peter W.; Greenwood, W. Jason; Wiese, Dana S.

    2008-01-01

    Geophysical (CHIRP, boomer, and continuous direct-current resistivity) and geochemical tracer studies (continuous and time-series 222Radon) were conducted along the Broward County coast from Port Everglades to Hillsboro Inlet, Florida. Simultaneous seismic, direct-current resistivity, and radon surveys in the coastal waters provided information to characterize the geologic framework and identify potential groundwater-discharge sites. Time-series radon at the Nova Southeastern University National Coral Reef Institute (NSU/NCRI) seawall indicated a very strong tidally modulated discharge of ground water with 222Rn activities ranging from 4 to 10 disintegrations per minute per liter depending on tidal stage. CHIRP seismic data provided very detailed bottom profiles (i.e., bathymetry); however, acoustic penetration was poor and resulted in no observed subsurface geologic structure. Boomer data, on the other hand, showed features that are indicative of karst, antecedent topography (buried reefs), and sand-filled troughs. Continuous resistivity profiling (CRP) data showed slight variability in the subsurface along the coast. Subtle changes in subsurface resistivity between nearshore (higher values) and offshore (lower values) profiles may indicate either a freshening of subsurface water nearshore or a change in sediment porosity or lithology. Further lithologic and hydrologic controls from sediment or rock cores or well data are needed to constrain the variability in CRP data.

  20. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    NASA Astrophysics Data System (ADS)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  1. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwestmore » of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate« less

  2. Subsurface Organics in Aseptic Cores From the MARTE Robotic Drilling Experiment: Ground truth and Contamination Issues

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.

    2006-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. This includes the search for past/present life on Mars where possible subsurface life could exist [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) performed a simulation of a Mars robotic drilling at the RT Borehole#7 Site ~6.07m, atop a massive-pyrite deposit from the Iberian Pyritic Belt. The RT site is considered an important analog of Sinus Meridiani on Mars, an ideal model analog for a subsurface Martian setting [2], and a relevant example of deep subsurface microbial community including aerobic and anaerobic chemoautotrophs [4-5]. Searching for microbes or bulk organics of biological origin in a subsurface sample from a planet is a key scientific objective of Robotic drilling missions. During the 2005 Field experiment 28 minicores were robotically handled and subsampled for life detection experiments under anti-contamination protocols. Ground truth included visual observation of cores and lab based Elemental and Isotope Ratios Mass Spectrometry analysis (EA-IRMS) of bulk organics in Hematite and Gohetite-rich gossanized tuffs, gossan and clay layers within 0-6m-depth. C-org and N-tot vary up to four orders of magnitude among the litter (~11Wt%, 0-1cm) and the mineralized (~3Wt%, 1-3cm) layers, and the first 6 m-depth (C-org=0.02-0.38Wt%). Overall, the distribution/ preservation of plant and soil-derived organics (d13C-org = 26 per mil to 24 per mil) is ten times higher (C-org=0.33Wt%) that in hematite-poor clays, or where rootlets are present, than in hematite- rich samples (C-org=<0.01Wt%). This is consistent with ATP assay (Lightning-MVP, Biocontrol) for total biomass in subsurface (Borehole#7 ~6.07m, ~avg. 153RLU) vs. surface soil samples (~1,500-81,449RLU) [5]. However, the in-situ ATP assay failed in detecting presence of roots during the in-situ life detection experiment. Furthermore, cm-sized roots were overlooked during remote observations. Finally, ATP Luminometry provided insights for potential contamination from core-handling and environmental dust loadings on cleaned/sterilized control surfaces (e.g., 6,782-36,243RLU/cm2). Cleanliness/sterility can be maintained by applying a simple sterile protocol under field conditions. Science results from this research will support future Astrobiology driven drilling mission planned on Mars. Specifically, ground truth offers relevant insights to assess strengths and limits of in-situ/remote observations vs. laboratory measurements. Results from this experiment will also aid the debate on advantages/ disadvantages of manned vs. robotic drilling missions on Mars or other planets. [1] Boston et al., 1997; [2] http://marte.arc.nasa.gov; [3] Stoker, C., et al., 2006 AbSciCon, [4] Stoker et al., submitted; [5] Bonaccorsi., et al., 2006 AbSciCon.

  3. Subsurface Intrusion Detection System

    DTIC Science & Technology

    2014-02-25

    deployed along the boundary. The outputs of the vibration sensors are taken as an indication of underground activity and can therefore be used to...for detecting underground activity. The system has a first sensor located at a first depth below the surface of the ground and a second sensor...and the second sensor has a second output indicative of vibrations at the second depth. A processor adapted to detect underground activity compares

  4. Electromagnetic geophysical leaching plume detection experiments - San Xavier Mine Facility, Tucson, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.O.; Wayland, J.R.

    1991-03-01

    The objective of this work was to investigate whether a subsurface plume may be detected and followed using crosshole and surface-to-borehole electromagnetic geophysical techniques. both of these techniques were experimentally demonstrated to be feasible. The presence of the injected plume was easily detected with these methods but additional work must be done to refine the techniques. 5 refs., 15 figs., 1 tab.

  5. Numerical simulation of hydrodynamic processes beneath a wind-driven water surface

    NASA Astrophysics Data System (ADS)

    Tsai, Wu-ting

    Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.

  6. Modeling the development of martian sublimation thermokarst landforms

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-01-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the Martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the Martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that Martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the Martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  7. Monitoring an EGS injection at Newberry Volcano using Magnetotelluric dimensionality analysis

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.; Rose, K.; Urquhart, S.

    2016-12-01

    The sensitivity of magnetotelluric (MT) data to the presence of electrically conductive subsurface features makes it applicable for determining the extent of injected fluids in enhanced geothermal systems (EGS). We use MT to monitor fluid injection during tests of a proposed EGS site at Newberry Volcano in Central Oregon, USA. Newberry is a large shield volcano located where fault systems of the northern Basin and Range meet the Cascade Arc and the high lava plains. Its strong potential for geothermal energy has made it a target for energy exploration for over 40 years. MT measurements were made before, during, and after an EGS stimulation in 2014 in an effort to detect subsurface pathways taken by fluids that are attributable to stimulation. We begin by creating a baseline model from inverting over 200 wideband MT stations located in the western half of the volcano. This model is constrained by well logs, as well as by high resolution gravity and seismic velocity modeling. Our model shows conductive regions associated with the caldera's ring fault, likely showing where hydrothermal fluids or their mineral alteration products are present. However, as this is an EGS study, we are interested in detecting fluid intrusion into hot, dry rock. Therefore, our primary target is a resistive zone on the western flank of Newberry volcano that is interpreted as a series of hot intrusive sequences. Well bottom temperatures in this area have been measured in excess of 300 °C. The stimulation's effect on resistivity is subtle, in part because the injected fluid is fresh groundwater, the injected volume is modest, and the target depth is 2,000-3,000 m below ground level. We found that it is advantageous to look at the impedance tensor data directly to detect injected fluids. Because fluids and their associated change in resistivity are expected to be concentrated around the injection well, the injection will exhibit a highly three-dimensional resistivity structure. Therefore, we examine the impedance tensor for changes in dimensionality to mark the arrival of injected fluids. We then present a method of inverting MT data for changes in impedance rather than for resistivity.

  8. Improving the Velocity Structure in the Delaware Basin of West Texas for Seismicity Monitoring

    NASA Astrophysics Data System (ADS)

    Huang, D.; Aiken, C.; Savvaidis, A.; Young, B.; Walter, J. I.

    2017-12-01

    The State of Texas has commissioned the Bureau of Economic Geology to install a seismic network (TexNet) which, when complete, will employ 22 permanent and 33 portable new stations. In the area of west Texas, where it consists of two major sedimentary basins - the Delaware and Midland basins, 7 new permanent stations have been deployed. Starting from January 2017, TexNet has detected several hundreds of small-sized earthquakes in the area adjacent to the Pecos township. In response to the detection of a surprisingly high occurrence of seismicity in this area, we have increased the number of seismic stations through the addition of portable deployments. The depth range of the detected seismicity is from subsurface down to 14 km depth. Based on the initial hypocentral information determined by the TexNet's routine process, we further relocated these earthquakes using the double-difference relocation method (i.e., hypoDD). At the same time, we employed statistic regression (i.e., the Wadati diagram) to constrain the origin times of these relocated earthquakes, while their hypocentral locations have been better constrained by hypoDD relocation. The constrained origin times and relocated earthquake hypocenters, along with the velocity information of subsurface from a local sonic-log profile, are used in tomographic inversion to update the crustal velocity model for the Delaware basin and surrounding area. Preliminary results suggest that both local topography and subsurface structures have strong influence on locating earthquakes that occurred at a shallower depth range in west Texas. A subsurface layer with Vp of 4.5-5.0 km/s is suggested to corroborate the regional tectonic setting as a sedimentary basin. Our next steps are to include more local and teleseismic data recorded by TexNet as well as by stations from the previous US Transportable Array. Inclusion of these data will increase ray-crossing coverage within the volume of the velocity model, resulting in a better model resolution.

  9. Shallow Subsurface Structures of Volcanic Fissures

    NASA Astrophysics Data System (ADS)

    Parcheta, C. E.; Nash, J.; Mitchell, K. L.; Parness, A.

    2015-12-01

    Volcanic fissure vents are a difficult geologic feature to quantify. They are often too thin to document in detail with seismology or remote geophysical methods. Additionally, lava flows, lava drain back, or collapsed rampart blocks typically conceal a fissure's surface expression. For exposed fissures, quantifying the surface (let along sub0surface) geometric expression can become an overwhelming and time-consuming task given the non-uniform distribution of wall irregularities, drain back textures, and the larger scale sinuosity of the whole fissure system. We developed (and previously presented) VolcanoBot to acquire robust characteristic data of fissure geometries by going inside accessible fissures after an eruption ends and the fissure cools off to <50 C. Data from VolcanoBot documents the fissure conduit geometry with a near-IR structured light sensor, and reproduces the 3d structures to cm-scale accuracy. Here we present a comparison of shallow subsurface structures (<30 m depth) within the Mauna Ulu fissure system and their counterpart features at the vent-to-ground-surface interface. While we have not mapped enough length of the fissure to document sinuosity at depth, we see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are, on average, 1 m across and protrude 30 cm into the drained fissure. This is significantly larger than the 10% wall roughness addressed in the engineering literature on fluid dynamics, and implies that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. In some locations, it is possible to match piercing points across the fissure walls, where the dike broke the wall rock in order to propagate upwards, yet in other locations there are erosional cavities, again, implying complex fluid dynamics in the shallow sub-surface during fissure eruptions.

  10. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.

  11. Adaptive Wavelet Modeling of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.

    2009-12-01

    Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  12. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    USGS Publications Warehouse

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.

  13. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  14. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Lindgren, Paula

    2010-07-01

    On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.

  15. Can Surface Seeps Elucidate Carbon Cycling in Terrestrial Subsurface Ecosystems in Ophiolite-hosted Serpentinizing Fluids?

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Arcilla, C. A.

    2017-12-01

    Serpentinization in ophiolite-hosted regimes produces highly reduced, high pH fluids that are often characterized as having copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. Subsurface microbial biomes shift as deeply-sourced fluids reach the oxygenated surface environment, where organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). The relationship, connection, and communication between surface expressions (such as fluid seeps) and the subsurface biosphere is still largely unexplored. Our work in the Zambales and Palawan ophiolites (Philippines) defines surface habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Fluids in the spring sources are largely `typical' and fall in the pH range of 9-11.5 with measurable gas escaping from the subsurface (H2 and CH4 > 10uM, CO2 > 1 mM; Cardace et al., 2015). Outflow channels extend from the source pools. These surface data encourage prediction of the subsurface metabolic landscape. To understand how carbon cycling in the subsurface and surface environments might be related, we focus on community analysis, culturing, and the geochemical context of the ecosystem. Shotgun metagenomic analyses indicate carbon cycling is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. Methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. In this tropical climate, cellulose is also a likely carbon source, possibly even in the subsurface. Enrichment cultures [pH 8-12] and strains [pH 8-10] from Zambales springs show degradation of cellulose and production of cellulase. DIC, DOC, and 13C of solid substrates show mixed autotrophic/heterotrophic activity. Results indicate a metabolically flexible surface community, and suggest details about carbon cycling in the subsurface.

  16. Evaluation of NinePoint Medical's Nvision VLE device for gastrointestinal applications.

    PubMed

    Mosko, Jeffrey D; Pleskow, Douglas

    2017-07-01

    The incidence of esophageal adenocarcinoma (EAC) has increased over the last few decades. With a known precursor lesion, Barrett's esophagus, this remains a target for screening and surveillance with the goal of detecting and providing curative treatment for early neoplasia. Areas covered: Current surveillance techniques rely on white light endoscopy and random tissue sampling which is time consuming, costly and prone to sampling error. Volumetric laser endomicroscopy (VLE), a second-generation optical coherence technology, has emerged as an advanced imaging modality with the potential to improve dysplasia detection, surveillance and subsequently prevent esophageal adenocarcinoma. This review will focus on the use of VLE for advanced imaging of Barrett's esophagus and summarize its current and potential uses elsewhere in the GI tract. Expert commentary: NinePoint's VLE imaging device enables imaging of large segments of BE facilitating identification of luminal and subsurface abnormalities that may have otherwise been missed. Its diagnostic accuracy is improving and laser-marking system adds the capacity for accurate VLE-histologic correlation. With the adoption of dysplasia scoring systems that utilize very few VLE imaging features, inexperienced endoscopists will likely be able to pick out areas concerning for dysplasia to target therapy.

  17. GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach

    NASA Astrophysics Data System (ADS)

    Valerio, Guido; Galli, Alessandro; Matteo Barone, Pier; Lauro, Sebastian E.; Mattei, Elisabetta; Pettinelli, Elena

    2012-03-01

    In this work, the ability of Ground Penetrating Radar (GPR) to detect rocks buried in composite soil is studied in connection with the planned ExoMars mission, as GPR will be used during this mission to scan the Martian subsurface to help define feasible sites for shallow drilling. A realistic model of the operating environment is implemented through a full-wave electromagnetic simulator, taking into account the antenna system and the signal features. The flexibility and efficiency of this numerical approach has allowed for the analysis of a great variety of configurations. The regolith is modeled based on data from recent explorations, while various kinds of embedded rocks are considered that have different geometrical and physical characteristics. The simulated results are compared with ad hoc GPR measurements performed on basalts buried in a mixture of glass beads, as an analogue of a dry sandy Martian soil. A very good agreement between theoretical and experimental results is found, thus validating the proposed numerical approach. This research has defined useful and reliable information concerning the prediction of scattering effects from buried objects in the environment where the ExoMars rover will operate.

  18. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  20. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  1. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this research will support future drilling mission planned on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; [2] Leistel et al., 1998.

  2. Apparatus and method for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1999-01-01

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  3. An Analysis of the Magneto-Optic Imaging System

    NASA Technical Reports Server (NTRS)

    Nath, Shridhar

    1996-01-01

    The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.

  4. Use of an automatic resistivity system for detecting abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.G.

    1983-01-01

    A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.

  5. 30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...

  6. 30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...

  7. 30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...

  8. SHUTTLE IMAGING RADAR PROVIDES FRAMEWORK FOR SUBSURFACE GEOLOGIC EXPLORATION IN EGYPT AND SUDAN.

    USGS Publications Warehouse

    Breed, Carol S.; McCauley, John F.; Schaber, Gerald G.

    1984-01-01

    Shuttle Imaging Radar provides a pictorial framework to guide exploration for mineral resources (potential placers), groundwater sources, and prehistoric archaeological sites in the Western Desert of Egypt and Sudan. Documented penetration by the SIR-A signal of dry surficial sediment to depths of a meter or more revealed bedrock geologic features and networks of former stream valleys otherwise concealed beneath windblown sand, alluvium, and colluvial deposits. 'Radar units' mapped on SIR-A images according to relative brightness and degree of mottling correspond to subsurface geologic and topographic features identified in more than 50 test pits. Petrologic examination of pit samples confirms that a variety of depositional environments existed in this now hyper-arid region before it was mantled by windblown sand sheets and dunes. Wet sand was discovered in two buried valleys shown on the radar images and located in the field with the aid of co-registered maps and Landsat images, and a satellite navigation device. Buried valleys whose streams once traversed mineralized zones are potential sites of placers (gold, tin).

  9. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less

  10. Two Types of Modeling of Subsurface Water

    NASA Image and Video Library

    2013-03-18

    The Dynamic Albedo of Neutrons DAN instrument on NASA Mars rover Curiosity detects even very small amounts of water in the ground beneath the rover, primarily water bound into the crystal structure of hydrated minerals.

  11. Integrating aeromagnetic and Landsat™ 8 data into subsurface structural mapping of Precambrian basement complex

    NASA Astrophysics Data System (ADS)

    Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.

    2017-01-01

    The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.

  12. Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - Results of numerical modeling and physical experiments

    USGS Publications Warehouse

    Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.

    2000-01-01

    The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.

  13. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    NASA Astrophysics Data System (ADS)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of diffuse agrochemical pollutants in a relatively simple hydrological system. The simulated shifts in isotopic signals are within a range that could be detected with current isotope analytics. Concentrations in the stream vary significantly only for a short period during and after intense rainfall events. In contrast, CSIA values reveal longer response times such that isotopic shifts are likely to be detected in samples with a coarser temporal resolution. Rainfall events which result in fast lateral subsurface transport from the pollution source to the stream can be separated from those that lead to pollution migration through deeper subsurface zones with much longer travel times. Two-dimensional CSIA highlights an increasing importance of the oxic reaction in the topsoil during the wetter period of the year. In order to examine to which extent CSIA is applicable for more complex hydrological systems, it is projected to simulate isotope fractionation in a 3-dimensional catchment featuring additional processes such as migration from several pollution sources or in-stream degradation.

  14. Tracking surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Miles, Katie; Willis, Ian; Benedek, Corinne; Williamson, Andrew; Tedesco, Marco

    2017-04-01

    Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) are an important component of the ice sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) to investigate SGLs in West Greenland. SAR can image through cloud and in darkness, overcoming some of the limitations of commonly used optical sensors. A semi automated algorithm is developed to detect surface lakes from Sentinel images during the 2015 summer. It generally detects water in all locations where a Landsat-8 NDWI classification (with a relatively high threshold value) detects water. A combined set of images from Landsat-8 and Sentinel-1 is used to track lake behaviour at a comparable temporal resolution to that which is possible with MODIS, but at a higher spatial resolution. A fully automated lake drainage detection algorithm is used to investigate both rapid and slow drainages for both small and large lakes through the summer. Our combined Landsat-Sentinel dataset, with a temporal resolution of three days, could track smaller lakes (mean 0.089 km2) than are resolvable in MODIS (minimum 0.125 km2). Small lake drainage events (lakes smaller than can be detected using MODIS) were found to occur at lower elevations ( 200 m) and slightly earlier in the melt season than larger events, as were slow lake drainage events compared to rapid events. The Sentinel imagery allows the analysis to be extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August, 1270 m mean elevation). Finally, the Sentinel imagery allows subsurface lakes (which are invisible to optical sensors) to be detected, and, for the first time, their dates of appearance and freeze-through to be calculated (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (1593 m mean elevation). Sentinel imagery therefore provides great potential for tracking melting, water movement and freezing within the firn zone of the GrIS.

  15. Analysis of Fully Polarimetric Laboratory Measurements Performed with the WISDOM Radar

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Ciarletti, V.; Cais, P.; Benedix, W.-S.; Zhang, H.; Hamran, S.-E.; Clifford, S.

    2012-04-01

    The Ground Penetrating Radar WISDOM (Water Ice Subsurface Deposit Observation on Mars) is one of the instruments selected to be part of the Pasteur payload of ESA's ExoMars Rover mission. The main scientific objectives of the Pasteur payload are to search for evidence of past and present life on Mars and to characterize the nature of the shallow subsurface. WISDOM is capable to obtain subsurface information along the rover path and to explore the first 3 meters of the soil with a vertical resolution of a few centimeters. WISDOM will help identify the location of sedimentary layers, where organic molecules are most likely to be found. By investigating geometry, location and properties of buried reflectors, WISDOM will contribute to the understanding of the 3D geological structure, electromagnetic nature, and, possibly, the state of water and ice in the shallow subsurface. WISDOM measurements will be performed 1) by conducting periodic soundings along the Rover traverse, which will provide a coarse, non-uniform, but positionally well-determined investigation of the landing site and 2) by selected high-resolution surveys of areas of strong scientific interest, which are identified for potential investigation and sampling by the Rover's drill. Such surveys will generally be conducted by acquiring a number of closely spaced parallel profiles. Supported by specific hardware features, like the arrangement of the fully polarimetric antenna system, an interpolated 3-D subsurface map of the local stratigraphy can be constructed from these radar measurements. Laboratory measurements are performed on a planar scanner in the anechoic chamber to simulate the closely spaced parallel profiles of selected high-resolution surveys. To characterize the performance of the radar and to be able to analyze the influence of radiation coupling effects between the rover and the antennas, the fully polarimetric WISDOM antenna system was mounted on a simple rover-like mockup. Calibration algorithms were applied to reduce the interference from radiation coupling and cross-talk between transmitting and receiving antenna. The analysis of the laboratory measurement will show features of the fully polarimetric radar system and quantify most of the important performance parameters. Synthetic aperture processing is implemented to increase the azimuth resolution of radar. The three dimensional reconstruction of the positioning of an arrangement of discrete objects will be shown.

  16. Pesticides in shallow groundwater in the Delmarva Peninsula

    USGS Publications Warehouse

    Koterba, M.T.; Banks, W.S.L.; Shedlock, R.J.

    1993-01-01

    A regional study of the areal and depth distribution of pesticides in shallow groundwater in the Delmarva Peninsula of Delaware, Maryland, and Virginia was done to (i) relate the pesticides detected to landscape and shallow subsurface features, and (ii) evaluate aquifer vulnerability and the potential contamination of drinking-water supplies. Water samples collected at 100 wells from 1988 to 1990 were analyzed for concentrations of 36 pesticides, four metabolites, and other constituents. The most commonly detected residues were atrazine, cyanazine, simazine, alachlor, metolachlor, and dicamba. Concentrations were low; few exceeded 3 ??g L-1. Most detections correlate with the intensive use of these herbicides in three widely distributed and commonly rotated crops-corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and small grain-particularly if grown in well- drained soils. Most detections occurred in samples collected from shallow wells screened within 10 m of the overlying water table. The shallow depth distribution of most residues is consistent with their suspected history of use (ca. 20 yr), and patterns in shallow groundwater flow in the surficial aquifer in the study area. The areal and depth distributions of detectable residues in groundwater did not correlate with a vulnerability index, nor any of the component scores developed to estimate that index using the DRASTIC method. The shallow depth of most detections also indicates why few samples from water-supply wells in this study had measurable concentrations of pesticides; most supply wells are deeper than 10 m below the water table. The low number of contaminated samples from supply wells implies that deep groundwater currently (1992) used for drinking generally does not contain detectable pesticide residues.

  17. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.

    PubMed

    Wilcox, Jeffrey D; Johnson, Kathy M

    2016-10-01

    Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.

  18. Radargrams Indicating Ice-Rich Subsurface Deposit

    NASA Image and Video Library

    2016-11-22

    These two images show data acquired by the Shallow Radar (SHARAD) instrument while passing over two ground tracks in a part of Mars' Utopia Planitia region where the orbiting, ground-penetrating radar detected subsurface deposits rich in water ice. The instrument on NASA's Mars Reconnaissance Orbiter emits radio waves and times their echo off of radio-reflective surfaces and interfaces on Mars. The white arrows indicate a subsurface reflector interpreted as the bottom of the ice-rich deposit. The deposit is about as large in area as the state of New Mexico and contains about as much water as Lake Superior. The horizontal scale bar indicates 40 kilometers (25 miles) along the ground track of the radar, as flown by the orbiter overhead. The vertical scale bar indicates a return time of one microsecond for the reflected radio signal, equivalent to a distance of about 90 meters (295 feet). http://photojournal.jpl.nasa.gov/catalog/PIA21137

  19. Aeromagnetic maps of the Uinta and Piceance Basins and vicinity, Utah and Colorado

    USGS Publications Warehouse

    Grauch, V.J.S.; Plesha, Joseph L.

    1989-01-01

    In order to understand the evolution of sedimentary basins, it is important to understand their tectonic setting. In a U.S. Geological Survey (USGS) study of the Uinta and Piceance basins in Utah and Colorado, this understanding is approached through characterization of subsurface structure and lithology of a large region encompassing the basins. An important tool for interpreting these subsurface features is aeromagnetic data. Aeromagnetic anomalies represent variations in the strength and direction of the Earth's magnetic field that are produced by rocks containing a significant number of magnetic minerals (commonly magnetite). The shape and magnitude of an anomaly produced by one body of rock are complexly related to the amount of magnetic minerals present, the magnetic properties of those minerals (determined by a number of factors, including the history of the rock), and the shape of the rock body. In the study area, only crystalline basement rocks and volcanic rocks are likely to contain enough magnetic minerals to produce anomalies; sedimentary rocks and metasediments are generally so poor in magnetic minerals that their magnetic effects cannot be detected by the types of surveys presented in this report. Patterns of anomalies on aeromagnetic maps can reveal not only lithologic differences related to magnetite content, but structural features as well, such as faults that have juxtaposed crystalline rocks against sedimentary rocks, and upwarps of crystalline basement underlying sedimentary sequences. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times and have widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the differences in flight elevation and datum, or they may be compiled into a merged map, where all survey data are analytically reduced to a common flight elevation and datum, and then digitally merged at the survey boundaries. The composite map retains the original resolution of all survey data, but computer methods to enhance or model regional features crossing the survey boundaries cannot be applied. On the other hand, these computer methods can be applied to the merged data, but the resolution of the data may be somewhat diminished. This report presents both composite and merged aeromagnetic maps for a large region that includes the Uinta Basin in Utah and the Piceance basin in Colorado (fig. 1).

  20. Possible Mars brines - Equilibrium and kinetic considerations

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Fanale, F. P.

    1986-01-01

    To determine the fate of postulated near surface brines on Mars, the rate of H2O mass loss from subsurface brines was calculated as a function of latitude, depth, regolith porosity, eutectic temperature, and pore size. A model for a chemically reasonable brine that could reproduce Martian radar results was developed, and the escape rate of H2O molecules from such a brine was estimated. It is suggested that the presence of a low-permeability duricrust may be required to preserve such a brine for reasonable periods, and to prevent detection of an extensive subsurface system by the Viking MAWD instrument.

  1. Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal

    NASA Astrophysics Data System (ADS)

    Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi

    2017-06-01

    The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.

  2. Fortuitous encounters between seagliders and adult female northern fur seals (Callorhinus ursinus) off the Washington (USA) coast: upper ocean variability and links to top predator behavior.

    PubMed

    Pelland, Noel A; Sterling, Jeremy T; Lea, Mary-Anne; Bond, Nicholas A; Ream, Rolf R; Lee, Craig M; Eriksen, Charles C

    2014-01-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA)--a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.

  3. Fortuitous Encounters between Seagliders and Adult Female Northern Fur Seals (Callorhinus ursinus) off the Washington (USA) Coast: Upper Ocean Variability and Links to Top Predator Behavior

    PubMed Central

    Pelland, Noel A.; Sterling, Jeremy T.; Lea, Mary-Anne; Bond, Nicholas A.; Ream, Rolf R.; Lee, Craig M.; Eriksen, Charles C.

    2014-01-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA) – a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species. PMID:25153524

  4. Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, Northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Nimnate, P.; Thitimakorn, T.; Choowong, M.; Hisada, K.

    2017-12-01

    The Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.

  5. Microbial-sized, carboxylate-modified microspheres as surrogate tracers in a variety of subsurface environments: An overview

    USGS Publications Warehouse

    Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.

    2017-01-01

    Since 1986, fluorescent carboxylate-modified polystyrene/latex microspheres (FCM) have been co-injected into aquifers along with conservative tracers and viruses, bacteria, and (or) protozoa. Use of FCM has resulted in new information about subsurface transport behaviors of microorganisms in fractured crystalline rock, karst limestone, soils, and granular aquifers. FCM have been used as surrogates for oocysts of the pathogenic protist Cryptosporidium parvum in karst limestone and granular drinking-water aquifers. The advantages of FCM in subsurface transport studies are that they are safe in tracer applications, negatively charged, easy to detect, chemically inert, and available in wide range of sizes. The limitations of FCM are that the quantities needed for some field transport studies can be prohibitively expensive and that their surface characteristics may not match the microorganisms of interest. These limitations may be ameliorated, in part by using chemically modified FCM so that their surface characteristics are a better match to that of the organisms. Also, more sensitive methods of detection may allow using smaller quantities of FCM. To assess how the transport behaviors of FCM and pathogens might compare at the field scale, it is helpful to conduct side-by-side comparisons of their transport behaviors using the geologic media and site-specific conditions that characterize the field site.

  6. Low-Frequency Electromagnetic Exploration for Groundwater on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    2002-01-01

    Water with even a small amount of dissolved solids has an electrical conductivity orders of magnitude higher than dry rock and is therefore a near-ideal exploration target on Mars for low frequency, diffusive electromagnetic methods. Models of the temperature- and frequency-dependent electrical properties of rock-ice-water mixtures are used to predict the electromagnetic response of the Martian subsurface. Detection of ice is difficult unless it is massively segregated. In contrast, liquid water profoundly affects soundings, and even a small amount of adsorbed water in the cryosphere can be detected. Subcryospheric water is readily distinguishable at frequencies as low as 100 Hz for fresh water to 10 mHz for brines. These responses can be measured using either natural or artificial sources. Ultra low frequency signals from solar wind and diurnal-heating perturbations of the ionosphere are likely, and disturbances of regional crustal magnetic fields may also be observable. Spherics, or extremely to very low frequency signals from lightning discharge, would provide optimal soundings; however, lightning may be the least likely of the possible natural sources. Among the active techniques, only the time-domain electromagnetic (TDEM) method can accommodate a closely spaced transmitter and receiver and sound to depths of hundreds of meters or more. A ground- or aircraft-based TDEM system of several kilograms can detect water to a depth of several hundred meters, and a system of tens of kilograms featuring a large, fixed, rover- or ballistically deployed loop can detect water to several kilometers depth.

  7. Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers

    NASA Astrophysics Data System (ADS)

    Xing, Xiaogang; Claustre, Hervé; Wang, Haili; Poteau, Antoine; D`Ortenzio, Fabrizio

    2014-01-01

    Two autonomous profiling “Bio-Argo” floats were deployed in the northwestern and eastern sub-basins of the Mediterranean Sea in 2008. They recorded at high vertical (1 m) and temporal (5 day) resolution, the vertical distribution and seasonal variation of colored dissolved organic matter (CDOM), as well as of chlorophyll-a concentration and hydrological variables. The CDOM standing stock presented a clear seasonal dynamics with the progressive summer formation and winter destruction of subsurface CDOM maxima (YSM, for Yellow Substance Maximum). It was argued that subsurface CDOM is a by-product of phytoplankton, based on two main characteristics, (1) the YSM was located at the same depth than the deep chlorophyll maximum (DCM) and (2) the CDOM increased in summer parallels the decline in chlorophyll-a. These observations suggested an indirect but tight coupling between subsurface CDOM and phytoplankton via microbial activity or planktonic foodweb interactions. Moreover, the surface CDOM variations observed both by floats and MODIS displayed different seasonal dynamics from what recorded at subsurface one. This implies that CDOM standing stock can be hardly detected by satellite. It is worthnoting that surface CDOM was found to be more related to the sea surface temperature (SST) than chlorophyll-a concentration, suggesting its physical origin, in contrast to the biological origin of YSM and subsurface standing stocks.

  8. Studying Phobos subsurface structure elementary composition by neutron and gamma-rays spectrometers "NS HEND" from "Phobos-Grunt" mission.

    NASA Astrophysics Data System (ADS)

    Kozyrev, S. Alexander; Litvak, Maxim; Malakhov, Alexey; Mokrousov, Maxim; Mitrofanov, Igor; Sanin, Anton; Schulz, Rita; Shvetsov, Valery; Rogozhin, Alexander; Timoshenko, Genagy; Tretyakov, Vladislav; Vostrukhin, Andrey

    The Neutron Spectrometer HEND (NS HEND) has been proposed for studying elemental com-position of Phobos (the Mars's moon) regolith by "Phobos-Grunt" mission. NS HEND have been selected by the Federal Space Agency of Russia for the Lander of the "Phobos-Grunt" mission scheduled for launch in 2011. The shallow subsurface of Phobos might be studied by observations of induced nuclear gamma-ray lines and neutron emission. Secondary gamma-rays and neutrons are produced by energetic Galactic Cosmic Rays within 1-2 meter layer of subsur-face. The knowledge of the spectral density of neutrons in addition to measurements of nuclear gamma lines allows to deconvolve concentrations of soil-constituting elements. That is why nuclear instruments include both the segment for detection of gamma ray lines and segment of neutron spectrometer for the measurement of the neutron leakage spectra. Moreover, mea-surements of neutrons at 2.2 MeV line will also allow to study the content of hydrogen within subsurface layer about 1 meter deep. This instrument, will be able to provide observational data for composition of Phobos regolith and content of natural radioactive elements K, U and Th, and also for content of hydrogen or water ice in the Phobos subsurface. At present, the flight units of NS HEND instrument is manufactured, tested and current go through physical calibration.

  9. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael

    2015-08-01

    Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.

  10. The Design and Implementation of Instruments for Low-Frequency Electromagnetic Sounding of the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Delory, G. T.; Grimm, R. E.

    2003-01-01

    Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.

  11. Episodic subsurface injections in the oligotrophic North Pacific observed from BioArgo

    NASA Astrophysics Data System (ADS)

    Wilson, C.

    2016-12-01

    Summer blooms of chlorophyll often develop in the oligotrophic North Pacific Ocean in the region between Hawaii and 30°N. Episodic injections of subsurface nutrients have been hypothesized to fuel these blooms, but the exact mechanism is unknown. Here we examine oxygen data from 13 BioArgo floats deployed near Hawaii between September 2002 to April 2016 to look for evidence of subsurface mixing that could be driving the development of the surface chlorophyll features. Twelve injection events (defined as oxygen values < 2 standard deviations below the mean at 100 m depth) were observed. Nine (75%) of the events happened in winter (Dec-Mar), when surface chl blooms do not generally develop. While most of the events were short-lived (< 5 days), several events lasted a month or two. An event that began in August 2014, and lasted almost 2 months, is examined in detail. The start of the event preceded by a few days the development of a surface increase in chlorophyll in the surrounding area evident from satellite data.

  12. Subsurface Analysis of the Mesaverde Group on and near the Jicarilla Apache Indian Reservation, New Mexico-its implication on Sites of Oil and Gas Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie

    2001-08-21

    The purpose of the phase 2 Mesaverde study part of the Department of Energy funded project ''Analysis of oil-bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico'' was to define the facies of the oil-producing units within the subsurface units of the Mesaverde Group and integrate these results with outcrop studies that defined the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) integration of subsurface correlations with outcrop correlations of components of the Mesaverde, (2) application of the sequence stratigraphicmore » model determined in the phase one study to these correlations, (3) determination of the facies distribution of the Mesaverde Group and their relationship to sites of oil and gas accumulation, (4) evaluation of the thermal maturity and potential source rocks for oil and gas in the Mesaverde Group, and (5) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.« less

  13. Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.

    PubMed

    Beach, James M; Uertz, James L; Eckhardt, Lori G

    2015-10-01

    A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.

  14. Using the shortwave infrared to image middle ear pathologies

    PubMed Central

    Valdez, Tulio A.; Bruns, Oliver T.; Bawendi, Moungi G.

    2016-01-01

    Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1–2 μm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope. PMID:27551085

  15. Solid-State Multimission Magnetometer (SSM(3)): Application to Groundwater Exploration on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    2002-01-01

    This report describes work to develop solid-state magnetometers using magnetoresistive thin films, low-frequency electric-field measurements, and methods for electromagnetic detection of water and ice in the subsurface of Mars.

  16. Development of Hand-Held Thermographic Inspection Technologies

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...

  17. Hydrogeology and human health

    USDA-ARS?s Scientific Manuscript database

    Over the past 50 years, significant progress has been made in improving our understanding of the extent and potential consequences of groundwater contamination, with research advancing on several fronts including groundwater sampling methods, laboratory detection methods, subsurface transport (and m...

  18. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    USGS Publications Warehouse

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  19. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley

    PubMed Central

    Mikucki, J. A.; Auken, E.; Tulaczyk, S.; Virginia, R. A.; Schamper, C.; Sørensen, K. I.; Doran, P. T.; Dugan, H.; Foley, N.

    2015-01-01

    The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (∼350 m). PMID:25919365

  20. Using Laser Ultrasound to Detect Subsurface Defects in Metal Laser Powder Bed Fusion Components

    NASA Astrophysics Data System (ADS)

    Everton, Sarah; Dickens, Phill; Tuck, Chris; Dutton, Ben

    2018-03-01

    Laser powder bed fusion offers many advantages over conventional manufacturing methods, such as the integration of multiple parts that can result in significant weight-savings. The increased design freedom that layer-wise manufacture allows has also been seen to enhance component performance at little or no added cost. For such benefits to be realized, however, the material quality must first be assured. Laser ultrasonic testing is a noncontact inspection technique that has been proposed as suitable for in situ monitoring of metal additive manufacturing processes. This article explores the current capability of this technique to detect manufactured, subsurface defects in Ti-6Al-4V samples, ex situ. The results are compared with x-ray computed tomography reconstructions and focus variation microscopy. Although laser ultrasound has been used to identify material discontinuities, further work is required before this technique could be implemented in situ.

  1. Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.

    2009-01-01

    The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.

  2. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  3. Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results

    NASA Astrophysics Data System (ADS)

    Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2015-03-01

    Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.

  4. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W.; Holbrook, W.S.; Hill, T.M.; Keaten, R.; Mienert, J.; Haflidason, H.; Johnson, J.E.; Winters, W.J.; Lorenson, T.D.

    2008-01-01

    Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years B.P., i.e., well before the last major Storegga Slide event (7.2 ka 14C years B.P., or 8.2 ka calendar years B.P.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation. 

  5. High-resolution seismic reflection survey near SPR surface collapse feature at Weeks Island, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.D.; Xia, J.; Harding, R.S. Jr.

    1994-12-31

    Shallow high resolution 2-D and 3-D seismic reflection techniques are assisting in the subsurface delineation of a surface collapse feature (sinkhole) at Weeks Island, Louisiana. Seismic reflection surveys were conducted in March 1994. Data from walkaway noise tests were used to assist selection of field recording parameters. The top of the salt dome is about 180 ft below ground surface at the sinkhole. The water table is an estimated 90 ft below the ground surface. A single coherent reflection was consistently recorded across the entire area of the survey, although stacking velocity and spectral content of the event varied. Onmore » the basis of observed travel times and stacking velocities, the coherent reflection event appears to originate above the top of the salt, possibly at or near the water table. Identification of this reflector will be made form borehole investigations currently planned for the sinkhole site. A depression or time sag in this reflection event is clearly evident in both the 2-D and 3-D seismic data in the immediate vicinity of the sinkhole. The time sag appears to be related to the subsurface structure of the reflector and not to near surface topography or velocity effects. Elsewhere in the survey area, observed changes in reflection travel times and wavelet character appear to be related to subsurface geologic structure. These seismic observations may assist in predicting where future sinkholes will develop after they have been tied to borehole data collected at the site.« less

  6. A note on the correlation between geophysical observations and seismicity in the Arava/(Araba) Valley at the southern part of the Dead Sea fault

    USGS Publications Warehouse

    Rybakov, M.; Shapira, A.; Al-Zoubi, A.; ten Brink, Uri S.; Hofstetter, R.; Kraeva, N.; Feldman, L.

    2006-01-01

    The spatial distribution of the earthquakes in the Arava Valley, a 150-km section of the Dead Sea Transform, is compared for the first time with the local subsurface geological features derived from geophysical and geological data. Gravity data suggested that the Gharandal, Timna, and Elat basins were filled by low-density young sediments. These features were confirmed by seismic reflection profiles and high-resolution aeromagnetic (HRAM) survey. The HRAM survey delineated the trace of the Dead Sea Transform (DST), which separates magnetic anomalies in the eastern and western parts of the valley, and revealed the occurrence of the unknown deep magmatics. Overall, the earthquake activity appears to be strongly related to the Dead Sea Transform. However, on a local scale, there is no apparent correlation between the seismicity and the mapped fault segments comprising the DST fault system. Absence of the correlation may be a result of insufficient accuracy of the earthquake localization and/or the inclined fault plane. However, in spite of such inaccuracy, it is clearly observed that the large clusters of the low-magnitude earthquakes coincide well with the sedimentary basins. Two pronounced clusters appear to coincide with the subsurface magmatics. We assume that the subsurface geology predetermines areas of stress accumulation and earthquakes. These areas can be the end of faults, or fault jogs, which sometimes create basins. Magmatism can also be affected by the stress field and predetermine the stress and earthquakes' allocation. ?? 2007 Science From Israel/LPPLtd.

  7. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  8. The Effects of Mineral Matrices and Extraction Method on Quantification of Bacterial Phospholipid Fatty Acids.

    NASA Astrophysics Data System (ADS)

    Ford, S. E.; McKelvie, J. R. M.; Sherwood Lollar, B.; Slater, G. F.

    2017-12-01

    Understanding the distribution, abundances and metabolic activities of microbial life in the subsurface is fundamental to our understanding of biogeochemical cycling on Earth. Given that the most likely environments for life to still exist, or be preserved, on other planets and moons in the solar system are in the subsurface, a better understanding of subsurface life on Earth is also a key factor in our ability to search for life beyond the Earth. While we have made progress in investigating life in the continental subsurface in recent years, significant challenges remain. In particular, the low biomass abundance, heterogeneous distribution of biomass, and the potential for matrix effects during sampling and analysis mean that further development and optimization of methods to study subsurface life are needed. Phospholipid fatty acids (PLFA) are a useful biosignature of extant, viable microbial communities that are applied in a wide range of environments. Here we test the sensitivity of two methods of PLFA analysis (modified Bligh and Dyer, Microwave Assisted Extraction) to detect known numbers of cells doped into two distinct matrices (bentonite, crushed granite). Samples were prepared by adding known cellular concentrations of Basciullus subtilis subtilis (ATCC 6051) to crushed bentonite, or to granite, respectively, to create dilution series. Samples were extracted for PLFA using a dichloromethane-methanol modified Bligh & Dyer (mBD) or Microwave Assisted Extraction (MAE) and then quantified using GC - MS and GC - FID. Pure culture extractions yielded a linearly decreasing trend to the level of the process blank. The ratio of cells to PLFA for this trend was 2.4x104 +/- 1.9x104 cells/pmol at the lower end of the generic range of 2 to 6 x105 cells/pmol. For bentonite the PLFA results were lower than for the pure culture. PLFA results for bentonite followed a linear trend at higher concentrations, but departed from this at low concentrations indicating the potential for interference for low biomass samples. The ratio of cells to PLFA for the bentonite was to 6.2x104 +/- 4.5x104 cells/pmol, at the upper end of generic range. Ongoing comparison of the efficiency of microwave extraction and the effect of different matrices (e.g. granite) aims to optimize detection of PLFA for low biomass samples relevant to subsurface systems.

  9. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    PubMed

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  10. Accurate modeling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Wellman, Dawn M.

    2015-06-26

    Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method ismore » implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.« less

  11. Application of ground-penetrating radar methods in determining hydrogeologic conditions in a karst area, west-central Florida

    USGS Publications Warehouse

    Barr, G.L.

    1993-01-01

    Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.

  12. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    NASA Astrophysics Data System (ADS)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  13. Estimating and mapping ecological processes influencing microbial community assembly

    PubMed Central

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725

  14. Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2016-12-01

    The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.

  15. Distribution of Upper Circumpolar Deep Water on the warming continental shelf of the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar

    2017-07-01

    We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (eddies) containing UCDW on the WAP. Thirty-three subsurface eddies with widths on the order of 10 km were detected during four glider deployments. Each eddy contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term warming of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent eddy. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to eddies entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for eddy intrusion.

  16. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK.

    PubMed

    Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  17. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less

  18. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    PubMed

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain H.; Kouzes, Richard T.

    Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less

  20. Anthropogenic modifications to drainage conditions on streamflow variability in the Wabash River basin, Indiana

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.

    2011-12-01

    The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.

  1. Electrochemical characterization of cerium-based conversion coatings on aluminum alloy 7075-T6

    NASA Astrophysics Data System (ADS)

    Joshi, Simon

    This research used electrochemical techniques to characterize the deposition and corrosion protection behavior of cerium-based conversion coatings on Al 7075-T6. Alkaline activation decreased native oxide impedance (5.9 kO-cm2) by ˜25% promoting deposition of 250--500 nm coatings. Activation in NaOH solutions deposited coatings with large cracks and craters, whereas Na2CO3 activation resulted in uniform coatings, i.e., fewer cracks and almost no craters. Uniformly deposited coatings exhibited better cathodic inhibition and higher impedance (˜200 kO-cm 2) than on NaOH activated substrates (˜100 kO-cm 2). Subsurface crevices, caused by Cl- and H 2O2 in the deposition solution, were found under large cracks and craters. Thus, Na2CO3 activation produced fewer subsurface crevices. To reduce subsurface crevice formation, Ce(NO3) 3 and CeCl3 were used in different ratios. Coatings made using 100% Ce(NO3)3 solutions were ˜60 nm thick without subsurface crevices, but the coatings offered little corrosion protection. Despite formation of subsurface crevices, Cl- was necessary as impedance increased linearly with Cl- concentration in the deposition solution. To characterize the different non-uniform features of the coatings, microelectrochemical testing was performed and it showed three distinct regions: active, intermediate, and passive. Humidity experiments were performed to understand the effect of moisture during salt spray testing and showed an increase in coating impedance by making the exposed substrate oxide more passive. However, this passive oxide could not provide corrosion resistance in a chloride environment. Dissolution studies showed that cerium migration was only possible at pH ≤2. Overall, deposition of uniform 250--500 nm thick outings was essential to make it an effective barrier to Cl - attach and prevent subsurface crevices on Al 7075-T6.

  2. WISDOM : an UHF GPR on the Exomars Mission

    NASA Astrophysics Data System (ADS)

    Corbel, C.; Hamram, S.; Ney, R.; Plettemeier, D.; Dolon, F.; Jeangeot, A.; Ciarletti, V.; Berthelier, J.

    2006-12-01

    This paper describes the main technical features of WISDOM (Water Ice and Subsurface Deposit Observations on Mars) Ground Penetrating Radar. This radar has been selected on the PASTEUR payload of the ESA ExoMars rover. The launch is scheduled in 2011. The main objective of this mission is to acquire and analyze samples of the shallow subsurface and search for traces of extinct or extant life. The WISDOM GPR aims at providing observations of the structure and layering of the upper layers of the subsurface in order to retrieve geological information that are of prime interest to select optimal sites to drill. It will also localize buried obstacles (rocks, boulders, ?)in the underground that will make the delicate drilling operations safer. WISDOM will operate in the UHF range from 500 MHz to 3 GHz and probe the first few meters of the subsurface with a high resolution (a few centimeters). The large bandwidth requirement (2.5 GHz) led us to select a gated step frequency technique for WISDOM. The Step Frequency technique is based on the analysis of the system in the frequency domain. The phase and amplitude of the reflected signal are measured at about 200 different frequencies effectively measuring the transfer function of the sub-surface between the transmitter and receiver antenna. The impulse response and eventually the distance of the reflecting structures can be obtained by performing an inverse Fourier transform of the measured transfer function. The broad band antennas have been designed in order to have a wide radiation pattern into the sub-surface and to avoid the direct coupling and allow co and cross polar measurements. To decrease the direct signal between the transmitter and the receiver or strong reflections from the surface, hardware range gating is implemented. The performances of the instrument operated in well characterized conditions will be presented

  3. Influence of deep vortices on the ocean surface

    NASA Astrophysics Data System (ADS)

    Ciani, Daniele; Carton, Xavier; Bashmachnikov, Igor; Chapron, Bertrand

    2015-04-01

    The oceanic motion at mesoscale (20-200 km) and submesoscale (0.5-20 km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origination areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea-surface and at intrathermocline depths (0-1500 m), and are presently investigated by means of model outputs and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011). Using analytical models in the frame of the quasi-geostrophic (QG) theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both QG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddies' characteristics (radius, depth, thickness, velocity) were varied in order to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), represents a contribution for systematic and synoptic detection of subsurface vortices.

  4. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    NASA Astrophysics Data System (ADS)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  5. Soil hydraulic material properties and layered architecture from time-lapse GPR

    NASA Astrophysics Data System (ADS)

    Jaumann, Stefan; Roth, Kurt

    2018-04-01

    Quantitative knowledge of the subsurface material distribution and its effective soil hydraulic material properties is essential to predict soil water movement. Ground-penetrating radar (GPR) is a noninvasive and nondestructive geophysical measurement method that is suitable to monitor hydraulic processes. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive to the soil water characteristic and the hydraulic conductivity function. In this work, we show that the GPR signal originating from both the subsurface architecture and the fluctuating groundwater table is suitable to estimate the position of layers within the subsurface architecture together with the associated effective soil hydraulic material properties with inversion methods. To that end, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water content to relative permittivity with the complex refractive index model (CRIM), and solve Maxwell's equations numerically. In order to analyze the GPR signal, we implemented a new heuristic algorithm that detects relevant signals in the radargram (events) and extracts the corresponding signal travel time and amplitude. This algorithm is applied to simulated as well as measured radargrams and the detected events are associated automatically. Using events instead of the full wave regularizes the inversion focussing on the relevant measurement signal. For optimization, we use a global-local approach with preconditioning. Starting from an ensemble of initial parameter sets drawn with a Latin hypercube algorithm, we sequentially couple a simulated annealing algorithm with a Levenberg-Marquardt algorithm. The method is applied to synthetic as well as measured data from the ASSESS test site. We show that the method yields reasonable estimates for the position of the layers as well as for the soil hydraulic material properties by comparing the results to references derived from ground truth data as well as from time domain reflectometry (TDR).

  6. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    NASA Astrophysics Data System (ADS)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.

  7. Imaging pancreatobiliary ductal system with optical coherence tomography: A review

    PubMed Central

    Mahmud, Mohammad S; May, Gray R; Kamal, Mohammad M; Khwaja, Ahmed S; Sun, Carry; Vitkin, Alex; Yang, Victor XD

    2013-01-01

    An accurate, noninvasive and cost-effective method of in situ tissue evaluation during endoscopy would be highly advantageous for the detection of dysplasia or early cancer and for identifying different disease stages. Optical coherence tomography (OCT) is a noninvasive, high-resolution (1-10 μm) emerging optical imaging method with potential for identifying microscopic subsurface features in the pancreatic and biliary ductal system. Tissue microstructure of pancreaticobiliary ductal system has been successfully imaged by inserting an OCT probe through a standard endoscope operative channel. High-resolution OCT images and the technique’s endoscopic compatibility have allowed for the microstructural diagnostic of the pancreatobiliary diseases. In this review, we discussed currently available pancreaticobiliary ductal imaging systems to assess the pancreatobiliary tissue microstructure and to evaluate varieties of pancreaticobiliary disorders and diseases. Results show that OCT can improve the quality of images of pancreatobiliary system during endoscopic retrograde cholangiopancheatography procedure, which may be important in distinguishing between the neoplastic and non-neoplastic lesions. PMID:24255746

  8. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  9. Long-term stellar variability

    NASA Astrophysics Data System (ADS)

    Pagano, Isabella

    2010-02-01

    Stars with significant subsurface convection zones develop magnetic loop structures that, arising from the surface upward to the external atmospheres, cause flux variability detectable throughout the whole electromagnetic spectrum. In fact, diagnostics of magnetic activity are in radio wavelengths, where gyrosincrotron radiation arises from the quiescent and flaring corona; in the optical region, where important signatures are the Balmer lines, the Ca ii IRT and H&K lines; in the UV and X ray domains, the latter mainly due to coronal thermal plasma. The zoo of different magnetic features observed for the Sun - spots, faculae, flares, CMEs - are characterized by different temporal evolution and energetics, both in quantity and quality. As a consequence, the time scale of variability, the amount of involved energy and the quality of the involved photons are used as fingerprints in interpreting the observed stellar variability in the framework of the solar-stellar analogy. Here I review main results from long-term multiwavelength observations of cool star atmospheres, with emphasis to similarities and differences with the solar case.

  10. Estimation of Deeper Structure at the Soultz Hot Dry Rock Field by Means of Reflection Method Using 3C AE as Wave Source

    NASA Astrophysics Data System (ADS)

    Soma, N.; Niitsuma, H.; Baria, R.

    1997-12-01

    We investigate the deep subsurface structure below the artificial reservoir at the Soultz Hot Dry Rock (HDR) site in France by a reflection method which uses acoustic emission (AE) as a wave source. In this method, we can detect reflected waves by examining the linearity of a three-dimensional hodogram. Additionally for imaging a deep subsurface structure, we employ a three-dimensional inversion with a restriction of wave polarization angles and with a compensation for a heterogeneous source distribution.¶We analyzed 101 AE wave forms observed at the Soultz site during the hydraulic testing in 1993. Some deep reflectors were revealed by this method. The bottom of the artificial reservoir that is presumed from all of the AE locations in 1993 was delineated at the depth of about 3900 m as a reflector. Other deeper reflectors were detected below the reservoir, which would not have been detected using conventional methods. Furthermore these reflectors agreed with the results of the tri-axial drill-bit VSP (Asanuma et al., 1996).

  11. Miniature robotic sample analysis lab for planetary in situ mineralogy and microbiology

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman; Wong, Brian; Haddad, Emile; Jamroz, Wes; Cloutis, Edward; Strong, Kimberly; Ghafoor, Nadeem; Jessen, Sean

    The current Martian surface conditions are relatively inhospitable, with average diurnal temperature ranges from 170 K to 268 K, a low air pressure of about 7 to 10 mbar consisting mainly of CO2 and negligible ozone to moderate the UV portion of the incident solar radiation. The intense UV effectively sterilizes the surface, and in combination with the low air pressure, makes any unbound surface liquid water unstable. However, there is mounting evidence to support the notion that the near subsurface of Mars may differ dramatically from the uppermost surface. The Inukshuk landed Mars mission, as initially developed under a pre-Phase A study for the Canadian Space Agency, focuses on the search for hydrated mineralogy and subsurface water sites that can provide evidence of past or present life. The mission will be achieved using a miniature suite of complementary spectral instruments operating in collaboration with a robotic tethered mole drill system for the systematic in situ subsurface exploration of the planetary mineralogy, water content and microbiology. The Inukshuk mission will, for the first time, study variations in the Mars subsurface characteristics and composition in detail at different locations. These will be correlated with the current planetary boundary layer conditions using an elevating Skycam platform and surface stand-off measurement capabilities. The subsurface analysis will be provided using a miniature bore-hole probe integrated within the mole driller and interfaced to the rover-based instrument suite using an IR fiber-optic link. This will allow subsurface mapping of the stratigraphy and composition in steps of a few mm to depths beyond 1 m. During the drilling, the bore-hole probe will be shielded using a wiper/shutter system. The in situ bore-hole analysis has an advantage for detecting biomarkers for astrobiology on Mars in that the alteration of the sample by surface radiation can be minimized. The bore-hole sample analysis will employ the data synergy provided by infrared (IR) reflection between 900 and 4300 nm at about 4 nm resolution, visible micro-imaging, and complementary IR Raman spectroscopy from about 400 to 4000 cm-1 . IR spectroscopy provides direct information on the presence of H2 O or OH, either as free H2 O or bonded within hydrated minerals. The IR Raman provides for direct C-C biological detection and supplementary measurement of IR inactive modes. The boresight microimaging provides information on the sample grain structure to assist the spectral data analysis. The combined data synergy can, for the first time, directly and unambiguously detect H2 O and determine its state (ice/liquid/structural), distinguish key mineral species (including those associated with favourable habitats for microbial activity) and determine their hydration states, as well as detect and differentiate various C-H and C-C molecular structures for astrobiological investigations. The mission features a small He-inflatable Skycam aerostat tethered to the rover. It will provide stereographic 2-D VIS surface maps of the rover and its geolocation from a 10-15 m altitude to improve the rover autonomy and maneuverability around obstacles. The Skycam aerostat will also provide boundary layer investigations of Mars weather and residual atmospheric processes with high 0.015 nm spectral resolution for CO2 and CH4 using tunable fiber-optic sources to study the C isotopic ratios. Mission cost effectiveness is achieved through a synergistic instrument suite based on advanced but mature patented MPBC miniaturization technologies that enable high IR spectral measurement performance with minimal mass and power, and an innovative MDA tethered mole drill design. The estimated Inukshuk net payload mass including instrument suite, robotic tethered mole drill with insitu bore-hole probe and Skycam aerostat is under 12 kg. The core IR spectral processor is based on MPBC's patented IOSPEC technology for miniature guided-wave spectrometers. The integration of the spectrometer optics using a low-loss IR waveguide structure provides robust optical alignment and facilitates optimization of the output focal plane and detector array coupling with minimal mechanical components. A precision master grating, micromachined in thin silicon, provides atomically smooth grating elements that enable a background signal scattering below 0.05%. Smart active optical signal processing and dark signal compensation have been developed for IR arrays that can provide over 60 dB of dynamic signal range to enable trace detection. A test bread-board has been prepared and the basic measurement performance verified using a variety of minerals known to exist on Mars. The following paper will discuss the breadboarding of the core spectral instrumentation towards the potential Inukshuk Mars mission science requirements. Acknowledgements: The authors greatfully acknowledge the suggestions of Marcus Dejmek and Eric Vachon from CSA, as well as the financial support of the Canadian Space Agency.

  12. A Method Of Evaluating A Subsurface Region Using Gather Sensitive Data Discrimination

    DOEpatents

    Lazaratos, Spyridon K.

    2000-01-11

    A method of evaluating a subsurface region by separating/enhancing a certain type of seismic event data of interest from an overall set of seismic event data which includes other, different types of seismic event data is disclosed herein. In accordance with one feature, a particular type of gather is generated from the seismic event data such that the gather includes at least a portion of the data which is of interest and at least a portion of the other data. A series of data discrimination lines are incorporated into the gather at positions and directions which are established in the gather in a predetermined way. Using the data discrimination lines, the data of interest which is present in the gather is separated/enhanced with respect to the other data within the gather. The separated data may be used for example in producing a map of the particular subterranean region. In accordance with another feature, the gather is selected such that the incorporated discrimination lines approach a near parallel relationship with one another. Thereby, the data is transformed in a way which causes the discrimination lines to be parallel with one another, resulting in reduced frequency distortion accompanied by improved accuracy in the separation/enhancement of data. In accordance with still another feature, the disclosed data separation/enhancement method is compatible with an iterative approach.

  13. Development of 3D microwave imaging technology for damage assessment of concrete bridge.

    DOT National Transportation Integrated Search

    2003-11-01

    An innovative microwave 3-dimensional (3D) sub-surface imaging technology is developed for : detecting and quantitatively assessing internal damage of concrete structures. This technology is : based on reconstruction of dielectric profile (image) of ...

  14. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.

  15. Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Parker, Andrew O.; Schmidt, Matthew W.; Chang, Ping

    2015-11-01

    The role of Atlantic Meridional Overturning Circulation (AMOC) as the driver of Dansgaard-Oeschger (DO) variability that characterized Marine Isotope Stage 3 (MIS 3) has long been hypothesized. Although there is ample proxy evidence suggesting that DO events were robust features of glacial climate, there is little data supporting a link with AMOC. Recently, modeling studies and subsurface temperature reconstructions have suggested that subsurface warming across the tropical North Atlantic can be used to fingerprint a weakened AMOC during the deglacial because a reduction in the strength of the western boundary current allows warm salinity maximum water of the subtropical gyre to enter the deep tropics. To determine if AMOC variability played a role during the DO cycles of MIS 3, we present new, high-resolution Mg/Ca and δ18O records spanning 24-52 kyr from the near-surface dwelling planktonic foraminifera Globigerinoides ruber and the lower thermocline dwelling planktonic foraminifera Globorotalia truncatulinoides in Southern Caribbean core VM12-107 (11.33°N, 66.63°W, 1079 m depth). Our subsurface Mg/Ca record reveals abrupt increases in Mg/Ca ratios (the largest equal to a 4°C warming) during the interstadial-stadial transition of most DO events during this period. This change is consistent with reconstructions of subsurface warming events associated with cold events across the deglacial using the same core. Additionally, our data support the conclusion reached by a recently published study from the Florida Straits that AMOC did not undergo significant reductions during Heinrich events 2 and 3. This record presents some of the first high-resolution marine sediment derived evidence for variable AMOC during MIS 3.

  16. Applying 2-D resistivity imaging and ground penetrating radar (GPR) methods to identify infiltration of water in the ground surface

    NASA Astrophysics Data System (ADS)

    Yusof, Azim Hilmy Mohamad; Azman, Muhamad Iqbal Mubarak Faharul; Ismail, Nur Azwin; Ismail, Noer El Hidayah

    2017-07-01

    Infiltration of water into the soil mostly happens in area near to the ocean or area where rain occurred frequently. This paper explains about the water infiltration process that occurred vertically and horizontally at the subsurface layer. Infiltration act as an indicator of the soil's ability to allow water movement into and through the soil profile. This research takes place at Teluk Kumbar, Pulau Pinang, area that located near to the sea. Thus, infiltration process occurs actively. The study area consists of unconsolidated marine clay, sand and gravel deposits. Furthermore, the methods used for this research is 2-D Resistivity Imaging by using Wenner-Schlumberger array with 2.5 m minimum electrode spacing, and the second method is Ground Penetrating Radar (GPR) with antenna frequency of 250MHz. 2-D Resistivity Imaging is used to investigate the subsurface layer of the soil. Other than that, this method can also be used to investigate the water infiltration that happens horizontally. GPR is used to investigate shallow subsurface layer and to investigate the water infiltration from above. The results of inversion model of 2-D Resistivity Imaging shows that the subsurface layer at distance of 0 m to 20 m are suspected to be salt water intrusion zone due to the resistivity value of 0 Ω.m to 1 Ω.m. As for the radargram results from the GPR, the anomaly seems to be blurry and unclear, and EM waves signal can only penetrate up to 1.5 m depth. This feature shows that the subsurface layer is saturated with salt water. Applying 2-D resistivity imaging and GPR method were implemented to each other in identifying infiltration of water in the ground surface.

  17. On Subsurface Fracture Opening and Closure

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2016-12-01

    Mechanistic understanding of fracture opening and closure in geologic media is of significant importance to nature resource extraction and waste management, such as geothermal energy extraction, oil/gas production, radioactive waste disposal, and carbon sequestration and storage). A dynamic model for subsurface fracture opening and closure has been formulated. The model explicitly accounts for the stress concentration around individual aperture channels and the stress-activated mineral dissolution and precipitation. A preliminary model analysis has demonstrated the importance of the stress-activated dissolution mechanism in the evolution of fracture aperture in a stressed geologic medium. The model provides a reasonable explanation for some key features of fracture opening and closure observed in laboratory experiments, including a spontaneous switch from a net permeability reduction to a net permeability increase with no changes in a limestone fracture experiment.

  18. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    PubMed Central

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4+. The reported fluid chemistry included N2, NH4+ (5–112 μM), NO2− (27–48 μM), and NO3− (17–72 μM). In this study, the correlation between low NH4+ concentrations in dominantly meteoric fluids and higher NH4+ in rock-reacted fluids is used to hypothesize that NH4+ is sourced from NH4+-bearing biotite. However, biotite samples from the host rocks and ore-body minerals were analyzed by Fourier transform infrared (FTIR) microscopy and none-contained NH4+. However, the nitrogenase-encoding gene nifH was successfully amplified from DNA of the fluid sample with high NH4+, suggesting that subsurface microbes have the capability to fix N2. If so, unregulated nitrogen fixation may account for the relatively high NH4+ concentrations in the fluids. Additionally, the amoA and nxrB genes for archaeal ammonium monooxygenase and nitrite oxidoreductase, respectively, were amplified from the high NH4+ fluid DNA, while bacterial amoA genes were not. Putative nitrifying organisms are closely related to ammonium-oxidizing Crenarchaeota and nitrite-oxidizing Nitrospira detected in other subsurface sites based upon 16S rRNA sequence analysis. Thermodynamic calculations underscore the importance of NH4+ as an energy source in a subsurface nitrification pathway. These results suggest that the subsurface microbial community at Henderson is adapted to the low nutrient and energy environment by their capability of fixing nitrogen, and that fixed nitrogen may support subsurface biomass via nitrification. PMID:22190904

  19. A Study for Anisotropic Wavefield Analysis with Elastic Layered Models

    NASA Astrophysics Data System (ADS)

    Yoneki, R.; Mikada, H.; Takekawa, J.

    2015-12-01

    Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.

  20. Coupling Genetic and Chemical Microbiome Profiling Reveals Heterogeneity of Archaeome and Bacteriome in Subsurface Biofilms That Are Dominated by the Same Archaeal Species

    PubMed Central

    Holman, Hoi-Ying N.; DeSantis, Todd Z.; Wanner, Gerhard; Andersen, Gary L.; Perras, Alexandra K.; Meck, Sandra; Völkel, Jörg; Bechtel, Hans A.; Wirth, Reinhard; Moissl-Eichinger, Christine

    2014-01-01

    Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation) and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses. PMID:24971452

Top