SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE
The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION
The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)
The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...
National assessment of geologic carbon dioxide storage resources: methodology implementation
Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.
2013-01-01
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.
43 CFR 3138.11 - How do I apply for a subsurface storage agreement?
Code of Federal Regulations, 2014 CFR
2014-10-01
... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How do I apply for a subsurface storage...
43 CFR 3138.11 - How do I apply for a subsurface storage agreement?
Code of Federal Regulations, 2013 CFR
2013-10-01
... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How do I apply for a subsurface storage...
43 CFR 3138.11 - How do I apply for a subsurface storage agreement?
Code of Federal Regulations, 2011 CFR
2011-10-01
... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How do I apply for a subsurface storage...
43 CFR 3138.11 - How do I apply for a subsurface storage agreement?
Code of Federal Regulations, 2012 CFR
2012-10-01
... participation factor for all parties to the subsurface storage agreement; and (11) Supporting data (geologic maps showing the storage formation, reservoir data, etc.) demonstrating the capability of the reservoir... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How do I apply for a subsurface storage...
Spreadsheet log analysis in subsurface geology
Doveton, J.H.
2000-01-01
Most of the direct knowledge of the geology of the subsurface is gained from the examination of core and drill-cuttings recovered from boreholes drilled by the petroleum and water industries. Wireline logs run in these same boreholes generally have been restricted to tasks of lithostratigraphic correlation and thee location of hydrocarbon pay zones. However, the range of petrophysical measurements has expanded markedly in recent years, so that log traces now can be transformed to estimates of rock composition. Increasingly, logs are available in a digital format that can be read easily by a desktop computer and processed by simple spreadsheet software methods. Taken together, these developments offer accessible tools for new insights into subsurface geology that complement the traditional, but limited, sources of core and cutting observations.
Briefing on geological sequestration
Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...
Briefing on geological sequestration (Tulsa)
Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...
Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore
NASA Astrophysics Data System (ADS)
Walling, M.
2012-12-01
Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin
NASA Astrophysics Data System (ADS)
Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.
2017-10-01
The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.
Computational Modeling of the Geologic Sequestration of Carbon Dioxide
Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...
Geological Sequestration of CO2 A Brief Overview and Potential for Application for Oklahoma
Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...
40 CFR 98.441 - Reporting threshold.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Reporting threshold. 98.441 Section 98...) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a... amount of CO2 for long-term containment in subsurface geologic formations. There is no threshold. (b...
Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.
Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T
2016-01-01
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.
Scenario simulation based assessment of subsurface energy storage
NASA Astrophysics Data System (ADS)
Beyer, C.; Bauer, S.; Dahmke, A.
2014-12-01
Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC-processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.
40 CFR 98.440 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... comprises any well or group of wells that inject a CO2 stream for long-term containment in subsurface... where a CO2 stream is being injected in subsurface geologic formations to enhance the recovery of oil or natural gas unless one of the following applies: (1) The owner or operator injects the CO2 stream for long...
40 CFR 98.440 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... comprises any well or group of wells that inject a CO2 stream for long-term containment in subsurface... where a CO2 stream is being injected in subsurface geologic formations to enhance the recovery of oil or natural gas unless one of the following applies: (1) The owner or operator injects the CO2 stream for long...
40 CFR 98.440 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... comprises any well or group of wells that inject a CO2 stream for long-term containment in subsurface... where a CO2 stream is being injected in subsurface geologic formations to enhance the recovery of oil or natural gas unless one of the following applies: (1) The owner or operator injects the CO2 stream for long...
40 CFR 98.440 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... comprises any well or group of wells that inject a CO2 stream for long-term containment in subsurface... where a CO2 stream is being injected in subsurface geologic formations to enhance the recovery of oil or natural gas unless one of the following applies: (1) The owner or operator injects the CO2 stream for long...
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad; Riaz, Amir
2017-11-01
CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.
Rynne, Timothy M.; Spadaro, John F.; Iovenitti, Joe L.; Dering, John P.; Hill, Donald G.
1998-10-27
A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.
Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano
NASA Astrophysics Data System (ADS)
Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.
2016-12-01
"Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.
Recent experimental data may point to a greater role for osmotic pressures in the subsurface
Neuzil, C.E.; Provost, A.M.
2009-01-01
Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.
Carbon dioxide fluid-flow modeling and injectivity calculations
Burke, Lauri
2011-01-01
These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balashov, Victor N.; Brantley, Susan L.; Guthrie, George D.
One idea for mitigating the increase in fossil- fuel generated carbon dioxide (CO 2) in the atmosphere is to inject CO 2 into subsurface saline sandstone reservoirs, thereby storing it in those geologic formations and out of the atmosphere.
Continuity of Permian Mengkareng formation through GPR interpretation in Merangin Geopark
NASA Astrophysics Data System (ADS)
Hanif, F.; Syahputra, R.; Kristyanto, T. H. W.; Tempessy, A. S.; Rokhmatuloh
2017-07-01
The Permian Mengkarang Formation was a part of the continental margin (Gondwana Land) which separated in the Devon Period. In this period, Gondwana Land experienced glaciation at the Paleo South Pole. However, the fossils found in Mengkarang Formation were tropical flora, had made the Merangin to be certified as one of the national geoparks. It also shows that the geological process (stratigraphy and tectonic) in the Merangin has occurred before the Indonesian archipelago was formed: namely the Permian to Triassic period. Ground Penetrating Radar (GPR) was chosen as an effective geophysical method to study shallow subsurface geology. GPR and seismic reflection method have the same common principle to identify the facies and sub-sequence stratigraphy but they are different in implementation. Therefore, this study aims to deliver the vertical continuity of the Permian Mengkarang Formation in high resolution unit. The GPR result showing the subsurface image is based on dielectric of the rock layers. The GPR sections show the absence of the unconformity delivered in the intercalation between mudstone, sandstone, and tuff. Thus, it can be concluded that the Permian Mengkareng Formation continues up to 20 m depth.
Integration of geological remote-sensing techniques in subsurface analysis
Taranik, James V.; Trautwein, Charles M.
1976-01-01
Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.
NASA Astrophysics Data System (ADS)
Al-Fares, Walid
2016-06-01
The present study is aimed at characterizing the subsurface geological and tectonic structure in Deir El-Adas area, by using Vertical Electrical Sounding survey (VES) and hydrogeological investigations, in order to determine the causes of the failure for the majority of the wells drilled in the area. The survey data was treated in three different approaches including direct VES inversion, pseudo-2D method and horizontal profiling, in order to maximize the reliability of the data interpretation. The results revealed the presence of a local faulted anticline structure at the top of the Paleogene formation, underneath the basaltic outcrops where Deir El-Adas village is situated. The appearance of this subsurface anticline structure has complicated the local hydro-geological situation, and most likely led to limitation of the groundwater recharge in the area. Moreover, the performed piezometric and discharge maps indicated the presence of a notable groundwater watershed, in addition to feeble water productivity of the wells drilled adjacent to Deir El-Adas, mostly related to the subsurface geological and tectonic settings in the area.
Flanigan, Vincent J.
1979-01-01
A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.
Lin, Xueju; Kennedy, David; Fredrickson, Jim; Bjornstad, Bruce; Konopka, Allan
2012-02-01
Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (> 700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?
NASA Astrophysics Data System (ADS)
Colwell, F. S.; Thurber, A. R.
2016-12-01
Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.
Estimating and mapping ecological processes influencing microbial community assembly
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.
2015-01-01
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725
NASA Astrophysics Data System (ADS)
Saar, Martin O.
2011-11-01
Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.
NASA Astrophysics Data System (ADS)
Yuan, Yuefeng; Zhu, Peimin; Zhao, Na; Xiao, Long; Garnero, Edward; Xiao, Zhiyong; Zhao, Jiannan; Qiao, Le
2017-07-01
High-frequency lunar penetrating radar (LPR) data from an instrument on the lunar rover Yutu, from the Chang'E-3 (CE-3) robotic lander, were used to build a three-dimensional (3-D) geological model of the lunar subsurface structure. The CE-3 landing site is in the northern Mare Imbrium. More than five significant reflection horizons are evident in the LPR profile, which we interpret as different period lava flow sequences deposited on the lunar surface. The most probable directions of these flows were inferred from layer depths, thicknesses, and other geological information. Moreover, the apparent Imbrian paleoregolith homogeneity in the profile supports the suggestion of a quiescent period of lunar surface evolution. Similar subsurface structures are found at the NASA Apollo landing sites, indicating that the cause and time of formation of the imaged phenomena may be similar between the two distant regions.
NASA Astrophysics Data System (ADS)
Freedman, A.; Thompson, J. R.
2013-12-01
The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2. A wide range of phylogenies have been identified, including genera that fall within the Proteobacteria, Bacilli, and Clostridial classes. Several species identified by 16S BLAST best hits are also known to inhabit deep subsurface environments, preliminarily confirming that a non-zero diversity has been able to survive, and possibly thrive, in the extreme scCO2-exposed deep subsurface environment at McElmo Dome. It thus appears that at least a subsection of native subsurface community biota may withstand the severe stresses associated with the injection of scCO2 for long-term geologic carbon sequestration efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogle, D.G.; Jones, R.W.
1989-03-01
A detailed stratigraphic study of over 6000 m of Upper Cretaceous through lower Eocene sedimentary rocks in the Wind River basin. Wyoming, has refined and expanded previous work and conclusions. A much larger data base than previously available was assembled to include a correlation net of 325 geophysical well logs, 36 drill holes with palynological age dates, lithology logs of drill hoes, and limited surface exposures. The most significant results and conclusions from this study are summarized below. (1) The lower part of the Mesaverde Formation intertongues with marine sandstones and shales of the upper Cody Shale to the eastmore » and with marine sandstones of the lower Mesaverde Formation in the Big Horn basin to the north. (2) An unconformity between the Mesaverde and Fort Union Formations in the southwestern part of the basin can be traced into the subsurface. (3) During the latest Cretaceous and Paleocene, over 2100 m of Lance Formation and over 2700 m of Fort Union Formation were deposited in the northeastern part of the basin. Ponding during the Paleocene is demonstrated by correlation and subsurface mapping of over 900 m of shale and siltstone in the Waltman Shale Member of the Fort Union Formation. (4) The Lance and Fort Union Formations can be mapped in the subsurface throughout much of the basin. The Lance Formation pinches out in the western part of the basin. (5) Coal beds can be traced for short distances in the subsurface; coal bed occurrence is documented for the Mesaverde, lower Fort Union, and Meeteetse Formations in the southwestern, northern and central, and northwestern parts of the basin, respectively.« less
Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area
NASA Astrophysics Data System (ADS)
Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike
2017-04-01
Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.
Bacterial interactions and transport in geological formation of alumino-silica clays.
Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang
2015-01-01
Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.
2017-12-01
The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary groundwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.
Estimating and mapping ecological processes influencing microbial community assembly
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...
2015-05-01
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less
Berg, Richard C.; Brown, Steven E.; Thomason, Jason F.; Hasenmueller, Nancy R.; Letsinger, Sally L.; Kincare, Kevin A.; Esch, John M.; Kehew, Alan E.; Thorleifson, L. Harvey; Kozlowski, Andrew L.; Bird, Brian C.; Pavey, Richard R.; Bajc, Andy F.; Burt, Abigail K.; Fleeger, Gary M.; Carson, Eric C.
2016-01-01
The Great Lakes Geologic Mapping Coalition (GLGMC), consisting of state geological surveys from all eight Great Lakes states, the Ontario Geological Survey, and the U.S. Geological Survey, was conceived out of a societal need for unbiased and scientifically defensible geologic information on the shallow subsurface, particularly the delineation, interpretation, and viability of groundwater resources. Only a small percentage (<10%) of the region had been mapped in the subsurface, and there was recognition that no single agency had the financial, intellectual, or physical resources to conduct such a massive geologic mapping effort at a detailed scale over a wide jurisdiction. The GLGMC provides a strategy for generating financial and stakeholder support for three-dimensional (3-D) geologic mapping, pooling of physical and personnel resources, and sharing of mapping and technological expertise to characterize the thick cover of glacial sediments. Since its inception in 1997, the GLGMC partners have conducted detailed surficial and 3-D geologic mapping within all jurisdictions, and concurrent significant scientific advancements have been made to increase understanding of the history and framework of geologic processes. More importantly, scientific information has been provided to public policymakers in understandable formats, emphasis has been placed on training early-career scientists in new mapping techniques and emerging technologies, and a successful model has been developed of state/provincial and federal collaboration focused on geologic mapping, as evidenced by this program's unprecedented and long-term successful experiment of 10 geological surveys working together to address common issues.
Teeple, Andrew; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.
2009-01-01
To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.
Griffioen, Jasper; Klein, Janneke; van Gaans, Pauline F M
2012-01-01
Quantitative insight into the reaction capacity of porous media is necessary to assess the buffering capacity of the subsurface against contaminant input via groundwater recharge. Here, reaction capacity is to be considered as a series of geochemical characteristics that control acid/base conditions, redox conditions and sorption intensity. Using existing geochemical analyses, a statistical regional assessment of the reaction capacity was performed for two geologically different areas in the Netherlands. The first area is dominated by Pleistocene aquifer sediments only, in the second area a heterogeneous Holocene confining layer is found on top of the Pleistocene aquifer sediments. Within both areas, two or more regions can be distinguished that have a distinctly different geological build-up of the shallow subsurface. The reactive compounds considered were pyrite, reactive Fe other than pyrite, sedimentary organic matter, carbonate and clay content. This characterization was complemented by the analysis of a dataset of samples newly collected, from two regions within the Pleistocene area, where the sedimentary facies of samples was additionally distinguished. The statistical assessment per area was executed at the levels of region, geological formation and lithology class. For both areas, significant differences in reaction capacities were observed between: 1. different lithology classes within a geological formation in a single region, 2. identical geological formations in different regions and 3. various geological formations within a single region. Here, the reaction capacity is not only controlled by lithostratigraphy, but also by post-depositional diagenesis and paleohydrology. Correlation coefficients among the reactive compounds were generally higher for sand than for clay, but insufficiently high to allow good estimation of reactive compounds from each other. For the sandy Pleistocene aquifer sediments, the content of reactive compounds was frequently observed to be below detection limits. From this, future characterization of sediment reaction capacity is best performed at the sublevel of lithology class, being the geochemically near-uniform unit identifiable for individual geological formations within geographic regions. Additional subdivision on facies provides particular insight in the spatial entity where relatively high reaction capacities may be encountered. To obtain quantitative insight into the reaction capacity of aquifer sediments, non-sandy minor subunits should be well characterised on their reaction capacity as well as their spatial occurrence in the geological formations. A straightforward approach is presented in which the regional statistics on geochemical reactivity become combined with a 3-dimensional geological voxel model. This results into 3-dimensional data fields on reactivity, which are suitable for, for example, groundwater transport modelling. The sedimentological architecture of the deposits becomes well maintained in the geochemical data field, which is an advantage in itself. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke
2017-04-01
Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.
Simulation and Characterization of Methane Hydrate Formation
NASA Astrophysics Data System (ADS)
Dhakal, S.; Gupta, I.
2017-12-01
The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate saturation is followed by decrease in the porosity and permeability of the reservoir rock. Sensitivities on flow rates of gas and water are simulated, using different reservoir properties, fault angles and grid sizes to study the properties of hydrate formation and accumulation in the subsurface.
HERCULES GLADES WILDERNESS, MISSOURI.
Miller, Mary H.; Ryan, George S.
1984-01-01
Based on geologic, geochemical, geophysical, and mine and claim surveys, Hercules Glades Wilderness, Missouri has little promise for the occurrence of metallic-mineral or energy resources in formations exposed at and near the surface. Upper Cambrian formations, known to contain major deposits of lead, zinc, silver, copper, nickel, and cobalt in the Viburnum Trend and Southeast Missouri mining districts, occur in the subsurface within the wilderness. Deep drilling to test the buried Cambrian formations for lithologic character and trace metals would be needed in order to permit apprasial of the potential of these formations for base-metal deposits.
Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B
2016-02-01
Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.
Beaton, E. D.; Stuart, Marilyne; Stroes-Gascoyne, Sim; King-Sharp, Karen J.; Gurban, Ioana; Festarini, Amy; Chen, Hui Q.
2017-01-01
Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3) modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada). We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present) and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present). The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate – used as a proxy for modern recharge – and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran’s eigenvector map (MEM) coefficients were correlated with the abundance data and suggest the action of localized processes possibly associated with the manganese and sulfate content of the fracture water. PMID:28974945
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M
2010-01-01
Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.
Establishing a Geologic Baseline Of Cape Canaveral's Natural Landscape: Black Point Drive
NASA Technical Reports Server (NTRS)
Parkinson, Randall W.
2001-01-01
The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic subsurface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertainty can be resolved.
Establishing A Geologic Baseline of Cape Canaveral''s Natural Landscape: Black Point Drive
NASA Technical Reports Server (NTRS)
Parkinson, Randall W.
2002-01-01
The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic sub-surface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertain0 can be resolved.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-10-14
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-01-01
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431
Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples
NASA Astrophysics Data System (ADS)
Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.
2016-12-01
Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.
NASA Astrophysics Data System (ADS)
Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.
2009-12-01
We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.
Development of a Probabilistic Assessment Methodology for Evaluation of Carbon Dioxide Storage
Burruss, Robert A.; Brennan, Sean T.; Freeman, P.A.; Merrill, Matthew D.; Ruppert, Leslie F.; Becker, Mark F.; Herkelrath, William N.; Kharaka, Yousif K.; Neuzil, Christopher E.; Swanson, Sharon M.; Cook, Troy A.; Klett, Timothy R.; Nelson, Philip H.; Schenk, Christopher J.
2009-01-01
This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas resources created and refined over the last 30 years. The resource that is evaluated is the volume of pore space in the subsurface in the depth range of 3,000 to 13,000 feet that can be described within a geologically defined storage assessment unit consisting of a storage formation and an enclosing seal formation. Storage assessment units are divided into physical traps (PTs), which in most cases are oil and gas reservoirs, and the surrounding saline formation (SF), which encompasses the remainder of the storage formation. The storage resource is determined separately for these two types of storage. Monte Carlo simulation methods are used to calculate a distribution of the potential storage size for individual PTs and the SF. To estimate the aggregate storage resource of all PTs, a second Monte Carlo simulation step is used to sample the size and number of PTs. The probability of successful storage for individual PTs or the entire SF, defined in this methodology by the likelihood that the amount of CO2 stored will be greater than a prescribed minimum, is based on an estimate of the probability of containment using present-day geologic knowledge. The report concludes with a brief discussion of needed research data that could be used to refine assessment methodologies for CO2 sequestration.
Geological evidence for solid-state convection in Europa's ice shell.
Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L
1998-01-22
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Geological evidence for solid-state convection in Europa's ice shell
Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.
1998-01-01
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.
2010-01-01
Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.
NASA Astrophysics Data System (ADS)
Weinberger, G.; Rosenthal, E.
1994-03-01
On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.
Digitization of a geologic map for the Quebec-Maine-Gulf of Maine global geoscience transect
Wright, Bruce E.; Stewart, David B.
1990-01-01
The Bedrock Geologic Map of Maine was digitized and combined with digital geologic data for Quebec and the Gulf of Maine for the Quebec-Maine-Gulf of Maine Geologic Transect Project. This map is being combined with digital geophysical data to produce three-dimensional depictions of the subsurface geology and to produce cross sections of the Earth's crust. It is an essential component of a transect that stretches from the craton near Quebec City, Quebec, to the Atlantic Ocean Basin south of Georges Bank. The transect is part of the Global Geosciences Transect Project of the International Lithosphere Program. The Digital Line Graph format is used for storage of the digitized data. A coding scheme similar to that used for base category planimetric data was developed to assign numeric codes to the digitized geologic data. These codes were used to assign attributes to polygon and line features to describe rock type, age, name, tectonic setting of original deposition, mineralogy, and composition of igneous plutonic rocks, as well as faults and other linear features. The digital geologic data can be readily edited, rescaled, and reprojected. The attribute codes allow generalization and selective retrieval of the geologic features. The codes allow assignment of map colors based on age, lithology, or other attribute. The Digital Line Graph format is a general transfer format that is supported by many software vendors and is easily transferred between systems.
NASA Astrophysics Data System (ADS)
Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine
2017-04-01
The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.
Pohn, Howard A.; Purdy, Terri L.
1982-01-01
Field studies of geologic structures in the Valley and Ridge and adjacent parts of the Appalachian Plateau provinces in Pennsylvania have shown a new type of structure, formerly poorly understood and frequently unmapped, is a significant indicator of deep-seated subsurface faulting. These structures, herein called disturbed zones, are formed by movement between closely spaced pairs of thrust faults. Disturbed zones are characterized at the surface by long, narrow, intensely folded and faulted zones of rocks in a relatively undisturbed stratigraphic sequence. These zones are frequently kilometers to tens of kilometers long and tens to hundreds of meters wide. Although disturbed zones generally occur in sequences of alternating siltstone and shale beds, they can also occur in other lithologies including massively-bedded sandstones and carbonates. Disturbed zones are not only easily recognized in outcrop but their presence can also be inferred on geologic maps by disharmonic fold patterns, which necessitates a detachment between adjacent units that show the disharmony. A number of geologic problems can be clarified by understanding the principles of the sequence of formation and the method of location of disturbed zones, including the interpretation of some published geologic cross sections and maps. The intense folding and faulting which accompanies the formation of a typical disturbed zone produces a region of fracture porosity which, if sealed off from the surface, might well serve as a commercially-exploitable hydrocarbon trap. We believe that the careful mapping of concentrations of disturbed zones can serve as an important exploration method which is much less expensive than speculation seismic lines.
National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations
NASA Astrophysics Data System (ADS)
Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.
2013-12-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity. As part of this follow up study, additional maps were generated to show the geographic distribution of the input estimates and the output results across the U.S. For example, the distribution of the SAUs with fresh, saline or mixed formation water quality is shown. Also mapped is the variation in CO2 density as related to basin location and to related properties such as subsurface temperature and pressure. Furthermore, variation in the estimated SAU depth and resulting TASR are shown across the assessment study areas, and these depend on the geologic basin size and filling history. Ultimately, multiple map displays are possible with the complete data set of input estimates and range of reported results. The findings from this study show the effectiveness of the USGS methodology and the robustness of the assessment.
NASA Astrophysics Data System (ADS)
Barnes, Caitlin; Halihan, Todd
2018-05-01
A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.
Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California
Ponce, David A.; Denton, Kevin M.; Watt, Janet T.
2016-09-12
IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.
Basement structure based on gravity anomaly in the northern Noto peninsula, Central Japan
NASA Astrophysics Data System (ADS)
Mizubayashi, T.; Sawada, A.; Hamada, M.; Hiramatsu, Y.; Honda, R.
2012-12-01
Upper crustal block structures are usually defined by using surface information, such as geological and morphological data. The northern Noto Peninsula, central Japan, is divided into four geological block structures from tectonic geomorphologic perspectives (Ota and Hirakawa, 1979). This division is based on the surface crustal movement. To image the geological blocks three-dimensionally, it is necessary to construct a subsurface structure model. Gravity survey can clarify the detailed subsurface structure with dense gravity measurement. From the detailed Bouguer anomalies in the northwestern Noto Peninsula, Honda et al. (2008) suggested that the rupture size of the 2007 Noto Hanto earthquake was constrained by the geological block structures. Hiramatsu et al. (2008) also suggested the active faults on the seafloor, such as the source fault of the 2007 Noto Hanto earthquake plays a major role for the formation of the geological block structures. In this study, we analyze subsurface density structure based on the Bouguer anomaly and estimate the distribution of basement depth in the northern Noto Peninsula. We focus the relationship among the basement depth, the block structures and the active faults on the seafloor and discuss the block movement in the northern Noto Peninsula. We compiled the data measured and published previously (Gravity Database of Southwest Japan, 2001; Geological survey of Japan, 2004; Geographical survey institute of Japan, 2006; The Gravity Research Group in Southwest Japan, 2001; Komazawa and Okuma, 2010; Hokuriku electric power Co. Ltd., undisclosed) and calculated Bouguer anomaly in the northern Noto Peninsula. Based on this Bouguer anomaly, we analyzed subsurface density structures along 13 northeastern-southwestern profiles and 35 northwestern-southeastern profiles with the interval of 2 km using the two dimensional Talwani's method (Talwani et al., 1959). In the analysis, we assumed a density structure with four layers: basement (density is 2670kg/m3), Neocene volcanic rock (density is 2400kg/m3, or 2550kg/m3), Neocene sedimentary rock (density is 2200kg/m3), and Quaternary sedimentary rock (density is 1800kg/m3, or 1500kg/m3) (Honda et al., 2008). To compare our basement model to the geological block structures, we focus on a transition zone of the basement depth. We recognize that two of three geological block boundaries correspond to the transition zones. These boundaries also correspond to the boundary of active fault segments on the seafloor. Therefore, based on the relationship between the source fault of the 2007 Noto Hanto earthquake and the geological block, we suggest that the movement of those geological blocks is possibly controlled by the corresponding active fault segments. However, we find that the other block boundary doesn't correspond to the transition zone.
Terrestrial Subsurface Ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Fredrickson, Jim K.
2015-10-15
The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free ofmore » microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our understanding of the subsurface is continually improving, it is clear that only a small fraction of microbial habitats have been sampled and studied. In this chapter, we will discuss these studies in the context of the distribution of microbial life in the subsurface, the stresses that microorganisms must overcome to survive in these environments, and the metabolic strategies that are employed to harness energy in a region of the planet far-removed from sunlight. Finally, we will consider both beneficial and deleterious effects of microbial activity in the subsurface on human activities in this environment.« less
Blome, Charles D.; Clark, Allan K.
2018-02-15
Several U.S. Geological Survey projects, supported by the National Cooperative Geologic Mapping Program, have used multi-disciplinary approaches over a 14-year period to reveal the surface and subsurface geologic frameworks of the Edwards and Trinity aquifers of central Texas and the Arbuckle-Simpson aquifer of south-central Oklahoma. Some of the project achievements include advancements in hydrostratigraphic mapping, three-dimensional subsurface framework modeling, and airborne geophysical surveys as well as new methodologies that link geologic and groundwater flow models. One area where some of these milestones were achieved was in and around the U.S. Army Camp Stanley Storage Activity, located in northwestern Bexar County, Texas, about 19 miles northwest of downtown San Antonio.
Distribution, formation mechanisms, and significance of lunar pits
NASA Astrophysics Data System (ADS)
Wagner, Robert V.; Robinson, Mark S.
2014-07-01
Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.
NASA Astrophysics Data System (ADS)
Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.
2015-12-01
Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).
Geo3DML: A standard-based exchange format for 3D geological models
NASA Astrophysics Data System (ADS)
Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong
2018-01-01
A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).
Geohydrologic Framework of the Edwards and Trinity Aquifers, South-Central Texas
Blome, Charles D.; Faith, Jason R.; Ozuna, George B.
2007-01-01
This five-year USGS project, funded by the National Cooperative Geologic Mapping Program, is using multidisciplinary approaches to reveal the surface and subsurface geologic architecture of two important Texas aquifers: (1) the Edwards aquifer that extends from south of Austin to west of San Antonio and (2) the southern part of the Trinity aquifer in the Texas Hill Country west and south of Austin. The project's principal areas of research include: Geologic Mapping, Geophysical Surveys, Geochronology, Three-dimensional Modeling, and Noble Gas Geochemistry. The Edwards aquifer is one of the most productive carbonate aquifers in the United States. It also has been designated a sole source aquifer by the U.S. Environmental Protection Agency and is the primary source of water for San Antonio, America's eighth largest city. The Trinity aquifer forms the catchment area for the Edwards aquifer and it intercepts some surface flow above the Edwards recharge zone. The Trinity may also contribute to the Edwards water budget by subsurface flow across formation boundaries at considerable depths. Dissolution, karst development, and faulting and fracturing in both aquifers directly control aquifer geometry by compartmentalizing the aquifer and creating unique ground-water flow paths.
Composition and structure of the shallow subsurface of Ceres revealed by crater morphology
NASA Astrophysics Data System (ADS)
Bland, Michael T.; Raymond, Carol A.; Schenk, Paul M.; Fu, Roger R.; Kneissl, Thomas; Pasckert, Jan Hendrik; Hiesinger, Harry; Preusker, Frank; Park, Ryan S.; Marchi, Simone; King, Scott D.; Castillo-Rogez, Julie C.; Russell, Christopher T.
2016-07-01
Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.
Composition and structure of the shallow subsurface of Ceres revealed by crater morphology
Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,
2016-01-01
Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.
Key subsurface data help to refine Trinity aquifer hydrostratigraphic units, south-central Texas
Blome, Charles D.; Clark, Allan K.
2014-01-01
The geologic framework and hydrologic characteristics of aquifers are important components for studying the nation’s subsurface heterogeneity and predicting its hydraulic budgets. Detailed study of an aquifer’s subsurface hydrostratigraphy is needed to understand both its geologic and hydrologic frameworks. Surface hydrostratigraphic mapping can also help characterize the spatial distribution and hydraulic connectivity of an aquifer’s permeable zones. Advances in three-dimensional (3-D) mapping and modeling have also enabled geoscientists to visualize the spatial relations between the saturated and unsaturated lithologies. This detailed study of two borehole cores, collected in 2001 on the Camp Stanley Storage Activity (CSSA) area, provided the foundation for revising a number of hydrostratigraphic units representing the middle zone of the Trinity aquifer. The CSSA area is a restricted military facility that encompasses approximately 4,000 acres and is located in Boerne, Texas, northwest of the city of San Antonio. Studying both the surface and subsurface geology of the CSSA area are integral parts of a U.S. Geological Survey project funded through the National Cooperative Geologic Mapping Program. This modification of hydrostratigraphic units is being applied to all subsurface data used to construct a proposed 3-D EarthVision model of the CSSA area and areas to the south and west.
Subsurface site conditions and geology in the San Fernando earthquake area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, C.M.; Johnson, J.A.; Kharraz, Y.
1971-12-01
The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.
2003-12-01
The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California
Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.
2008-01-01
A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.
Exposed Fractured Bedrock in the Central Pit of a Crater
2016-11-09
This HiRISE image shows the central pit feature of an approximately 20-kilometer diameter complex crater in located at 304.480 degrees east, -11.860 degrees south, just north of the Valles Marineris. Here we can observe a partial ring of light-toned, massive and fractured bedrock, which has been exposed by the impact-forming event, and via subsequent erosion that typically obscure the bedrock of complex central features. Features such as this one are of particular interest as they provide scientists with numerous exposures of bedrock that can be readily observed from orbit and originate from the deep Martian subsurface. Unlike on Earth, plate tectonics do not appear to be active on Mars. Thus, much of the Martian subsurface is not directly observable through uplift, erosion and exposure of mountain chains, which provide the majority of bedrock exposures on Earth. Exposures of subsurface materials generated by these features provides us with some of the only "windows" into the subsurface geology. This makes the study of impact craters an invaluable source of information when trying to understand, not only the impact process, but also the composition and history of Mars. Although much of what we see here is composed of massive and fractured bedrock, there are zones of rock fragmentation, called "brecciation." These fragmented rocks (a.k.a., breccias) are best viewed in the eastern portion of the central pit, which was captured in a previous HiRISE image. Additionally, we see some occurrences of impact melt-bearing deposits that surround and coat the bedrock exposed within the central pit. Several dunes are on the surface throughout the central pit and surrounding crater floor. The mechanisms behind the formation of central features, particularly central pits, are not completely understood. Geologic mapping of these circumferential "mega" blocks of bedrock indicate radial and concentric fracturing that is consistent with deformation through uplift. The exposed bedrock shows well-expressed lineament features that are likely fractures and faults formed during the uplift process. Studies of the bedrock, and such structures in this image, allows us better to understand the formative events and physical processes responsible for their formation. Current research suggests that their formation is the result of some component of uplift followed by collapse. http://photojournal.jpl.nasa.gov/catalog/PIA21205
The geologic history of Margaritifer basin, Mars
Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.
2016-01-01
In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.
The geologic history of Margaritifer basin, Mars
NASA Astrophysics Data System (ADS)
Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.
2016-03-01
In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.
U.S. Geological Survey Geologic Carbon Sequestration Assessment
NASA Astrophysics Data System (ADS)
Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.
2012-12-01
The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than 200 SAUs have been identified within these basins. The results of the assessment are estimates of the technically accessible storage resources based on present-day geological and engineering technology related to CO2 injection into geologic formations; therefore the assessment is not of total in-place resources. Summary geologic descriptions of the evaluated basins and SAUs will be prepared, along with the national assessment results. During the coming year, these results will be released as USGS publications available from http://energy.usgs.gov. In support of these assessment activities, CO2 sequestration related research science is being conducted by members of the project. Results of our research will contribute to current and future CO2 storage assessments conducted by the USGS and other organizations. Research topics include: (a) geochemistry of CO2 interactions with subsurface environments; (b) subsurface petrophysical rock properties in relation to CO2 injection; (c) enhanced oil recovery and the potential for CO2 storage; (d) storage of CO2 in unconventional reservoirs (coal, shale, and basalt); (e) statistical aggregation of assessment results; and (f) potential risks of induced seismicity.
A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations
NASA Astrophysics Data System (ADS)
Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance
2016-02-01
Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.
NASA Astrophysics Data System (ADS)
Anggit Maulana, Hiska; Haris, Abdul
2018-05-01
Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.
Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs
NASA Astrophysics Data System (ADS)
Deyoreo, J.; Depaolo, D. J.
2009-12-01
It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to achieve the efficient filling of pore space while maximizing solubility and mineral trapping and reducing potential leakage. Advanced knowledge of these small-scale processes is an important step toward developing a next-generation predictive capability for reactive transport of CO2-brine systems. The Center involves scientists with expertise in hydrology, geochemistry, materials science, mineralogy, chemistry, microbiology, geophysics, and reactive transport modeling and simulation. This presentation will describe the initial stages of some of the research, which in total involves the use of synchrotron light sources, neutron scattering methods, NanoSIMS, molecular dynamics simulations, thermochemistry, molecular biology, nanotechnology, laboratory scale experiments, and advanced computation applied to flow and reactive transport in heterogeneous porous media. The Center for Nanoscale Control of Geologic CO2 key personnel: Director - D. DePaolo, Co-Director - J. DeYoreo; Research Area Leads - K. Knauss (LBNL), G. Waychunas (LBNL), J. Banfield (UCB/LBNL), A Navrotsky (UC Davis), F.J. Ryerson (LLNL); G. Sposito (UCB/LBNL), T. Tokunaga (LBNL), D. Cole (ORNL), C. Steefel (LBNL), D. Rothman (MIT), S. Pride (LBNL).
Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H
2014-01-21
CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site.
Martian mud volcanism: Terrestrial analogs and implications for formational scenarios
Skinner, J.A.; Mazzini, A.
2009-01-01
The geology of Mars and the stratigraphic characteristics of its uppermost crust (mega-regolith) suggest that some of the pervasively-occurring pitted cones, mounds, and flows may have formed through processes akin to terrestrial mud volcanism. A comparison of terrestrial mud volcanism suggests that equivalent Martian processes likely required discrete sedimentary depocenters, volatile-enriched strata, buried rheological instabilities, and a mechanism of destabilization to initiate subsurface flow. We outline five formational scenarios whereby Martian mud volcanism might have occurred: (A) rapid deposition of sediments, (B) volcano-induced destabilization, (C) tectonic shortening, (D) long-term, load-induced subsidence, and (E) seismic shaking. We describe locations within and around the Martian northern plains that broadly fit the geological context of these scenarios and which contain mud volcano-like landforms. We compare terrestrial and Martian satellite images and examine the geological settings of mud volcano provinces on Earth in order to describe potential target areas for piercement structures on Mars. Our comparisons help to evaluate not only the role of water as a functional component of geological processes on Mars but also how Martian mud volcanoes could provide samples of otherwise inaccessible strata, some of which could contain astrobiological evidence.
Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio
2013-01-01
Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.
Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio
2013-01-01
Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID:24348470
Contributions to Crustal Mechanics on Europa from Subterranean Ocean Vibrations
NASA Astrophysics Data System (ADS)
Hayes, Robert
2016-03-01
The recent discovery of subduction zones on Europa demonstrated a significant step forward in understanding the moon's surface mechanics. This work promotes the additional consideration that the surface mechanics have contributions from small relative pressure differentials in the subsurface ocean that create cracks in the surface which are then filled, sealed and healed. Crack formation can be small, as interior pressure can relatively easily breach the surface crust, generating cracks followed by common fracture formation backfilled with frozen liquid. This process will slowly increase the overall surface area of the moon with each sealed crack and fracture increasing the total surface area. This creeping growth of surface area monotonically decreases subsurface pressure which can eventually catastrophically subduct large areas of surface and so is consistent with current knowledge of observational topology on Europa. This tendency is attributed to a relatively lower energy threshold to crack the surface from interior overpressures, but a higher energy threshold to crush the spherical surface due to subsurface underpressures. Proposed mechanisms for pressure differentials include tidal forces whose Fourier components build up the resonant oscillatory modes of the subsurface ocean creating periodic under and overpressure events below the crust. This mechanism provides a means to continually reform the surface of the moon over short geological time scales. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.
Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T
2003-01-01
A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.
NASA Astrophysics Data System (ADS)
Asgharzadeh, M. F.; Hashemi, H.; von Frese, R. RB
2018-01-01
Forward modeling is the basis of gravitational anomaly inversion that is widely applied to map subsurface mass variations. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the gravitational potential, anomaly and gradient components of the vertical cylindrical prism element. These results, in turn, may be integrated to accurately model the complete gravitational effects of fluid bearing rock formations and other vertical cylinder-like geological bodies with arbitrary variations in shape and density. Comparing the GLQ gravitational effects of uniform density, vertical circular cylinders against the effects calculated by a number of other methods illustrates the veracity of the GLQ modeling method and the accuracy limitations of the other methods. Geological examples include modeling the gravitational effects of a formation washout to help map azimuthal variations of the formation's bulk densities around the borehole wall. As another application, the gravitational effects of a seismically and gravimetrically imaged salt dome within the Laurentian Basin are evaluated for the velocity, density and geometric properties of the Basin's sedimentary formations.
Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport
Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.
2015-07-29
Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less
NASA Technical Reports Server (NTRS)
Smrekar, S. E.; Raymond, C. A.; McGill, G. E.
2004-01-01
The Martian dichotomy divides the smooth, northern lowlands from the rougher southern highlands. The northern lowlands are largely free of magnetic anomalies, while the majority of the significant magnetic anomalies are located in the southern highlands. An elevation change of 2-4 km is typical across the dichotomy, and is up to 6 km locally. We examine a part of the dichotomy that is likely to preserve the early history of the dichotomy as it is relatively unaffected by major impacts and erosion. This study contains three parts: 1) the geologic history, which is summarized below and detailed in McGill et al., 2) the study of the gravity and magnetic field to better constrain the subsurface structure and history of the magnetic field (this abstract), and 3) modeling of the relaxation of this area. Our overall goal is to place constraints on formation models of the dichotomy by constraining lithospheric properties. Initial results for the analysis of the geology, gravity, and magnetic field studies are synthesized in Smrekar et al..
CCS Activities Being Performed by the U.S. DOE
Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry
2011-01-01
The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188
Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota
Hayes, Timothy Scott
1999-01-01
Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage
Locating potential biosignatures on Europa from surface geology observations.
Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk
2003-01-01
We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.
NASA Astrophysics Data System (ADS)
Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.
2010-12-01
Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic γ-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.
Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics
NASA Astrophysics Data System (ADS)
Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte
2016-04-01
Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were adjusted in able to measure in the medieval center of Bad Frankenhausen. This required special equipment and configuration due to the densely built-up area, the differing ground conditions and the varying topography. The analysis of the seismic sections revealed structures associated with the continuing subrosion of the Permian deposits. The reflection patterns indicate heterogeneous near-surface geology of lateral and vertical variations in forms of discontinuous reflectors, small-scale fractures and faults. The fractures and faults also serve as additional pathways for the circulating water and the deposits are subsiding along these features, resulting in the formation of depression structures in the near-subsurface. Diffractions in the unmigrated sections indicate voids in the subsurface that develop due to the longtime subrosion processes. Besides these structures, variations of the traveltime, absorption and scattering of the seismic waves induced by the subrosion processes are visible.
NASA Astrophysics Data System (ADS)
Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.
2017-12-01
Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
The influence of open fracture anisotropy on CO2 movement within geological storage complexes
NASA Astrophysics Data System (ADS)
Bond, C. E.; Wightman, R.; Ringrose, P. S.
2012-12-01
Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.
Presentations - Herriott, T.M. and others, 2015 | Alaska Division of
fieldwork and subsurface data in a region of known oil and gas accumulations (poster): Geological Society of data in a region of known oil and gas accumulations (poster): Geological Society of America Slope, Alaska - Integration of fieldwork and subsurface data in a region of known oil and gas
Muon Tomography for Geological Repositories.
NASA Astrophysics Data System (ADS)
Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.
2015-12-01
Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.
NASA Astrophysics Data System (ADS)
Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.
2017-04-01
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
NASA Astrophysics Data System (ADS)
Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav
2016-04-01
This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone
NASA Astrophysics Data System (ADS)
Nathenson, M.; Smith, G. I.; Robinson, J. E.; Stauffer, P. H.; Zigler, J. L.
2010-12-01
George Smith’s career-long study of the surface geology of the Searles Valley was recently published by the USGS (Smith, 2009, online and printed). The co-authors of this abstract are the team responsible for completing the publication from the original materials. Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated is fully revealed by cores taken from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. Although this outcrop record is discontinuous, it provides direct evidence of the lake’s water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Most of this study concerns sediments of the newly described Searles Lake Formation, whose deposition spanned the period between about 150 ka and 2 ka. The outcrop record is documented in six geologic maps (scales: 1:50,000 and 1:10,000). The Searles Lake Formation is divided into seven main units. The depositional intervals of the units that make up the Searles Lake Formation are determined primarily by correlation with subsurface deposits that are dated by radiocarbon ages on organic carbon and U-series dates on salts. Shorelines, the most obvious geologic expressions of former lakes, are abundant around Searles Valley. Erosional shorelines have cut as much as 100 m into brecciated bedrock; depositional shorelines (beaches or tufa benches) are common, but their deposits tend to be thin. Combining the subsurface evidence of lake history with the outcrop record allows the history of lake fluctuations to be reconstructed for the period between about 150 ka and the present. Translating this record of lake fluctuations into paleohydrologic and paleoclimatic histories is complicated by uncertainties as to which of the several components of climate affected runoff volumes and lake-surface evaporation. A simplified model, however, suggests that the flow of the Owens River stayed between 2.5 and 4.5 times its present flow volume for most of the past 150 ky. Its flow exceeded this range only about 14 percent of the time, and it fell below this range only 4 percent of the time—which includes the present. In fact, the past 10 ky is clearly the driest period during the past 150 ky in the Owens River drainage. Smith, G.I., 2009, Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California: U.S. Geological Survey Professional Paper 1727, 115 p., 4 plates.
Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Unger, Andre A.J.
2004-02-18
The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less
National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, E S; Robinson, K; Geer, K A
1982-09-01
Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uraniummore » deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.« less
NASA Astrophysics Data System (ADS)
Vázquez-Suñé, Enric; Ángel Marazuela, Miguel; Velasco, Violeta; Diviu, Marc; Pérez-Estaún, Andrés; Álvarez-Marrón, Joaquina
2016-09-01
The overdevelopment of cities since the industrial revolution has shown the need to incorporate a sound geological knowledge in the management of required subsurface infrastructures and in the assessment of increasingly needed groundwater resources. Additionally, the scarcity of outcrops and the technical difficulty to conduct underground exploration in urban areas highlights the importance of implementing efficient management plans that deal with the legacy of heterogeneous subsurface information. To deal with these difficulties, a methodology has been proposed to integrate all the available spatio-temporal data into a comprehensive spatial database and a set of tools that facilitates the analysis and processing of the existing and newly added data for the city of Barcelona (NE Spain). Here we present the resulting actual subsurface 3-D geological model that incorporates and articulates all the information stored in the database. The methodology applied to Barcelona benefited from a good collaboration between administrative bodies and researchers that enabled the realization of a comprehensive geological database despite logistic difficulties. Currently, the public administration and also private sectors both benefit from the geological understanding acquired in the city of Barcelona, for example, when preparing the hydrogeological models used in groundwater assessment plans. The methodology further facilitates the continuous incorporation of new data in the implementation and sustainable management of urban groundwater, and also contributes to significantly reducing the costs of new infrastructures.
Testing the Injectivity of CO2 in a Sub-surface Heterogeneous Reservoir
NASA Astrophysics Data System (ADS)
Sundal, A.; Nystuen, J.; Dypvik, H.; Aagaard, P.
2011-12-01
This case study on subsurface reservoir characterization, considers the effect of geological heterogeneities on the storage capacity and injectivity of the Johansen Formation, which is a deep, saline aquifer underlying the Troll Gas Field off the Norwegian coast. The Johansen Formation has been interpreted as a sandy, prograding unit, deposited in a shallow marine environment during Early Jurassic time, and is overlain by a shaly unit; the Amundsen Formation. It appears as a wedge shaped sandstone body, up to 140m thick, with an areal extent in the order of 10 000 km2. The Johansen Formation is currently being considered for large scale CO2 storage from two gas power plants situated on the west coast of Norway, both of which will operate with full scale CO2 handling, as proposed by Norwegian authorities. The storage capacity needed is in the order of 3 Mt CO2/year. With access to a new 3D seismic survey (Gassnova, 2010), and based on existing well log data from 25 penetrating wells, we have studied large scale geometries and intra-formational features, and built a geo-conceptual model of the Johansen Formation. The reservoir is heterogeneous, with distinct permeability zonation within clinothems separated by less permeable layers. In order to obtain better understanding of crucial reservoir parameters and supplement limited data, comparison of data from easily accessible analogue rock units is useful. For this purpose the unit should be well exposed and thoroughly documented, such as the Panther Tongue Member (Star Point Formation, Mesa Verde Group) in Book Cliffs, from which we have collected some comparable permeability estimates for the model. On a micro scale, mineralogy, grain size/shape and pore geometry constitue major controls on reservoir porosity and permeability. Direct geological information is at this point in time limited to a few meters of core, from which detailed mineralogical information has been derived (optical microscopy, SEM, XRD), and some additional data from side wall cores and cuttings. From this we evaluate facies dependence related to observed diagenetic features and compositional variations due to burial depth (2-4km), mainly considering chlorite coatings (preserving porosity) and cementation (calcite and quartz). Using Schlumberger soft-wares; Petrel (reservoir) and Eclipse (fluid flow), we are testing injection scenarios (one point, several points, bleeding wells) in several intra-formational geological settings. These results will be evaluated relative to the distribution of facies and heterogeneities in the reservoir, considering multiphase flow given the local pressure regime.
Estimating geological CO2 storage security to deliver on climate mitigation.
Alcalde, Juan; Flude, Stephanie; Wilkinson, Mark; Johnson, Gareth; Edlmann, Katriona; Bond, Clare E; Scott, Vivian; Gilfillan, Stuart M V; Ogaya, Xènia; Haszeldine, R Stuart
2018-06-12
Carbon capture and storage (CCS) can help nations meet their Paris CO 2 reduction commitments cost-effectively. However, lack of confidence in geologic CO 2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO 2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO 2 retention, and of surface CO 2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO 2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO 2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO 2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO 2 in the subsurface remains a key uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain H.; Kouzes, Richard T.
Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less
Designs for Risk Evaluation and Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Designs for Risk Evaluation and Management (DREAM) tool was developed as part of the effort to quantify the risk of geologic storage of carbon dioxide (CO 2) under the U.S. Department of Energy's National Risk Assessment Partnership (NRAP). DREAM is an optimization tool created to identify optimal monitoring schemes that minimize the time to first detection of CO 2 leakage from a subsurface storage formation. DREAM acts as a post-processer on user-provided output from subsurface leakage simulations. While DREAM was developed for CO 2 leakage scenarios, it is applicable to any subsurface leakage simulation of the same output format.more » The DREAM tool is comprised of three main components: (1) a Java wizard used to configure and execute the simulations, (2) a visualization tool to view the domain space and optimization results, and (3) a plotting tool used to analyze the results. A secondary Java application is provided to aid users in converting common American Standard Code for Information Interchange (ASCII) output data to the standard DREAM hierarchical data format (HDF5). DREAM employs a simulated annealing approach that searches the solution space by iteratively mutating potential monitoring schemes built of various configurations of monitoring locations and leak detection parameters. This approach has proven to be orders of magnitude faster than an exhaustive search of the entire solution space. The user's manual illustrates the program graphical user interface (GUI), describes the tool inputs, and includes an example application.« less
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius
2013-05-28
Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX; Munsterman, Erwin Henh [Amsterdam, NL; Van Bergen, Petrus Franciscus [Amsterdam, NL; Van Den Berg, Franciscus Gondulfus Antonius
2009-10-20
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
NASA Astrophysics Data System (ADS)
Banz, B.; Bohling, G.; Doveton, J.
2008-12-01
Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and interval tops as they progress through the drilling operation. Once the interpretation process is complete, the student is guided through an exercise emulating a drill stem test and then is prompted to decide on perforation intervals. The application provides a graphical framework by which the student is guided through well site selection, drilling data interpretation, and well completion or dry-hole abandonment, creating a tight feedback loop by which the student gains an over-arching view of drilling logistics and the subsurface data evaluation process.
Potential restrictions for CO2 sequestration sites due to shale and tight gas production.
Elliot, T R; Celia, M A
2012-04-03
Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.
Surface Modification and Surface - Subsurface Exchange Processes on Europa
NASA Astrophysics Data System (ADS)
Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.
2017-10-01
The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa’s subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.
Surface Modification and Surface - Subsurface Exchange Processes on Europa
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Molaro, J.; Hand, K. P.
2017-12-01
The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.
3D Geological Mapping - uncovering the subsurface to increase environmental understanding
NASA Astrophysics Data System (ADS)
Kessler, H.; Mathers, S.; Peach, D.
2012-12-01
Geological understanding is required for many disciplines studying natural processes from hydrology to landscape evolution. The subsurface structure of rocks and soils and their properties occupies three-dimensional (3D) space and geological processes operate in time. Traditionally geologists have captured their spatial and temporal knowledge in 2 dimensional maps and cross-sections and through narrative, because paper maps and later two dimensional geographical information systems (GIS) were the only tools available to them. Another major constraint on using more explicit and numerical systems to express geological knowledge is the fact that a geologist only ever observes and measures a fraction of the system they study. Only on rare occasions does the geologist have access to enough real data to generate meaningful predictions of the subsurface without the input of conceptual understanding developed from and knowledge of the geological processes responsible for the deposition, emplacement and diagenesis of the rocks. This in turn has led to geology becoming an increasingly marginalised science as other disciplines have embraced the digital world and have increasingly turned to implicit numerical modelling to understand environmental processes and interactions. Recent developments in geoscience methodology and technology have gone some way to overcoming these barriers and geologists across the world are beginning to routinely capture their knowledge and combine it with all available subsurface data (of often highly varying spatial distribution and quality) to create regional and national geological three dimensional geological maps. This is re-defining the way geologists interact with other science disciplines, as their concepts and knowledge are now expressed in an explicit form that can be used downstream to design process models structure. For example, groundwater modellers can refine their understanding of groundwater flow in three dimensions or even directly parameterize their numerical models using outputs from 3D mapping. In some cases model code is being re-designed in order to deal with the increasing geological complexity expressed by Geologists. These 3D maps contain have inherent uncertainty, just as their predecessors, 2D geological maps had, and there remains a significant body of work to quantify and effectively communicate this uncertainty. Here we present examples of regional and national 3D maps from Geological Survey Organisations worldwide and how these are being used to better solve real-life environmental problems. The future challenge for geologists is to make these 3D maps easily available in an accessible and interoperable form so that the environmental science community can truly integrate the hidden subsurface into a common understanding of the whole geosphere.
Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward
NASA Astrophysics Data System (ADS)
Geesey, G.
2005-12-01
The subsurface is an obscure but essential resource to life on Earth. It is an important region for carbon production and sequestration, a source and reservoir for energy, minerals and metals and potable water. There is a growing need to better understand subsurface possesses that control the exploitation and security of these resources. Our best models often fail to predict these processes at the field scale because of limited understanding of 1) the processes and the controlling parameters, 2) how processes are coupled at the field scale 3) geological heterogeneities that control hydrological, geochemical and microbiological processes at the field scale and 4) lack of data sets to calibrate and validate numerical models. There is a need for experimental data obtained at scales larger than those obtained at the laboratory bench that take into account the influence of hydrodynamics, geochemical reactions including complexation and chelation/adsorption/precipitation/ion exchange/oxidation-reduction/colloid formation and dissolution, and reactions of microbial origin. Furthermore, the coupling of each of these processes and reactions needs to be evaluated experimentally at a scale that produces data that can be used to calibrate numerical models so that they accurately describe field scale system behavior. Establishing the relevant experimental scale for collection of data from coupled processes remains a challenge and will likely be process-dependent and involve iterations of experimentation and data collection at different intermediate scales until the models calibrated with the appropriate date sets achieve an acceptable level of performance. Assuming that the geophysicists will soon develop technologies to define geological heterogeneities over a wide range of scales in the subsurface, geochemists need to continue to develop techniques to remotely measure abiotic reactions, while geomicrobiologists need to continue their development of complementary technologies to remotely measure microbial community parameters that define their key functions at a scale that accurately reflects their role in large scale subsurface system behavior. The practical questions that geomicrobiologist must answer in the short term are: 1) What is known about the activities of the dominant microbial populations or those of their closest relatives? 2) Which of these activities is likely to dominate under in situ conditions? In the process of answering these questions, researchers will obtain answers to questions of a more fundamental nature such as 1) How deep does "active" life extend below the surface of the seafloor and terrestrial subsurface? 2) How are electrons exchanged between microbial cells and solid phase minerals? 3) What is the metabolic state and mechanism of survival of "inactive" life forms in the subsurface? 4) What can genomes of life forms trapped in geological material tell us about evolution of life that current methods cannot? The subsurface environment represents a challenging environment to understand and model. As the need to understand subsurface processes increases and the technologies to characterize them become available, modeling subsurface behavior will approach the level of sophistication of models used today to predict behavior of other large scale systems such as the oceans.
Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.
2008-01-01
Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP. Because the last geologic map of the entire BBNP was published in the 1960s, one of the primary goals of the USGS is to provide a new geologic map of BBNP at a scale 1:100,000; this work is ongoing among the USGS, NPS, the Texas Bureau of Economic Geology, and university scientists. This USGS Circular summarizes eight studies funded and primarily carried out by the USGS, but it is not intended to be a comprehensive reference of work conducted in BBNP. This Circular describes topical research of the recently completed interdisciplinary USGS project, which has provided information leading to a more complete understanding of the following topics in BBNP: Tectonic and geologic history (Chapters 1, 2, and 3), Age and formation processes of a skarn mineral deposit (Chapter 4), Geoenvironmental effects of abandoned mercury mines (Chapter 5), Age, source, and geochemistry of surface and subsurface water resources (Chapter 6), Isotopic tracing of food sources of bears (Chapter 7), and Geophysical characteristics of surface and subsurface geology (Chapter 8).Additional information and the geochemical and geophysical data of the USGS studies in BBNP are available on line at http://minerals.cr.usgs.gov/projects/big_bend/index.html.
Kirk, C.T.; Jenkins, H.D.; Leatherock, Otto; Dillard, W.R.; Kennedy, L.E.; Bass, N.W.
1939-01-01
This report on the subsurface geology of Osage County, Okla., describes the structural features, the character of the oil- and gas-producing beds, and the localities where additional oil and gas may be found. It embodies a part of the results of a subsurface geologic investigation of the Osage Indian Reservation, which coincides in area with Osage County. The investigation was conducted by a field party of the Geological Survey of the United States Department of the Interior from 1934 to 1937 and involved the study of the records of about 17,000 wells that have been drilled in Osage County. Funds for the investigation were allotted to the Geological Survey by the Public Works Administration. The primary purpose of the examination was to obtain geologic data for use in the administration of the Indian lands. The results of the inquiry have shown that many localities in Osage County outside the present producing oil fields are worthy of prospecting for oil and gas and that additional oil and gas can be found also by exploring deeply buried beds in old producing fields.All townships in Osage County that contain many wells are described; the information furnished by such townships is ample for drawing detailed subsurface structure-contour maps. The descriptions of several contiguous townships are combined in separate reports, which are issued as parts of a single bulletin. No edition of the consolidated volume will be published, but the several parts can be bound together if desired.
Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface
NASA Astrophysics Data System (ADS)
De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team
2017-07-01
The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.
Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.
2012-01-01
This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.
2009-09-21
The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior.more » One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.« less
Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach
NASA Astrophysics Data System (ADS)
Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.
2017-12-01
One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.
Braun, Christopher L.; Jones, Sonya A.
2002-01-01
During September 1999, the U.S. Geological Survey made 10 two-dimensional direct-current resistivity profile surveys in the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, to identify subsurface areas of anomalously high or low resistivity that could indicate potential contamination, contaminant pathways, or anthropogenic structures. Six of the 10 surveys (transects) were in the west parking lot. Each of the inverted sections of these transects had anomalously high resistivities in the terrace alluvium/fill (the surficial subsurface layer) that probably were caused by highly resistive fill material. In addition, each of these transects had anomalously low resistivities in the Walnut Formation (a bedrock layer immediately beneath the alluvium/fill) that could have been caused by saturation of fractures within the Walnut Formation. A high-resistivity anomaly in the central part of the study area probably is associated with pea gravel fill used in construction of a French drain. Another high resistivity anomaly in the west parking lot, slightly southeast of the French drain, could be caused by dense nonaqueous-phase liquid in the Walnut Formation. The inverted sections of the four transects in the landfill 3 area tended to have slightly higher resistivities in both the alluvium/fill and the Walnut Formation than the transects in the west parking lot. The higher resistivities in the alluvium/fill could have been caused by drier conditions in grassy areas relative to conditions in the west parking lot. Higher resistivities in parts of the Walnut Formation also could be a function of drier conditions or variations in the lithology of the Walnut Formation. In addition to the 10 vertical sections, four horizontal sections at 2-meteraltitude intervals show generally increasing resistivity with decreasing altitude that most likely results from the increased influence of the Walnut Formation, which has a higher resistivity than the terrace alluvium/fill.
NASA Astrophysics Data System (ADS)
Stanley, V.; Stewart, E.
2016-12-01
Rock cores collected during historic mineral exploration can provide invaluable data for modern analyses, but only if the samples are properly curated. The Cahoon Mine operated in Baraboo, WI during the 1910's and produced iron ore from the ca. 1.7 Ga Freedom Formation. The Freedom Formation is part of the well-known Baraboo-interval stratigraphy and is only present in the subsurface of Wisconsin (Weidman, 1904). Seventeen exploratory drill cores were rescued by Wisconsin Geological and Natural History Survey (WGNHS) from the original drying house at the mine site. The condition of the containers endangered the stratigraphic context of the collection; identifiers and depth markings were often obscured or lost. The individual core pieces were coated in residue and dust. Most of what is known about the Freedom Formation is from core logs and master's theses from the early 1900's (Leith, 1935; Schmidt, 1951). Ongoing subsurface mapping of the Baraboo-interval sediments and underlying basement of southern Wisconsin integrates new and existing subsurface and regional geophysical datasets. Mapping involves calibrating unique signals in regional aeromagnetic data to known lithology from drill core and cuttings. The Freedom Formation is especially important in this process as its iron-rich composition and regional continuity causes it to have a somewhat unique signal in regional aeromagnetic data. The Cahoon Mine cores in the WGNHS repository are the most extensive collection of physical samples from the Freedom Formation still in existence. We are in the process of curating the cores to facilitate their use in ongoing bedrock mapping. Today the cost and logistics of extensive sampling of this unit makes the existing core collection irreplaceable. We transferred the material to new containers, digitally recorded metadata, and created archival labels. As a result of this effort, the Cahoon Mine cores are now stored in a format that is physically and digitally accessible.
Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huftile, G.J.
1991-08-01
By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less
Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.
1977-01-01
Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.
The H3O-project: towards sustainable use and management of the Flemish-Dutch subsurface
NASA Astrophysics Data System (ADS)
Vernes, Ronald W.; Deckers, Jef; Doornenbal, Hans C.; den Dulk, Maryke; Hummelman, Jan; Menkovic, Armin; Westerhoff, Wim; Witmans, Nora; Dusar, Michiel; Walstra, Jan; Reindersma, Reinder
2014-05-01
The collection and unambiguous interpretation and analysis of (hydro)geological information on both sides of the border are essential ingredients in the management of natural resources and use of the subsurface in the border region. The information currently available from the neighbouring countries often lacks compatibility and the same amount of detail. In 2012 the "H3O" project got under way which aims at a consistent interpretation of the subsurface in the Flemish-Dutch border region. Parties in the Netherlands (Provinces of Limburg and Noord-Brabant and TNO) and Flanders (The Environment, Nature and Energy Department of the Flemish Government, the Flemish Environment Agency, VITO and the Geological Survey of Belgium) are cooperating to harmonise the geological and hydrogeological models of the Netherlands (DGM and REGIS II) and Flanders (Geological 3D model and HCOV). This project is called "H3O" which stands for "(Hydro)geologische 3d-modellering Ondergrond". The H3O project focuses on the Roer Valley Graben that runs from Germany in a north-westerly direction over the central part of Limburg, the north-easterly part of the Belgian province of Limburg to Noord-Brabant and is bordered by major fault zones along the north and south perimeters. The aim of the project is to make a cross-border, up-to-date, three-dimensional geological and hydrogeological model of the Quaternary and Tertiary deposits in the Limburg, Southeast Brabant and Flemish part of this region. This will help to identify, study and rectify the differences between the existing (hydro)geological interpretations. The work is supervised by a committee of experts and carried out by VITO, the Belgian Geological Survey and the Geological Survey of the Netherlands of TNO. These organisations have extensive knowledge of the stratigraphy and regional geology as well as experience of creating 3D models of the subsurface (Geological 3D model of Flanders, DGM, REGIS, GeoTOP). Delivery and presentation of the final results are expected in the spring of 2014.
NASA Astrophysics Data System (ADS)
Kirchoff, Michelle R.; Grimm, Robert E.
2018-01-01
Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (
Bosse, Stephen T.; Flocks, James G.; Forde, Arnell S.
2017-04-21
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic-reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. A large portion of this data resides in a single repository with minimal metadata. As part of the National Geological and Geophysical Data Preservation Program, scientists at the USGS St. Petersburg Coastal and Marine Science Center are converting the analog paper records to digital format using a large-format continuous scanner.This report, along with the accompanying USGS data release (Bosse and others, 2017), serves as an archive of seismic profiles with headers, converted Society of Exploration Geophysicists Y format (SEG-Y) files, navigation data, and geographic information system data files for digitized boomer seismic-reflection data collected from the Research Vessel (R/V) Erda during two cruises in 1990 and 1991. The Erda 90-1 geophysical cruise was conducted in two legs. The first leg included seismic data collected from the Hancock County region of the Mississippi Sound (Erda 90-1_HC) from June 4 to June 6, 1990. The second leg included seismic data collected from the Petit Bois Pass area of Mississippi Sound (Erda 90-1_PBP) from June 8 to June 9, 1990. The Erda 91-3 cruise occurred between September 12 and September 23, 1991, and surveyed the Mississippi Sound region just west of Horn Island, Mississippi.
Mars: Noachian hydrology by its statistics and topology
NASA Technical Reports Server (NTRS)
Cabrol, N. A.; Grin, E. A.
1993-01-01
Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.
National assessment of geologic carbon dioxide storage resources: summary
,
2013-01-01
The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national assessment was a geology-based examination of all sedimentary basins in the onshore and State waters area of the United States that contain storage assessment units (SAUs) that could be defined according to geologic and hydrologic characteristics. Although geologic storage of CO2 may be possible in some areas not assessed by the USGS, the SAUs identified in this assessment represent those areas within sedimentary basins that met the assessment criteria. A geologic description of each SAU was prepared; descriptions for SAUs in several basins are in Warwick and Corum (2012, USGS OFR 2012–1024).
Seismic-reflection studies, offshore Santa Maria Province, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, K.J.; Childs, J.R.; Taylor, D.J.
1991-02-01
Well data and seismic-reflection records are being analyzed to provide a subsurface geologic framework for the US Geological Survey's Santa Maria Province project. This project, jointly sponsored by the Evolution of Sedimentary Basins and Onshore Oil and Gas Investigations Programs, in a basin-evolution and petroleum geology study focusing on the geologically complex and tectonically active south-central California margin. The area embraces several basins and basin fragments including the onshore Santa Maria, offshore Santa Maria, Pismo, Huasna, Sur, Santa Lucia, and western Santa Barbara-Ventura. These basins have many similarities, including generally synchronous formation at about the end of the Oligocene, developmentmore » on a complex assemblage of Mesozoic tectonostratigraphic terranes, and basin fill consisting of Neogene clastic marine and nonmarine deposits, minor volcanic rocks, and organic-rich biogenous deposits of the Monterey Formation. Despite these similarities, basin origins are controversial and paleogeographies uncertain. In 1990, the US Geological Survey collected approximately 130 line-mi of multichannel seismic reflection data in seven profiles off-shore California from Morro Bay south to the western Santa Barbara Channel. These are the first US Geological Survey seismic data collected in this area since the early 1980s exploratory drilling began in the offshore Santa Maria basin. Profiles were generally oriented perpendicular to structural grain and located to intersect as many well-sites and pre-existing seismic profiles as possible. Profile orientation and spacing were designed to provide the offshore extensions of onshore well-correlation profiles currently under construction. With synthetic seismograms the authors are integrating the stratigraphy of the wells with these seismic-reflection records.« less
Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques
NASA Astrophysics Data System (ADS)
Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis
2014-08-01
Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.
NASA Astrophysics Data System (ADS)
Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.
2017-01-01
The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.
Snake River Plain Geothermal Play Fairway Analysis - Phase 1 KMZ files
John Shervais
2015-10-10
This dataset contain raw data files in kmz files (Google Earth georeference format). These files include volcanic vent locations and age, the distribution of fine-grained lacustrine sediments (which act as both a seal and an insulating layer for hydrothermal fluids), and post-Miocene faults compiled from the Idaho Geological Survey, the USGS Quaternary Fault database, and unpublished mapping. It also contains the Composite Common Risk Segment Map created during Phase 1 studies, as well as a file with locations of select deep wells used to interrogate the subsurface.
Regional variations in the stability and diffusion of water-ice in the Martian regolith
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1992-01-01
Geologic evidence suggests subsurface water-ice has played an important role in the formation of Martian landforms. Forms of mass-wasting such as debris aprons and flow patterns on valley floors suggest creep deformation of ice-laden soil, while thermokarst and chaotic terrain suggest once extensive deposits of ground ice that were later removed. The global distribution of ice-related morphology was mapped. The mapping showed regional variation, in both latitude and longitude, in the distribution of debris aprons, concentric fill craters, and 'softened' crater profiles.
Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vesta’s surface
Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.
2014-10-13
Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set ofmore » shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).« less
Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars
NASA Technical Reports Server (NTRS)
Gulick, Virginia C
1998-01-01
Numerical models of Martian hydrothermal systems demonstrate that systems associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. Hydrothermally-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. Hydrothermal systems thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, hydrothermally-driven groundwater outflow than regional rainfall. Hydrothermal centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.
Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis; Taylor, David J.
1997-01-01
Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.
Geophysics of Martian Periglacial Processes
NASA Technical Reports Server (NTRS)
Mellon, Michael T.
2004-01-01
Through the examination of small-scale geologic features potentially related to water and ice in the martian subsurface (specifically small-scale polygonal ground and young gully-like features), determine the state, distribution and recent history of subsurface water and ice on Mars. To refine existing models and develop new models of near-surface water and ice, and develop new insights about the nature of water on Mars as manifested by these geologic features. Through an improved understanding of potentially water-related geologic features, utilize these features in addressing questions about where to best search for present day water and what space craft may encounter that might facilitate or inhibit the search for water.
National Uranium Resource Evaluation: Palestine Quadrangle, Texas and Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowen, M.; Basciano, J.; Fose, F.G. Jr.
1982-09-01
The uranium resource potential of the Palestine Quadrangle, Texas and Louisiana, was evaluated to a depth of 1500 m (5000 ft) using criteria established for the National Uranium Resource Evaluation program. Data derived from geochemical analyses of surface samples (substrate, soil, and stream sediment) in conjunction with hydrochemical data from water wells were used to evaluate geologic environments as being favorable or unfavorable for the occurrence of uranium deposits. Two favorable environments have been identified in the Palestine Quadrangle: potential deposits of modified Texas roll-type in fluvial channels and associated facies within the Yegua Formation, and potential occurrences along mineralizationmore » fronts associated with the Elkhart Graben and Mount Enterprise fault system. Unfavorable environments include: Cretaceous shales and limestones, Tertiary fine-grained marine sequences, Tertiary sandstone units that exhibit favorable host-rock characteristics but fail to show significant syngenetic or epigenetic mineralization, and Quaternary sands and gravels. Unevaluated units include the Woodbine Group (Upper Cretaceous), Jackson Group (Tertiary), and Catahoula Formation (Tertiary). The subsurface interval of the Jackson Group and Catahoula Formation contains depositional facies that may represent favorable environments; however, the evaluation of these units is inconclusive because of the general lack of shallow subsurface control and core material. The Woodbine Group, restricted to the subsurface except for a small exposure over Palestine Dome, occurs above 1500 m (5000 ft) in the northwest quarter of the quadrangle. The unit exhibits favorable host-rock characteristics, but the paucity of gamma logs and cores, as well as the lack of hydrogeochemical and stream-sediment reconnaissance data, makes evaluation of the unit difficult.« less
Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte
2016-01-01
The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to Quaternary reactivation of the old and deeply buried Picuris-Pecos faults. If so, then the Los Cordovas structures may extend southward under the Picuris piedmont, where they form growth faults as they merge downward into the Picuris-Pecos bedrock faults. The exceptionally high density of cross-cutting faults in the study area has severely disrupted the stratigraphy of the Picuris formation and the Santa Fe Group. The Picuris formation exists at the surface in the Miranda and Rio Grande del Rancho grabens, and locally along the top of the Picuris piedmont. In the subsurface, it deepens rapidly from the mountain front into the rift basin. In a similar manner, the Tesuque and Chamita Formations are shallowly exposed close to the mountain front, but are down dropped into the basin along the Embudo faults. The Ojo Caliente Sandstone Member of the Tesuque Formation appears to be thickest in the northwestern study area, and thins toward the south and the east. In the study area, the Lama formation thins westward and southward. The Servilleta Basalt is generally thickest to the north and northwest, thins under the Picuris piedmont, and terminates along a major, linear, buried strand of the Embudo fault zone, demonstrating that the Servilleta flows were spatially and temporally related to Embudo fault activity.
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine
Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillarymore » entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.« less
Geoelectrical image of the subsurface for CO2 geological storage in the Changhua site, Taiwan
NASA Astrophysics Data System (ADS)
Chiang, C. W.; Chiao, C. H.; Yang, M. W.; Yu, C. W.; Yang, C. H.; Chen, C. C.
2016-12-01
Global warming has recently become an important worldwide issue. Reduction of carbon dioxide (CO2) emission is recommended by Intergovernmental Panel on Climate Change, which geological storage is one of possible way to reduce the CO2 issue. The Taichung Power Plant is a coal-fired power plant operated by the Taiwan Power Company in Taichung, Taiwan, which is the largest coal-fired power station in the world. The power plant emits approximately 40 million tons annually which is also the world's largest CO2 emitter. Geophysical techniques are presented as the most useful tool to characterize the reservoir. The electrical resistivity tool was carried out applying audio-magnetotelluric (AMT) method, which could provide the depth resolution for evaluating the subsurface. A first survey of 20 AMT soundings was acquired to study the viability of the method to characterize the subsurface. Stations were deployed at approximately 500 m intervals and the data were recorded in the frequency range of 104-100 Hz. The dimensionality analysis proved the validity of the 1-D or 2-D assumption. The visualized model shows a layered electrical resistivity structure from shallow to depth of 3000 m. The preliminary result corresponds to seismic reflection and geological investigations that suggests a simple geological structure without complex geological processes in the area. It could be a suitable site for geological storage.
NASA Astrophysics Data System (ADS)
Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.
2014-08-01
Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Chandra, S.; Auken, E.; Verma, S. K.
2015-12-01
Comprehensive knowledge of aquifer system is an important requisite for its effective management in India. Geological formations are complex and variable, punctual and scarce information are not adequate to understand, asses and manage them. Continuous data acquisition, their interpretation and integration with available geological/geophysical information is the solution. Heliborne dual moment transient electromagnetic (HeliTEM) and magnetic (HeliMAG) measurements have been carried out in divergent geological terrenes in India comprising Gangetic alluvium, Tertiary sediments underlying the Thar desert, Deccan basalts and Gondwana sediments, weathered and fractured granite gneisses and schists and the coastal alluvium with Tertiary sediments. The survey was carried out using state of the art equipment SkyTEM. The paper presents a synopsis of the results of the HeliTEM surveys that have helped in obtaining continuous information on the geoelectrical nature of sub-surface. HeliTEM data were supported by a number of ground geophysical surveys. The results provide the 3D subsurface structures controlling the groundwater conditions, the regional continuity of probable aquifers, the variations in lithological character and the quality of water in terms of salinity. Specialized features pertaining to hydrogeological characteristics obtained from this study are as follows: A clear delineation of clay beds and their spatial distribution providing the multi-layered aquifer setup in the Gangetic plains. Delineation of low resistivity zones in the quartzite below the over exploited aquifers indicating the possibility of new aquifers. Presence of freshwater zones underneath the saline water aquifers in the thick and dry sands in deserts. Clear demarcation of different lava flows, mapping the structural controls and highly porous zones in the contact of basalts and Gondwanas. A complete and continuous mapping of weathered zone in crystalline hard rock areas providing information on the recharge zones. The setting of multi-layered aquifer and different zones of salt water intrusion in the coastal sedimentary formations. The study has helped in establishing an appropriate cost-effective strategy for 3D mapping of aquifers on a regional scale providing valuable inputs to perform aquifer modeling.
NASA Astrophysics Data System (ADS)
Jin, G.
2015-12-01
Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.
DOT National Transportation Integrated Search
2002-05-01
Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...
Geology and energy resources of the Sand Butte Rim NW Quadrangle, Sweetwater County, Wyoming
Roehler, Henry W.
1979-01-01
The Sand Butte Rim NW 71-minute quadrangle occupies 56 square miles of an arid, windy, sparsely vegetated area of ridges and valleys on the east flank of the Rock Springs uplift in southwest Wyoming. The area is underlain by a succession of sedimentary rocks, about 20,000 feet thick, that includes 28 formations ranging in age from Cambrian to Tertiary. Upper Cretaceous and lower Tertiary formations crop out and dip 3?-6? southeast. They are unfaulted and generally homoclinal, but a minor anticlinal nose is present. Older rocks in the subsurface are faulted and folded. Coal resources are estimated to be nearly I billion short tons of subbituminous coal, in beds more than 2.5 feet thick, under less than 3,000 feet of overburden, in the Fort Union Formation of Paleocene age and the Lance and Almond Formations of Cretaceous age.
Applications of geohydrologic concepts in geology
Maxey, G.B.; Hackett, J.E.
1963-01-01
Subsurface water, an active agent in many geologic proceses, must be considered in interpreting geologic phenomena. Principles of the occurrence, distribution, and movement of subsurface waters are well established and readily applicable. In many interpretations in geologic literature, geohydrologic principles have been employed realistically, but in many others these principles have been either ignored or violated. Explanations of genesis of underclays and associated deposits afford some examples wherein principles of movement and activity of vadose and ground water have been ignored and others in which they have been used advantageously. Postulates stating that waters percolate downward from swamp areas do not allow for the usual movement of subsurface water in such environments. The idea that sediments were leached by vadose water after uplift satisfies the geohydrologic requirements. Weathering and solution form porous and permeable zones subjacent to unconformities in dense rocks such as carbonates and granites; this illustrates the geohydrologic and economic significance of unconformities. Examples are Mohawkian carbonate aquifers of northern Illinois and oil-bearing limestones of Mississippian age of eastern Montana. The flushing effects of meteoric water and other hydrodynamic factors active during erosion periods are important elements in the genesis and concentration of brines. Explanation of the origin and occurrence of brines must include consideration of the geohydrologic environments throughout their geologic history. ?? 1963.
NASA Astrophysics Data System (ADS)
Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.
2017-12-01
Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.
Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems
Ezeuko, C C; Sen, A; Gates, I D
2013-01-01
Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hahnel, R.; Benedix, W. S.; Hamran, S. E.; Ciarletti, V.
2016-12-01
The "Water Ice Subsurface Deposition on Mars" Experiment (WISDOM) is a Ground Penetrating Radar (GPR) and part of the 2020 ExoMars Rover payload. It will be the first GPR operating on a planetary rover and the first fully polarimetric radar tasked at probing the subsurface of Mars. WISDOM operates at frequencies between 500 MHz and 3 GHz yielding a centimetric resolution and a penetration depth of about 3 meters in Martian soil. Its prime scientific objective is the detailed characterization of the material distribution within the first few meters of the Martian subsurface as a contribution to the search for evidence of past life. For the first time, WISDOM will give access to the geological structure, electromagnetic nature, and hydrological state of the shallow subsurface by retrieving the layering and properties of the buried reflectors at an unprecedented resolution and, due to the fully polarimetric measurements, amount of information. Furthermore, a "real time" subsurface analysis will support the drill operations by identifying locations of high scientific interest and low risk. Key element in the WISDOM data analysis is the fast and reliable classification and correct localization of subsurface scatterers and layers. The fully polarimetric nature of the WISDOM measurements allows the use of the entropy-alpha decomposition (H-alpha). This method enables the classification of reconstructed images of the subsurface (obtained by inverse imaging algorithms, e.g. f-k migration) with regard to the main scattering mechanisms of geological features present in the image of the subsurface. It is, for example, possible to differentiate smooth surfaces, rough surfaces, isolated spherical scatterers, double- and bounce scattering, anisotropic scatterers, clouds of small scatterers of similar shape as well as layers of oblate spheroids. Preliminary tests under laboratory conditions suggest the feasibility and value of the approach for the classification of geological features in the Martian subsurface in the context of WISDOM data processing and operations. It is a fast and reliable tool leveraging the whole amount of information provided by the fully polarimetric WISDOM Radar.
Gérard, Emmanuelle; Moreira, David; Philippot, Pascal; Van Kranendonk, Martin J.; López-García, Purificación
2009-01-01
Background Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible. Methodology/Principal Findings In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper “fresh” samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth. Conclusions/Significance The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale. PMID:19396360
Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars
NASA Astrophysics Data System (ADS)
Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.
2018-03-01
The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.
NASA Astrophysics Data System (ADS)
Heggy, Essam; Bruzzone, Lorenzo; Beck, Pierre; Doute, Sylvain; Gim, Youngyu; Herique, Alain; Kofman, Wlodek; Orosei, Roberto; Plaut, Jeffery; Rosen, Paul; Seu, Roberto
2010-05-01
Thermally stable Ice sheets on earth are known to be among the most favorable geophysical contexts for deep subsurface sounding radars. Penetrations ranging from few to several hundreds of meters have been observed at 10 to 60 MHz when sounding homogenous and pure ice sheets in Antarctica and in Alaskan glaciers. Unlike the terrestrial case, ice sheets on Jovian satellites are older formations with a more complex matrix of mineral inclusions with an even three dimensional distribution on the surface and subsurface that is yet to be understood in order to quantify its effect on the dielectric attenuation at the experiment sounding frequencies. Moreover, ridges, tectonic and shock features, may results in a complex and heterogeneous subsurface structure that can induce scattering attenuation with different amplitudes depending on the subsurface heterogeneity levels. Such attenuation phenomena's has to be accounted in the instrument design and future data analysis in order to optimize the science return, reduce mission risk and define proper operation modes. In order to address those challenges in the current performance studies and instrument design of the proposed radar sounding experiments, we present an attempt to quantify both the dielectric and scattering losses on both icy satellites, Ganymede and Europa, based on experimental dielectric characterization of relevant icy-dust mixtures samples, field work from analog environment and radar propagation simulations in parametric subsurface geophysical models representing potential geological scenarios of the two Jovian satellites. Our preliminary results suggest that the use of a dual band radar enable to overcome several of these constrains and reduces ambiguities associated subsurface interface mapping. Acknowledgement. This research is carried out by the Jet Propulsion Laboratory/Caltech, under a grant from the National Aeronautics and Space Administration.
Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method
NASA Astrophysics Data System (ADS)
Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.
2018-04-01
The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate knowledge of the geology and the structures of the subsurface would assist engineers in the best way to carry out constructions to avoid building collapse. In this study, near surface seismic refraction method was used to determine the geotechnical parameters of the subsurface, the results obtained were correlated with the result of borehole data drilled in the study area. The results of seismic refraction method delineated mostly two distinct layers with the first layer having the lower geotechnical parameters. It was observed that in the first layer, the Young’s modulus ranged from 0.168 to 0.458 GPa, shear modulus ranged between 0.068 and 0.185 GPa, the bulk modulus ranged between 0.106 and 0.287 GPa while the bearing capacity ranged from 0.083 to 0.139 MPa. On the other hand, in the second layer, the Young’s modulus ranged between 3.717 and 7.018 GPa, shear modulus ranged from 1.500 to 2.830 GPa while the bulk modulus ranged from 2.383 to 4.449 GPa. Significantly, the formation of the second layer appeared to be more competent than the first layer, therefore engineering construction in this geological setting is recommended to be founded on the second layer at depth ranging between 7 and 16 m.
Fold-Thrust mapping using photogrammetry in Western Champsaur basin, SE France
NASA Astrophysics Data System (ADS)
Totake, Y.; Butler, R.; Bond, C. E.
2016-12-01
There is an increasing demand for high-resolution geometric data for outcropping geological structures - not only to test models for their formation and evolution but also to create synthetic seismic visualisations for comparison with subsurface data. High-resolution 3D scenes reconstructed by modern photogrammetry offer an efficient toolbox for such work. When integrated with direct field measurements and observations, these products can be used to build geological interpretations and models. Photogrammetric techniques using standard equipment are ideally suited to working in the high mountain terrain that commonly offers the best outcrops, as all equipment is readily portable and, in the absence of cloud-cover, not restricted to the meteorological and legal restrictions that can affect some airborne approaches. The workflows and approaches for generating geological models utilising such photogrammetry techniques are the focus of our contribution. Our case study comes from SE France where early Alpine fore-deep sediments have been deformed into arrays of fold-thrust complexes. Over 1500m vertical relief provides excellent outcrop control with surrounding hillsides providing vantage points for ground-based photogrammetry. We collected over 9,400 photographs across the fold-thrust array using a handheld digital camera from 133 ground locations that were individually georeferenced. We processed the photographic images within the software PhotoScan-Pro to build 3D landscape scenes. The built photogrammetric models were then imported into the software Move, along with field measurements, to map faults and sedimentary layers and to produce geological cross sections and 3D geological surfaces. Polylines of sediment beds and faults traced on our photogrammetry models allow interpretation of a pseudo-3D geometry of the deformation structures, and enable prediction of dips and strikes from inaccessible field areas, to map the complex geometries of the thrust faults and deformed strata in detail. The resultant structural geometry of the thrust zones delivers an exceptional analogue to inaccessible subsurface fold-thrust structures which are often challenging to obtain a clear seismic image.
Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.
2015-01-01
Potentially economic mineral resources are present in the subsurface in the map area. Exploration drill-hole data indicate that anomalously high concentrations of base-metal sulfides locally occur within the Cambrian Bonneterre Formation. The geologic setting of these anomalous concentrations is similar to that found in the Viburnum Trend, part of the largest lead-mining district in the world. The southernmost part of the Viburnum Trend extends into the northern part of the map area and is exploited by the Sweetwater Mine. Undeveloped and potentially economic occurrences of base metals are known also beneath Blair Creek, a tributary to the Current River in the north-central part of the map area.
Supplementary subsurface investigation section G-4aL, Addison route
DOT National Transportation Integrated Search
2000-09-22
Results are summarized herein of five supplementary borings to investigate subsurface conditions along the subway alignment at the planned location of the Addison Route crossing of the Capital Beltway. The report contains geological sections which su...
The Hebrus Valles Exploration Zone: Access to the Martian Surface and Subsurface
NASA Astrophysics Data System (ADS)
Davila, A.; Fairén, A. G.; Rodríguez, A. P.; Schulze-Makuch, D.; Rask, J.; Zavaleta, J.
2015-10-01
The Hebrus Valles EZ represents a diverse setting with multiple geological contacts and layers, possible remnant water ice and protected subsurface environments, which could be critical for the establishment of long-term human settlements.
Evaluation of site effects in Loja basin (southern Ecuador)
NASA Astrophysics Data System (ADS)
Guartán, J.; Navarro, M.; Soto, J.
2013-05-01
Site effect assessment based on subsurface ground conditions is often crucial for estimating the urban seismic hazard. In order to evaluate the site effects in the intra-mountain basin of Loja (southern Ecuador), geological and geomorphological survey and ambient noise measurements were carried out. A classification of shallow geologic materials was performed through a geological cartography and the use of geotechnical data and geophysical surveys. Seven lithological formations have been analyzed, both in composition and thickness of existing materials. The shear-wave velocity structure in the center of the basin, composed by alluvial materials, was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. VS30 structure was estimated and an average value of 346 m s-1 was obtained. This value agrees with the results obtained from SPT N-value (306-368 m s-1). Short-period ambient noise observations were performed in 72 sites on a 500m × 500m dimension grid. The horizontal-to-vertical spectral ratio (HVSR) method was applied in order to determine a ground predominant period distribution map. This map reveals an irregular distribution of predominant period values, ranged from 0.1 to 1.0 s, according with the heterogeneity of the basin. Lower values of the period are found in the harder formation (Quillollaco formation), while higher values are predominantly obtained in alluvial formation. These results will be used in the evaluation of ground dynamic properties and will be included in seismic microzoning of Loja basin. Keywords: Landform classification, Ambient noise, SPAC method, Rayleigh waves, Shear velocity profile, Ground predominant period. ;
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
NASA Astrophysics Data System (ADS)
Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina
2017-12-01
Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.
NASA Astrophysics Data System (ADS)
Helaly, Ahmad Sobhy
2017-12-01
Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.
Geologic logs of geotechnical cores from the subsurface Sacramento-San Joaquin Delta, California
Maier, Katherine L.; Ponti, Daniel J.; Tinsley, John C.; Gatti, Emma; Pagenkopp, Mark
2014-01-01
This report presents and summarizes descriptive geologic logs of geotechnical cores collected from 2009–12 in the Sacramento–San Joaquin Delta, California, by the California Department of Water Resources. Graphic logs are presented for 1,785.7 ft of retained cores from 56 borehole sites throughout the Sacramento-San Joaquin Delta. Most core sections are from a depth of ~100–200 feet. Cores primarily contain mud, silt, and sand lithologies. Tephra (volcanic ash and pumice), paleosols, and gravels are also documented in some core sections. Geologic observations contained in the core logs in this report provide stratigraphic context for subsequent sampling and data for future chronostratigraphic subsurface correlations.
Inexpensive Laboratory Model with Many Applications.
ERIC Educational Resources Information Center
Archbold, Norbert L.; Johnson, Robert E.
1987-01-01
Presents a simple, inexpensive and realistic model which allows introductory geology students to obtain subsurface information through a simulated drilling experience. Offers ideas on additional applications to a variety of geologic situations. (ML)
Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications
Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.
1999-01-01
Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.
Deformation band clusters on Mars and implications for subsurface fluid flow
Okubo, C.H.; Schultz, R.A.; Chan, M.A.; Komatsu, G.
2009-01-01
High-resolution imagery reveals unprecedented lines of evidence for the presence of deformation band clusters in layered sedimentary deposits in the equatorial region of Mars. Deformation bands are a class of geologic structural discontinuity that is a precursor to faults in clastic rocks and soils. Clusters of deformation bands, consisting of many hundreds of individual subparallel bands, can act as important structural controls on subsurface fluid flow in terrestrial reservoirs, and evidence of diagenetic processes is often preserved along them. Deformation band clusters are identified on Mars based on characteristic meter-scale architectures and geologic context as observed in data from the High-Resolution Imaging Science Experiment (HiRISE) camera. The identification of deformation band clusters on Mars is a key to investigating the migration of fluids between surface and subsurface reservoirs in the planet's vast sedimentary deposits. Similar to terrestrial examples, evidence of diagenesis in the form of light- and dark-toned discoloration and wall-rock induration is recorded along many of the deformation band clusters on Mars. Therefore, these structures are important sites for future exploration and investigations into the geologic history of water and water-related processes on Mars. ?? 2008 Geological Society of America.
Quantifying induced effects of subsurface renewable energy storage
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas
2015-04-01
New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry of Education and Research (BMBF).
NASA Astrophysics Data System (ADS)
Küsel, Kirsten; Totsche, Kai; Trumbore, Susan; Lehmann, Robert; Steinhäuser, Christine; Herrmann, Martina
2016-04-01
The Earth's Critical Zone (CZ) is a thin living layer connecting atmosphere and geosphere, including aquifers. Humans live in the CZ and benefit from the vital supporting services it provides. However, the CZ is increasingly impacted by human activities including land and resource use, pollution and climate change. Recent interest in uniting the many disciplines studying this complex domain has initiated an international network of research infrastructure platforms that allow access to the CZ in a range of geologic settings. In this paper a new such infrastructure platform associated with the Collaborative Research Center AquaDiva is described, that uniquely seeks to combine CZ research with detailed investigation of the functional biodiversity of the subsurface. Overall, AquaDiva aims to test hypotheses about how water connects surface conditions set by land cover and land management to the biota and biogeochemical functions in the subsurface. With long-term and continuous observations, hypotheses about how seasonal variations and extreme events at the surface impact subsurface processes, community structure and function, are tested. AquaDiva has established the Hainich Critical Zone Exploratory (CZE) in central Germany in an alkaline geological setting of German Triassic Muschelkalk formations. The Hainich CZE includes specialized monitoring wells to access the vadose zone and two main groundwater complexes in limestone and marlstone parent materials along a ~6 km transect spanning forest, pasture and agricultural land uses. Initial results demonstrate fundamental differences in the biota and biogeochemistry of the two aquifer complexes that trace back to the land uses in their respective recharge areas. They also show the importance of antecedent conditions on the impact of precipitation events on responses in terms of groundwater dynamics, chemistry and ecology. Thus we find signals of surface land use and events can be detected in the subsurface CZ. Future research will expand to a second CZE in contrasting siliciclastic parent rock, to evaluate the relative importance of parent material lithology versus surface conditions for the emergent characteristics of the subsurface CZ and biodiversity. The Hainich CZE is open to researchers who bring new questions that the research platform can help answer.
NASA Technical Reports Server (NTRS)
Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.
2004-01-01
Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.
NASA Astrophysics Data System (ADS)
Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.
2014-12-01
A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Keating, Kristina; Revil, Andre
2015-04-01
Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets was also observed. These results will provide a basis for understanding the effect of microbes within geologic media on SIP and low-field NMR measurements. This research suggests that both SIP and NMR have the potential to monitor microbial growth and activities in the subsurface and could provide spatiotemporal variations in bacterial abundance in porous media.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo
2016-04-01
Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.
Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich
2010-06-08
Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.
NASA Astrophysics Data System (ADS)
Hu, Yandi
Geologic CO2 sequestration (GCS) is a promising approach to reduce anthropogenic CO2 emissions into the atmosphere. At GCS sites, injected CO2 is kept in formation rock by an overlying low permeability caprock. During and after CO2 injection, geochemical reactions can affect the porosity, permeability, and pollutant transport in aquifers. Despite their importance, nano- and micro-scale subsurface geochemical reactions are far from well-understood. Clay mobilization has been reported to decrease aquifer permeability during water flooding, and clay minerals are abundant in caprock. Thus, we studied CO2-brine-clay interactions under varied conditions relevant to different GCS sites (at 35-95°C and under 35-120 atm CO2, in water, NaCl, MgCl2, or CaCl2 solutions). Biotite, Fe-bearing mica, was used as a model clay mineral. We observed numerous fibrous illite precipitates on mica after reaction for only 3 h, which had not been previously reported. A few hours later, the mica surface cracked and fibrous illite detached. The mobilization of fibrous illite can decrease the aquifer's permeability greatly and affect the safety and efficiency of GCS. Mechanisms related to ion exchange, mica swelling, and CO2 intercalation were explored. Oriented aggregation of illite nanoparticles forming the fibrous illite was directly observed, suggesting a new mechanism for fibrous illite formation. Interestingly, besides the pH effect, aqueous CO2 enhances mica cracking over N2. These findings can help to achieve safer subsurface operations. At GCS field sites, Fe concentration increased near the injection sites and originally adsorbed pollutants were released. As the brine flows, Fe re-precipitated because of pH increase. To better predict the fate and transport of aqueous pollutants, the nucleation and growth of Fe(III) (hydr)oxides were studied. New information about sizes and volumes of the Fe(III) (hydr)oxide nanoparticles precipitated in solution and on quartz, mica, and sapphire were provided using small angle X-ray scattering, in the presence of different ions (Al 3+, Cl-, NO3-, and SO 42-). Using complementary techniques, the controlling mechanisms related to surface charge, bond formation, and interfacial energies were explored. These new findings can help better predict pollutant transport in aquifers not only at GCS sites, but also in managed aquifer recharge and acid mine drainage sites.
Macy, Jamie P.
2012-01-01
The Hopi Tribe depends on groundwater as their primary drinking-water source in the area of the Villages of Moenkopi, in northeastern Arizona. Growing concerns of the potential for uranium contamination at the Moenkopi water supply wells from the Tuba City Landfill prompted the need for an improved understanding of subsurface geology and groundwater near Moenkopi. Information in this report provides the Hopi Tribe with new hydrogeologic information that provides a better understanding of groundwater resources near the Villages of Moenkopi. The U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation and the Hopi Tribe used the controlled source audio-frequency magnetotelluric (CSAMT) geophysical technique to characterize the subsurface near Moenkopi from December 2009 to September 2010. A total of six CSAMT profiles were surveyed to identify possible fracturing and faulting in the subsurface that provides information about the occurrence and movement of groundwater. Inversion results from the six CSAMT lines indicated that north to south trending fractures are more prevalent than east to west. CSAMT Lines A and C showed multiple areas in the Navajo Sandstone where fractures are present. Lines B, D, E, and F did not show the same fracturing as Lines A and C.
Kukreti, B M; Pandey, Pradeep; Singh, R V
2012-08-01
Non-coring based exploratory drilling was under taken in the sedimentary environment of Rangsohkham block, East Khasi Hills district to examine the eastern extension of existing uranium resources located at Domiasiat and Wakhyn in the Mahadek basin of Meghalaya (India). Although radiometric survey and radiometric analysis of surface grab/channel samples in the block indicate high uranium content but the gamma ray logging results of exploratory boreholes in the block, did not obtain the expected results. To understand this abrupt discontinuity between the two sets of data (surface and subsurface) multivariate statistical analysis of primordial radioactive elements (K(40), U(238) and Th(232)) was performed using the concept of representative subsurface samples, drawn from the randomly selected 11 boreholes of this block. The study was performed to a high confidence level (99%), and results are discussed for assessing the U and Th behavior in the block. Results not only confirm the continuation of three distinct geological formations in the area but also the uranium bearing potential in the Mahadek sandstone of the eastern part of Mahadek Basin. Copyright © 2012 Elsevier Ltd. All rights reserved.
Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Baker
2006-01-01
Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along withmore » an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.« less
Stochastic modeling of a lava-flow aquifer system
Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.
2014-01-01
This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.
Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa
2017-04-01
Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.
How much can we trust a geological model underlying a subsurface hydrological investigation?
NASA Astrophysics Data System (ADS)
Wellmann, Florian; de la Varga, Miguel; Schaaf, Alexander; Burs, David
2017-04-01
Geological models often provide an important basis for subsequent hydrological investigations. As these models are generally built with a limited amount of information, they can contain significant uncertainties - and it is reasonable to assume that these uncertainties can potentially influence subsequent hydrological simulations. However, the investigation of uncertainties in geological models is not straightforward - and, even though recent advances have been made in the field, there is no out-of-the-box implementation to analyze uncertainties in a standard geological modeling package. We present here results of recent developments to address this problem with an efficient implementation of a geological modeling method for complex structural models, integrated in a Bayesian inference framework. The implemented geological modeling approach is based on a full 3-D implicit interpolation that directly respects interface positions and orientation measurements, as well as the influence of faults. In combination, the approach allows us to generate ensembles of geological model realizations, constrained by additional information in the form of likelihood functions to ensure consistency with additional geological aspects (e.g. sequence continuity, topology, fault network consistency), and we demonstrate the potential of the method in an exemplified case study. With this approach, we aim to contribute to a better understanding of the influence of geological uncertainties on subsurface hydrological investigations.
30 CFR 250.801 - Subsurface safety devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditions, hydrate formation, or paraffins, an alternate setting depth of the subsurface safety device may... conditions such as permafrost, unstable bottom conditions, hydrate formations, and paraffins. (g) Subsurface...
Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.
2014-01-01
Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.
How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation
NASA Astrophysics Data System (ADS)
Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.
2014-12-01
Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.
Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California
Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.
2006-01-01
Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouke, Bruce
An integrated research and teaching program was developed to provide cross--disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-scale Phase III CCS demonstration Illinois Basin - Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD ismore » under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO 2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-tier international peer-reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-term research in CCS-related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-on, applied learning experiences.« less
Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment
NASA Astrophysics Data System (ADS)
Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.
2009-04-01
In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous interpretation of the original environment that leading to the formation of rocks. Analysis of subsurface layers is the only approach that warranties measurements on samples close to their original composition. The upper few meters of the surface materials on Mars play a crucial role in its history, providing important constraints geologic, hydrologic, and climatic to the history of the planet. Drilling into the near-surface crust will provide an opportunity to assess variations in composition, texture, stratification, unconformities, etc. that will help define its lithology and structure, and provide important clues regarding its origin and subsequent evolution. The subsurface material can give information on the evolution of surface sediments (erosion, transport, deposition), on the relation between sediments and bedrock, on the relation between environmental conditions and surface processes permitting to "investigate planetary processes that influence habitability." Investigation of mineralogical composition of near-surface geological materials is needed to fully characterize the geology of the regions that will be visited by the Rover at all appropriate spatial scales, and to interpret the processes that have formed and modified rocks and regolith. Subsurface access, sampling material below the oxidized layer, can be the key to "assess the biological potential of the target environment (past or present)". To date, we have direct observations relative only to the Martian surface. Little is known about the characteristics of the first subsurface layers. The possibility to sample subsurface materials to be delivered to other instruments, and to record the context of the sampled soil doing in situ borehole mineralogical analysis, is fundamental to search for traces of past or present life on Mars. The spectrometer observes a single point target, having 0.1 mm diameter, on the borehole wall surface. Depending on the surface features we are interested in, the observation window can scan the borehole's surface by means of drill tip rotation or translation. When the drill is translated, a "Column Image" is acquired. This translation step can be equal to the observation spot (0.1 mm). The "Ring Image" can be obtained by rotation of the drill tip; a rotation step of about 0.5Ë (corresponding to 720 acquisitions in the ring) is sufficient to assure the full coverage of the ring.
NASA Astrophysics Data System (ADS)
Radonjic, M.; Du, H.
2015-12-01
Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to predominantly nano-scale range as characteristic of pore-size distribution typical for shale rocks. The effect of compression on cement appears to petrophysically alter cement towards the properties of shale caprocks, although the process is achieved much faster than in the case of shale diagenesis over geological times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna; Gregory, Kelvin B.; Lowry, Gregorgy V.
Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 22 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2 exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.
Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less
Weems, Robert E.; Lewis, William C.; Lemon, Earl M.
2014-01-01
This map portrays the surface and shallow subsurface geology of the greater Charleston, S.C. region east of 80°30′ west and south of 33°15′ north. The region covers the entirety of Charleston County and portions of Berkeley, Colleton, Dorchester, and Georgetown Counties. Units locally exposed at the surface range in age from middle Eocene to Holocene, but most of the area is covered by Quaternary interglacial deposits. These are, from oldest to youngest, the Okefenokee, Waccamaw(?), Penholoway, Ladson, Ten Mile Hill, and Wando Formations and the Silver Bluff beds. Two cross sections, one running southeast from Harleyville to the coastline on James Island and the other running along the coastal barrier islands from the town of Edisto Beach to the northeast end of Bull Island at the southwest edge of Bull Bay, portray the complex geometry of the Paleogene and Neogene marine units that directly lie beneath the Quaternary units. These older units include the Santee Limestone, Tupelo Bay, Parkers Ferry, Ashley, Chandler Bridge, Edisto, Parachucla, and Marks Head Formations, the Goose Creek Limestone, and the Raysor Formation. The estimated locations of deeply buried active basement faults are shown which are responsible for ongoing modern seismicity in the Charleston, S.C. area.
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
Evolution of 3-D geologic framework modeling and its application to groundwater flow studies
Blome, Charles D.; Smith, David V.
2012-01-01
In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.
A "mental models" approach to the communication of subsurface hydrology and hazards
NASA Astrophysics Data System (ADS)
Gibson, Hazel; Stewart, Iain S.; Pahl, Sabine; Stokes, Alison
2016-05-01
Communicating information about geological and hydrological hazards relies on appropriately worded communications targeted at the needs of the audience. But what are these needs, and how does the geoscientist discern them? This paper adopts a psychological "mental models" approach to assess the public perception of the geological subsurface, presenting the results of attitudinal studies and surveys in three communities in the south-west of England. The findings reveal important preconceptions and misconceptions regarding the impact of hydrological systems and hazards on the geological subsurface, notably in terms of the persistent conceptualisation of underground rivers and the inferred relations between flooding and human activity. The study demonstrates how such mental models can provide geoscientists with empirical, detailed and generalised data of perceptions surrounding an issue, as well reveal unexpected outliers in perception that they may not have considered relevant, but which nevertheless may locally influence communication. Using this approach, geoscientists can develop information messages that more directly engage local concerns and create open engagement pathways based on dialogue, which in turn allow both geoscience "experts" and local "non-experts" to come together and understand each other more effectively.
NASA Astrophysics Data System (ADS)
Lee, P.
2002-12-01
The origin and evolution of the relatively youthful slope gully features on Mars first reported by Malin and Edgett (2000) remain enigmatic. Two prevailing hypotheses concerning their formation involve the discharge of subsurface H2O at the gully sites: groundwater seepage (1) and/or the melting of ground-ice (2, 3). In the course of geologic field investigations on Devon Island, Canadian Arctic, we have identified morphologic and contextual analogs for the martian gullies that result from a radically different mechanism of formation (4). The gullies on Devon result mainly from the episodic melting of transient surface snow and ice deposits, with little contribution from subsurface H2O reservoirs. Timescales for gully formation on Devon Island are š104 years (5). The gullies on Devon suggest that the formation of gully features on Mars might not necessarily have involved discharges of subsurface H2O at the gully sites. Instead, gullies on Mars might be the result of transient surface snow and ice melting, which in turn might be the result of short-term changes in regional surface environmental conditions (on time-scales of š105-108 years?) possibly in association with high obliquity-induced climate change (6, 7) and/or volcanic activity. Acknowledgements: This research was conducted under the auspices of the NASA Haughton-Mars Project (HMP) with support from NASA and the National Geographic Society. References: (1) Malin, M. C. and K. S. Edgett 2000. Science 288, 2330-2335. (2) Mellon, M. T. and R. J. Phillips 2001. J. Geophys. Res. 106, 23165-23179. (3) Costard, F. et al. 2002. Science 295, 110-112. (4) Lee, P. et al. 2001. LPSC. XXXII, Houston, TX, Mar 12-16, 2001. (5) Lee, P, et al. 2002. LPSC XXXIII, Houston, TX, Mar 11-15, 2002. (6) Ward, W. R. (1973) Science 181, 260-262. (7) Touma, J. and J. Wisdom (1993) Science 259, 1294-1296.
Site-conditions map for Portugal based on VS measurements: methodology and final model
NASA Astrophysics Data System (ADS)
Vilanova, Susana; Narciso, João; Carvalho, João; Lopes, Isabel; Quinta Ferreira, Mario; Moura, Rui; Borges, José; Nemser, Eliza; Pinto, carlos
2017-04-01
In this paper we present a statistically significant site-condition model for Portugal based on shear-wave velocity (VS) data and surface geology. We also evaluate the performance of commonly used Vs30 proxies based on exogenous data and analyze the implications of using those proxies for calculating site amplification in seismic hazard assessment. The dataset contains 161 Vs profiles acquired in Portugal in the context of research projects, technical reports, academic thesis and academic papers. The methodologies involved in characterizing the Vs structure at the sites in the database include seismic refraction, multichannel analysis of seismic waves and refraction microtremor. Invasive measurements were performed in selected locations in order to compare the Vs profiles obtained from both invasive and non-invasive techniques. In general there was good agreement in the subsurface structure of Vs30 obtained from the different methodologies. The database flat-file includes information on Vs30, surface geology at 1:50.000 and 1:500.000 scales, elevation and topographic slope and based on SRTM30 topographic dataset. The procedure used to develop the site-conditions map is based on a three-step process that includes defining a preliminary set of geological units based on the literature, performing statistical tests to assess whether or not the differences in the distributions of Vs30 are statistically significant, and merging of the geological units accordingly. The dataset was, to some extent, affected by clustering and/or preferential sampling and therefore a declustering algorithm was applied. The final model includes three geological units: 1) Igneous, metamorphic and old (Paleogene and Mesozoic) sedimentary rocks; 2) Neogene and Pleistocene formations, and 3) Holocene formations. The evaluation of proxies indicates that although geological analogues and topographic slope are in general unbiased, the latter shows significant bias for particular geological units and subsequently for some geographical regions.
Sweetkind, Donald S.; Bova, Shiera C.
2015-01-01
In the area south of the Rainier Mesa caldera, surface and subsurface geologic data are combined to interpret the overall thickness of the Calico Hills Formation and the proportion of lava flow lithology across the study area. The formation is at least 500 meters (m) thick and contains the greatest proportion of rhyolite lava flow to the northeast of Yucca Mountain in the lower part of Fortymile Canyon. The formation thins to the south and southwest where it is between 50 and 200 m thick beneath Yucca Mountain and contains no rhyolite lavas. Geologic mapping and field-based correlation of individual lava flows allow for the interpretation of the thickness and extent of specific flows and the location of their source areas. The most extensive flows have widths from 2 to 3 kilometers (km) and lengths of at least 5–6 km. Lava flow thickness varies from 150 to 250 m above interpreted source vents to between 30 and 80 m in more distal locations. Rhyolite lavas have length-to-height ratios of 10:1 or greater and, in one instance, a length-to-width ratio of 2:1 or greater, implying a tongue-shaped geometry instead of circular domes or tabular bodies. Although geologic mapping did not identify any physical feature that could be positively identified as a vent, lava flow thickness and the size of clasts in subjacent pyroclastic deposits suggest that primary vent areas for at least some of the flows in the study area are on the east side of Fortymile Canyon, to the northeast of Yucca Mountain.
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh; Vinegar, Harold J.
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.
Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J
2009-04-02
Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water.
NASA Astrophysics Data System (ADS)
Mansour, Khamis; Omar, Khaled; Ali, Kamal; Abdel Zaher, Mohamed
2018-06-01
The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults) notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m) is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES's) were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area.
Results from Field Testing the RIMFAX GPR on Svalbard.
NASA Astrophysics Data System (ADS)
Hamran, S. E.; Amundsen, H. E. F.; Berger, T.; Carter, L. M.; Dypvik, H.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Nunes, D. C.; Paige, D. A.; Plettemeier, D.; Russell, P.
2017-12-01
The Radar Imager for Mars' Subsurface Experiment - RIMFAX is a Ground Penetrating Radar being developed for NASÁs MARS 2020 rover mission. The principal goals of the RIMFAX investigation are to image subsurface structures, provide context for sample sites, derive information regarding subsurface composition, and search for ice or brines. In meeting these goals, RIMFAX will provide a view of the stratigraphic section and a window into the geological and environmental history of Mars. To verify the design an Engineering Model (EM) of the radar was tested in the field in the spring 2017. Different sounding modes on the EM were tested in different types of subsurface geology on Svalbard. Deep soundings were performed on polythermal glaciers down to a couple of hundred meters. Shallow soundings were used to map a ground water table in the firn area of a glacier. A combination of deep and shallow soundings was used to image buried ice under a sedimentary layer of a couple of meters. Subsurface sedimentary layers were imaged down to more than 20 meters in sand stone permafrost. This presentation will give an overview of the RIMFAX investigation, describe the development of the radar system, and show results from field tests of the radar.
Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980
Hull, R.W.; Martin, J.B.
1982-01-01
Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)
Valley plugs, land use, and phytogeomorphic response: Chapter 14
Pierce, Aaron R.; King, Sammy L.; Shroder, John F.
2013-01-01
Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.
Sensitive strata in Bootlegger Cove Formation
Olsen, Harold W.
1989-01-01
Sensitivity magnitudes are interpreted from remolded strength values in recent subsurface geologic, geotechnical, and geochemical data from the Bootlegger Cove Formation adjacent to the Turnagain Heights Landslide. The results show that strata composed of highly sensitive clays occur in both the middle and lower zones of the formation, and that between these strata the clays are generally of low-to-medium sensitivity. The most sensitive stratum is in the middle zone between two sand layers, and its sensitivity increases from both clay-sand interfaces to a maximum at the center of the stratum. The pore fluid chemistry of the highly sensitive materials differs from that in the materials of low to medium sensitivity only in their concentrations of organic carbon, chloride, bicarbonate, and sulfate. The total dissolved solids concentration is low, and the ratio of monovalent to divalent cations is very high throughout the middle and lower zones of the formation. Of the known causes of high and extremely high sensitivities, only organic and/or anionic dispersants are consistent with these findings.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
Geologic hazards in the region of the Hurricane fault
Lund, W.R.
1997-01-01
Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is common in southwestern Utah where it has damaged roads, canal embankments, and water-retention structures. Several unexplained sinkholes near the town of Hurricane possibly are the result of collapse of subsurface volcanic features. Geologic formations associated with slope failures along or near the Hurricane fault include rocks of both Mesozoic and Tertiary age. Numerous landslides are present in these materials along the Hurricane Cliffs, and the Petrified Forest Member of the Chinle Formation is commonly associated with slope failures where it crops out in the St. George Basin. Steep slopes and numerous areas of exposed bedrock make rock fall a hazard in the St. George Basin. Debris flows and debris floods in narrow canyons and on alluvial fans often accompany intense summer cloudburst thunderstorms. Flooded basements and foundation problems associated with shallow ground water are common on benches north of the Santa Clara River in the city of Santa Clara. Stream flooding is the most frequently occurring and destructive geologic hazard in southwestern Utah. Since the 1850s, there have been three major riverine (regional) floods and more than 300 damaging flash floods. Although a variety of flood control measures have been implemented, continued rapid growth in the region is again increasing vulnerability to flood hazards. Site-specific studies to evaluate geologic hazards and identify hazard-reduction measures are recommended prior to construction to reduce the need for costly repair, maintenance, or replacement of improperly placed or protected facilities.
Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saucier, R.T.
1977-02-01
Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less
Ibe, K M; Uzoukwu, S C
2001-09-01
The research was aimed at determining the depth to the water table, aquifer thickness and subsurface geology of the study area thus revealing its groundwater distribution as well as its potential as a substitute to the surface water resources. Vertical electrical soundings were carried out in the study area with maximum electrode spread. The Schlumberger electrode configuration technique was adopted. VES data were processed using Schlumberger analysis package. Lithologic logs of already existing boreholes in the study area were collected, evaluated and comparison were carried out. The results reveal alternating layers of sands, sandstones, gravel and clay. The lithologic logs revealed that the study area is underlain by coastal sands (Benin formation). The water table varies from 10-64 m and thickness of the aquifer ranges from 20-80 m. Results show that the study area is underlain by a thick extensive aquifer that has a transmissivity of 2.8 x 10(-2) m2 s(-1) to 3.3 x 10(-1) m2 s(-1) and storativity 1.44 x 10(-4) to 1.68 x 10(-3) m s(-1) values. The specific yield is about 0.31. The sandy component of the study area forms more than 90% of the sequence, therefore the permeability, the transmissivity and the storage coefficient are high with an excellent source of groundwater resources.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Randolph, J.; Saar, M. O.; Hao, Y.; Sun, Y.; Bielicki, J. M.
2014-12-01
Integrating renewable energy sources into electricity grids requires advances in bulk and thermal energy storage technologies, which are currently expensive and have limited capacity. We present an approach that uses the huge fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources. CO2 captured from fossil-energy systems and N2 separated from air are injected into permeable formations to store pressure, generate artesian flow of brine, and provide additional working fluids. These enable efficient fluid recirculation, heat extraction, and power conversion, while adding operational flexibility. Our approach can also store and dispatch thermal energy, which can be used to levelize concentrating solar power and mitigate variability of wind and solar power. This may allow low-carbon, base-load power to operate at full capacity, with the stored excess energy being available to addresss diurnal and seasonal mismatches between supply and demand. Concentric rings of horizontal injection and production wells are used to create a hydraulic divide to store pressure, CO2, N2, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Supercritical CO2 and N2 function as cushion gases to provide enormous pressure-storage capacity. Injecting CO2 and N2 displaces large quantities of brine, reducing the use of fresh water. Geologic CO2 storage is a crucial option for reducing CO2 emissions, but valuable uses for CO2 are needed to justify capture costs. The initial "charging" of our system requires permanently isolating large volumes of CO2 from the atmosphere and thus creates a market for its disposal. Our approach is designed for locations where a permeable geologic formation is overlain by an impermeable formation that constrains migration of buoyant CO2 and/or N2, and heated brine. Such geologic conditions exist over nearly half of the contiguous United States. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A High-Sensitivity Broad-Band Seismic Sensor for Shallow Seismic Sounding of the Lunar Regolith
NASA Technical Reports Server (NTRS)
Pike, W. Thomas; Standley, Ian M.; Banerdt, W. Bruce
2005-01-01
The recently undertaken Space Exploration Initiative has prompted a renewed interest in techniques for characterizing the surface and shallow subsurface (0-10s of meters depth) of the Moon. There are several reasons for this: First, there is an intrinsic scientific interest in the subsurface structure. For example the stratigraphy, depth to bedrock, density/porosity, and block size distribution all have implications for the formation of, and geological processes affecting the surface, such as sequential crater ejecta deposition, impact gardening, and seismic settling. In some permanently shadowed craters there may be ice deposits just below the surface. Second, the geotechnical properties of the lunar surface layers are of keen interest to future mission planners. Regolith thickness, strength, density, grain size and compaction will affect construction of exploration infrastructure in terms of foundation strength and stability, ease of excavation, radiation shielding effectiveness, as well as raw material handling and processing techniques for resource extraction.
Detecting subsurface fluid leaks in real-time using injection and production rates
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Huerta, Nicolas J.
2017-12-01
CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.
Microbial transport and fate in the subsurface: An introduction to the special collection
USDA-ARS?s Scientific Manuscript database
Microorganisms constitute the almost exclusive form of life in the earth’s subsurface (not including caves), particularly at depths exceeding the soil horizon. While of broad interest to ecology and geology, scientific interest in the fate and transport of microorganisms, particularly those introduc...
Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T; Fredrickson, James; Konopka, Allan
2012-02-01
Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.
Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T.; Fredrickson, James
2012-01-01
Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990
Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States
NASA Astrophysics Data System (ADS)
Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.
2017-12-01
Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post-rift unconformity into the Mesozoic rocks. Preliminary results from the southeast Georgia Embayment suggest that Mesozoic strata can be good reservoirs for CO2 storage while Paleozoic and Cenozoic strata can be good lower and, respectively, upper seals.
Relations between Vegetation and Geologic Framework in Barrier Island
NASA Astrophysics Data System (ADS)
Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.
2017-12-01
Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, David A
2016-03-27
The prediction of the long-term stability and safety of geologic sequestration of greenhouse gases requires a detailed understanding of subsurface transport and chemical interactions between the disposed greenhouse gases and the geologic media. In this regard, mineral-fluid interactions are of prime importance since reactions that occur on or near the interface can assist in the long term sequestration of CO2 by trapping in mineral phases such as carbonates, as well as influencing the subsurface migration of the disposed fluids via creation or plugging of pores or fractures in the host rock strata. Previous research on mineral-fluid interaction for subsurface CO2more » storage has focused almost entirely on the aqueous phase, i.e., reactivity with aqueous solutions or brines containing dissolved CO2. However, interactions with neat to water-saturated non-aqueous fluids are of equal if not greater importance since supercritical CO2 (scCO2) is less dense than the aqueous phase or oil which will create a buoyant scCO2 plume that ultimately will dominate the pore volume within the caprock, and the injected scCO2 will contain water soon after injection and this water can be highly reactive. Collectively, therefore, mineral interactions with water-saturated scCO2-dominated fluids are pivotal and could result in the stable sequestration of CO2 by trapping in mineral phases such as metal carbonates within otherwise permeable zones in the caprock. The primary objective is to unravel the molecular mechanisms governing the reactivity of mineral phases important in the geologic sequestration of CO2 with variably wet supercritical carbon dioxide as a function of T, P, and mineral structure using computational chemistry. This work is in close collaboration with the PNNL Geosciences effort. The focus of the work at The University of Alabama is computational studies of the formation of magnesium and calcium carbonates and oxides and their reactivity and providing computational support of the experimental efforts at PNNL, especially for energetics, structural properties, and interpretation of spectra.« less
National assessment of geologic carbon dioxide storage resources: results
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery replacement storage resource (KRRSR) is a conservative estimate that represents only the amount of CO2 at subsurface conditions that could replace the volume of known hydrocarbon production. The mean national KRRSR, determined from production volumes rather than the geologic model of buoyant and residual traps that make up TASR, is 13 Gt. The estimated storage resources are dominated by residual trapping class 2, which accounts for 89 percent of the total resources. The Coastal Plains Region of the United States contains the largest storage resource of any region. Within the Coastal Plains Region, the resources from the U.S. Gulf Coast area represent 59 percent of the national CO2 storage capacity.
NASA Astrophysics Data System (ADS)
Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.
2009-12-01
Mining activities results into generation of disintegrated waste materials attaining increased mobilization status and requires a safe disposal mechanism through back filling process or secluded storage on surface with prevention of its interaction with environment cycle. The surface disposal of waste materials will become more critical in case of mined minerals having toxic or radioactive elements. In such cases, the surface disposal site is to be characterized for its sub-surface nature to understand its role in environmental impact due to the loading of waste materials. Near surface geophysics plays a major role in mapping the geophysical characters of the sub-surface formations in and around the disposal site and even to certain extent helps in designing of the storage structure. Integrated geophysical methods involving resistivity tomography, ground magnetic and shallow seismic studies were carried out over proposed tailings pond area of 0.3 sq. kms underlined by dipping sedimentary rocks consisting of ferruginous shales and dolomitic to siliceous limestone with varying thicknesses. The investigated site being located in tectonically disturbed area, geophysical investigations were carried out with number of profiles to visualize the sub-surface nature with clarity. The integration of results of twenty profiles of resistivity tomography with 2 m (shallow) and 10 m (moderate depth) electrode spacing’s enabled in preparing probable sub-surface geological section along the strike direction of the formation under the tailings pond with some geo-tectonic structure inferred to be a fault. Similarly, two resistivity tomography profiles perpendicular to the strike direction of the formations brought out the existence of buried basic intrusive body on the northern boundary of the proposed tailings pond. Two resistivity tomography profiles in criss-cross direction over the suspected fault zone confirmed fault existence on the north-eastern part of tailings pond. Thirty two magnetic profiles inside the tailings pond and surrounding areas on the southern part of the tailings pond enabled in identifying two parallel east-west intrusive bodies forming the impermeable boundary for the tailings pond. The shallow seismic refraction and the geophysical studies in and around the proposed tailings pond brought out the suitability of the site, even when the toxic elements percolates through the subsurface formations in to the groundwater system, the existence of dykes on either side of the proposed ponding area won’t allow the water to move across them thus by restricting the contamination within the tailings pond area. Similarly, the delineation of a fault zone within the tailings pond area helped in shifting the proposed dam axis of the pond to avoid leakage through the fault zone causing concern to environment pollution.
Clark, Allan K.; Faith, Jason R.; Blome, Charles D.; Pedraza, Diana E.
2006-01-01
The southern segment of the Edwards aquifer in south-central Texas is one of the most productive subsurface reservoirs of potable water in the world, providing water of excellent quality to more than a million people in the San Antonio region, where the Environmental Protection Agency (EPA) has declared it to be a sole-source aquifer (van der Leeden and others, 1990). Depending on the depositional province within which the associated carbonate rocks originated (Maclay and Small, 1984), the Edwards aquifer is composed of several geologic formations (primarily limestone and dolostone) of Early Cretaceous age. Most water pumped from the Edwards aquifer comes form the Person and Kainer Formations, which were deposited over the San Marcos Platform. The principal source of ground water in study area is the Devils River Formation, which was deposited in the Devils River trend. The Devils River Formation provides large quantities of irrigation water to fertile bottomland areas of Medina and Uvalde Counties, where the success of farming and ranching activities has long depended upon water from the Edwards aquifer. The study area includes all of the Edwards aquifer recharge zone between the Sabinal River (on the west) and the Medina River (on the east) plus an updip fringe of the confined zone in east-central Uvalde and central Medina Counties. Over about ninety percent of the study area--within the Devils River trend--the Edwards aquifer is composed of the Georgetown Formation plus the underlying Devils River Formation. Over the remaining area--over the southwestern margin of the San Marcos platform--the Edwards aquifer consists of the Georgetown Formation plus the underlying Edwards Group (Rose, 1972), which comprises the Kainer and Person Formations.
NASA Astrophysics Data System (ADS)
Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.
2017-11-01
Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.
NASA Astrophysics Data System (ADS)
Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison
2014-05-01
Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.
NASA Astrophysics Data System (ADS)
Park, Y.-J.; Cornaton, F. J.; Normani, S. D.; Sykes, J. F.; Sudicky, E. A.
2008-04-01
F. J. Cornaton et al. (2008) introduced the concept of lifetime expectancy as a performance measure of the safety of subsurface repositories, on the basis of the travel time for contaminants released at a certain point in the subsurface to reach the biosphere or compliance area. The methodologies are applied to a hypothetical but realistic Canadian Shield crystalline rock environment, which is considered to be one of the most geologically stable areas on Earth. In an approximately 10 × 10 × 1.5 km3 hypothetical study area, up to 1000 major and intermediate fracture zones are generated from surface lineament analyses and subsurface surveys. In the study area, mean and probability density of lifetime expectancy are analyzed with realistic geologic and hydrologic shield settings in order to demonstrate the applicability of the theory and the numerical model for optimally locating a deep subsurface repository for the safe storage of spent nuclear fuel. The results demonstrate that, in general, groundwater lifetime expectancy increases with depth and it is greatest inside major matrix blocks. Various sources and aspects of uncertainty are considered, specifically geometric and hydraulic parameters of permeable fracture zones. Sensitivity analyses indicate that the existence and location of permeable fracture zones and the relationship between fracture zone permeability and depth from ground surface are the most significant factors for lifetime expectancy distribution in such a crystalline rock environment. As a consequence, it is successfully demonstrated that the concept of lifetime expectancy can be applied to siting and performance assessment studies for deep geologic repositories in crystalline fractured rock settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Bao, J; Huang, M
Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less
Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective
NASA Astrophysics Data System (ADS)
Fogg, Graham E.; Zhang, Yong
2016-12-01
A geologic perspective on stochastic subsurface hydrology offers insights on representativeness of prominent field experiments and their general relevance to other hydrogeologic settings. Although the gains in understanding afforded by some 30 years of research in stochastic hydrogeology have been important and even essential, adoption of the technologies and insights by practitioners has been limited, due in part to a lack of geologic context in both the field and theoretical studies. In general, unintentional, biased sampling of hydraulic conductivity (K) using mainly hydrologic, well-based methods has resulted in the tacit assumption by many in the community that the subsurface is much less heterogeneous than in reality. Origins of the bias range from perspectives that are limited by scale and the separation of disciplines (geology, soils, aquifer hydrology, groundwater hydraulics, etc.). Consequences include a misfit between stochastic hydrogeology research results and the needs of, for example, practitioners who are dealing with local plume site cleanup that is often severely hampered by very low velocities in the very aquitard facies that are commonly overlooked or missing from low-variance stochastic models or theories. We suggest that answers to many of the problems exposed by stochastic hydrogeology research can be found through greater geologic integration into the analyses, including the recognition of not only the nearly ubiquitously high variances of K but also the strong tendency for the good connectivity of the high-K facies when spatially persistent geologic unconformities are absent. We further suggest that although such integration may appear to make the contaminant transport problem more complex, expensive and intractable, it may in fact lead to greater simplification and more reliable, less expensive site characterizations and models.
NASA Astrophysics Data System (ADS)
Bowman, A.; Cardace, D.; August, P.
2012-12-01
Springs sourced in the mantle units of ophiolites serve as windows to the deep biosphere, and thus hold promise in elucidating survival strategies of extremophiles, and may also inform discourse on the origin of life on Earth. Understanding how organisms can survive in extreme environments provides clues to how microbial life responds to gradients in pH, temperature, and oxidation-reduction potential. Spring locations associated with serpentinites have traditionally been located using a variety of field techniques. The aqueous alteration of ultramafic rocks to serpentinites is accompanied by the production of very unusual formation fluids, accessed by drilling into subsurface flow regimes or by sampling at related surface springs. The chemical properties of these springs are unique to water associated with actively serpentinizing rocks; they reflect a reducing subsurface environment reacting at low temperatures producing high pH, Ca-rich formation fluids with high dissolved hydrogen and methane. This study applies GIS site suitability analysis to locate high pH springs upwelling from Coast Range Ophiolite serpentinites in Northern California. We used available geospatial data (e.g., geologic maps, topography, fault locations, known spring locations, etc.) and ArcGIS software to predict new spring localities. Important variables in the suitability model were: (a) bedrock geology (i.e., unit boundaries and contacts for peridotite, serpentinite, possibly pyroxenite, or chromite), (b) fault locations, (c) regional data for groundwater characteristics such as pH, Ca2+, and Mg2+, and (d) slope-aspect ratio. The GIS model derived from these geological and environmental data sets predicts the latitude/longitude points for novel and known high pH springs sourced in serpentinite outcrops in California. Field work confirms the success of the model, and map output can be merged with published environmental microbiology data (e.g., occurrence of hydrogen-oxidizers) to showcase patterns in microbial community structure. Discrepancies between predicted and actual spring locations are then used to tune GIS suitability analysis, re-running the model with corrected geo-referenced data. This presentation highlights a powerful GIS-based technique for accelerating field exploration in this area of ongoing research.
A possible terrestrial analogue for haematite concretions on Mars.
Chan, Marjorie A; Beitler, Brenda; Parry, W T; Ormö, Jens; Komatsu, Goro
2004-06-17
Recent exploration has revealed extensive geological evidence for a water-rich past in the shallow subsurface of Mars. Images of in situ and loose accumulations of abundant, haematite-rich spherical balls from the Mars Exploration Rover 'Opportunity' landing site at Meridiani Planum bear a striking resemblance to diagenetic (post-depositional), haematite-cemented concretions found in the Jurassic Navajo Sandstone of southern Utah. Here we compare the spherical concretions imaged on Mars to these terrestrial concretions, and investigate the implications for analogous groundwater-related formation mechanisms. The morphology, character and distribution of Navajo haematite concretions allow us to infer host-rock properties and fluid processes necessary for similar features to develop on Mars. We conclude that the formation of such spherical haematite concretions requires the presence of a permeable host rock, groundwater flow and a chemical reaction front.
Subsurface Formation Evaluation on Mars: Application of Methods from the Oil Patch
NASA Astrophysics Data System (ADS)
Passey, Q. R.
2006-12-01
The ability to drill 10- to 100-meter deep wellbores on Mars would allow for evaluation of shallow subsurface formations enabling the extension of current interpretations of the geologic history of this planet; moreover, subsurface access is likely to provide direct evidence to determine if water or permafrost is present. Methodologies for evaluating sedimentary rocks using drill holes and in situ sample and data acquisition are well developed here on Earth. Existing well log instruments can measure K, Th, and U from natural spectral gamma-ray emission, compressional and shear acoustic velocities, electrical resistivity and dielectric properties, bulk density (Cs-137 or Co-60 source), photoelectric absorption of gamma-rays (sensitive to the atomic number), hydrogen index from epithermal and thermal neutron scattering and capture, free hydrogen in water molecules from nuclear magnetic resonance, formation capture cross section, temperature, pressure, and elemental abundances (C, O, Si, Ca, H, Cl, Fe, S, and Gd) using 14 MeV pulsed neutron activation more elements possible with supercooled Ge detectors. Additionally, high-resolution wellbore images are possible using a variety of optical, electrical, and acoustic imaging tools. In the oil industry, these downhole measurements are integrated to describe potential hydrocarbon reservoir properties: lithology, mineralogy, porosity, depositional environment, sedimentary and structural dip, sedimentary features, fluid type (oil, gas, or water), and fluid amount (i.e., saturation). In many cases it is possible to determine the organic-carbon content of hydrocarbon source rocks from logs (if the total organic carbon content is 1 wt% or greater), and more accurate instruments likely could be developed. Since Martian boreholes will likely be drilled without using opaque drilling fluids (as generally used in terrestrial drilling), additional instruments can be used such as high resolution direct downhole imaging and other surface contact measurements (such as IR spectroscopy and x-ray fluorescence). However, such wellbores would require modification of some instruments since conventional drilling fluids often provide the coupling of the instrument sensors to the formation (e.g., sonic velocity and galvanic resistivity measurements). The ability to drill wellbores on Mars opens up new opportunities for exploration but also introduces additional technical challenges. Currently it is not known if all existing terrestrial logging instruments can be miniaturized sufficiently for a shallow Mars wellbore, but the existing well logging techniques and instruments provide a solid framework on which to build a Martian subsurface evaluation program.
Subsurface data visualization in Virtual Reality
NASA Astrophysics Data System (ADS)
Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul
2017-04-01
Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing can be done in any direction using a 'virtual knife'. Future plans are to further improve performance from 30 up to 90 Hz update rate to reduce possible motion sickness, add more advanced filtering capabilities as well as a multi user setup, annotation capabilities and visualizing of historical data.
Integrated modeling of natural and human systems - problems and initiatives
NASA Astrophysics Data System (ADS)
Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.
2009-12-01
Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK and the Netherlands, for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and “predictions”. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey and the Geological Survey of the Netherlands have developed standard routines to link geological data to groundwater models, but these models are only aimed at solving one specific part of the earth's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.
PropBase Query Layer: a single portal to UK subsurface physical property databases
NASA Astrophysics Data System (ADS)
Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham
2013-04-01
Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.
Geology’s “Super Graphics” and the Public: Missed Opportunities for Geoscience Education
NASA Astrophysics Data System (ADS)
Clary, R. M.; Wandersee, J. H.
2009-12-01
The geosciences are very visual, as demonstrated by the illustration density of maps, graphs, photographs, and diagrams in introductory textbooks. As geoscience students progress, they are further exposed to advanced graphics, such as phase diagrams and subsurface seismic data visualizations. Photographs provide information from distant sites, while multivariate graphics supply a wealth of data for viewers to access. When used effectively, geology graphics have exceptional educational potential. However, geological graphic data are often presented in specialized formats, and are not easily interpreted by an uninformed viewer. In the Howe-Russell Geoscience Complex at Louisiana State University, there is a very large graphic (~ 30 ft x 6 ft) exhibited in a side hall, immediately off the main entrance hall. The graphic, divided into two obvious parts, displays in its lower section seismic data procured in the Gulf of Mexico, from near offshore Louisiana to the end of the continental shelf. The upper section of the graphic reveals drilling block information along the seismic line. Using Tufte’s model of graphic excellence and Paivio’s dual-coding theory, we analyzed the graphic in terms of data density, complexity, legibility, format, and multivariate presentation. We also observed viewers at the site on 5 occasions, and recorded their interactions with the graphic. This graphic can best be described as a Tufte “super graphic.” Its data are high in density and multivariate in nature. Various data sources are combined in a large format to provide a powerful example of a multitude of information within a convenient and condensed presentation. However, our analysis revealed that the graphic misses an opportunity to educate the non-geologist. The information and seismic “language” of the graphic is specific to the geology community, and the information is not interpreted for the lay viewer. The absence of title, descriptions, and symbol keys are detrimental. Terms are not defined. The absence of color keys and annotations is more likely to lead to an appreciation of graphic beauty, without concomitant scientific understanding. We further concluded that in its current location, constraints of space and reflective lighting prohibit the viewer from simultaneously accessing all subsurface data in a “big picture” view. The viewer is not able to fully comprehend the macro/micro aspects of the graphic design within the limited viewing space. The graphic is an example of geoscience education possibility, a possibility that is currently undermined and unrealized by lack of interpretation. Our analysis subsequently informed the development of a model to maximize the graphic’s educational potential, which can be applied to similar geological super graphics for enhanced public scientific understanding. Our model includes interactive displays that apply the auditory-visual dual coding approach to learning. Notations and aural explanations for geological features should increase viewer understanding, and produce an effective informal educational display.
NASA Astrophysics Data System (ADS)
Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.
2016-12-01
Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.
NASA Astrophysics Data System (ADS)
Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej
2017-08-01
In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.
NASA Astrophysics Data System (ADS)
Septyasari, U.; Niasari, S. W.; Maghfira, P. D.
2018-04-01
Telomoyo geothermal prospect area is located in Central Java, Indonesia. One of the manifestations around Telomoyo is a warm spring, called Candi Umbul. The hydrothermal fluids from the manifestation could be from the subsurface flowing up through geological structures. The previous research about 2D magnetic modeling in Candi Umbul showed that there was a normal fault with strike/dip N60°E/45° respectively. This research aims to know the distance boundary and the kind of the geological structure in the study area. We also compared the geological structure direction based on the geologic map and the derivative maps. We used derivative analyses of the magnetic data, i.e. First Horizontal Derivative (FHD) which is the rate of change of the horizontal gradient in the horizontal direction. FHD indicates the boundaries of the geological structure. We also used Second Vertical Derivative (SVD) which is the rate of change of the vertical gradient in the vertical direction. SVD can reveal normal fault or thrust fault. The FHD and SVD maps show that the geological structure boundary has the same direction with the north west-south east geological structure. The geological structure boundary is in 486 m of the local distance. Our result confirms that there is a normal fault in the study area.
Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System
NASA Astrophysics Data System (ADS)
Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.
2015-12-01
As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.
Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments
NASA Astrophysics Data System (ADS)
Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil
2017-04-01
The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.
Reducing Risk in Horizontal Directional Drilling (HDD) in Soft Sedimentary Environments
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Skonberg, E.
2017-12-01
This is a focus on the applied outcome of geologic reports and the scale of near surface geologic process which affect the success of horizontal directional drilling (HDD) operations. Often there is too little data to fully characterize the subsurface along the drilled hole. Adding uncertainty is the exploration borehole is typically vertical while the drill path orientation of the HDD is not. The stratigraphic principle of original horizontality is heavily relied upon when interpreting the geology of the drill path and for good reason because of the depositional processes involved. However, the scale of secondary sedimentary processes, specifically zones of induration and their potential effects on the HDD can be at a scale or frequency that is not properly sampled during the geotechnical investigation. This lack of direct evidence could lead geologists and designers not to include these low-frequency phenomena in their risk analysis. For HDD planning and design, the industry routinely generalizes the earth materials to be encountered as soft or hard. This use of inexact, colloquial phrasing paints a picture of the a nearly homogeneous drilling site. Even though a majority of the site can be characterized as a low-strength or high-strength material, the diagenesis of sediments can include zones with wide-ranging strengths that can negatively impact the rate of penetration, the ability to steer and bore hole stability. In this generalization, soft is a majority of low strength or unconsolidated material (sands, silts, and clays). This does not preclude concretions and other indurated lenticular features that are widespread in the Gulf Coast states. This investigation reviews several formations commonly encountered during medium to large diameter (>10 inches) HDD operations. The Bashi formation with surface exposures in Mississippi and Alabama; the Wilcox Group in southern Mississippi and central Louisiana; the Cook Mountain Formation; the Hatchetigbee formation and Catahoula Formation of Louisiana and Mississippi were reviewed and potential HDD drilling and pull back complications are discussed.
NASA Astrophysics Data System (ADS)
Paillou, P.; Grandjean, G.; Heggy, E.; Farr, T.
2004-05-01
For several years, we have conducted a quantitative study of radar penetration performances in various desert arid environments. This study combines both SAR (Synthetic Aperture Radar) imaging from orbital and airborne platforms and in situ GPR (Ground Penetrating Radar) measurements. Laboratory characterization of various minerals and rocks are used as input to electromagnetic models such as IEM (Integral Equation Model) and FDTD (Finite Difference Time Domain) that describe the subsurface scattering process for inversion purposes. Several test sites were explored, mainly the Sahara. Our first experiment was realized in Republic of Djibouti, an arid volcanic area which is a good analog to Mars. We observed a very little radar penetration there because of the presence of iron oxides and salts in the subsurface that make the soil conductive [Paillou et al., GRL, 2001]. A more favorable site for radar penetration was then explored in southern Egypt: the Bir Safsaf area where buried river channels were discovered using orbital SAR images. We showed how to combine SAR and GPR in order to obtain a complete description of subsurface geology down to several meters [Paillou et al., IEEE TGRS, 2003]. Such field experiments were the basis for more systematic laboratory measurements of the electromagnetic properties of various rocks and minerals which were used in numerical models in order to simulate the performances of future Martian radars, e.g. MARSIS and NETLANDER low frequency radars [Heggy et al., Icarus, 2001; Berthelier et al., JGR, 2003; Heggy et al., JGR, 2003]. More recently, new explorations were conducted in Mauritania in order to demonstrate radar capacities for geologic mapping [Grandjean et al., Coll. Afr. Geol., 2004] and in Libya where radar discovered a double impact crater in the southern desert [Paillou et al., C.R. Geoscience, 2003]. More local radar experiments were also conducted on a test site located in France, the Pyla sand dune, where we observed and modeled a radar signature of subsurface water [Grandjean et al., IEEE TGRS, 2001; Paillou et al., IGARSS'03, 2003]. All of these results shall be used in the context of "terrestrial analogs to Mars" studies in order to prepare for future Mars exploration using radars [Farr et al., Planet. Dec. Study, 2002; Paillou et al., 35th LPSC, 2004]: it concerns both GPR instruments onboard rovers and landers devoted to the exploration of the deep subsurface [Berthelier at al., ESA Pasteur, 2003] and SAR imaging systems onboard orbital platforms for global mapping of the shallow subsurface geology [Paillou et al., Conf. Water Mars, 2001].
Researchers Mine Information from Next-Generation Subsurface Flow Simulations
Gedenk, Eric D.
2015-12-01
A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.
Subsurface structures of buried features in the lunar Procellarum region
NASA Astrophysics Data System (ADS)
Wang, Wenrui; Heki, Kosuke
2017-07-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.
Nationwide lithological interpretation of cone penetration tests using neural networks
NASA Astrophysics Data System (ADS)
van Maanen, Peter-Paul; Schokker, Jeroen; Harting, Ronald; de Bruijn, Renée
2017-04-01
The Geological Survey of the Netherlands (GSN) systematically produces 3D stochastic geological models of the Dutch subsurface. These voxel models are regarded essential in answering subsurface-related questions on, for example, aggregate resource potential, groundwater flow, land subsidence hazard and the planning and realization of large-scale infrastructural works. GeoTOP is the most recent and detailed generation of 3D voxel models. This model describes 3D stratigraphical and lithological variability up to a depth of 50 m using voxels of 100 × 100 × 0.5 m. Currently, visually described borehole samples are the primary input of these large-scale 3D geological models, both when modeling architecture and composition. Although tens of thousands of cone penetration tests (CPTs) are performed each year, mainly in the reconnaissance phase of construction activities, these data are hardly used as geological model input. There are many reasons why it is of interest to utilize CPT data for geological and lithological modeling of the Dutch subsurface, such as: 1) CPTs are more abundant than borehole descriptions, 2) CPTs are cheaper and easier to gather, and 3) CPT data are more quantitative and uniform than visual sample descriptions. This study uses CPTs and the lithological descriptions of associated nearby undisturbed drilling cores collected by the GSN to establish a nationwide reference dataset for physical and chemical properties of the shallow subsurface. The 167 CPT-core pairs were collected at 160 locations situated in the North, West and South of the Netherlands. These locations were chosen to cover the full extent of geological units and lithological composition in the upper 30 to 40 m of the subsurface in these areas. The distance between the CPT location and associated borehole is small, varying between 0 and 30 m, with an average of 6 m. For each 2 cm CPT interval the data was automatically annotated with the lithoclass from the associated core using a lithological classification script that is also used in GeoTOP to classify the visual sample descriptions. Based on this data a three-layer feedforward neural network was trained containing 5 different inputs: cone resistance, friction ratio, coordinates x and y, and interval depth z. Previous training attempts showed an increased performance when using additional inputs such as pore water pressure, but since these variables are not measured in the majority of CPTs, these were left out in the training procedure. The Newton conjugate-gradient algorithm was applied to train the network. 20-Fold cross-validation yielded 20 different trained nets and independent performance outcomes. Significant performance increase was found as compared to performances of conventional lithological classification charts. A similar neural network was then applied to new CPT data from a pilot area in the city of Rotterdam. This area has a limited number of visual sample descriptions and therefore, additional lithological information of the subsurface is desirable. The results of an evaluation of the neural network's outcomes in this area by geological experts are positive, which paves the way for future nationwide application of this method.
The Integration of GPR, GIS, and GPS for 3D Soil Morphologic Models
NASA Astrophysics Data System (ADS)
Tischler, M.; Collins, M. E.
2005-05-01
Ground-Penetrating Radar (GPR) has become a useful and efficient instrument for gathering information about subsurface diagnostic horizons in Florida soils. Geographic Information Systems (GIS) are a popular and valuable tool for spatial data analysis of real world features in a digital environment. Ground-Penetrating Radar can be linked to GIS by using Global Positioning Systems (GPS). By combining GPR, GPS, and GIS technologies, a more detailed geophysical survey can be completed for an area of interest by integratinghydrologic, pedologic, and geologic data. Thus, the objectives of this research were to identify subsurface soil layers using GPR and their geographic position with a highly accurate GPS; to develop a procedure to import GPR data into a popular software package, such as ArcGIS, and; to create 3D subsurface models based on the imported GPR data. The site for this study was the Plant Science Research and Education Center in Marion County, Florida. The soils are characterized by Recent-Pleistocene-age sand over the clayey, marine deposited Plio-Miocene-age Hawthorn Formation which drapes the Eocene-age Ocala Limestone. Consequently, soils in the research area vary from deep quartz sands (Typic Quartzipsamments) to shallow outcrops of the Hawthorn Formation (Arenic Hapludalfs). A GPR survey was performed on a 160 m x 320 m grid to gather data for processing. Four subsurface models estimating the depth to argillic horizon were created using a variety of specialized GPR data filters and geostatistical data analyses. The models were compared with ground-truth points that measured the depth to argillic horizon to validate each model and calculate error metrics. These models may assist research station personnel to determine best management practices (including experimental plot placement, irrigation management, fertilizer treatment, and pesticide applications). In addition, the developed methodology exploits the potential of combining GPR and GIS.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Serpentinite Carbonation in the Pollino Massif (southern Italy) for CO2 Sequestration
NASA Astrophysics Data System (ADS)
Carmela Dichicco, Maria; Mongelli, Giovanni; Paternoster, Michele; Rizzo, Giovanna
2015-04-01
Anthropogenic gas emissions are projected to change future climates with potentially nontrivial impacts (Keller et al., 2008 and references therein) and the impacts of the increased CO2 concentration are, among others, the greenhouse effect, the acidification of the surface of the ocean and the fertilization of ecosystems (e.g. Huijgen and Comans, 2003). Geologic Sequestration into subsurface rock formations for long-term storage is part of a process frequently referred to as "carbon capture and storage" or CCS. A major strategy for the in situ geological sequestration of CO2 involves the reaction of CO2 with Mg-silicates, especially in the form of serpentinites, which are rocks: i) relatively abundant and widely distributed in the Earth's crust, and ii) thermodynamically convenient for the formation of Mg-carbonates (e.g., Brown et al., 2011). In nature, carbonate minerals can form during serpentinization or during hydrothermal carbonation and weathering of serpentinites whereas industrial mineral carbonation processes are commonly represented by the reaction of olivine or serpentine with CO2 to form magnesite + quartz ± H2O (Power et al., 2013). Mineral carbonation occurs naturally in the subsurface as a result of fluid-rock interactions within serpentinite, which occur during serpentinization and carbonate alteration. In situ carbonation aims to promote these reactions by injecting CO2 into porous, subsurface geological formations, such as serpentinite-hosted aquifers. In the northern sector of the Pollino Massif (southern Italy) extensively occur serpentinites (Sansone et. al., 2012) and serpentinite-hosted aquifers (Margiotta et al., 2012); both serpentinites and serpentinite-hosted aquifers are the subject of a comprehensive project devoted to their possible use for in situ geological sequestration of CO2. The serpentinites derived from a lherzolitic and subordinately harzburgitic mantle, and are within tectonic slices in association with metadolerite dykes and medium to high-grade metamorphic rocks. Primary mantle minerals are olivine, clinopyroxene, orthopyroxene, and spinel whereas serpentine, magnetite, chlorite, and amphibole are pseudomorphic minerals. Olivine is replaced by serpentine forming a mesh texture and orthopyroxene is mostly altered to bastite. Water chemistry indicates serpentinites interact with meteoric water producing a Mg-HCO3 type water in a system open to CO2. Brown Jr., G.E., Calas, G., (2011) - Environmental mineralogy - understanding element behavior in ecosystems. Comptes Rendus Geoscience 343, 90-112. Huijgen W.JJ., and Comans R.N.J., (2003) - Carbon dioxide sequestrationby mineral carbonation. Report Number ECN-C-03-016, Energy research Centre of the Netherlands (ECN), Petten, the Netherlands. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. (2008) - Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065-1069. Margiotta, S., Mongelli, G., Summa, V., Paternoster, M., Fiore S. (2012) - Trace element distribution and Cr(VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, southern Italy. Journal of Geochemical Exploration. Power I.M., Wilson S.A., Dipple G.M. (2013) - Serpentinite Carbonation for CO2 Sequestration. Elements, 9, 115-121. Sansone M.T.C., Prosser G., Rizzo G., Tartarotti P. (2012) - Spinel-peridotites of the Frido Unit ophiolites: evidence for oceanic evolution. Periodico di Mineralogia. 81, 35-59. 10.2451/2012PM0003
Smith, George I.
2009-01-01
Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. It is bounded on the east and northeast by the Slate Range, on the west by the Argus Range and Spangler Hills, and on the south by the Lava Mountains; Searles (dry) Lake occupies the north-central part of the valley. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated, is fully revealed by cores from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. The subsurface record is described elsewhere. This volume includes six geologic maps (scales: 1:50,000 and 1:10,000) and a text that describes the outcrop record, most of which represents sedimentation since 150 ka. Although this outcrop record is discontinuous, it provides evidence indicating the lake's water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Several rock units of Tertiary and early Quaternary ages crop out in Searles Valley. Siltstone and sandstone of Tertiary age, mostly lacustrine in nature and locally deformed to near-vertical dips, are exposed in the southern part of the valley, as is the younger(?) upper Miocene Bedrock Spring Formation. Unnamed, mostly mafic volcanic rocks of probable Miocene or Pliocene age are exposed along the north and south edges of the basin. Slightly deformed lacustrine sandstones are mapped in the central-southwestern and southern parts of the study area. The Christmas Canyon Formation and deposits mapped as older gravel and older tufa are extensively exposed over much of the basin floor. The older gravel unit and the gravel facies of the Christmas Canyon Formation are boulder alluvial gravels; parts of these units are probably correlative. The lacustrine facies of the Christmas Canyon Formation includes the Lava Creek ash, which is dated at 0.64 Ma; the older tufa deposits may be equivalent in age to those sediments. Most of this study concerns sediments of the newly described Searles Lake Formation, whose deposition spanned the period between about 150 ka and 2 ka. Most of this formation is lacustrine in origin, but it includes interbedded alluvium. To extract as much geologic detail as possible, criteria were developed that permitted (1) intrabasin correlation of some thin outcrop units representative of only a few thousand years (or less), (2) identification of unconformities produced by subaerial erosion, (3) identification of unconformities produced by sublacustrine erosion, and (4) correlation of outcrop units with subsurface units. The Searles Lake Formation is divided into seven main units, many of which are subdivided on the five larger scale geologic maps. Units A (oldest), B, C, and D are dominantly lacustrine in origin. The Pleistocene-Holocene boundary is placed at the top of unit C. In areas that were a kilometer or more from shore at the time of deposition, deposits of units A,B, and C consist of fine, highly calcareous sand, silt, or clay; nearer to shore they consist of well-sorted coarse sand and gravel. Unit A has been locally subdivided into as many as four subunits, unit B into six subunits, and unit C into six subunits. The finer facies of units A, B, and C contain such high percentages of Caco3 that they are best described as marl. Sediments of unit C, and to a lesser extent those of unit B, are laminated with light- to white-colored layers of aragonite, calcite, or dolomite(?) that may repre
NASA Astrophysics Data System (ADS)
Maslinda, Umi; Nordiana, M. M.; Bery, A. A.; Afiq Saharudin, Muhamad; Hisham, Hazrul; Taqiuddin, Z. M.; Sulaiman, Nabila; Nur Amalina, M. K. A.; Nordiana, A. N.
2017-04-01
The research was conducted using 2-D resistivity in verifying Paleozoic aquifer. Since most geologic materials behave as electrical insulators, surface measurements of earth resistivity are controlled by the electrolytic ability of interstitial water. The subsurface distribution of water is controlled by the porosity of the formations. The study area is at Bukit Chondong, Beseri, Perlis. Bukit Chondong is made of sedimentary rock which mostly is sandstone. Bukit Chondong is from uppermost of the Kubang Pasu Formation that represented by a thick unit of grey mudstone interbedded with sandstone. The Kubang Pasu Formation was influenced by shallow marine during the early age. Paleocurrent and fossils traces were found on the mudstone at the study area. The area is suspected to be a Paleozoic aquifer because the sandstone can be a productive aquifer with diffuse flow. The water movement in sandstone is through the fractures and joints. Most of the water stores and transmits in sandstone. The interbedded sandstone and mudstone is one of the aquifer characteristic. Sandstone and mudstone are water-bearing rocks and low-permeable rocks respectively. The data was processed according to the geological information of the study area since there was an outcrop. The study area have low resistivity value which both sandstone and mudstone give less than 800 Ohm-m due to the water content (Sulphide and clay).
Brack, A; Clancy, P; Fitton, B; Hoffmann, B; Horneck, G; Kurat, G; Maxwell, J; Ori, G; Pillinger, C; Raulin, F; Thomas, N; Westall, F
1998-06-01
A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.
Sour gas injection for use with in situ heat treatment
Fowler, Thomas David [Houston, TX
2009-11-03
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.
2016-03-01
ER D C/ G SL T R- 16 -7 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in...client/default. ERDC/GSL TR-16-7 March 2016 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge...Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-16-7 ii Abstract A comprehensive study of the subsurface geology in the Tara Wildlife
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.
2006-07-08
The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less
Section-constrained local geological interface dynamic updating method based on the HRBF surface
NASA Astrophysics Data System (ADS)
Guo, Jiateng; Wu, Lixin; Zhou, Wenhui; Li, Chaoling; Li, Fengdan
2018-02-01
Boundaries, attitudes and sections are the most common data acquired from regional field geological surveys, and they are used for three-dimensional (3D) geological modelling. However, constructing topologically consistent 3D geological models from rapid and automatic regional modelling with convenient local modifications remains unresolved. In previous works, the Hermite radial basis function (HRBF) surface was introduced for the simulation of geological interfaces from geological boundaries and attitudes, which allows 3D geological models to be automatically extracted from the modelling area by the interfaces. However, the reasonability and accuracy of non-supervised subsurface modelling is limited without further modifications generated through explanations and analyses performed by geology experts. In this paper, we provide flexible and convenient manual interactive manipulation tools for geologists to sketch constraint lines, and these tools may help geologists transform and apply their expert knowledge to the models. In the modified modelling workflow, the geological sections were treated as auxiliary constraints to construct more reasonable 3D geological models. The geometric characteristics of section lines were abstracted to coordinates and normal vectors, and along with the transformed coordinates and vectors from boundaries and attitudes, these characteristics were adopted to co-calculate the implicit geological surface function parameters of the HRBF equations and form constrained geological interfaces from topographic (boundaries and attitudes) and subsurface data (sketched sections). Based on this new modelling method, a prototype system was developed, in which the section lines could be imported from databases or interactively sketched, and the models could be immediately updated after the new constraints were added. Experimental comparisons showed that all boundary, attitude and section data are well represented in the constrained models, which are consistent with expert explanations and help improve the quality of the models.
Graham, Garth E.; Deszcz-Pan, Maria; Abraham, Jared E.; Kelley, Karen D.
2011-01-01
No drilling has taken place at the Drenchwater occurrence, so alternative data sources (for example, geophysics) are especially important in assessing possible indicators of mineralization. Data from the 2005 electromagnetic survey define the geophysical character of the rocks at Drenchwater and, in combination with geological and surface-geochemical data, can aid in assessing the possible shallow (up to about 50 m), subsurface lateral extent of base-metal sulfide accumulations at Drenchwater. A distinct >3-km-long electromagnetic conductive zone (observed in apparent resistivity maps) coincides with, and extends further westward than, mineralized shale outcrops and soils anomalously high in Pb concentrations within the Kuna Formation; this conductive zone may indicate sulfide-rich rock. Models of electrical resistivity with depth, generated from inversion of electromagnetic data, which provide alongflight-line conductivity-depth profiles to between 25 and 50 m below ground surface, show that the shallow subsurface conductive zone occurs in areas of known mineralized outcrops and thins to the east. Broader, more conductive rock along the western ~1 km of the geophysical anomaly does not reach ground surface. These data suggest that the Drenchwater deposit is more extensive than previously thought. The application of inversion modeling also was applied to another smaller geochemical anomaly in the Twistem Creek area. The results are inconclusive, but they suggest that there may be a local conductive zone, possibly due to sulfides.
CO2 Storage related Groundwater Impacts and Protection
NASA Astrophysics Data System (ADS)
Fischer, Sebastian; Knopf, Stefan; May, Franz; Rebscher, Dorothee
2016-03-01
Injection of CO2 into the deep subsurface will affect physical and chemical conditions in the storage environment. Hence, geological CO2 storage can have potential impacts on groundwater resources. Shallow freshwater can only be affected if leakage pathways facilitate the ascent of CO2 or saline formation water. Leakage associated with CO2 storage cannot be excluded, but potential environmental impacts could be reduced by selecting suitable storage locations. In the framework of risk assessment, testing of models and scenarios against operational data has to be performed repeatedly in order to predict the long-term fate of CO2. Monitoring of a storage site should reveal any deviations from expected storage performance, so that corrective measures can be taken. Comprehensive R & D activities and experience from several storage projects will enhance the state of knowledge on geological CO2 storage, thus enabling safe storage operations at well-characterised and carefully selected storage sites while meeting the requirements of groundwater protection.
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narr, W.; Currie, J.B.
The occurrence of natural fracture systems in subsurface rock can be predicted if careful evaluation is made of the ecologic processes that affect sedimentary strata during their cycle of burial, diagenesis, uplift, and erosional unloading. Variations in the state of stress within rock arise, for example, from changes in temperature, pore pressure, weight of overburden, or tectonic loading. Hence geologic processes acting on a sedimentary unit should be analyzed for their several contributions to the state of stress, and this information used to compute a stress history. From this stress history, predictions may be made as to when in themore » burial cycle to expect fracture (joint) formation, what type of fractures (extension or shear) may occur, and which geologic factors are most favorable to development of fractures. A stress history is computed for strata of the naturally fractured Altamont oil field in Utah's Uinta basin. Calculations suggest that fractures formed in extension, that the well-cemented rocks are those most likely to be fractured, that fractures began to develop only after stata were uplifted and denuded of overburden. Geologic evidence on fracture genesis and development is in accord with the stress history prediction. Stress history can be useful in evaluating a sedimentary basin for naturally fractured reservoir exploration plays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witcher, James C.; Stone, Claudia
1983-11-01
Geothermics is the study of the earth's heat energy, it's affect on subsurface temperature distribution, it's physical and chemical sources, and it's role in dynamic geologic processes. The term, geothermometry, is applied to the determination of equilibrium temperatures of natural chemical systems, including rock, mineral, and liquid phases. An assemblage of minerals or a chemical system whose phase composition is a function of temperature and pressure can be used as a geothermometer. Thus a geothermometer is useful to determine the formation temperature of rock or the last equilibrium temperature of a flowing aqueous solution such as ground water and hydrothermalmore » fluids.« less
Western Ishtar Terra and Lakshmi Planum, Venus - Models of formation and evolution
NASA Astrophysics Data System (ADS)
Roberts, Kari M.; Head, James W.
1990-08-01
Regional geologic mapping and gravity data reveal a variety of characteristics that must be accounted for in models for the formation and evolution of Western Ishtar Terra and Lakshmi Planum, including: (1) high elevation, (2) plateau-shaped profile, (3) abnormally steep bounding slopes, (4) foredeeps, (5) polygonal outline, (6) adjacent orogenic belts, (7) volcanic plains, (8) plains emplaced synchronously with orogenic belts, (9) paterae, (10) variable topography of Lakshmi, (11) tessera-like material underlying Lakshmi, and (12) a large apparent depth of compensation. A tessera/peripheral deformation model, in which a preexisting block of tessera is the locus of convergence of adjacent thinner crust and lithosphere, underthrusting, mountain building, subsurface melting, and plateau uplift, is interpreted to account for most of the characteristics. The aparent depth of compensation is not simply explained by this model and appears to require a second, deeper mantle anomaly component, such as broad mantle upwelling or a hot spot.
NASA Astrophysics Data System (ADS)
El-Abd, Yakout; Awad, Morad
The present paper deals with the study of shallow geological formations existing near Sharm Abhur at the Red Sea coast of Saudi Arabia. Fourteen vertical resistivity soundings (VES) have been conducted at different locations on both sides of the Sharm. Analysis of the data, together with the information obtained from three bore holes drilled in the area, were used to construct pseudo-, as well as true, resistivity sections. These were taken along and across the Sharm trend. The results show that the coralline limestone formation in the coastal plain near Sharm Abhur is subject to subsurface erosion and sea water invasion resulting in different layers of secondary product or diagenetically altered coralline limestone. Seepage of saline water through the Sharm basin was recognized. The basal layer feature along the sections is conformable with the general slope of the Sharm bottom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koperna, George J.; Pashin, Jack; Walsh, Peter
The Commercial Scale Project is a US DOE/NETL funded initiative aimed at enhancing the knowledge-base and industry’s ability to geologically store vast quantities of anthropogenic carbon. In support of this goal, a large-scale, stacked reservoir geologic model was developed for Gulf Coast sediments centered on the Citronelle Dome in southwest Alabama, the site of the SECARB Phase III Anthropogenic Test. Characterization of regional geology to construct the model consists of an assessment of the entire stratigraphic continuum at Citronelle Dome, from surface to the depth of the Donovan oil-bearing formation. This project utilizes all available geologic data available, which includes:more » modern geophysical well logs from three new wells drilled for SECARB’s Anthropogenic Test; vintage logs from the Citronelle oilfield wells; porosity and permeability data from whole core and sidewall cores obtained from the injection and observation wells drilled for the Anthropogenic Test; core data obtained from the SECARB Phase II saline aquifer injection test; regional core data for relevant formations from the Geological Survey of Alabama archives. Cross sections, isopach maps, and structure maps were developed to validate the geometry and architecture of the Citronelle Dome for building the model, and assuring that no major structural defects exist in the area. A synthetic neural network approach was used to predict porosity using the available SP and resistivity log data for the storage reservoir formations. These data are validated and applied to extrapolate porosity data over the study area wells, and to interpolate permeability amongst these data points. Geostatistical assessments were conducted over the study area. In addition to geologic characterization of the region, a suite of core analyses was conducted to construct a depositional model and constrain caprock integrity. Petrographic assessment of core was conducted by OSU and analyzed to build a depositional framework for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO 2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO 2 injection and storage the subsurface.« less
Hodges, Mary K.V.; Champion, Duane E.
2016-10-03
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt flows can be inferred if their flows are penetrated by several coreholes, by tracing the flows in the subsurface, and determining where the greatest thickness occurs.
Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks
NASA Astrophysics Data System (ADS)
Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.
2015-12-01
Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.
McKenzie, J.M.; Voss, C.I.; Siegel, D.I.
2007-01-01
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad A.; Riaz, Amir
2017-09-01
Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.
Structure of Subsurface Sediments in the Scan Basin (Scotia Sea)
NASA Astrophysics Data System (ADS)
Schreider, Al. A.; Schreider, A. A.; Sazhneva, A. E.; Galindo-Zaldivar, J.; Ruano, P.; Maldonado, A.; Martos-Martin, Y.; Lobo, F.
2018-01-01
The structure of sediments in the Scotia Sea is used as a basis for reconstructing the geological history of its bottom in the Late Quaternary. The Scan Basin is one of the main elements of the topography of the southern Scotia Sea. Its formation played a considerable role in the fragmentation of the continent, which included the Bruce and Discovery banks. The main parameters of the sediment layer in the Scan Basin have been reconstructed by the present time, but its top part has not been studied. In this work, we analyze the first data obtained on the R/V Gesperidas with the use of a TOPAS PS 18/40 high-resolution seismic profilograph in 2012. Three layers in the subsurface sediments on the bottom of the Scan Basin were specified for the first time. The mean periods of their deposition in the Late Quaternary were determined as 115000 years for the first, 76000 years for the second, and 59 000 years for the third layer from the surface of the bottom. The duration of the total accumulation period of the three layers is about 250000 years.
30 CFR 250.801 - Subsurface safety devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... permafrost, unstable bottom conditions, hydrate formation, or paraffins, an alternate setting depth of the... such as permafrost, unstable bottom conditions, hydrate formations, and paraffins. (g) Subsurface...
30 CFR 250.801 - Subsurface safety devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... permafrost, unstable bottom conditions, hydrate formation, or paraffins, an alternate setting depth of the... such as permafrost, unstable bottom conditions, hydrate formations, and paraffins. (g) Subsurface...
30 CFR 250.801 - Subsurface safety devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... permafrost, unstable bottom conditions, hydrate formation, or paraffins, an alternate setting depth of the... such as permafrost, unstable bottom conditions, hydrate formations, and paraffins. (g) Subsurface...
30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...
30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...
30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...
Fallon, Nevada Geophysics and Geochemistry
Doug Blankenship
2016-05-23
The data is associated to the Fallon FORGE project and includes mudlogs for all wells used to characterize the subsurface, as wells as gravity, magnetotelluric, earthquake seismicity, and temperature data from the Navy GPO and Ormat. Also included are geologic maps from the USGS and Nevada Bureau of Mines and Geology for the Fallon, NV area.
Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.
Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric
2018-05-01
Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.
NASA Astrophysics Data System (ADS)
Brentini, Maud; Favre, Stéphanie; Rusillon, Elme; Moscariello, Andrea
2017-04-01
Piloted by the State of Geneva and implemented by the SIG (Services Industriels de Genève), the GEothermie2020 program aims to develop geothermal energy resources in the Greater Geneva Basin (GGB) (Moscariello A., 2016). Since 2014, many existing data have been examined (Rusillon et al., 2017, Clerc et al., 2016) and new ones have been collected. Nevertheless, to date the actual IT infrastructure of the State of Geneva is neither designed to centralize these data, nor to respond efficiently to operational demands. In this context, we are developing a new Information System adapted to this specific situation (Favre et al., 2017). In order to establish a solid base line for future exploration and exploitation of underground natural resources, the centralization of the geological surface/subsurface knowledge is the real challenge. Finding the balance between comprehensiveness and relevance of the data to integrate into this future complete database system is key. Geological data are numerous, of various nature, and often very heterogeneous. Incorporating and relating all individual data is therefore a difficult and challenging task. As a result, a large work has to be done on the understanding and the harmonization of the stratigraphy of the Geneva Basin, to appreciate the data and spatial geological heterogneity. The first step consisted in consulting all data from MSc and PhD work of the University of Geneva (about 50) and from literature concerning the regional geology. In parallel, an overview concerning the subsurface geological data management in Europe carried out to learn from the experience of other geological surveys. Heterogeneities and discrepancies of the data are the main issue. Over several years (since late 30s) individual authors collected different type of data and made different interpretations leading a variety of stratigraphic facies definitions, associations and environmental reconstructions. Cross checking these data with national programs, such as HARMOS (official Swiss stratigraphic framework; Morard, 2014, Strasser et al., 2016) is essential to evaluate this type of harmonization system. The current work is establishing composite logs and a stratigraphic catalog where clear stratigraphic framework for the GGB is defined. This will provide a better understanding of the subsurface and a general framework for the new State database. The GEothermie 2020 Program has raised the importance of harmonizing and correlating data in order to understand better the GGB subsurface geology. The future database will be based on a clear and accurate geological and stratigraphic framework where relevant data will be integrated. It will offer a valuable tool to the State of Geneva and external users to find data easily, generate correlations, subsurface models and extract information with specific inquiries. The development of this intelligent and interactive data management system is pivotal to offer an easier and smart management of subsurface resources to the State. REFERENCES Clerc, N., Rusillon, E., Cardello, L., Moscariello, A. and Renard, P., 2016. Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland. Favre, S., Brentini, M., Giuliani, G. and Lehmann, A., 2017. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Architecture of the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria. Morard, A., 2014. Correlations beyond HARMOS: how, where, why? Swiss Geoscience Meeting 2014. Platform Geosciences, Swiss Academy of Science, SCNAT. Conference paper. Moscariello A. 2016: Geothermal exploration in SW Switzerland, Proceeding of the European Geotermal Congress, Strasbourg 19-23 september 2016, 9 pp. Rusillon, E., Clerc, N., Makhloufi, Y., Brentini and M., Moscariello, A., 2017. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment. Abstract, EGU General Assembly 2017, Vienna, Austria. Strasser, A., Charollais, J., Conrad, M. A., Clavel, B., Pictet, A. and Mastrangelo, B., 2016. The Cretaceous of the Swiss Jura Mountains : an improved lithostratigraphic scheme. Swiss Journal of Geosciences, 1-20.
Model Fusion Tool - the Open Environmental Modelling Platform Concept
NASA Astrophysics Data System (ADS)
Kessler, H.; Giles, J. R.
2010-12-01
The vision of an Open Environmental Modelling Platform - seamlessly linking geoscience data, concepts and models to aid decision making in times of environmental change. Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions’. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological data to groundwater models but these models are only aimed at solving one specific part of the earth’s system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper gives examples of the successful merging of geological and hydrological models from the UK and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Information System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner and thereby become useful for decision makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, David F.; Bartel, Lewis C.
Program LETS calculates the electric current distribution (in space and time) along an electrically energized steel-cased geologic borehole situated within the subsurface earth. The borehole is modeled as an electrical transmission line that “leaks” current into the surrounding geology. Parameters pertinent to the transmission line current calculation (i.e., series resistance and inductance, shunt capacitance and conductance) are obtained by sampling the electromagnetic (EM) properties of a three-dimensional (3D) geologic earth model along a (possibly deviated) well track.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.
1996-10-01
Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.
2011-01-01
The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
The Correlation between Radon Emission Concentration and Subsurface Geological Condition
NASA Astrophysics Data System (ADS)
Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi
2018-03-01
Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological faults. Peak concentrations of Radon takes place along the fault.
NASA Astrophysics Data System (ADS)
Weis, Philipp; Driesner, Thomas; Scott, Samuel; Lecumberri-Sanchez, Pilar
2016-04-01
Heat and mass transport in hydrothermal systems associated with upper crustal magmatic intrusions can result in resources with large economic potential (Kesler, 1994). Active hydrothermal systems can form high-enthalpy geothermal reservoirs with the possibility for renewable energy production. Fossil continental or submarine hydrothermal systems may have formed ore deposits at variable crustal depths, which can be mined near today's surface with an economic profit. In both cases, only the right combination of first-order geologic and hydrologic controls may lead to the formation of a significant resource. To foster exploration for these hydrothermal georesources, we need to improve our understanding of subsurface fluxes of mass and energy by combining numerical process modelling, observations at both active and fossil systems, as well as knowledge of fluid and rock properties and their interactions in natural systems. The presentation will highlight the role of non-linear fluid properties, phase separation, salt precipitation, fluid mixing, permeability structure, hydraulic fracturing and the transition from brittle to ductile rock behavior as major geologic and hydrologic controls on the formation of high-enthalpy and supercritical geothermal resources (Scott et al., 2015), and magmatic-hydrothermal mineral resources, such as porphyry copper, massive sulfide and epithermal gold deposits (Lecumberri-Sanchez et al., 2015; Weis, 2015). References: Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Lecumberri-Sanchez, P., Steele-MacInnis, M., Weis, P., Driesner, T., Bodnar, R.J. (2015): Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology, v. 43, p. 1063-1066, doi:10.1130/G37163.1 Scott, S., Driesner, T., Weis, P. (2015): Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications, 6:7837 doi: 10.1038/ncomms8837 Weis, P. (2015): The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems. Geofluids, 15, 350-371.
NASA Astrophysics Data System (ADS)
Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.
2014-12-01
In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.
NASA Astrophysics Data System (ADS)
Kumar, J.; Lichtner, P. C.; Mills, R. T.; Hammond, G. E.; Svyatskiy, D.; Tang, G.; Brooks, S. C.; Watson, D. B.; Parker, J.
2011-12-01
Recharge is one of the most fundamental components of groundwater systems which drives both flow and transport in the subsurface and plays an important role in the migration of contaminants at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The area receives an average of 137 cm of precipitation per year, most of it during winter. About 50% of the precipitation is lost to evapotranspiration, 40% runs off directly to surface water, and less than 10% recharges to ground water. The migration of the reactive contaminant plume at the site is modeled using the massively parallel flow and reactive transport model PFLOTRAN. The geology at the site consists of dipping beds of limestone, shale and sandstone with strike N 55° E and dip 45° SE, over which is superimposed a highly porous, horizontally oriented, saprolite weathering profile. To model this system in 3-D a grid was constructed with x-axis aligned with the strike of the geologic formation and z-axis vertical. This formulation requires a full permeability tensor with off-diagonal components obtained by rotation of the principal axes tensor through the formation dip angle. A full tensor capability was implemented in PFLOTRAN using the mimetic finite difference (MFD) method, a mass conserving, second-order accurate scheme with auxiliary pressure degrees of freedom at grid cell faces. A complex geochemical fluid with 17 primary reactive species and a number of minerals was implemented to model the contaminant discharged from the S-3 ponds at the ORIFRC site. A 50-year history of observed rainfall at the site was used as input to the model to estimate transient recharge conditions and to study the effect of spatially and temporally varied recharge. Results from the investigations of impact of spatio-temporal variation in recharge on the migration of contaminant plume will be presented.
NASA Astrophysics Data System (ADS)
Stoker, Carol R.; Clarke, Jonathan; Direito, Susana O. L.; Blake, David; Martin, Kevin R.; Zavaleta, Jhony; Foing, Bernard
2011-07-01
We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml-1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.
Tidal Fluctuations in a Deep Fault Extending Under the Santa Barbara Channel, California
NASA Astrophysics Data System (ADS)
Garven, G.; Stone, J.; Boles, J. R.
2013-12-01
Faults are known to strongly affect deep groundwater flow, and exert a profound control on petroleum accumulation, migration, and natural seafloor seepage from coastal reservoirs within the young sedimentary basins of southern California. In this paper we focus on major fault structure permeability and compressibility in the Santa Barbara Basin, where unique submarine and subsurface instrumentation provide the hydraulic characterization of faults in a structurally complex system. Subsurface geologic logs, geophysical logs, fluid P-T-X data, seafloor seep discharge patterns, fault mineralization petrology, isotopic data, fluid inclusions, and structural models help characterize the hydrogeological nature of faults in this seismically-active and young geologic terrain. Unique submarine gas flow data from a natural submarine seep area of the Santa Barbara Channel help constrain fault permeability k ~ 30 millidarcys for large-scale upward migration of methane-bearing formation fluids along one of the major fault zones. At another offshore site near Platform Holly, pressure-transducer time-series data from a 1.5 km deep exploration well in the South Ellwood Field demonstrate a strong ocean tidal component, due to vertical fault connectivity to the seafloor. Analytical models from classic hydrologic papers by Jacob-Ferris-Bredehoeft-van der Kamp-Wang can be used to extract large-scale fault permeability and compressibility parameters, based on tidal signal amplitude attenuation and phase shift at depth. For the South Ellwood Fault, we estimate k ~ 38 millidarcys (hydraulic conductivity K~ 3.6E-07 m/s) and specific storage coefficient Ss ~ 5.5E-08 m-1. The tidal-derived hydraulic properties also suggest a low effective porosity for the fault zone, n ~ 1 to 3%. Results of forward modeling with 2-D finite element models illustrate significant lateral propagation of the tidal signal into highly-permeable Monterey Formation. The results have important practical implications for fault characterization, petroleum migration, structural diagenesis, and carbon sequestration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluidmore » flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
PETERSEN SW
Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associatedmore » with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground measurements to refine interpretations of AEM data; and (3) Improve the calibration and correlation of AEM information. The potential benefits of this project are as follows: (1) Develop a tool to map subsurface units at the Hanford Site in a rapid and cost effective manner; (2) Map groundwater pathways within the River Corridor; and (3) Aid development of the conceptual site model. If anomalies observed in the AEM data can be correlated with subsurface geology, then the rapid scanning and non-intrusive capabilities provided by the airborne surveys can be used at the Hanford Site to screen for areas that warrant further investigation.« less
Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars
Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.
2011-01-01
Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1. km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1. km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex
Heating subsurface formations by oxidizing fuel on a fuel carrier
Costello, Michael; Vinegar, Harold J.
2012-10-02
A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.
NASA Astrophysics Data System (ADS)
Plampin, M. R.; Lassen, R. N.; Sakaki, T.; Pawar, R.; Jensen, K.; Illangasekare, T. H.
2013-12-01
A concern for geologic carbon sequestration is the potential for CO2 stored in deep geologic formations to leak upward into shallow freshwater aquifers where it can have potentially detrimental impacts to the environment and human health. Understanding the mechanisms of CO2 exsolution, migration and accumulation (collectively referred to as 'gas evolution') in the shallow subsurface is critical to predict and mitigate the environmental impacts. During leakage, CO2 can move either as free-phase or as a dissolved component of formation brine. CO2 dissolved in brine may travel upward into shallow freshwater systems, and the gas may be released from solution. In the shallow aquifer, the exsolved gas may accumulate near interfaces between soil types, and/or create flow paths that allow the gas to escape through the vadose zone to the atmosphere. The process of gas evolution in the shallow subsurface is controlled by various factors, including temperature, dissolved CO2 concentration, water pressure, background water flow rate, and geologic heterogeneity. However, the conditions under which heterogeneity controls gas phase evolution have not yet been precisely defined and can therefore not yet be incorporated into models used for environmental risk assessment. The primary goal of this study is to conduct controlled laboratory experiments to help fill this knowledge gap. With this as a goal, a series of intermediate-scale laboratory experiments were conducted to observe CO2 gas evolution in porous media at multiple scales. Deionized water was saturated with dissolved CO2 gas under a specified pressure (the saturation pressure) before being injected at a constant volumetric flow rate into the bottom of a 1.7 meter-tall by 5.7 centimeter-diameter column or a 2.4 meter-tall by 40 centimeter-wide column that were both filled with sand in various heterogeneous packing configurations. Both test systems were initially saturated with fresh water and instrumented with soil moisture sensors to monitor the evolution of gas phase through time by measuring the average water content in small sampling volumes of soil. Tensiometers allowed for observation of water pressure through space and time in the test systems, and a computer-interfaced electronic scale continuously monitored the outflow of water from the top of the two test columns. Several packing configurations with five different types of sands were used in order to test the effects of various pore size contrasts and interface shapes on the evolution of the gas phase near soil texture transitions in the heterogeneous packings. Results indicate that: (1) heterogeneity affects gas phase evolution patterns within a predictable range of conditions quantified by the newly introduced term 'oversaturation,' (2) soil transition interfaces where less permeable material overlies more permeable material have a much more pronounced effect on gas evolution than interfaces with opposite orientations, and (3) anticlines (or stratigraphic traps) cause significantly greater gas accumulation than horizontal interfaces. Further work is underway to apply these findings to more realistic, two-dimensional scenarios, and to assess how well existing numerical models can capture these processes.
Geology of the Molina Member of the Wasatch Formation, Piceance Basin, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.; Nadon, G.; LaFreniere, L.
1996-06-01
The Molina Member of the Wasatch Formation has been cored in order to assess the presence/absence and character of microbial communities in the deep subsurface. Geological study of the Molina Member was undertaken in support of the microbiological tasks of this project, for the purposes of characterizing the host strata and of assessing the potential for post-depositional introduction of microbes into the strata. The Molina Member comprises a sandy fluvial unit within a formation dominated by mudstones. Sandy to conglomeratic deposits of braided and meandering fluvial systems are present on the western and eastern margins of the basin respectively, althoughmore » the physical and temporal equivalence of these systems cannot be proven. Distal braided facies of planar-horizontal bedded sandstones are recognized on the western margin of the basin. Natural fractures are present in all Molina sandstones, commonly as apparent shear pairs. Core from the 1-M-18 well contains natural fractures similar to those found in outcrops, and has sedimentological affinities to the meandering systems of the eastern margin of the basin. The hydrologic framework of the Molina, and thus any potential post-depositional introduction of microbes into the formation, should have been controlled by approximately east-west flow through the natural fracture system, the geometries and extent of the sandstones in which the fractures occur, and hydraulic gradient. Migration to the well site, from outcropping recharge areas at the edge of the basin, could have started as early as 40 million years ago if the cored strata are connected to the eastern sedimentary system.« less
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
NASA Technical Reports Server (NTRS)
Levine, Arlene S.
2008-01-01
Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA, VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
Detailed 3D Geophysical Model of the Shallow Subsurface (Zancara River Basin, Iberian Peninsula)
NASA Astrophysics Data System (ADS)
Carbonell, R.; Marzán, I.; Martí, D.; Lobo, A.; Jean, K.; Alvarez-Marrón, J.
2016-12-01
Detailed knowledge of the structure and lithologies of the shallow subsurface is required when designing and building singular geological storage facilities this is the case of the study area in Villar de Cañas (Cuenca, Central Spain). In which an extensive multidisciplinary data acquisition program has been carried out. This include studies on: geology, hydrology, geochemistry, geophysics, borehole logging, etc. Because of this data infrastructure, it can be considered a subsurface imaging laboratory to test and validate indirect underground characterization approaches. The field area is located in a Miocene syncline within the Záncara River Basin (Cuenca, Spain). The sedimentary sequence consists in a transition from shales to massive gypsums, and underlying gravels. The stratigraphic succession features a complex internal structure, diffused lithological boundaries and relatively large variability of properties within the same lithology, these makes direct geological interpretation very difficult and requires of the integration of all the measured physical properties. The ERT survey, the seismic tomography data and the logs have been used jointly to build a 3-D multi-parameter model of the subsurface in a surface of 500x500 m. The Vp model (a 10x20x5 m grid) is able to map the high velocities of the massive gypsum, however it was neither able to map the details of the shale-gypsm transition (low velocity contrast) nor to differentiate the outcropping altered gypsum from the weathered shales. The integration of the electrical resistivity and the log data by means of a supervised statistical tools (Linear Discriminant Analysis, LDA) resulted in a new 3D multiparametric subsurface model. This new model integrates the different data sets resolving the uncertainties characteristic of the models obtained independently by the different techniques separately. Furthermore, this test seismic dataset has been used to test FWI approaches in order to study their capacities. (Research supports: CGL2014-56548-P, 2009-SGR-1595, CGL2013-47412-C2-1-P).
NASA Astrophysics Data System (ADS)
Kearsey, Tim; Williams, John; Finlayson, Andrew; Williamson, Paul; Dobbs, Marcus; Kingdon, Andrew; Campbell, Diarmad
2014-05-01
Geological maps and 3D models usually depict lithostragraphic units which can comprise of many different types of sediment (lithologies). The lithostratigraphic units shown on maps and 3D models of glacial and post glacial deposits in Glasgow are substantially defined by the method of the formation and age of the unit rather than its lithological composition. Therefore, a simple assumption that the dominant lithology is the most common constituent of any stratigraphic unit is erroneous and is only 58% predictive of the actual sediment types seen in a borehole. This is problematic for non-geologist such as planners, regulators and engineers attempting to use these models to inform their decisions and can lead to such users viewing maps and models as of limited use in such decision making. We explore the extent to which stochastic modelling can help to make geological models more predictive of lithology in heterolithic units. Stochastic modelling techniques are commonly used to model facies variations in oil field models. The techniques have been applied to an area containing >4000 coded boreholes to investigate the glacial and fluvial deposits in the centre of the city of Glasgow. We test the predictions from this method by deleting percentages of the control data and re-running the simulations to determine how predictability varies with data density. We also explore the best way of displaying such stochastic models to and suggest that displaying the data as probability maps rather than a single definitive answer better illustrates the uncertainties inherent in the input data. Finally we address whether is it possible truly to be able to predict lithology in such geological facies. The innovative Accessing Subsurface Knowledge (ASK) network was recently established in the Glasgow are by the British Geological Survey and Glasgow City Council to deliver and exchange subsurface data and knowledge. This provides an idea opportunity to communicate and test a range of models and to assess their usefulness and impact on a vibrant community of public and private sector partners and decision makers.
Aggregating todays data for tomorrows science: a geological use case
NASA Astrophysics Data System (ADS)
Glaves, H.; Kingdon, A.; Nayembil, M.; Baker, G.
2016-12-01
Geoscience data is made up of diverse and complex smaller datasets that, when aggregated together, build towards what is recognised as `big data'. The British Geological Survey (BGS), which acts as a repository for all subsurface data from the United Kingdom, has been collating these disparate small datasets that have been accumulated from the activities of a large number of geoscientists over many years. Recently this picture has been further complicated by the addition of new data sources such as near real-time sensor data, and industry or community data that is increasingly delivered via automatic donations. Many of these datasets have been aggregated in relational databases to form larger ones that are used to address a variety of issues ranging from development of national infrastructure to disaster response. These complex domain-specific SQL databases deliver effective data management using normalised subject-based database designs in a secure environment. However, the isolated subject-oriented design of these systems inhibits efficient cross-domain querying of the datasets. Additionally, the tools provided often do not enable effective data discovery as they have problems resolving the complex underlying normalised structures. Recent requirements to understand sub-surface geology in three dimensions have led BGS to develop new data systems. One such solution is PropBase which delivers a generic denormalised data structure within an RDBMS to store geological property data. Propbase facilitates rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, including associated metadata. It also provides a dedicated web interface to deliver complex multiple data sets from a single database in standardised common output formats (e.g. CSV, GIS shape files) without the need for complex data conditioning. PropBase facilitates new scientific research, previously considered impractical, by enabling property data searches across multiple databases. Using the Propbase exemplar this presentation will seek to illustrate how BGS has developed systems for aggregating `small datasets' to create the `big data' necessary for the data analytics, mining, processing and visualisation needed for future geoscientific research.
Frontier Observatory for Research in Geothermal Energy: Fallon, Nevada
Doug Blankenship
2016-03-31
The data is associated to the Fallon FORGE project and includes mudlogs for all wells used to characterize the subsurface, as wells as gravity, magnetotelluric, earthquake seismicity, and temperature data from the Navy GPO and Ormat. Also included are geologic maps from the USGS and Nevada Bureau of Mines and Geology for the Fallon, NV area.
30 CFR 250.906 - What must I do to obtain approval for the proposed site of my platform?
Code of Federal Regulations, 2011 CFR
2011-07-01
... geological survey relevant to the design and siting of your platform. Your geological survey must assess: (1..., the possibility and effects of seafloor subsidence. (c) Subsurface surveys. Depending upon the design... obtain approval for the proposed site of my platform? (a) Shallow hazards surveys. You must perform a...
30 CFR 250.906 - What must I do to obtain approval for the proposed site of my platform?
Code of Federal Regulations, 2010 CFR
2010-07-01
... seafloor sediments. (b) Geologic surveys. You must perform a geological survey relevant to the design and... seafloor subsidence. (c) Subsurface surveys. Depending upon the design and location of your proposed... proposed site of my platform? (a) Shallow hazards surveys. You must perform a high-resolution or acoustic...
NASA Astrophysics Data System (ADS)
Abdullatif, O.; Yassin, M.
2012-04-01
1KFUPM This study investigates the lithofacies types distribution of the carbonate and siliciclastic rocks of Dam and Hofuf Formations in eastern Saudi Arabia. The shallow burial of these formations and limited post depositional changes allowed significant preservation of porosity at outcrop scale. The mixed carbonate-siliciclastic succession represents important reservoirs in the Mesozoic and Tertiary stratigraphic succession in the Arabian Plate.This study integrates field work sedimentological and stratigraphical and lithofacies data to model the spatial distribution of facies of this shallow marine and fluvial depositional setting. The Dam Formation is characterized by very high percentage of grain- dominated textures representing high to low energy intertidal deposits a mixed of carbonate and siliciclastic succession. The middle Miocene Dam section is dominated by intra-clasts, ooids and peloids grainstones. The Hofuf Formation represents fluvial channel and overank facies which is characterized by mudclast abd gravel-rich erosive bases overlain by pebbly conglomerates which passes upward into medium to very coarse grained massive, horizontally stratified and trough cross-stratifed sandstone facies. Lithological stratigraphic sections data distributed over the Al-lidam escarpment were correlated on the basis of facies types and sequences. This allow mapping and building a framework for modeling the spatial distribution of the carbonate and siliciclastic facies in the area. The geological model shows variations in the facies distribution patterns which mainly reflect both dynamic and static depositional controls on facies types distribution. The geological model may act as a guide for facies types distribution, and provide better understanding and prediction of reservoir quality and architecture of stratigraphically equivalent carbonate-siliciclastic successions in the subsurface.
3D seismic data interpretation of Boonsville Field, Texas
NASA Astrophysics Data System (ADS)
Alhakeem, Aamer Ali
The Boonsville field is one of the largest gas fields in the US located in the Fort Worth Basin, north central Texas. The highest potential reservoirs reside in the Bend Conglomerate deposited during the Pennsylvanian. The Boonsville data set is prepared by the Bureau of Economic Geology at the University of Texas, Austin, as part of the secondary gas recovery program. The Boonsville field seismic data set covers an area of 5.5 mi2. It includes 38 wells data. The Bend Conglomerate is deposited in fluvio-deltaic transaction. It is subdivided into many genetic sequences which include depositions of sandy conglomerate representing the potential reserves in the Boonsville field. The geologic structure of the Boonsville field subsurface are visualized by constructing structure maps of Caddo, Davis, Runaway, Beans Cr, Vineyard, and Wade. The mapping includes time structure, depth structure, horizon slice, velocity maps, and isopach maps. Many anticlines and folds are illustrated. Karst collapse features are indicated specially in the lower Atoka. Dipping direction of the Bend Conglomerate horizons are changing from dipping toward north at the top to dipping toward east at the bottom. Stratigraphic interpretation of the Runaway Formation and the Vineyard Formation using well logs and seismic data integration showed presence of fluvial dominated channels, point bars, and a mouth bar. RMS amplitude maps are generated and used as direct hydrocarbon indicator for the targeted formations. As a result, bright spots are indicated and used to identify potential reservoirs. Petrophysical analysis is conducted to obtain gross, net pay, NGR, water saturation, shale volume, porosity, and gas formation factor. Volumetric calculations estimated 989.44 MMSCF as the recoverable original gas in-place for a prospect in the Runaway and 3.32 BSCF for a prospect in the Vineyard Formation.
Semipermeability Evolution of Wakkanai Mudstones During Isotropic Compression
NASA Astrophysics Data System (ADS)
Takeda, M.; Manaka, M.
2015-12-01
Precise identification of major processes that influence groundwater flow system is of fundamental importance for the performance assessment of waste disposal in subsurface. In the characterization of groundwater flow system, gravity- and pressure-driven flows have been conventionally assumed as dominant processes. However, recent studies have suggested that argillites can act as semipermeable membranes and they can cause chemically driven flow, i.e., chemical osmosis, under salinity gradients, which may generate erratic pore pressures in argillaceous formations. In order to identify the possibility that chemical osmosis is involved in erratic pore pressure generations in argillaceous formations, it is essential to measure the semipermeability of formation media; however, in the measurements of semipermeability, little consideration has been given to the stresses that the formation media would have experienced in past geologic processes. This study investigates the influence of stress history on the semipermeability of an argillite by an experimental approach. A series of chemical osmosis experiments were performed on Wakkanai mudstones to measure the evolution of semipermeability during loading and unloading confining pressure cycles. The osmotic efficiency, which represents the semipermeability, was estimated at each confining pressure. The results show that the osmotic efficiency increases almost linearly with increasing confining pressure; however, the increased osmotic efficiency does not recover during unloading unless the confining pressure is almost relieved. The observed unrecoverable change in osmotic efficiency may have an important implication on the evaluation of chemical osmosis in argillaceous formations that have been exposed to large stresses in past geologic processes. If the osmotic efficiency increased by the past stress can remain unchanged to date, the osmotic efficiency should be measured at the past highest stress rather than the current in-situ stress. Otherwise, the effect of chemical osmosis on the pore pressure generation would be underestimated.
Hydrological modelling in sandstone rocks watershed
NASA Astrophysics Data System (ADS)
Ponížilová, Iva; Unucka, Jan
2015-04-01
The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.
Color images of Kansas subsurface geology from well logs
Collins, D.R.; Doveton, J.H.
1986-01-01
Modern wireline log combinations give highly diagnostic information that goes beyond the basic shale content, pore volume, and fluid saturation of older logs. Pattern recognition of geology from logs is made conventionally through either the examination of log overlays or log crossplots. Both methods can be combined through the use of color as a medium of information by setting the three color primaries of blue, green, and red light as axes of three dimensional color space. Multiple log readings of zones are rendered as composite color mixtures which, when plotted sequentially with depth, show lithological successions in a striking manner. The method is extremely simple to program and display on a color monitor. Illustrative examples are described from the Kansas subsurface. ?? 1986.
Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer
NASA Astrophysics Data System (ADS)
Abidoye, L. K.; Bello, A. A.
2017-03-01
The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.
NASA Astrophysics Data System (ADS)
Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.
2013-12-01
The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture belonged to a methylotrophic methanogen within the genus Methanosarcina. For the acetate-fed culture, no cell proliferation and methane-production were observed after two-years incubation. During the injection of CO2 and fluid, increase of dissolved CH4 concentration was observed, of which δ13CCH4 were constantly similar to those of the absorbed coal-bed methane (δ13CCBM, ~70‰), suggesting the enhanced gas recovery with fluid flow. The output volume of CO2 (ΣCO2out, 22.1 to 125.6 mM) was smaller than initial concentration (ΣCO2in, 138.38 mM), which can be explained by either adsorption on coal, formation of carbonate minerals, or microbial consumption. Increase of acetate concentration in the fluids was also observed, whereas δ13Cacetate depleted during experiment. Considering with the decrease of additive H2, it is most likely that homo-acetogenesis would occur during experiments, which is consistent with detection of Sporomusa-related 16S rRNA genes, homo-acetogenic bacterium, in cloning analysis of sandstone after experiment. Decrease of formate concentrations and increase of δ13Cformate indicate bacterial consumption of formate and isotopic fractionation. Our results suggest that CO2 injection to natural coal-sand formation stimulates homo-acetogenesis rather than methanogenesis, accompanied by biogenic CO2 conversion to acetate.
Polymer-cement interactions towards improved wellbore cement fracture sealants
NASA Astrophysics Data System (ADS)
Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.
2017-12-01
Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.
Hosman, R.L.
1991-01-01
Although Cenozoic deposits are not uniformly differentiated, interstate correlations of major Paleocene and Eocene units are generally established throughout the area. Younger deposits are not as well differentiated. Some stratigraphic designations made at surface exposures cannot be extended into the sub-surface, and the scarcity of distinct geologic horizons has hampered differentiation on a regional scale. The complexities of facies development in Oligocene and younger coastal deposits preclude the development of extensive recognizable horizons needed for stratigraphic applications. Coastal deposits are a heterogeneous assemblage of deltaic, lagoonal, lacustrine, palustrine, eolian, and fluvial clastic facies and local calcareous reef facies. Even major time boundaries, as between geologic series, are not fully resolved. Surficial Quaternary deposits overlie the truncated subcrops of Tertiary strata and generally are distinguishable, although some contacts between Pleistocene and underlying Pliocene deposits have been a ?lstoncal source of controversy. Glacially related terraces are characteristic of the Pleistocene Epoch, and alluvium of aggrading streams typifies the Holocene.
Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020
NASA Astrophysics Data System (ADS)
Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.
2017-12-01
The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic environments. Secondly, we will test our algorithm on experimental data acquired in a semi-controlled environment. Lastly, we will present experimental data acquired during a recent field campaign (July 2017) in the south of France and we will validate our method and illustrate the ability of WISDOM to provide clues about the geological context of a site.
Reich, Christopher D.; Swarzenski, Peter W.; Greenwood, W. Jason; Wiese, Dana S.
2008-01-01
Geophysical (CHIRP, boomer, and continuous direct-current resistivity) and geochemical tracer studies (continuous and time-series 222Radon) were conducted along the Broward County coast from Port Everglades to Hillsboro Inlet, Florida. Simultaneous seismic, direct-current resistivity, and radon surveys in the coastal waters provided information to characterize the geologic framework and identify potential groundwater-discharge sites. Time-series radon at the Nova Southeastern University National Coral Reef Institute (NSU/NCRI) seawall indicated a very strong tidally modulated discharge of ground water with 222Rn activities ranging from 4 to 10 disintegrations per minute per liter depending on tidal stage. CHIRP seismic data provided very detailed bottom profiles (i.e., bathymetry); however, acoustic penetration was poor and resulted in no observed subsurface geologic structure. Boomer data, on the other hand, showed features that are indicative of karst, antecedent topography (buried reefs), and sand-filled troughs. Continuous resistivity profiling (CRP) data showed slight variability in the subsurface along the coast. Subtle changes in subsurface resistivity between nearshore (higher values) and offshore (lower values) profiles may indicate either a freshening of subsurface water nearshore or a change in sediment porosity or lithology. Further lithologic and hydrologic controls from sediment or rock cores or well data are needed to constrain the variability in CRP data.
Mind the Gaps: Expert and Non-Expert Differences in Conceptualising the Geological Subsurface.
NASA Astrophysics Data System (ADS)
Gibson, H.; Stewart, I. S.; Stokes, A.; Pahl, S.
2017-12-01
In communicating geoscience topics, emphasis is often given to approaches such as the use of narrative to make a message engaging and reducing the use of jargon to ensure that it is understood by as wide a group of people as possible. Whilst these are undeniably important techniques to promote effective communication, an aspect of geoscience communication that is often overlooked is the publics' conceptual frameworks about core geoscience concepts. The consideration of different conceptual frameworks fits with the need to ensure that the framing is appropriate for the message, but it extends beyond simple framing into more complicated issues of addressing and incorporating pre- and mis-conceptions in geoscience. In a study examining expert and non-expert cognitive (mental) models of the geological subsurface in south-west England, several gaps were found between the fundamental ways that experts and non-experts conceptualise this invisible realm. Of these, three gaps were considered to be particularly important and common to many participants: the use of spatial reasoning; the application of surface experiences to subsurface processes; and the connection between the surface and subsurface. This paper will examine the evidence for these three important conceptual gaps between specialists and non-specialists and will address how this type of cognitive study can help improve effective geoscience communication.
Novel approaches for an enhanced geothermal development of residential sites
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas
2015-04-01
An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.
Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.
2006-01-01
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.
Sweetkind, Donald S.
2017-09-08
As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.
Large temporal scale and capacity subsurface bulk energy storage with CO2
NASA Astrophysics Data System (ADS)
Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.
2017-12-01
Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...
Gas injection to inhibit migration during an in situ heat treatment process
Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren
2010-11-30
Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.
Wellhead with non-ferromagnetic materials
Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX
2009-05-19
Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.
Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts
Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.
2015-01-07
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
A GIS System for Inferring Subsurface Geology and Material Properties: Proof of Concept
2006-09-01
geologic structure. For example, interbedded sedimentary rocks comprise significant proportions of the Appalachian Mountains as well as various mountain ...Pitted surfaces a. Shallow, rounded, non-uniform b. More or less circular Hills and Mountains … Drainage...pear-shaped ap - pendages; talus common at bases of slopes along boundaries; strongly verti- cally jointed; vertical escarpments; co- lumnar jointing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
Shaffer’s (2010) article reports on the long term impact of less than perfect retention of anthropogenic CO2 stored in deep geologic reservoirs and in the ocean. The central thesis of this article is predicated on two deeply flawed assumptions. The first and most glaring is the implicit assumption that society has only one means of reducing greenhouse gas emissions, carbon dioxide capture and storage (CCS). Secondly, there is absolutely no geophysical nor geomechanical basis for assuming an exponential decay of CO2 stored in deep geologic formations as done by Schaffer. Shaffer’s analysis of the impact of leakage from anthropogenic CO2more » stored in deep geologic reservoirs are based upon two fundamentally flawed assumptions and therefore the reported results as well as the public policy conclusions presented in the paper need to be read with this understanding in mind as far less CO2 stored below ground because society drew upon a broad portfolio of advanced energy technologies over the coming century coupled with a more technically accurate conceptualization of CO2 storage in the deep subsurface and the important role of secondary and tertiary trapping mechanisms would have yield a far less pessimistic view of the potential role that CCS can play in a broader portfolio of societal responses to the very serious threat posed by climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Jie; Hou, Zhangshuan; Fang, Yilin
2015-06-01
A series of numerical test cases reflecting broad and realistic ranges of geological formation and preexisting fault properties was developed to systematically evaluate the impacts of preexisting faults on pressure buildup and ground surface uplift during CO₂ injection. Numerical test cases were conducted using a coupled hydro-geomechanical simulator, eSTOMP (extreme-scale Subsurface Transport over Multiple Phases). For efficient sensitivity analysis and reliable construction of a reduced-order model, a quasi-Monte Carlo sampling method was applied to effectively sample a high-dimensional input parameter space to explore uncertainties associated with hydrologic, geologic, and geomechanical properties. The uncertainty quantification results show that the impacts onmore » geomechanical response from the pre-existing faults mainly depend on reservoir and fault permeability. When the fault permeability is two to three orders of magnitude smaller than the reservoir permeability, the fault can be considered as an impermeable block that resists fluid transport in the reservoir, which causes pressure increase near the fault. When the fault permeability is close to the reservoir permeability, or higher than 10⁻¹⁵ m² in this study, the fault can be considered as a conduit that penetrates the caprock, connecting the fluid flow between the reservoir and the upper rock.« less
High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.
Iglauer, Stefan; Lebedev, Maxim
2018-06-01
Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface conditions in a realistic way, and thus to obtain reliable results, which are vital input parameters required for building accurate larger-scale reservoir models which can predict the overall reservoir-scale (hectometer-scale) processes (e.g. oil production or diagenesis of a formation). We thus describe here the basic workflow of such HPET-μCT experiments, equipment requirements and apparatus design; and review the literature where such HPET-μCT experiments were used and which phenomena were investigated (these include: CO 2 geo-sequestration, oil recovery, gas hydrate formation, hydrothermal deposition/reactive flow). One aim of this paper is to give a guideline to users how to set-up a HPET-μCT experiment, and to provide a quick overview in terms of what is possible and what not, at least up to date. As a conclusion, HPET-μCT is a valuable tool when it comes to the investigation of subsurface micrometer-scaled processes, and we expect a rapidly expanding usage of HPET-μCT in subsurface engineering and the subsurface sciences. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM
2018-04-01
Ground penetrating radar (GPR) are non-invasive geophysical techniques that enhance studies of the shallow subsurface. The purposes of this work are to study the subsurface composition of Balik Pulau area in Penang Island and to identify shallow subsurface geology features. Data acquisition for GPR is by using 250 MHz antenna to cover 200m survey line at Jalan Tun Sardon, Balik Pulau. GPR survey was divided into ten sections at 20 m each. Results from GPR shows that there is low EM reflection along the first 40 m of the survey line. Intense EM reflections were recorded along the distance 40 m to 100 m. Less noticeable radar reflections recorded along 100 m to 200 m distance of the survey line. As a conclusion, clear signal of radar wave reflection indicates dry region of the subsurface. Meanwhile, low signal of radar wave reflection indicates highly weathered granitic soil or clay of the subsurface.
A hydrogen-based subsurface microbial community dominated by methanogens
Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.
2002-01-01
The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.
Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques
NASA Astrophysics Data System (ADS)
Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.
2017-10-01
It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.
On Subsurface Fracture Opening and Closure
NASA Astrophysics Data System (ADS)
Wang, Y.
2016-12-01
Mechanistic understanding of fracture opening and closure in geologic media is of significant importance to nature resource extraction and waste management, such as geothermal energy extraction, oil/gas production, radioactive waste disposal, and carbon sequestration and storage). A dynamic model for subsurface fracture opening and closure has been formulated. The model explicitly accounts for the stress concentration around individual aperture channels and the stress-activated mineral dissolution and precipitation. A preliminary model analysis has demonstrated the importance of the stress-activated dissolution mechanism in the evolution of fracture aperture in a stressed geologic medium. The model provides a reasonable explanation for some key features of fracture opening and closure observed in laboratory experiments, including a spontaneous switch from a net permeability reduction to a net permeability increase with no changes in a limestone fracture experiment.
NASA Astrophysics Data System (ADS)
Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.
2012-09-01
Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.
Aüllo, Thomas; Berlendis, Sabrina; Lascourrèges, Jean-François; Dessort, Daniel; Duclerc, Dominique; Saint-Laurent, Stéphanie; Schraauwers, Blandine; Mas, Johan; Patriarche, Delphine; Boesinger, Cécile; Magot, Michel; Ranchou-Peyruse, Anthony
2016-01-01
Deep subsurface aquifers despite difficult access, represent important water resources and, at the same time, are key locations for subsurface engineering activities for the oil and gas industries, geothermal energy, and CO2 or energy storage. Formation water originating from a 760 m-deep geological gas storage aquifer was sampled and microcosms were set up to test the biodegradation potential of BTEX by indigenous microorganisms. The microbial community diversity was studied using molecular approaches based on 16S rRNA genes. After a long incubation period, with several subcultures, a sulfate-reducing consortium composed of only two Desulfotomaculum populations was observed able to degrade benzene, toluene, and ethylbenzene, extending the number of hydrocarbonoclastic-related species among the Desulfotomaculum genus. Furthermore, we were able to couple specific carbon and hydrogen isotopic fractionation during benzene removal and the results obtained by dual compound specific isotope analysis (C = -2.4‰ ± 0.3‰; H = -57‰ ± 0.98‰; AKIEC: 1.0146 ± 0.0009, and AKIEH: 1.5184 ± 0.0283) were close to those obtained previously in sulfate-reducing conditions: this finding could confirm the existence of a common enzymatic reaction involving sulfate-reducers to activate benzene anaerobically. Although we cannot assign the role of each population of Desulfotomaculum in the mono-aromatic hydrocarbon degradation, this study suggests an important role of the genus Desulfotomaculum as potential biodegrader among indigenous populations in subsurface habitats. This community represents the simplest model of benzene-degrading anaerobes originating from the deepest subterranean settings ever described. As Desulfotomaculum species are often encountered in subsurface environments, this study provides some interesting results for assessing the natural response of these specific hydrologic systems in response to BTEX contamination during remediation projects.
Advances in Multiphase Flow and Transport in the Subsurface Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
Advances in Multiphase Flow and Transport in the Subsurface Environment
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...
2018-03-04
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
NASA Astrophysics Data System (ADS)
Abdlmutalib, Ammar; Abdullatif, Osman
2017-04-01
Jurassic carbonates represent an important part of the Mesozoic petroleum system in the Arabian Peninsula in terms of source rocks, reservoirs, and seals. Jurassic Outcrop equivalents are well exposed in central Saudi Arabia and which allow examining and measuring different scales of geological heterogeneities that are difficult to collect from the subsurface due to limitations of data and techniques. Identifying carbonates Discontinuities characteristics at outcrops might help to understand and predict their properties and behavior in the subsurface. The main objective of this study is to identify the lithofacies and the discontinuities properties of the upper Jurassic carbonates of the Arab D member and the Jubaila Formation (Arab-D reservoir) based on their outcrop equivalent strata in central Saudi Arabia. The sedimentologic analysis revealed several lithofacies types that vary in their thickness, abundances, cyclicity and vertical and lateral stacking patterns. The carbonates lithofacies included mudstone, wackestone, packstone, and grainstone. These lithofacies indicate deposition within tidal flat, skeletal banks and shallow to deep lagoonal paleoenvironmental settings. Field investigations of the outcrops revealed two types of discontinuities within Arab D Member and Upper Jubaila. These are depositional discontinuities and tectonic fractures and which all vary in their orientation, intensity, spacing, aperture and displacements. It seems that both regional and local controls have affected the fracture development within these carbonate rocks. On the regional scale, the fractures seem to be structurally controlled by the Central Arabian Graben System, which affected central Saudi Arabia. While, locally, at the outcrop scale, stratigraphic, depositional and diagenetic controls appear to have influenced the fracture development and intensity. The fracture sets and orientations identified on outcrops show similarity to those fracture sets revealed in the upper Jurassic carbonates in the subsurface which suggest inter-relationships. Therefore, the integration of discontinuities characteristics revealed from the Arab-D outcrop with subsurface data might help to understand and predict discontinuity properties and patterns of the Arab-D reservoir in the subsurface.
Burruss, Robert
2009-01-01
Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible.
Burruss, R.C.
2009-01-01
Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible. ?? 2009 Elsevier Ltd. All rights reserved.
Mankinen, Edward A.; McKee, Edwin H.
2011-01-01
Increasing demands on the Colorado River system within the arid Southwestern United States have focused attention on finding new, alternative sources of water. Particular attention is being paid to the eastern Great Basin, where important ground-water systems occur within a regionally extensive sequence of Paleozoic carbonate rocks and in the Cenozoic basin-fill deposits that occur throughout the region. Geophysical investigations to characterize the geologic framework of aquifers in eastern Nevada and western Utah began in a series of cooperative agreements between the U.S. Geological Survey and the Southern Nevada Water Authority in 2003. These studies were intended to better understand the formation of basins, define their subsurface shape and depth, and delineate structures that may impede or enhance groundwater flow. We have combined data from gravity stations established during the current study with previously available data to produce an up-to-date isostatic-gravity map of the study area, using a gravity inversion method to calculate depths to pre-Cenozoic basement rock and to estimate alluvial/volcanic fill in the valleys.
NASA Astrophysics Data System (ADS)
Bowen, Brenda Beitler; Benison, K. C.; Oboh-Ikuenobe, F. E.; Story, S.; Mormile, M. R.
2008-04-01
Concretions can provide valuable records of diagenesis and fluid-sediment interactions, however, reconstruction of ancient concretion-forming conditions can be difficult. Observation of modern hematite concretion growth in a natural sedimentary setting provides a rare glimpse of conditions at the time of formation. Spheroidal hematite-cemented concretions are actively precipitating in shallow subsurface sediments at Lake Brown in Western Australia. Lake Brown is a hypersaline (total dissolved solids up to 23%) and acidic (pH ˜ 4) ephemeral lake. The concretion host sediments were deposited between ˜ 1 and 3 ka, based on dating of stratigraphically higher and lower beds. These age constraints indicate that the diagenetic concretions formed < 3 ka, and field observations suggest that some are currently forming. These modern concretions from Lake Brown provide an example of very early diagenetic formation in acid and saline conditions that may be analogous to past conditions on Mars. Previously, the hematite concretions in the Burns formation on Mars have been interpreted as late stage diagenetic products, requiring long geologic time scales and multiple fluid flow events to form. In contrast, the Lake Brown concretions support the possibility of similar syndepositional to very early diagenetic concretion precipitation on Mars.
NASA Astrophysics Data System (ADS)
Namhata, A.; Dilmore, R. M.; Oladyshkin, S.; Zhang, L.; Nakles, D. V.
2015-12-01
Carbon dioxide (CO2) storage into geological formations has significant potential for mitigating anthropogenic CO2 emissions. An increasing emphasis on the commercialization and implementation of this approach to store CO2 has led to the investigation of the physical processes involved and to the development of system-wide mathematical models for the evaluation of potential geologic storage sites and the risk associated with them. The sub-system components under investigation include the storage reservoir, caprock seals, and the above zone monitoring interval, or AZMI, to name a few. Diffusive leakage of CO2 through the caprock seal to overlying formations may occur due to its intrinsic permeability and/or the presence of natural/induced fractures. This results in a potential risk to environmental receptors such as underground sources of drinking water. In some instances, leaking CO2 also has the potential to reach the ground surface and result in atmospheric impacts. In this work, fluid (i.e., CO2 and brine) flow above the caprock, in the region designated as the AZMI, is modeled for a leakage event of a typical geologic storage system with different possible boundary scenarios. An analytical and approximate solution for radial migration of fluids in the AZMI with continuous inflow of fluids from the reservoir through the caprock has been developed. In its present form, the AZMI model predicts the spatial changes in pressure - gas saturations over time in a layer immediately above the caprock. The modeling is performed for a benchmark case and the data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is used to quantify the uncertainty of the model outputs based on the uncertainty of model input parameters such as porosity, permeability, formation thickness, and residual brine saturation. The recently developed aPC approach performs stochastic model reduction and approximates the models by a polynomial-based response surface. Finally, a global sensitivity analysis was performed with Sobol indices based on the aPC technique to determine the relative importance of these input parameters on the model output space.
Tame, C; Cundy, A B; Royse, K R; Smith, M; Moles, N R
2013-11-15
Improvements in computing speed and capacity and the increasing collection and digitisation of geological data now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many large urban areas, to predict ground conditions and reduce risk and uncertainty in urban planning. It is not yet clear how useful this 3D modelling approach is at smaller urban scales, where poorly characterised anthropogenic deposits (artificial/made ground and fill) form the dominant subsurface material and where the availability of borehole and other geological data is less comprehensive. This is important as it is these smaller urban sites, with complex site history, which frequently form the focus of urban regeneration and redevelopment schemes. This paper examines the extent to which the 3D modelling approach previously utilised at large urban scales can be extended to smaller less well-characterised urban sites, using a historic landfill site in Sheepcote Valley, Brighton, UK as a case study. Two 3D models were generated and compared using GSI3D™ software, one using borehole data only, one combining borehole data with local geological maps and results from a desk study (involving collation of available site data, including ground contour plans). These models clearly delimit the overall subsurface geology at the site, and allow visualisation and modelling of the anthropogenic deposits present. Shallow geophysical data collected from the site partially validate the 3D modelled data, and can improve GSI3D™ outputs where boundaries of anthropogenic deposits may not be clearly defined by surface, contour or borehole data. Attribution of geotechnical and geochemical properties to the 3D model is problematic without intrusive investigations and sampling. However, combining available borehole data, shallow geophysical methods and site histories may allow attribution of generic fill properties, and consequent reduction of urban development risk and uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.
Minsley, Burke J.; Ball, Lyndsay B.; Burton, Bethany L.; Caine, Jonathan S.; Curry-Elrod, Erika; Manning, Andrew H.
2010-01-01
Geophysical data were collected at the Standard Mine in Elk Basin near Crested Butte, Colorado, to help improve the U.S. Environmental Protection Agency's understanding of the hydrogeologic controls in the basin and how they affect surface and groundwater interactions with nearby mine workings. These data are discussed in the context of geologic observations at the site, the details of which are provided in a separate report. This integrated approach uses the geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements, which is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. This approach combines the benefit of many direct but sparse field observations with spatially continuous but indirect measurements of physical properties through the use of geophysics. Surface geophysical data include: (1) electrical resistivity profiles aimed at imaging variability in subsurface structures and fluid content; (2) self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow-flow patterns; and (3) magnetic measurements, which provide information on lateral variability in near-surface geologic features, although there are few magnetic minerals in the rocks at this site. Results from the resistivity data indicate a general two-layer model in which an upper highly resistive unit, 3 to 10 meters thick, overlies a less resistive unit that is imaged to depths of 20 to 25 meters. The high resistivity of the upper unit likely is attributed to unsaturated conditions, meaning that the contact between the upper and lower units may correspond to the water table. Significant lateral heterogeneity is observed because of the presence of major features such as the Standard and Elk fault veins, as well as highly heterogeneous joint distributions. Very high resistivities (greater than 10 kiloohmmeters) are observed in locations that may correspond to more silicified, lower porosity rock. Several thin (2 to 3 meters deep and up to tens of meters wide) low-resistivity features in the very near surface coincide with observed surface-water drainage features at the site. These are limited to depths less than 3 meters and may indicate surface and very shallow groundwater flowing downhill on top of less permeable bedrock. The data do not clearly point to discrete zones of high infiltration, but these cannot be ruled out given the heterogeneous nature of joints in the shallow subsurface. Disseminated and localized electrically conductive mineralization do not appear to play a strong role in controlling the resistivity values, which generally are high throughout the site. The self-potential analysis highlights the Standard fault vein, the northwest (NW) Elk vein near the Elk portal, and several polymetallic quartz veins. These features contain sulfide minerals in the subsurface that form an electrochemical cell that produces their distinct self-potential signal. A smaller component of the self-potential signal is attributed to relatively moderate topographically driven shallow groundwater flow, which is most prevalent in the vicinity of Elk Creek and to a lesser extent in the area of surface-water drainage below the Level 5 portal. Given the anomalies associated with the electrochemical weathering near the Standard fault vein, it is not possible to completely rule out downward infiltration of surface water and shallow groundwater intersected by the fault, though this is an unlikely scenario given the available data. Magnetic data show little variation, consistent with the mostly nonmagnetic host rocks and mineralization at the site, which is verified by magnetic susceptibility measurements and X-ray diffraction mineralogy data on local rock samples. The contact between the Ohio Creek Member of the Mesaverde Formation and Wasatch Formation coincides with a change in character of the magnetic signature, though
NASA Astrophysics Data System (ADS)
Frampton, Andrew
2017-04-01
There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.
NASA Astrophysics Data System (ADS)
Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang
2017-04-01
In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.
McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.
2010-01-01
Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.
How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
Workshop on Monitoring and Failure Detection in Earthen Embankments
2010-06-15
funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics...that are widely used to image and characterize subsurface geology . Many of these technologies can be adapted to the interrogation and...the active seismic techniques, have a long history in shallow exploration (tens to hundreds of meters) for geology , environmental, and civil
Geologic setting and chemical characteristics of hot springs in central and western Alaska
Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace
1973-01-01
The geologic and chemical data are too preliminary to make an estimate of the potential of the hot springs as a geothermal resource. The data suggest, however, that most of the hot springs of central and western Alaska have relatively low subsurface temperatures and limited reservoir capacities in comparison with geothermal areas presently being utilized for electrical power generation.
NASA Astrophysics Data System (ADS)
Bilsley, N. A.; Cook, H. M.
2016-12-01
Although most geology students feel the joy of interpreting geologic cross sections, few experience the challenges career geologists face in order to create these visual representations. Without a hefty budget and a drill rig, students generally miss out on the challenge of extrapolating subsurficial features from limited datasets, and jump to narrating geologic time through beautifully pre-drawn cross sections. Although this method allows students to practice relative dating techniques, they miss the practical step of learning how we have come to understand what the subsurface looks like in the first place. This activity was designed to close that gap, while giving students the opportunity to engage in peer learning by strategizing in groups, critiquing each other's work, and evaluating their own work. Broken into groups, students are instructed to create a geologic cross section that must include specific structural features. The cross sections are traded with another group, who reviews and provides feedback on the drawing before returning it back to the original group. The feedback is reviewed and incorporated, before the cross sections are colored and covered with black coated, clear scratch-art paper. The hidden cross sections are traded with a new group, who must decide where and how deep to scratch, or "core", on their cross section. Utilizing the data obtained from the cores, the students interpret and draw a new cross section. Finally, the scratch-art paper is removed, and the original cross section revealed. The differences between the original and interpreted subsurface as well as evaluation of sampling methods (e.g. location and depth of cores) are discussed within the groups and with the class. This activity bridges the gap between developing the intuition needed to create cross sections with realistic geoscientific techniques and utilizing cross sections to understand geologic time. In addition, not only does the activity require few supplies and minimal time of the instructor, but its peer-based learning approach stimulates creativity, allows students to effectively generate and communicate constructive feedback, and encourages students to evaluate and critique their methods and assumptions.
Modeling of Composite Scenes Using Wires, Plates and Dielectric Parallelized (WIPL-DP)
2006-06-01
formation and solves the data communications problem. The ability to perform subsurface imaging to depths of 200’ have already been demonstrated by...perform subsurface imaging to depths of 200’ have already been demonstrated by Brown in [3] and presented in Figure 3 above. Furthermore, reference [3...transmitter platform for use in image formation and solves the data communications problem. The ability to perform subsurface imaging to depths of 200
NASA Astrophysics Data System (ADS)
Tuttle, L. F., II; Wernette, P. A.; Houser, C.
2016-12-01
Framework geology has been demonstrated to influence the geomorphology and affect the response of barrier islands to extreme storm events. Therefore, it is vital that we understand the framework geology before we can accurately assess the vulnerability and resiliency of the coast. Geophysical surveys consisting of ground-penetrating radar (GPR) and electromagnetic inductance (EMI) were collected along the length of Padre Island National Seashore (PAIS) to map subsurface infilled paleochannels identified in previous research. The most extensive published survey of PAIS framework geology was conducted in the 1950s as part of dredging the Intracoastal Waterway through Laguna Madre. Using cores and seismic surveys the previous study identified a series of relict infilled paleochannels in dissecting PAIS. The sediment cores presented in our poster were collected in Fall 2016 with a Geoprobe 6712DT. Cores were stored and processed using an X-ray fluorescence (XRF) scanner at the International Ocean Discovery Program repository in College Station, Texas. The XRF data was used to examine mineralogical differences that provide valuable insight into the evolutionary history of the island. This poster presents results from sediment cores collected to validate the geophysical survey data. The broader purpose of this research is to validate the subsurface framework geology features (i.e. infilled paleochannels) in order to more accurately predict future changes to the environmental and economic longevity of PAIS.
Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.
2006-01-01
Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.
Buckley, Sean F.; Lane, John W.
2012-01-01
The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.
2017-01-09
The western Utopia Planitia in the Northern mid-latitudes of Mars is marked by a peculiar type of depression with scalloped edges and by a network of polygonal fractures. The scalloped depressions are typical features; a smooth layered terrain located between 40 and 60 degrees in both hemispheres. Scalloped depressions probably form by removal of ice-rich subsurface material by sublimation (ice transforming directly from a solid to a gaseous state), a process that may still be active today. Isolated scalloped depressions generally have a steep pole-facing scarp and a gentler equator-facing slope. This asymmetry is interpreted as being the result of difference in solar heating. Scalloped depressions may coalesce, leading to the formation of large areas of pitted terrain. The polygonal pattern of fractures resembles permafrost polygons that form in terrestrial polar and high alpine regions by seasonal-to-annual contraction of the permafrost (permanently frozen ground). On Earth, such polygons indicate the presence of ground ice. These landforms most likely show that sub-surface ice is present or has been present geologically recently at these latitudes, and they may slowly be continuing their development at the present time. http://photojournal.jpl.nasa.gov/catalog/PIA13485
Comparison of Seismic Sources and Frequencies in West Texas
NASA Astrophysics Data System (ADS)
Kaip, G.; Harder, S. H.; Karplus, M. S.
2017-12-01
During October 2017 the Seismic Source Facility (SSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at SSF test facility located near Fabens, TX. The project objective was to compare source amplitudes and frequencies of various seismic sources available through the SSF. Selecting the appropriate seismic source is important to reach geological objectives. We compare seismic sources between explosive sources (pentolite and shotgun) and mechanical sources (accelerated weight drop and hammer on plate), focusing on amplitude and frequency. All sources were tested in same geologic environment. Although this is not an ideal geologic formation for source coupling, it does allow an "apples to apples" comparison. Twenty Reftek RT125A seismic recorders with 4.5 Hz geophones were laid out in a line with 3m station separation. Mechanical sources were tested first to minimize changes in the subsurface related to explosive sources Explosive sources, while yielding higher amplitudes, have lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Mechanical sources yield higher frequencies allowing better resolution at shallower depths, but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.
Weedman, S.D.; Paillet, Frederick L.; Edwards, L.E.; Simmons, K.R.; Scott, T.M.; Wardlaw, B.R.; Reese, R.S.; Blair, J.L.
1999-01-01
In 1997, ten cores were drilled in eastern Collier County and northern Monroe County, within the limits of the Big Cypress National Preserve. These cores represent a continuation of the study of seven cores in western Collier County begun in 1996 and reported in Weedman and others (1997) and Edwards and others (1998). This joint U.S. Geological Survey and Florida Geological Survey project is designed to acquire subsurface geologic and hydrologic data in southwest Florida to extend current ground-water models, thereby expanding the utility of these models for land and water management. In this report we describe the lithostratigraphy, geophysical logging, sedimentological analysis, dinocyst biostratigraphy, and strontium-isotope stratigraphy of these ten cores. The three geophysical logs (natural gamma-ray, induction conductivity, and neutron porosity) assumed to be related to formation lithology and water quality show that a number of clay-rich zones are present in all of the boreholes, and that pore-water conductivity increases with depth. The clay-rich zones are confirmed by visual examination of core material and sedimentological analysis. The relative transmissivity calculated at 10-foot-thick intervals shows that in six of the boreholes, high values are associated with the shallow aquifer in the 0-40 ft interval. Two of the boreholes (the most northerly and the most easterly) showed relatively higher values of transmissivity in permeable zones at or somewhat below 100 ft in depth. Core geology and logs indicate that the deeper aquifers are not more permeable than similar deeper zones in the other boreholes, but rather that the shallow aquifer appears to be less permeable in these two coreholes. The Arcadia (?) Formation was only penetrated in the deepest core where it is late Miocene in age. The Peace River Formation was penetrated in all but the two westernmost cores. It yields a late Miocene age, based on both dinocysts and strontium-isotope stratigraphy. The top is an irregular surface. Age and stratigraphic relations suggest that the upper part of the Peace River and lower part of the unnamed formation are at least partially equivalent laterally. The unnamed formation was recovered in every core. It is thinnest in the northernmost core and thickest to the west. Ages calculated from strontium isotopes range from 6.9 to 4.6 million years ago (late Miocene to early Pliocene). The top of the unnamed formation is deepest to the north and it becomes shallower to the southwest. The Tamiami Formation also was recovered in every core and consistently yields early Pliocene ages; it yields late Pliocene ages near the top in two cores. The age and lateral relations strongly suggest that the lower part of the Tamiami Formation and the upper part of the unnamed formation are lateral facies of each other. The Fort Thompson (?) Formation, Miami Limestone, and undifferentiated siliciclastic sediments and limestone at the very top of the cores were not dated.
Visualization of geologic stress perturbations using Mohr diagrams.
Crossno, Patricia; Rogers, David H; Brannon, Rebecca M; Coblentz, David; Fredrich, Joanne T
2005-01-01
Huge salt formations, trapping large untapped oil and gas reservoirs, lie in the deepwater region of the Gulf of Mexico. Drilling in this region is high-risk and drilling failures have led to well abandonments, with each costing tens of millions of dollars. Salt tectonics plays a central role in these failures. To explore the geomechanical interactions between salt and the surrounding sand and shale formations, scientists have simulated the stresses in and around salt diapirs in the Gulf of Mexico using nonlinear finite element geomechanical modeling. In this paper, we describe novel techniques developed to visualize the simulated subsurface stress field. We present an adaptation of the Mohr diagram, a traditional paper-and-pencil graphical method long used by the material mechanics community for estimating coordinate transformations for stress tensors, as a new tensor glyph for dynamically exploring tensor variables within three-dimensional finite element models. This interactive glyph can be used as either a probe or a filter through brushing and linking.
NASA Astrophysics Data System (ADS)
Wiegers, Carla Elisabeth; Schäfer, Dirk
2015-06-01
In areas where the geological subsurface is used for storage of gases or fracking, there is a risk of saline formation water entering protected aquifers. The impact of such potential leakage therefore needs to be evaluated at relevant sites to develop practical monitoring concepts. Three-dimensional numerical simulations and a sensitivity analysis are performed to determine the influence of aquifer parameters, ground water flow, aquifer morphology, leakage rate and NaCl-concentration of the intruding water on the propagation behaviour of saline water. Two example scenarios were simulated based on a realistic site-scale conceptual model, one with water from the lower Braunkohlensande, (NaCl = 7.61 g/l) the other with saline water from the Bunter sandstone formation (NaCl = 280.3 g/l). The simulations show that saltwater migrates along the bottom of the aquifer, and that groundwater flow can dominate the transport of chloride. In this case the spreading of denser water is not influenced by the aquifer's morphology.
Burke, Lauri
2011-01-01
Along the Great Sand Dunes National Park and Preserve boundary (fig. 1), 10 monitoring wells were drilled by the National Park Service in order to monitor water flow in an unconfined aquifer spanning the park boundary. Adjacent to the National Park Service monitoring well named Boundary Piezometer Well No. 3, or BP-3, the U.S. Geological Survey (USGS) drilled the BP-3-USGS well. This well was drilled from September 14 through 17, 2009, to a total depth of 99.4 meters (m) in order to acquire additional subsurface information. The BP-3-USGS well is located at lat 37 degrees 43'18.06' and long -105 degrees 43'39.30' at a surface elevation of 2,301 m. Approximately 23 m of core was recovered beginning at a depth of 18 m. Drill cuttings were also recovered. The wireline geophysical logs acquired in the well include natural gamma ray, borehole caliper, temperature, full waveform sonic, density, neutron, resistivity, and induction logs. The BP-3-USGS well is now plugged and abandoned. This report details the full waveform digital signal processing methodology and the formation compressional-wave velocities determined for the BP-3-USGS well. These velocity results are compared to several velocities that are commonly encountered in the subsurface. The density log is also discussed in context of these formation velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoak, T.E.; Decker, A.D.
Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basinmore » analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.« less
Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence
NASA Technical Reports Server (NTRS)
Christiansen, Eric H.; Hopler, Jennifer A.
1987-01-01
The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.
Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R
2014-11-18
Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.
Model for CO2 leakage including multiple geological layers and multiple leaky wells.
Nordbotten, Jan M; Kavetski, Dmitri; Celia, Michael A; Bachu, Stefan
2009-02-01
Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.
Electrical Resistance Tomography Field Trials to Image CO2 Sequestration
NASA Astrophysics Data System (ADS)
Newmark, R.
2003-12-01
If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition, telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Triassic structural and stratigraphic evolution of the Central German North Sea sector
NASA Astrophysics Data System (ADS)
Wolf, Marco; Jähne-Klingberg, Fabian
2017-04-01
The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.
NASA Technical Reports Server (NTRS)
1996-01-01
Topic considered include: survey objectives; technologies for non-Invasive imaging of subsurface; cost; data requirements and sources; climatic condition; hydrology and geology; chemicals; magnetometry; electrical(resistivity, potential); optical-style imaging; reflection/refraction seismics; gravitometry; photo-acoustic activation;well drilling and borehole analysis; comparative assessment matrix; ground sensors; choice of the neutron sources; logistic of operations; system requirements; health and safety plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoak, T.E.; Klawitter, A.L.
Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau,more » Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.« less
Impact origin of the Avak Structure, Arctic Alaska, and genesis of the Barrow gas fields
Kirschner, C.E.; Grantz, A.; Mullen, M.W.
1992-01-01
Geophysical and subsurface geologic data suggest that the Avak structure, which underlies the Arctic Coastal Plain 12 km southeast of Barrow, Alaska, is a hypervelocity meteorite or comet impact structure. The structure is a roughly circular area of uplifted, chaotically deformed Upper Triassic to Lower Cretaceous sedimentary rocks 8 km in diameter that is bounded by a ring of anastomosing, inwardly dipping, listric normal faults 12 km in diameter. Examination of cores from the Barrow gas fields and data concerning the age of the Avak structure suggest that the Avak meteorite struck a Late Cretaceous or Tertiary marine shelf or coastal plain between the Cenomanian (ca. 95 Ma), and deposition of the basal beds of the overlying late Pliocene and Quaternary Gubik Formation (ca. 3 Ma). -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.
2005-09-24
Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to themore » Pacific Northwest National Laboratory in support of this project.« less
Subsurface Salts in Antarctic Dry Valley Soils
NASA Technical Reports Server (NTRS)
Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.
2013-01-01
The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.
3D mapping of buried rocks by the GPR WISDOM/ExoMars 2020
NASA Astrophysics Data System (ADS)
Herve, Yann; Ciarletti, Valerie; Le Gall, Alice; Quantin, Cathy; Guiffaut, Christophe; Plettemeier, Dirk
2017-04-01
The main objective of ExoMars 2020 is to search for signs of past and/or present life on Mars. Because these signs may be beneath the inhospitable surface of Mars, the ExoMars Rover has on board a suite of instruments aiming at characterizing the subsurface. In particular, the Rover payload includes WISDOM (Water Ice Subsurface Deposits Observation on Mars), a polarimetric ground penetrating radar designed to investigate the shallow subsurface. WISDOM is able to probe down to a depth of few meters with a resolution of few centimeters; its main objective is to provide insights into the geological context of the investigated Martian sites and to determine the most promising location to collect samples for the ExoMars drill. In this paper, we demonstrate the ability of WISDOM to locate buried rocks and to estimate their size distribution. Indeed, the rock distribution is related to the geological processes at play in the past or currently and thus provides clues to understand the geological context of the investigated site. Rocks also represent a hazard for drilling operations that WISDOM is to guide. We use a 3D FDTD code called TEMSI-FD (which takes into account the radiation pattern of the antenna system) to simulate WISDOM operations on a realistic (both in terms of dielectric properties and structure) ground. More specifically, our geoelectrical models of the Martian subsurface take into account realistic values of the complex permittivity relying on published measurements performed in laboratory on Martian analogues. Further, different distributions of buried rocks are considered based on the size-frequency distribution observed at the Mars Pathfinder landing site and on Oxia Planum, the landing site currently selected for ExoMars 2020. We will describe the algorithm we developed to automatically detect the signature of the buried rocks on radargrams. The radargrams are obtained simulating WISDOM operations along parallel and perpendicular profiles as planned for the ExoMars mission. Our ultimate goal is to show that WISDOM observations can be used to build a 3D map of the subsurface. We will also present experimental data obtained with a prototype of WISDOM to test our method.
Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets
NASA Astrophysics Data System (ADS)
Thakur, S.; Bruzzone, L.
2017-12-01
Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For cross-validation, the database is compared with radargrams simulated from the analysis of radio wave propagation through geo-electrical models representing the subsurface hypotheses for the RIME targets.
NASA Astrophysics Data System (ADS)
Hickey, M. S.
2008-05-01
Controlled-source electromagnetic geophysical methods provide a noninvasive means of characterizing subsurface structure. In order to properly model the geologic subsurface with a controlled-source time domain electromagnetic (TDEM) system in an extreme topographic environment we must first see the effects of topography on the forward model data. I run simulations using the Texas A&M University (TAMU) finite element (FEM) code in which I include true 3D topography. From these models we see the limits of how much topography we can include before our forward model can no longer give us accurate data output. The simulations are based on a model of a geologic half space with no cultural noise and focus on topography changes associated with impact crater sites, such as crater rims and central uplift. Several topographical variations of the model are run but the main constant is that there is only a small conductivity change on the range of 10-1 s/m between the host medium and the geologic body within. Asking the following questions will guide us through determining the limits of our code: What is the maximum step we can have before we see fringe effects in our data? At what location relative to the body does the topography cause the most effect? After we know the limits of the code we can develop new methods to increase the limits that will allow us to better image the subsurface using TDEM in extreme topography.
SHUTTLE IMAGING RADAR PROVIDES FRAMEWORK FOR SUBSURFACE GEOLOGIC EXPLORATION IN EGYPT AND SUDAN.
Breed, Carol S.; McCauley, John F.; Schaber, Gerald G.
1984-01-01
Shuttle Imaging Radar provides a pictorial framework to guide exploration for mineral resources (potential placers), groundwater sources, and prehistoric archaeological sites in the Western Desert of Egypt and Sudan. Documented penetration by the SIR-A signal of dry surficial sediment to depths of a meter or more revealed bedrock geologic features and networks of former stream valleys otherwise concealed beneath windblown sand, alluvium, and colluvial deposits. 'Radar units' mapped on SIR-A images according to relative brightness and degree of mottling correspond to subsurface geologic and topographic features identified in more than 50 test pits. Petrologic examination of pit samples confirms that a variety of depositional environments existed in this now hyper-arid region before it was mantled by windblown sand sheets and dunes. Wet sand was discovered in two buried valleys shown on the radar images and located in the field with the aid of co-registered maps and Landsat images, and a satellite navigation device. Buried valleys whose streams once traversed mineralized zones are potential sites of placers (gold, tin).
NASA Astrophysics Data System (ADS)
George, N. J.; Obiora, D. N.; Ekanem, A. M.; Akpan, A. E.
2016-10-01
The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.
NASA Astrophysics Data System (ADS)
Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.
2015-12-01
Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the alteration process.
Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars
NASA Technical Reports Server (NTRS)
Allen, C.C.; Oehler, D.Z.; Baker, D.M.
2009-01-01
Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.
NASA Astrophysics Data System (ADS)
Harting, Ronald; Bosch, Aleid; Gunnink, Jan
2014-05-01
Society has an increasing demand from the subsurface, which in the Dutch shallow subsurface (upper 30 to 40 meters) mainly focuses on natural aggregate resources, groundwater, infrastructure and dike safety. This stimulates the demand for knowledge about the composition and heterogeneity of the subsurface and its physical and chemical properties, including the uncertainties involved. Physical and chemical properties of sediments in the subsurface have been under investigation for decades; however, the usefulness of this data for applied research and the understanding of these properties is limited. This is due to several factors: studies consist mainly of separately collected datasets, targeted at a limited amount of parameters, focused on a small number of geological units, distributed unevenly with depth and usually collected from clustered drillings with limited spatial extent or are analysed with different techniques and methods, often on disturbed samples. These factors result in a heterogeneous and biased dataset not suitable to function as a reference dataset or to statistically determine regional characteristics of geological units. To overcome these shortcomings, the Geological Survey of the Netherlands is establishing a nation-wide reference dataset for physical and chemical properties. In 2006, a drilling campaign was started using cone penetration tests, cored drillings and geophysical well logs, choosing the sites for a good geographical distribution. The lithological properties of the undisturbed cores are visually described and interpreted for lithostratigraphy and inferred sedimentary environment based on lithofacies. The location of the samples in the cores are chosen based on this description and interpretation, resulting in an evenly distributed dataset of in situ samples with respect to geological units as well as an adequate number of samples suitable for statistical analysis. Analyses are uniformly performed for grain size distribution, permeability (both high and low permeable lithologies) and geochemical methods (X-Ray Fluorescence, Thermo-Gravimetric Analysis, Total Carbon, Total Sulphur and Total Organic Carbon). These analyses result in a large number of lithological, hydrological and geochemical parameters, i.e. clay content, sand median, vertical and horizontal permeability and CaCO3-content. We present the results from the analysis of lithological properties for the Northern Netherlands. Besides geology, these properties can be applied directly in studies concerning (amongst others) groundwater, natural aggregates and dike safety. We demonstrate the use of sedimentary environments based on lithofacies as a useful tool for comparison between lithostratigraphic units and lithofacies. These lithofacies match distinct parts of the marine, fluvial, glacial, eolian or organogenic environment, i.e. tidal channel sand, floodbasin clay and subglacial till. This results in lithological properties illustrating the heterogeneity within a geological unit and between equal depositional environments in different lithostratigraphic units. The acquired data have so far been used in several applied studies, i.e. improving parameterisation of 3D models leading to increased accuracy in groundwater models and dike safety studies concerning dike failure due to undermining. Recently, grain size distributions measured with different methods were recalibrated into a homogeneous dataset using this reference set, which greatly enlarged the dataset to be incorporated in the parameterisation of a 3D voxel model.
Methods of producing transportation fuel
Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB
2011-12-27
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Mart; Truex, Michael J.; Thorne, Paul D.
2007-03-19
Disposal quantities of organic wastes at the Brooklawn Site in Louisiana are suspected to equal nearly 160 Ktons, making this site one of the most contaminated DNAPL sites in the world. Remedial activities at the site include groundwater and dense nonaqueous phase liquid (DNAPL) extraction from recovery wells. DNAPL recovery has markedly declined in recent years, with many of the peripheral wells showing negligible recovery of organic liquids. Three-dimensional simulations of DNAPL movement in the subsurface were conducted using the STOMP simulator, including a new coupled well model. The objectives of this modeling effort were to (1) determine the fatemore » and transport of infiltrated DNAPL, and (2) measure the effects of active recovery through DNAPL pumping. A detailed three-dimensional geologic model of the Brooklawn primary DNAPL disposal area was developed and used as the framework for DNAPL simulations. Additionally, site-specific data were obtained to obtain the most important hydraulic properties of the subsurface related to DNAPL movement and formation of entrapped DNAPL in the laboratory. Besides a simulation using the best available subsurface information, several sensitivity simulations were conducted to assess the effects on DNAPL migration. These simulations include DNAPL pumping, well screen extension, an alternative geology, increased DNAPL density, lower DNAPL viscosity, and more-permeable sand and silt deposits. Results of the simulations were compared to field data that define the extent of DNAPL movement based on where DNAPL has been extracted in the site recovery wells. The model simulations predict no significant reduction in the extent of the DNAPL as a result of pumping. Pumping returns diminish rapidly due to the limited radius of influence of the wells and movement of the DNAPL out of the zone of influence of the wells with a maximum radius of influence of about 6 m. The numerical analysis also demonstrates that it is impractical to extend existing wells or install new wells to retrieve enough DNAPL to affect the overall extent of DNAPL movement.« less
Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K
2014-01-01
Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.
Walls, Joel; Taner, M. Turhan; Dvorkin, Jack
2006-08-08
A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.
Tanaka, K.L.; Kolb, E.J.
2001-01-01
During the Noachian Period, the south polar region of Mars underwent intense cratering, construction of three groups of volcanoes, widespread contractional deformation, resurfacing of low areas, and local dissection of valley networks; no evidence for polar deposits, ice sheets, or glaciation is recognized. South polar Hesperian geology is broadly characterized by waning impacts, volcanism, and tectonism. Emplacement of the polar Dorsa Argentea Formation (DAF) occurred during the Hesperian Period. Mars Orbiter Laser Altimeter topographic data and Mars Orbiter Camera images elucidate stratigraphic, morphologic, and topographic relations, permitting the dividing of the DAF into eight members, which surround and underlie about half of the Amazonian south polar layered deposits. The lobate fronts and lack of typical volcanic-flow morphology of the six plains units indicate that they may be made up of debris flows. We think that these flows, tens of meters to 200 m thick, may have originated by the discharge of huge volumes of slurry fluidized by ground water or liquid CO2, perhaps triggered by local impacts, igneous activity, or basal melting beneath polar deposits. The cavi and rugged members include irregular depressions that penetrate the subsurface; some of the pits have raised rims. The depressions may have formed by collapse due to expulsion of subsurface material in which local explosive activity built up the raised rims. Further, smaller eruptions of volatile-rich material may have resulted in narrow, sinuous channel deposits within aggrading fine-grained unconsolidated material perhaps produced by gaseous discharge of subsurface volatiles; preferential erosion of the latter material could have produced the Dorsa Argentea-type ginuous ridges associated mainly with the DAF. Alternatively, the ridges may be eskers, but the lack of associated glacial and fluvial morphologies casts doubt on this interpretation. The knobby, degraded materials forming Scandia Colles may represent the only Noachian geologic record exposed in the north polar region. Most of the north polar region was buried by water- or debris-ocean sediments during the Hesperian Period, originating from uplands areas and perhaps knobby terrains in the northern plains. The sediments either mantle or were deformed by wrinkle ridges radial and concentric to Utopia basin and concentric to northern Tharsis. Sources of stress probably included sediment loading in the northern plains and regional magmatic and loading activity at Tharsis. Polar layered deposits began piling up during the Early Amazonian or later. ?? 2001 Elsevier Science.
NASA Astrophysics Data System (ADS)
Tanaka, Kenneth L.; Kolb, Eric J.
2001-11-01
During the Noachian Period, the south polar region of Mars underwent intense cratering, construction of three groups of volcanoes, widespread contractional deformation, resurfacing of low areas, and local dissection of valley networks; no evidence for polar deposits, ice sheets, or glaciation is recognized. South polar Hesperian geology is broadly characterized by waning impacts, volcanism, and tectonism. Emplacement of the polar Dorsa Argentea Formation (DAF) occurred during the Hesperian Period. Mars Orbiter Laser Altimeter topographic data and Mars Orbiter Camera images elucidate stratigraphic, morphologic, and topographic relations, permitting the dividing of the DAF into eight members, which surround and underlie about half of the Amazonian south polar layered deposits. The lobate fronts and lack of typical volcanic-flow morphology of the six plains units indicate that they may be made up of debris flows. We think that these flows, tens of meters to 200 m thick, may have originated by the discharge of huge volumes of slurry fluidized by ground water or liquid CO 2, perhaps triggered by local impacts, igneous activity, or basal melting beneath polar deposits. The cavi and rugged members include irregular depressions that penetrate the subsurface; some of the pits have raised rims. The depressions may have formed by collapse due to expulsion of subsurface material in which local explosive activity built up the raised rims. Further, smaller eruptions of volatile-rich material may have resulted in narrow, sinuous channel deposits within aggrading fine-grained unconsolidated material perhaps produced by gaseous discharge of subsurface volatiles; preferential erosion of the latter material could have produced the Dorsa Argentea-type sinuous ridges associated mainly with the DAF. Alternatively, the ridges may be eskers, but the lack of associated glacial and fluvial morphologies casts doubt on this interpretation. The knobby, degraded materials forming Scandia Colles may represent the only Noachian geologic record exposed in the north polar region. Most of the north polar region was buried by water- or debris-ocean sediments during the Hesperian Period, originating from uplands areas and perhaps knobby terrains in the northern plains. The sediments either mantle or were deformed by wrinkle ridges radial and concentric to Utopia basin and concentric to northern Tharsis. Sources of stress probably included sediment loading in the northern plains and regional magmatic and loading activity at Tharsis. Polar layered deposits began piling up during the Early Amazonian or later.
NASA Astrophysics Data System (ADS)
Sauer, U.; Schuetze, C.; Dietrich, P.
2013-12-01
The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.
NASA Astrophysics Data System (ADS)
Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar
2016-05-01
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.
NASA Astrophysics Data System (ADS)
Laborde, A.; Barrier, L.; Simoes, M.; Li, H.
2016-12-01
During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.
Water and Solute Flux Simulation Using Hydropedology Survey Data in South African Catchments
NASA Astrophysics Data System (ADS)
Lorentz, Simon; van Tol, Johan; le Roux, Pieter
2017-04-01
Hydropedology surveys include linking soil profile information in hillslope transects in order to define dominant subsurface flow mechanisms and pathways. This information is useful for deriving hillslope response functions, which aid storage and travel time estimates of water and solute movement in the sub-surface. In this way, the "soft" data of the hydropedological survey can be included in simple hydrological models, where detailed modelling of processes and pathways is prohibitive. Hydropedology surveys were conducted in two catchments and the information used to improve the prediction of water and solute responses. Typical hillslope response functions are then derived using a 2-D finite element model of the hydropedological features. Similar response types are mapped. These mapped response units are invoked in a simple SCS based, hydrological and solute transport model to yield water and solute fluxes at the catchment outlets. The first catchment (1.6 km2) comprises commercial forestry in a sedimentary geology of sandstone and mudstone formation while the second catchment (6.1 km2) includes mine waste impoundments in a granitic geology. In this paper, we demonstrate the method of combining hydropedological interpretation with catchment hydrology and solute transport simulation. The forested catchment, with three dominant hillslope response types, have solute response times in excess of 90 days, whereas the granitic responses occur within 10 days. The use of the hydropedological data improves the solute distribution response and storage simulation, compared to simulations without the hydropedology interpretation. The hydrological responses are similar, with and without the use of the hydropedology data, but the simulated distribution of water in the catchment is improved using the techniques demonstrated.
NASA Astrophysics Data System (ADS)
Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.
2014-12-01
Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2016-12-27
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
NASA Astrophysics Data System (ADS)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.
2017-01-01
The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sanjay
2014-09-30
In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models thatmore » reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.« less
Mapping urban geology of the city of Girona, Catalonia
NASA Astrophysics Data System (ADS)
Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona
2016-04-01
A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.
Rates of CO2 Mineralization in Geological Carbon Storage.
Zhang, Shuo; DePaolo, Donald J
2017-09-19
Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO 2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals and confirms that when reservoir rock mineralogy is not favorable the fraction of CO 2 converted to carbonate minerals is minimal over 10 4 years. A sufficient amount of reactive minerals is typically about 20% by volume. Our approach may allow for rapid evaluation of mineralization potential of subsurface storage reservoirs and illustrates how reservoir scale modeling can be integrated with other observations to address key issues relating to engineering of geologic systems.
Interplay between microorganisms and geochemistry in geological carbon storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.
Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less
Interplay between microorganisms and geochemistry in geological carbon storage
Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...
2016-02-28
Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less
NASA Astrophysics Data System (ADS)
Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit
2016-08-01
Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.
Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Catherine A
2013-02-28
Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevantmore » in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.« less
NASA Astrophysics Data System (ADS)
Farr, T. G.; Fairbanks, A.
2017-12-01
Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources
Characterisation of DOC and its relation to the deep terrestrial biosphere
NASA Astrophysics Data System (ADS)
Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian
2010-05-01
The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic-rich layers like coals and source rocks which may provide carbon sources for the deep biosphere by leaching water soluble organic compounds. We investigated the potential of a series of Eocene-Pleistocene coals, mudstones and sandstones from New Zealand with different maturities (Ro between 0.29 and 0.39) and total organic carbon content (TOC) regarding their potential to release such compounds. The water extraction of these New Zealand coals using Soxhlet apparatus resulted in yields of LMWOA that may feed the local deep terrestrial biosphere over geological periods of time (VIETH et al., 2008). However, the DOC of the water extracts mainly consisted of humic substances. To investigate the effect of thermal maturity of the organic matter as well as the effect of the organic matter type on the extraction yields, we examined additional coal samples (Ro between 0.29 and 0.80) and source rock samples from low to medium maturity (Ro between 0.3 to 1.1). Within our presentation we would like to show the compositional diversity and variability of dissolved organic compounds in natural formation fluids as well as in water extracts from a series of very different lithologies and discuss their effects on the carbon cycling in the deep terrestrial subsurface. References: Andrews, J. N., Youngman, M. J., Goldbrunner, J. E., and Darling, W. G., 1987. The geochemistry of formation waters in the Molasse Basin of Upper Austria. Environmental Geology 10, 43-57. Vieth, A., Mangelsdorf, K., Sykes, R., and Horsfield, B., 2008. Water extraction of coals - potential to estimate low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere? Organic Geochemistry 39, 985-991.
NASA Astrophysics Data System (ADS)
Casas, Albert; Himi, Mahjoub; Estévez, Esmeralda; Lovera, Raúl; Sendrós, Alexandre; Palacios-Díaz, M. Pino; Tapias, Josefina C.; Cabrera, M. Carmen
2015-04-01
The characterization of the preferential areas of water infiltration through the vadose zone is of paramount importance to assess the pollution vulnerability of the underlying aquifers. Nevertheless, geometry and the hydraulic conductivity of each geological unit which constitute the unsaturated zone are difficult to study from traditional techniques (samples from trenches) and normally do not go beyond a meter depth from of the surface. On the other hand, boreholes are expensive and provide only local information not always representative of the whole unsaturated zone. For this reason, geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where basaltic rocks, pyroclastic and volcanic ash-fall deposits have a wide range of values. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria Island), irrigated with reclaimed wastewater, a detailed electrical resistivity tomography survey has been carried out. This technique has allowed to define the geometry of the existing geological formations by their high electrical resistivity contrast. Subsequently, in representative outcrops the value of resistivity of each of these lithologies has been measured and simultaneously undisturbed samples have been taken measuring the hydraulic conductivity in the laboratory. Finally a statistical correlation between both variables has been established for evaluating the vulnerability to groundwater pollution at different zones of the golf course.
Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.
2016-09-02
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
A 3D object-based model to simulate highly-heterogeneous, coarse, braided river deposits
NASA Astrophysics Data System (ADS)
Huber, E.; Huggenberger, P.; Caers, J.
2016-12-01
There is a critical need in hydrogeological modeling for geologically more realistic representation of the subsurface. Indeed, widely-used representations of the subsurface heterogeneity based on smooth basis functions such as cokriging or the pilot-point approach fail at reproducing the connectivity of high permeable geological structures that control subsurface solute transport. To realistically model the connectivity of high permeable structures of coarse, braided river deposits, multiple-point statistics and object-based models are promising alternatives. We therefore propose a new object-based model that, according to a sedimentological model, mimics the dominant processes of floodplain dynamics. Contrarily to existing models, this object-based model possesses the following properties: (1) it is consistent with field observations (outcrops, ground-penetrating radar data, etc.), (2) it allows different sedimentological dynamics to be modeled that result in different subsurface heterogeneity patterns, (3) it is light in memory and computationally fast, and (4) it can be conditioned to geophysical data. In this model, the main sedimentological elements (scour fills with open-framework-bimodal gravel cross-beds, gravel sheet deposits, open-framework and sand lenses) and their internal structures are described by geometrical objects. Several spatial distributions are proposed that allow to simulate the horizontal position of the objects on the floodplain as well as the net rate of sediment deposition. The model is grid-independent and any vertical section can be computed algebraically. Furthermore, model realizations can serve as training images for multiple-point statistics. The significance of this model is shown by its impact on the subsurface flow distribution that strongly depends on the sedimentological dynamics modeled. The code will be provided as a free and open-source R-package.
Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado
NASA Astrophysics Data System (ADS)
Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.
2015-02-01
Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpreted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.
Modeling the hydrogeophysical response of lake talik evolution
Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre
2014-01-01
Geophysical methods provide valuable information about subsurface permafrost and its relation to dynamic hydrologic systems. Airborne electromagnetic data from interior Alaska are used to map the distribution of permafrost, geological features, surface water, and groundwater. To validate and gain further insight into these field datasets, we also explore the geophysical response to hydrologic simulations of permafrost evolution by implementing a physical property relationship that connects geology, temperature, and ice saturation to changes in electrical properties.
NASA Astrophysics Data System (ADS)
Kaminski, Michael; Kaka, SanLinn; Kaminski, Matthew
2017-04-01
The hypervelocity impact of an asteroid in southern Germany around 15 million years ago not only caused an environmental catastrophe, but it also created a scenario that provides us with a world-class natural laboratory for teaching the basic Principles of Geology. The combination of museum visits and observation of rock outcrops enables the student to reinforce or rediscover the basic principles of physical and historical Geology that are presented in first- or second-year Geoscience courses. At KFUPM, our visit to the Ries Geopark begins at the Ries Crater Museum in Nördlingen, where students review knowledge learned in their Physical Geology course: the Nebular Theory, origin of the solar system, and the classification of meteorites based on real examples. Students then learn the stages of impact crater formation, shock metamorphism, and the products of impact crater formation such as tectites, impact breccia and suevite. Students also become familiar with the Mesozoic stratigraphy of Southern Germany, reviewing basic principals of stratigraphy. Visits to local outcrops reinforce the knowledge gained at the Museum. A visit to the nearby Solnhofen Museum and quarries provides insight into the nature of the late Jurassic animals that lived at the edge of the Tethys Sea, reinforcing many topics learned during their second-year Paleontology course, such as taphonomy, and the idea of a death assemblage. At the Museum of the Geosciences Department of the University of Tübingen, the students become familiar with Mesozoic ammonoids as part of their second-year Paleontology course. A visit to the Urwelt Museum and quarry in Holzmaden explores animal life during the Early Jurassic, stratigraphic principles as presented on the museum's "geological staircase", and the origin of petroleum source rocks. The museum houses spectacular examples of Early Jurassic marine reptiles. All knowledge gained in the Jurassic of southern Germany enriches the students' understanding of the Jurassic subsurface petroleum system in Saudi Arabia, which is one of the world's largest petroleum reservoirs. The combination of museum visits followed by field studies centered around the Ries Geopark in southern Germany not only creates a world-class attraction for Geotourists, but also an ideal teaching laboratory for students interested in Physical and Planetary Geology, Historical Geology, and Paleontology at various levels within the respective subjects.
Innovations In Site Characterization: Geophysical Investigation at Hazardous Waste Sites
This compendium describes a number of geophysical technologies and methods that were used at 11 sites with significantly different geological settings and types of subsurface contamination, ranging from relatively homogeneous stratigraphy to the highly ...
NASA Astrophysics Data System (ADS)
McNamara, David; Milicich, Sarah; Massiot, Cécile
2017-04-01
Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.
Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.
2010-01-01
A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).
Sedimentary silicon isotope indicates the Kuroshio subsurface upwelling in the East China Sea
NASA Astrophysics Data System (ADS)
Zhao, Y.; Yang, S.; Su, N.
2017-12-01
The Kuroshio as the western boundary current of the North Pacific subtropical circulation, originates from east of the Philippine Islands, and flows northeastward along the eastern coast of Taiwan. It's subsurface water intrudes the East China Sea (ECS) and forms a typical upwelling on the inner shelf, which may play an important role in the material and heat transport, biogeochemical process and marine ecosystem of the ECS.To date, most previous studies on the Kuroshio subsurface upwelling focuse on the seasonal and interannual variations, and few researches touch on the upwelling evolution in the geologic past. In this study, eight short sediment cores were taken along the ECS inner shelf (upwelling area), which allow us to reconstruct the upwelling history over the last several hundred years. Although conventional indexes of oceanographic changes, such as salinity, temperature and hydrogen and oxygen isotope, provide valuable constraints on the modern oceanic circulation and water mass movements, how to reconstruct them from geologic records is always a challenging work. In this contribution, we present the data of stable silicon isotope, biogenic opal, diatom assemblages, element geochemistry and stable carbon and nitrogen isotopes of these core sediments, and aim to decipher the Kuroshio subsurface upwelling history on the ECS shelf. We will also illustrate the difference in δ30Si signals between small (<30 um) and large (>150 um) diatom fractions, and test whether it is an effective indicator for paleo-upwelling intensity.
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
2016-08-09
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.
Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less
Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective
NASA Astrophysics Data System (ADS)
Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.
2010-06-01
A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.
Desert pavement study at Amboy, California
NASA Technical Reports Server (NTRS)
Williams, S.; Greeley, R.
1984-01-01
Desert pavement is a general term describing a surface that typically consists of a thin layer of cm-sized rock fragments set on top of a layer of finer material in which no fragments are found. An understanding of desert pavement is important to planetary geology because they may play a major role in the formation and visibility of various aeolian features such as wind streaks, which are important on Mars and may be important on Venus. A field study was conducted in Amboy, California to determine the formation mechanism of desert pavements. The probable sequence of events for the formation and evolution of a typical desert pavement surface, based on this experiment and the work of others, is as follows. Starting with a layer of surface material consisting of both fine particles and rock fragments, aeolian deflation will rapidly erode the surface until an armored lag is developed, after which aeolian processes become less important. The concentration of fragments then slowly increases as new fragments are brought to the surface from the subsurface and as fragments move downslope by sheet wash. Sheet wash would be responsible for removing very fine particles from the surface and for moving the fragments relative to one another, forming interlocks.
Method for formation of subsurface barriers using viscous colloids
Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.
1998-11-17
A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.
Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data
NASA Astrophysics Data System (ADS)
Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam
2018-04-01
Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.
Goodman, Angela; Sanguinito, Sean; Levine, Jonathan S.
2016-09-28
Carbon storage resource estimation in subsurface saline formations plays an important role in establishing the scale of carbon capture and storage activities for governmental policy and commercial project decision-making. Prospective CO 2 resource estimation of large regions or subregions, such as a basin, occurs at the initial screening stages of a project using only limited publicly available geophysical data, i.e. prior to project-specific site selection data generation. As the scale of investigation is narrowed and selected areas and formations are identified, prospective CO 2 resource estimation can be refined and uncertainty narrowed when site-specific geophysical data are available. Here, wemore » refine the United States Department of Energy – National Energy Technology Laboratory (US-DOE-NETL) methodology as the scale of investigation is narrowed from very large regional assessments down to selected areas and formations that may be developed for commercial storage. In addition, we present a new notation that explicitly identifies differences between data availability and data sources used for geologic parameters and efficiency factors as the scale of investigation is narrowed. This CO 2 resource estimation method is available for screening formations in a tool called CO 2-SCREEN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Angela; Sanguinito, Sean; Levine, Jonathan S.
Carbon storage resource estimation in subsurface saline formations plays an important role in establishing the scale of carbon capture and storage activities for governmental policy and commercial project decision-making. Prospective CO 2 resource estimation of large regions or subregions, such as a basin, occurs at the initial screening stages of a project using only limited publicly available geophysical data, i.e. prior to project-specific site selection data generation. As the scale of investigation is narrowed and selected areas and formations are identified, prospective CO 2 resource estimation can be refined and uncertainty narrowed when site-specific geophysical data are available. Here, wemore » refine the United States Department of Energy – National Energy Technology Laboratory (US-DOE-NETL) methodology as the scale of investigation is narrowed from very large regional assessments down to selected areas and formations that may be developed for commercial storage. In addition, we present a new notation that explicitly identifies differences between data availability and data sources used for geologic parameters and efficiency factors as the scale of investigation is narrowed. This CO 2 resource estimation method is available for screening formations in a tool called CO 2-SCREEN.« less
Rybakov, M.; Shapira, A.; Al-Zoubi, A.; ten Brink, Uri S.; Hofstetter, R.; Kraeva, N.; Feldman, L.
2006-01-01
The spatial distribution of the earthquakes in the Arava Valley, a 150-km section of the Dead Sea Transform, is compared for the first time with the local subsurface geological features derived from geophysical and geological data. Gravity data suggested that the Gharandal, Timna, and Elat basins were filled by low-density young sediments. These features were confirmed by seismic reflection profiles and high-resolution aeromagnetic (HRAM) survey. The HRAM survey delineated the trace of the Dead Sea Transform (DST), which separates magnetic anomalies in the eastern and western parts of the valley, and revealed the occurrence of the unknown deep magmatics. Overall, the earthquake activity appears to be strongly related to the Dead Sea Transform. However, on a local scale, there is no apparent correlation between the seismicity and the mapped fault segments comprising the DST fault system. Absence of the correlation may be a result of insufficient accuracy of the earthquake localization and/or the inclined fault plane. However, in spite of such inaccuracy, it is clearly observed that the large clusters of the low-magnitude earthquakes coincide well with the sedimentary basins. Two pronounced clusters appear to coincide with the subsurface magmatics. We assume that the subsurface geology predetermines areas of stress accumulation and earthquakes. These areas can be the end of faults, or fault jogs, which sometimes create basins. Magmatism can also be affected by the stress field and predetermine the stress and earthquakes' allocation. ?? 2007 Science From Israel/LPPLtd.
NASA Astrophysics Data System (ADS)
Varnali, Tereza; Edwards, Howell G. M.
2013-07-01
Scytonemin is a cyanobacterial sheath pigment with potent UV absorbing (UV-A, UV-B and UV-C) properties. The importance of this biomolecule is its photoprotective function which is one of the major survival strategies adopted by extremophiles to combat high energy radiation insolation in environmentally stressed conditions. Also, iron (III) oxides offering an additional UV-protecting facility to subsurface biological colonization as well as banded iron formations with zones of iron depletion in rock matrices have attracted attention with special interest in the mobilisation and transportation of iron compounds through the rock. This study represents a novel proposal that an iron-scytonemin complex could facilitate the movement of iron through the subsurface rock as part of the this extremophilic survival strategy. The predicted Raman wavenumbers for the proposed scytonemin complex of iron(III) are derived computationally using DFT calculations. Comparison of the experimentally observed Raman spectra of scytonemin with the theoretically predicted Raman spectra of the iron-scytonemin complex show that the latter may be discriminated and the expected characteristic bands are reported in relation to structural changes that are effected upon complexation. This information will inform the future search for experimental evidence for an iron-scytonemin complex, which has not been recognised hitherto and which could provide a novel biosignature for the extremophilic colonization of terrestrial iron-rich geological matrices. Such a terrestrial scenario would be potentially of significance for the remote robotic analytical exploration of the iron-rich surface and immediate subsurface of Mars.
Sweetkind, D.S.; Du Bray, E.A.
2008-01-01
The U.S. Geological Survey (USGS), the Desert Research Institute (DRI), and a designee from the State of Utah are currently conducting a water-resources study of aquifers in White Pine County, Nevada, and adjacent areas in Nevada and Utah, in response to concerns about water availability and limited geohydrologic information relevant to ground-water flow in the region. Production of ground water in this region could impact water accumulations in three general types of aquifer materials: consolidated Paleozoic carbonate bedrock, and basin-filling Cenozoic volcanic rocks and unconsolidated Quaternary sediments. At present, the full impact of extracting ground water from any or all of these potential valley-graben reservoirs is not fully understood. A thorough understanding of intermontane basin stratigraphy, mostly concealed by the youngest unconsolidated deposits that blanket the surface in these valleys, is critical to an understanding of the regional hydrology in this area. This report presents a literature-based compilation of geologic data, especially thicknesses and lithologic characteristics, for Tertiary volcanic rocks that are presumably present in the subsurface of the intermontane valleys, which are prominent features of this area. Two methods are used to estimate volcanic-rock thickness beneath valleys: (1) published geologic maps and accompanying descriptions of map units were used to compile the aggregate thicknesses of Tertiary stratigraphic units present in each mountain range within the study areas, and then interpolated to infer volcanic-rock thickness in the intervening valley, and (2) published isopach maps for individual out-flow ash-flow tuff were converted to digital spatial data and thickness was added together to produce a regional thickness map that aggregates thickness of the individual units. The two methods yield generally similar results and are similar to volcanic-rock thickness observed in a limited number of oil and gas exploration drill holes in the region, although local geologic complexity and the inherent assumptions in both methods allow only general comparison. These methods serve the needs of regional ground-water studies that require a three-dimensional depiction of the extent and thickness of subsurface geologic units. The compilation of geologic data from published maps and reports provides a general understanding of the distribution and thickness of tuffs that are presumably present in the subsurface of the intermontane valleys and are critical to understanding the ground-water hydrology of this area.
Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs
Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; ...
2014-12-31
We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach, dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may bemore » used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less
Geospatial Analysis of Oil and Gas Wells in California
NASA Astrophysics Data System (ADS)
Riqueros, N. S.; Kang, M.; Jackson, R. B.
2015-12-01
California currently ranks third in oil production by U.S. state and more than 200,000 wells have been drilled in the state. Oil and gas wells provide a potential pathway for subsurface migration, leading to groundwater contamination and emissions of methane and other fluids to the atmosphere. Here we compile available public databases on oil and gas wells from the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources, the U.S. Geological Survey, and other state and federal sources. We perform geospatial analysis at the county and field levels to characterize depths, producing formations, spud/completion/abandonment dates, land cover, population, and land ownership of active, idle, buried, abandoned, and plugged wells in California. The compiled database is designed to serve as a quantitative platform for developing field-based groundwater and air emission monitoring plans.
Tuck, L.K.
1993-01-01
Mississippian through Holocene rocks crop out in the area. Emplaced Tertiary igneous rocks have caused structural deformation. Aquifers are Holocene alluvium, Quaternary interstratified sand and gravel, and Upper Cretaceous Judith River Formation and Virgelle Sandstone Member of Eagle Sandstone. Recharge to each aquifer is through combinations of infiltration of precipitation, streamflow, irrigation return flow, stored surface water, and subsurface inflow. Discharge is through combinations of seepage to streams, withdrawals from wells, flow of springs and seeps, evapotranspiration, and subsurface outflow. Water in alluvium flows sub- parallel to stream channels. One water sample had a dissolved-solids concentration of 439 milligrams per liter. Water in the interstratified sand and gravel generally moves northward. Transmissivity was estimated at 900 feet squared per day. Dissolved- solids concentration ranged from 154 to 1,600 milligrams per liter. Water quality is least feasible for irrigation, marginal for domestic use, and generally suitable for livestock. Water in the Judith River Formation probably flows northeast and southeast. One water sample had a dissolved-solids concentration of 855 milligrams per liter. Water in the Virgelle Sandstone Member generally flows north. Transmissivity ranges from 200 to 3,700 feet squared per day. Dissolved-solids concentration ranged from 213 to 1,360 milligrams per liter. Water quality near outcrops is mostly adequate for domestic and livestock use and marginal for irrigation, but deteriorates downgradient. Unknown perennial yields and water quality could limit development of this resource. Miners Coulee, Breed Creek, and Bear Gulch flow intermittently. Dissolved-solids concentration ranged from 241 to 774 milligrams per liter.
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.
2013-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; De Siena, L.
2015-12-01
The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.
Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability
NASA Astrophysics Data System (ADS)
Senske, D.; Pappalardo, R. T.; Prockter, L. M.; Paczkowski, B.; Vance, S.; Goldstein, B.; Magner, T. J.; Cooke, B.
2014-12-01
Europa is a prime candidate to search for a present-day habitable environment in our solar system. As such, NASA has engaged a Science Definition Team (SDT) to define a strategy to advance our scientific understanding of this icy world with the goal: Explore Europa to investigate its habitability. A mission architecture is defined where a spacecraft in Jupiter orbit would make many close flybys of Europa, concentrating on remote sensing to explore the moon. The spacecraft trajectory would permit ~45 flybys at a variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's surface. This concept is known as the Europa Clipper. The SDT recommended three science objectives for the Europa Clipper: Ice Shell and Ocean--Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition--Understand the habitability of Europa's ocean through composition and chemistry; Geology--Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The SDT also considered implications of the recent HST detection of plumes at Europa. To feed forward to potential future exploration that could be enabled by a lander, it was deemed that the Clipper should provide the capability to perform reconnaissance. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two objectives: Site Safety--Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; Science Value--Assess the composition of surface materials, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active upwelling of ocean material. The Clipper concept provides an efficient means to explore Europa and investigate its habitability. Development of the mission concept is ongoing with current studies focusing on spacecraft design trades and refinements, launch vehicle options (EELV and SLS), and power source (MMRTG and solar), to name a few.
NASA Astrophysics Data System (ADS)
Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.
2015-12-01
The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.
Washington Geothermal Play Fairway Analysis Data From Potential Field Studies
Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William
2017-12-20
A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...
WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY
Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.
2014-02-01
Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core weremore » monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridgley, Jennie; Taylor, David J.; Huffman, Jr., A. Curtis
2000-06-08
Multichannel surface seismic reflection data recording is a standard industry tool used to examine various aspects of geology, especially the stratigraphic characteristics and structural style of sedimentary formations in the subsurface. With the help of the Jicarilla Apache Tribe and the Bureau of Indian Affairs we were able to locate over 800 kilometers (500 miles) of multichannel seismic reflection data located on the Jicarilla Apache Indian reservation. Most of the data was received in hardcopy form, but there were data sets where either the demultiplexed digital field data or the processed data accompanied the hardcopy sections. The seismic data wasmore » acquired from the mid 1960's to the early 1990's. The most extensive seismic coverage is in the southern part of the reservation, although there are two good surveys located on the northeastern and northwestern parts of the reservation. Most of the data show that subsurface formations are generally flat-lying in the southern and western portion of the reservation. There is, however, a significant amount of structure imaged on seismic data located over the San Juan Basin margin along the east-central and northern part of the reservation. Several west to east trending lines in these areas show a highly faulted monoclinal structure from the deep basin in the west up onto the basin margin to the east. Hydrocarbon exploration in flat lying formations is mostly stratigraphic in nature. Where there is structure in the subsurface and indications are that rocks have been folded, faulted, and fractured, exploration has concentrated on structural traps and porosity/permeability "sweet spots" caused by fracturing. Therefore, an understanding of the tectonics influencing the entire section is critical in understanding mechanisms for generating faults and fractures in the Cretaceous. It is apparent that much of the hydrocarbon production on the reservation is from fracture porosity in either source or reservoir sequences. Therefore it is important to understand the mechanism that controls the location and intensity of the fractures. A possible mechanism may be deep seated basement faulting that has been active through time. Examining the basement fault patterns in this part of the basin and their relation to fracture production may provide a model for new plays on the Jicarilla Indian Reservation. There are still parts of the reservation where the subsurface has not been imaged geophysically with either conventional two-dimensional or three-dimensional reflection seismic techniques. These methods, especially 3-D seismic, would provide the best data for mapping deep basement faulting. The authors would recommend that 3-D seismic be acquired along the Basin margin located along the eastern edge of the reservation and the results be used to construct detailed fault maps which may help to locate areas with the potential to contain highly fractured zones in the subsurface.« less
Subsurface Tectonics and Pingos of Northern Alaska
NASA Astrophysics Data System (ADS)
Skirvin, S.; Casavant, R.; Burr, D.
2008-12-01
We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary analysis shows that more than half the pingos occur within 150 m of the vertical projections of subsurface fault plane traces. In a previous, unpublished geostatistical study, comparison of pingo and random locations indicated a non-random NE-trending alignment of pingos. This trend in particular matches the dominant orientation of fault sets that are linked to the most recent tectonic deformation of the region. A concurrent Phase 2 of the study examines the potential role of near-surface stratigraphic units in regard to both pingos and faults. Both surface and subsurface coarse-grained deposits across the region are often controlled by fault structures; this study is the first to assess any relationship between reservoir rocks and pingo locations. Cross-sections were constructed from well log data to depths of 100 meters. Subsurface elements were compared with surface features. Although some studies have linked fine-grained surface sediments with pingo occurrence, our analysis hints that coarse-grained sediments underlie pingos and may be related to near-surface fluid transmissivity, as suggested by other researchers. We also investigated pingo occurrence in relationship to upthrown or downthrown fault blocks that vary in the degree of deformation and fluid transmission. Results will guide a proposed pingo drilling project to test linkages between pingos, subsurface geology, hydrology, and petroleum systems. Findings from this study could aid research and planning for field exploration of similar settings on Earth and Mars.
Mosier, Elwin L.; Bullock, John H.
1988-01-01
The Central Oklahoma aquifer is the principal source of ground water for municipal, industrial, and rural use in central Oklahoma. Ground water in the aquifer is contained in consolidated sedimentary rocks consisting of the Admire, Council Grove, and Chase Groups, Wellington Formation, and Garber Sandstone and in the unconsolidated Quaternary alluvium and terrace deposits that occur along the major stream systems in the study area. The Garber Sandstone and the Wellington Formation comprise the main flow system and, as such, the aquifer is often referred to as the 'Garber-Wellington aquifer.' The consolidated sedimentary rocks consist of interbedded lenticular sandstone, shale, and siltstone beds deposited in similar deltaic environments in early Permian time. Arsenic, chromium, and selenium are found in the ground water of the Central Oklahoma aquifer in concentrations that, in places, exceed the primary drinking-water standards of the Environmental Protection Agency. Gross-alpha concentrations also exceed the primary standards in some wells, and uranium concentrations are uncommonly high in places. As a prerequisite to a surface and subsurface solid-phase geochemical study, this report summarizes the general geology of the Central Oklahoma study area. Summaries of results from certain previously reported solid-phase geochemical studies that relate to the vicinity of the Central Oklahoma aquifer are also given; including a summary of the analytical results and distribution plots for arsenic, selenium, chromium, thorium, uranium, copper, and barium from the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) Program.
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate information on the condition of the subsurface is very important for site evaluation for engineering purposes. In this study two dimensional (2D) geoelectrical resistivity survey and cone penetration tests were conducted to study the hazardous effect of excess near surface water on the foundation of building in a reclaimed land located at Victoria Island area of Lagos State. The results of the inverted 2D geoelectrical resistivity data revealed three distinct geoelectrical layers characterized by low to moderate electrical resistivity of 2.23 and 129Ωm and 9.46 to 636Ωm respectively. The topsoil is characterized by wet sandy soil, which is underlain by sandy clay and banded at the below by a geologic formation of low resistivity which is suspected to be clay. The clay material may be responsible for the excess water retention observed in the area. The CPT method on the other hand revealed a geological formation of low resistance to penetration between 2-3 kg/cm2 from the topsoil to a depth of 7 m, which may be the effect of excess water in the near surface. This study revealed that the foundation of building may not be founded directly on the soil in any reclaimed land as this may result in collapse as a result of upward migration of water to the near surface.
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
NASA Astrophysics Data System (ADS)
Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.
2017-03-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.
2017-01-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Geophysical characterization of Range-Front Faults, Snake Valley, Nevada
Asch, Theodore H.; Sweetkind, Donald S.
2010-01-01
In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial fill. These deposits lie east of a steeply east-dipping normal fault that cuts all units and has about 100 m of east-side-down offset.
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
NASA Astrophysics Data System (ADS)
Rupf, Isabel
2013-04-01
To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the framework model are interpreted seismic lines, 3d-models can be generated either in time or in depth domain. Some partners will build their 3d-model in time domain and convert it after finishing to depth. Other participants will transform seismic information first and will model directly in depth domain. To ensure comparability between the different parts transnational velocity models for time-depth conversion are required at an early stage of the project. The exchange of model geometries, topology, and geo-scientific content will be achieved applying an appropriate cyberinfrastructure called GST. It provides functionalities to ensure semantic and technical interoperability. Within the project GeoMol a web server for the dissemination of 3d geological models will be implemented including an administrative interface for the role-based access, real-time transformation of country-specific coordinate systems and a web visualisation features. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu. The GeoMol 3D-modelling team: Roland Baumberger (swisstopo), Magdalena Bottig (GBA), Alessandro Cagnoni (RLB), Laure Capar (BRGM), Renaud Couëffé (BRGM), Chiara D'Ambrogi (ISPRA), Chrystel Dezayes (BRGM), Gerold Diepolder (LfU BY), Charlotte Fehn (LGRB), Sunseare Gabalda (BRGM), Gregor Götzl (GBA), Andrej Lapanje (GeoZS), Fabio Carlo Molinari (RER-SGSS), Edgar Nitsch (LGRB), Robert Pamer (LfU BY), Sebastian Pfleiderer (GBA), Marco Pantaloni (ISPRA), Uta Schulz (LfU BY), Günter Sokol (LGRB), Gunther Wirsing (LGRB), Heiko Zumsprekel (LGRB)
Geology of the Cooper Ridge NE Quadrangle, Sweetwater County, Wyoming
Roehler, Henry W.
1979-01-01
The Cooper Ridge NE 7?-minute quadrangle is 18 miles southeast of Rock Springs, Wyo., on the east flank of the Rock Springs uplift. Upper Cretaceous rocks composing the Rock Springs Formation, Ericson Sandstone, Almond Formation, Lewis Shale, Fox Hills Sandstone, and Lance Formation, Paleocene rocks composing the Fort Union Formation, and Eocene rocks composing the Wasatch Formation are exposed and dip 5?-8? southeast. Outcrops are unfaulted and generally homoclinal, but a minor cross-trending fold, the Jackknife Spring anticline, plunges southeastward and interrupts the northeast strike of beds. Older rocks in the subsurface are faulted and folded, especially near the Brady oil and gas field. Coal beds are present in the Almond, Lance, and Fort Union Formations. Coal resources are estimated to be more than 762 million short tons in 16 beds more than 2.5 feet thick, under less than 3,000 ft of overburden. Nearly 166 million tons are under less than 200 ft of overburden and are recoverable by strip mining. Unknown quantities of oil and gas are present in the Cretaceous Rock Springs, Blair, and Dakota Formations, Jurassic sandstone (Entrada Sandstone of drillers), Jurassic(?) and Triassic(?) Nugget Sandstone, Permian Park City Formation, and Pennsylvanian and Permian Weber Sandstone at the Brady field, part of which is in the southeast corner of the quadrangle, and in the Dakota Sandstone at the Prenalta Corp. Bluewater 33-32 well near the northern edge of the quadrangle. Other minerals include uranium in the Almond Formation and titanium in the Rock Springs Formation.
NASA Astrophysics Data System (ADS)
Ciarletti, Valérie; Clifford, Stephen; Plettemeier, Dirk; Le Gall, Alice; Hervé, Yann; Dorizon, Sophie; Quantin-Nataf, Cathy; Benedix, Wolf-Stefan; Schwenzer, Susanne; Pettinelli, Elena; Heggy, Essam; Herique, Alain; Berthelier, Jean-Jacques; Kofman, Wlodek; Vago, Jorge L.; Hamran, Svein-Erik; WISDOM Team
2017-07-01
The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples.
Active fungi amidst a marine subsurface RNA paleome
NASA Astrophysics Data System (ADS)
Orsi, W.; Biddle, J.; Edgcomb, V.
2012-12-01
The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Since extracellular DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA signatures by amplicon pyrosequencing, metazoan, plant, and diatom rRNA signatures were recovered from marine sediments up to 2.7 million years old, suggesting that rRNA may be much more stable than previously considered in the marine subsurface. This finding confirms the concept of a paleome, extending it to include rRNA. Within the same dataset, unique profiles of fungi were found across a range of marine subsurface provinces exhibiting statistically significant correlations with total organic carbon (TOC), sulfide, and dissolved inorganic carbon (DIC). Sequences from metazoans, plants and diatoms showed different correlation patterns, consistent with a depth-controlled paleome. The fungal correlations with geochemistry allow the inference that some fungi are active and adapted for survival in the marine subsurface. A metatranscriptomic analysis of fungal derived mRNA confirms that fungi are metabolically active and utilize a range of organic and inorganic substrates in the marine subsurface.
WISDOM, a polarimetric GPR for the shallow subsurface characterization
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Plettemeier, D.; Hassen-Kodja, R.; Clifford, S. M.; Wisdom Team
2011-12-01
WISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a polarimetric Ground Penetrating Radar (GPR) that has been selected to be part of the Pasteur payload onboard the Rover of the 2018 ExoMars mission. It will perform large-scale scientific investigations of the sub-surface of the landing site and provide precise information about the subsurface structure prior to drilling. WISDOM has been designed to provide accurate information on the sub-surface structure down to a depth in excess to 2 meters (commensurate to the drill capacities) with a vertical resolution of a several centimetres. It will give access to the geological structure, electromagnetic nature, and, possibly, to the hydrological state of the shallow subsurface by retrieving the layering and properties of the layers and buried reflectors. The data will also be used to determine the most promising locations to collect underground samples with the drilling system mounted on board the rover. Polarimetric measurements have been recently acquired on perfectly known targets as well as in natural environments. They demonstrated the ability to provide a better understanding of sub-surface structure and significantly reduce the ambiguity associated with identifying the location of off-nadir reflectors, relative to the rover path. This work describes the instrument and its operating modes with particular emphasis on its polarimetric capacities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, S.C.
1993-03-01
This study undertakes the goal of mapping bedrock lithology combined with analyzing low temperature bedrock-water interactions to determine possible ion contributions which alter the acidity of water. Originally mapped by Marland Billings at a much larger scale, this study concentrates on the bedrock geology in a less than a one kilometer square area located between Mt. Monroe and Mt. Washington in the Presidential range of New Hampshire. Ground magnetometer transects help determine and constrain the geology of the surface and subsurface bedrock. Optical mineralogy on thin sections from each of the lithologies will determine mineral assemblages. Locally present formations includemore » the Devonian Littleton, and the Silurian Smalls Falls, and Madrid. These are intruded by the Bickford Granite (Devonian) and Mesozoic( ) dikes. Precipitation in the Lake of the Clouds watershed is acidic. Rainwater from this area has a pH range of 4.0 to 4.7. In comparison, groundwater samples ranges from pH 4.5 to 5.5. This rise in pH may be due to a neutralization reaction during the water's residence in the bedrock. In the laboratory, atomic absorption/emission analysis, for the elements calcium, magnesium, potassium and sodium have identified certain neutralizing cations present in groundwater. Continued atomic absorption/emission analysis of natural acid precipitation filtered through crushed rock samples isolates individual cation contributions from each lithology. SEM/EDS analysis of thin sections from the local bedrock lithologies has identified high concentrations of neutralizing cations available in the Madrid formation. Fast X-ray maps indicate that tremolite and diopside within the Madrid formation contain high concentration of calcium, which has been observed in the natural groundwater system as a neutralizing agent.« less
Fuzzy inference system for identification of geological stratigraphy off Prydz Bay, East Antarctica
NASA Astrophysics Data System (ADS)
Singh, Upendra K.
2011-12-01
The analysis of well logging data plays key role in the exploration and development of hydrocarbon reservoirs. Various well log parameters such as porosity, gamma ray, density, transit time and resistivity, help in classification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular geological stratigraphy formation are function of its composition, physical properties that help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify the kind of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the kinds of stratigraphy from well logs over Prydz bay basin, East Antarctica using fuzzy inference system. A model is built based on few data sets of known stratigraphy and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. Initially the fuzzy based algorithm is trained, validated and tested on well log data and finally identifies the formation lithology of a hydrocarbon reservoir system of study area. The effectiveness of this technique is demonstrated by the analysis of the results for actual lithologs and coring data of ODP Leg 188. The fuzzy results show that the training performance equals to 82.95% while the prediction ability is 87.69%. The fuzzy results are very encouraging and the model is able to decipher even thin layer seams and other strata from geophysical logs. The result provides the significant sand formation of depth range 316.0- 341.0 m, where core recovery is incomplete.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Geologic report on the San Rafael Swell Drilling Project, San Rafael Swell, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluhm, C.T.; Rundle, J.G.
1981-08-01
Twenty-two holes totaling 34,874 feet (10,629.6 meters) were rotary and core drilled on the northern and western flanks of the San Rafael Swell to test fluvial-lacustrine sequences of the Morrison Formation and the lower part of the Chinle Formation. The objective of the project was to obtain subsurface data so that improved uranium resource estimates could be determined for the area. Although the Brushy Basin and the Salt Wash Members of the Morrison Formation are not considered favorable in this area for the occurrence of significant uranium deposits, uranium minerals were encountered in several of the holes. Some spotty ormore » very low-grade mineralization was also encountered in the White Star Trunk area. The lower part of the Chinle Formation is considered to be favorable for potentially significant uranium deposits along the west flank of the San Rafael Swell. One hole (SR-202) east of Ferron, Utah, intersected uranium, silver, molybdenum, and copper mineralization. More exploratory drilling in the vicinity of this hole is recommended. As a result of the study of many geochemical analyses and a careful determination of the lithology shown by drilling, a sabkha environment is suggested for the concentration of uranium, zinc, iron, lead, copper, silver, and perhaps other elements in parts of the Moody Canyon Member of the Moenkopi Formation.« less
Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives
NASA Astrophysics Data System (ADS)
Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.
2011-12-01
CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from injection reservoirs. Where plumes probabilistically intersect subsurface activities, reach groundwater, or reach the surface, RISCS uses cost estimates from the Leakage Impact Valuation framework to estimate CO2 storage leakage and interference risk in monetary terms. This framework estimates costs that might be incurred if CO2 leaks from an injection reservoir. Such leakage could beget a variety of costs, depending on the nature and extent of the impacts. The framework identifies multiple costs under headings of: (a) finding and fixing the leak, (b) business disruption, and (c) cleaning up and paying for damages. The framework also enumerates the distribution of costs between ten different stakeholders, and allocates these costs along four leakage scenarios: 1) No interference, 2) interference with a subsurface activity, 3) interference with groundwater, and 4) migration to the surface. Our methodology facilitates research along two lines. First, it allows a probabilistic assessment of leakage costs to an injection operator, and thus what the effect of leakage might be on CCS market effectiveness. Second, it allows a broader inquiry about injection site prioritization from the point of view of various stakeholders.
Three-phase heaters with common overburden sections for heating subsurface formations
Vinegar, Harold J [Bellaire, TX
2012-02-14
A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.
Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.
2007-12-01
A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.
Modeling the Buildup of Annular Pressure in Cased and Uncased Annuli of Faulty Wellbores
NASA Astrophysics Data System (ADS)
Lackey, G.; Rajaram, H.
2017-12-01
Structurally sound wellbores are essential to oil and gas production, natural gas storage, and carbon dioxide sequestration operations. Wellbore integrity is easily assessed at the wellhead by the presence of pressure or gas flow in the outer annuli of a well, as it indicates the uncontrolled vertical migration of fluids outside the production casing. This phenomenon is typically referred to as sustained casing pressure (SCP), sustained annular pressure, or surface casing vent flow. Of particular concern is the buildup of pressure in the surface casing annulus. If the surface casing is sealed at the wellhead and cement is not brought into the bottom of the casing, annular pressure that builds induces gas migration when the fluid and entry pressure of the formation at the bottom of the surface casing is exceeded. Multiple incidents of stray gas migration from oil and gas operations have contaminated water wells in Colorado, Pennsylvania, and Ohio through this mechanism. Natural gas escaping the #25 Standard Senson well at the Aliso Gas storage facility in California, the largest accidental release of greenhouse gases in US history, also followed this pathway. Previous studies have modeled the buildup of SCP in faulty wells with fully-cased annuli that are isolated from the surrounding formation. However, the majority of onshore oil and gas wells in the US are constructed with uncased outermost annuli that are hydraulically connected to the surrounding subsurface. In this study, we adapt current approaches of modeling SCP to include the regulation of annular liquid level by formation fluid pressure, dissolution of gas into the annular liquids, the transport of aqueous gas by crossflow into deep formations, and gas migration away from the well, when the entry pressure of the formations or fractures along the uncased annulus is exceeded, to compare the buildup behavior of SCP in both uncased and fully-cased annuli. We consider well construction and subsurface geology representative of the Wattenberg Field in Colorado and interpret observations of sustained casing pressure collected by the Colorado Oil and Gas Conservation Commission. We demonstrate that the potential negative consequences of integrity loss are much greater for an uncased well than for fully-cased well.
Know your audience: public perception of geology from anecdote to evidence
NASA Astrophysics Data System (ADS)
Gibson, Hazel
2015-04-01
One of the basic strategies of science communication is to 'know your audience' (Nerlich et al, 2010), yet often scientists are communicating to a distant and diffuse audience that cannot be seen or directly engaged with. Both traditional written reports and emerging online media provide limited or no opportunity to engage audiences in dialogues with the communicator that can convey the public's own levels of knowledge. In those circumstances it becomes almost impossible to know your audience. For geoscientists, this decoupling from the intended audience is made more problematic when conveying new technical issues such as carbon capture and storage or deep geological disposal of radioactive waste, which are rooted in the unfamiliar subsurface (Sharma et al, 2007; Ashworth et al, 2009). Those geologists who have engaged with the public in these novel realms often have fashioned informal ways to overcome their audience's geological unfamiliarity based on the trial-and-error of personal experience, but such anecdotal lessons are rarely applicable to wider communities of practice. In recent years, however, our ad hoc intuitive ideas about how to comprehend public perceptions of geology have gained rigour from evidence-based theory (Singleton et al, 2009). This presentation highlights one example of this, using an ongoing study into the public understanding of the geological subsurface in south west England. Results from a combination of interviews and questionnaires were assessed using the established psychological technique: 'mental models' (Morgan et al, 2002). The work demonstrates how a mixed method approach can move geoscience communication beyond casual assumptions and individual rules of thumb to a more robust scientific way of thinking.
Iterative refinement of implicit boundary models for improved geological feature reproduction
NASA Astrophysics Data System (ADS)
Martin, Ryan; Boisvert, Jeff B.
2017-12-01
Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.
Visualization of nuclear particle trajectories in nuclear oil-well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, C.R.; Chiaramonte, J.M.
Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less
NASA Astrophysics Data System (ADS)
Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim
2014-05-01
The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web application enables an intuitive navigation through all available information and allows the visualization of geological maps (2D), seismic transects (2D/3D), wells (2D/3D), and the 3D-model. These achievements will alleviate spatial and geological data management within the German State Geological Offices and foster the interoperability of heterogeneous systems. It will provide guidance to a systematic subsurface management across system, domain and administrative boundaries on the basis of a federated spatial data infrastructure, and include the public in the decision processes (e-Governance). Yet, the interoperability of the systems has to be strongly propelled forward through agreements on standards that need to be decided upon in responsible committees. The project B3D is funded with resources from the European Fund for Regional Development (EFRE).
Aüllo, Thomas; Berlendis, Sabrina; Lascourrèges, Jean-François; Dessort, Daniel; Duclerc, Dominique; Saint-Laurent, Stéphanie; Schraauwers, Blandine; Mas, Johan; Patriarche, Delphine; Boesinger, Cécile; Magot, Michel; Ranchou-Peyruse, Anthony
2016-01-01
Deep subsurface aquifers despite difficult access, represent important water resources and, at the same time, are key locations for subsurface engineering activities for the oil and gas industries, geothermal energy, and CO2 or energy storage. Formation water originating from a 760 m-deep geological gas storage aquifer was sampled and microcosms were set up to test the biodegradation potential of BTEX by indigenous microorganisms. The microbial community diversity was studied using molecular approaches based on 16S rRNA genes. After a long incubation period, with several subcultures, a sulfate-reducing consortium composed of only two Desulfotomaculum populations was observed able to degrade benzene, toluene, and ethylbenzene, extending the number of hydrocarbonoclastic–related species among the Desulfotomaculum genus. Furthermore, we were able to couple specific carbon and hydrogen isotopic fractionation during benzene removal and the results obtained by dual compound specific isotope analysis (𝜀C = -2.4‰ ± 0.3‰; 𝜀H = -57‰ ± 0.98‰; AKIEC: 1.0146 ± 0.0009, and AKIEH: 1.5184 ± 0.0283) were close to those obtained previously in sulfate-reducing conditions: this finding could confirm the existence of a common enzymatic reaction involving sulfate-reducers to activate benzene anaerobically. Although we cannot assign the role of each population of Desulfotomaculum in the mono-aromatic hydrocarbon degradation, this study suggests an important role of the genus Desulfotomaculum as potential biodegrader among indigenous populations in subsurface habitats. This community represents the simplest model of benzene-degrading anaerobes originating from the deepest subterranean settings ever described. As Desulfotomaculum species are often encountered in subsurface environments, this study provides some interesting results for assessing the natural response of these specific hydrologic systems in response to BTEX contamination during remediation projects. PMID:26904000
NASA Astrophysics Data System (ADS)
Barcelona, Hernan; Favetto, Alicia; Peri, Veronica Gisel; Pomposiello, Cristina; Ungarelli, Carlo
2013-01-01
Despite its reduced penetration depth, audiomagnetotelluric (AMT) studies can be used to determine a broad range of features related to little studied geothermal fields. This technique requires a stepwise interpretation of results taking into consideration diverse information (e.g. topographic, hydrological, geological and/or structural data) to constrain the characteristics of the study area. In this work, an AMT study was performed at the hot springs in the northern segment of the La Candelaria Range in order to characterize the area at depth. Geometric aspects of the shallow subsurface were determined based on the dimensional and distortion analysis of the impedance tensors. Also, the correlation between structural features and regional strikes allowed us to define two geoelectric domains, useful to determine the controls on fluid circulation. The subsurface resistivity distribution was determined through 1D and 2D models. The patterns of the 1D models were compared with the morpho-structure of the range. Shallow and deep conductive zones were defined and a possible shallow geothermal system scheme proposed. A strong correlation was found between the AMT results and the geological framework of the region, showing the relevance of using AMT in geothermal areas during the early stages of subsurface prospecting.
Johnson, Raymond H.; Yager, Douglas B.
2006-01-01
In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, wells and piezometers were installed to allow for coring during installation, subsurface hydrologic testing, and the monitoring of ground-water hydraulic heads and geochemistry. This report summarizes the data that were collected during and after the installation of these wells and piezometers and includes (1) subsurface completion details, (2) locations and elevations, (3) geologic logs and elemental data, (4) slug test data for the estimation of subsurface hydraulic conductives, and (5) hydraulic head data.
NASA Astrophysics Data System (ADS)
Metwaly, Mohamed; El-Qady, Gad; Massoud, Usama; El-Kenawy, Abeer; Matsushima, Jun; Al-Arifi, Nasser
2010-09-01
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.
Brooks, G.A.; Olyphant, G.A.; Harper, D.
1991-01-01
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Brooks, Glenn A.; Olyphant, Greg A.; Harper, Denver
1991-07-01
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.
NASA Astrophysics Data System (ADS)
Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.
2013-12-01
Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.
Geological maps and models: are we certain how uncertain they are?
NASA Astrophysics Data System (ADS)
Mathers, Steve; Waters, Colin; McEvoy, Fiona
2014-05-01
Geological maps and latterly 3D models provide the spatial framework for geology at diverse scales or resolutions. As demands continue to rise for sustainable use of the subsurface, use of these maps and models is informing decisions on management of natural resources, hazards and environmental change. Inaccuracies and uncertainties in geological maps and models can impact substantially on the perception, assessment and management of opportunities and the associated risks . Lithostratigraphical classification schemes predominate, and are used in most geological mapping and modelling. The definition of unit boundaries, as 2D lines or 3D surfaces is the prime objective. The intervening area or volume is rarely described other than by its bulk attributes, those relating to the whole unit. Where sufficient data exist on the spatial and/or statistical distribution of properties it can be gridded or voxelated with integrity. Here we only discuss the uncertainty involved in defining the boundary conditions. The primary uncertainty of any geological map or model is the accuracy of the geological boundaries, i.e. tops, bases, limits, fault intersections etc. Traditionally these have been depicted on BGS maps using three line styles that reflect the uncertainty of the boundary, e.g. observed, inferred, conjectural. Most geological maps tend to neglect the subsurface expression (subcrops etc). Models could also be built with subsurface geological boundaries (as digital node strings) tagged with levels of uncertainty; initial experience suggests three levels may again be practicable. Once tagged these values could be used to autogenerate uncertainty plots. Whilst maps are predominantly explicit and based upon evidence and the conceptual the understanding of the geologist, models of this type are less common and tend to be restricted to certain software methodologies. Many modelling packages are implicit, being driven by simple statistical interpolation or complex algorithms for building surfaces in ways that are invisible and so not controlled by the working geologist. Such models have the advantage of being replicable within a software package and so can discount some interpretational differences between modellers. They can however create geologically implausible results unless good geological rules and control are established prior to model calculation. Comparisons of results from varied software packages yield surprisingly diverse results. This is a significant and often overlooked source of uncertainty in models. Expert elicitation is commonly employed to establish values used in statistical treatments of model uncertainty. However this introduces another possible source of uncertainty created by the different judgements of the modellers. The pragmatic solution appears to be using panels of experienced geologists to elicit the values. Treatments of uncertainty in maps and models yield relative rather than absolute values even though many of these are expressed numerically. This makes it extremely difficult to devise standard methodologies to determine uncertainty or propose fixed numerical scales for expressing the results. Furthermore, these may give a misleading impression of greater certainty than actually exists. This contribution outlines general perceptions with regard to uncertainty in our maps and models and presents results from recent BGS studies
NASA Astrophysics Data System (ADS)
Habibi, Tahereh; Ruban, Dmitry A.
2017-09-01
The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.
Low Cost, Low Power, Passive Muon Telescope for Interrogating Martian Sub-Surface
NASA Technical Reports Server (NTRS)
Kedar, Sharon; Tanaka, Hirukui; Naudet, Charles; Plaut, Jeffrey J.; Jones, Cathleen E.; Webb, Frank H.
2012-01-01
It has been demonstrated on Earth that a low power, passive muon detector can penetrate deep into geological structures up to several kilometers in size providing high density images of their interiors. Muon tomography is an entirely new class of planetary instrumentation that is ideally suited to address key areas in Mars Science, such as: the search for life and habitable environments, the distribution and state of water and ice and the level of geologic activity on Mars today.
Radon potential, geologic formations, and lung cancer risk
Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay
2015-01-01
Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth
This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties ofmore » underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO{sub 2} leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.« less
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
75 FR 81037 - Waste Confidence Decision Update
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... well beyond the current analysis that supports at least 60 years of post-licensed life storage with... environmental factors including surrounding population density, water resources, seismicity, subsurface geology... expiration of the 60-year post licensed life period, the Commission will revisit the Waste Confidence...
IN-SITU BIOREMEDIATION OF GROUND WATER AND GEOLOGICAL MATERIAL: A REVIEW OF TECHNOLOGIES
In situ bioremediation of subsurface environments involve the use of microorganisms to convert contaminants to less harmful products and sometimes offers significant potential advantages over other remediation technologies. n order for these biodegradative processes to occur, icr...
Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul
2001-01-01
This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.
NASA Astrophysics Data System (ADS)
Sun, J.; Li, Y.
2017-12-01
Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to illustrate how to solve the inverse problem, assess uncertainty, and perform geology differentiation in practice. We will also discuss the potential applications of this new method to large scale crustal studies.
Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael
2015-10-01
This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves
NASA Astrophysics Data System (ADS)
Ferer, M. V.; Smith, D. H.; Lace, M. J.
2013-12-01
'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from the physical model, we assumed that the geologic layer was of uniform thickness and that the strain in both directions were the same. The latter may not be the case for the Brazilian, Toca de Boa Cave. These assumptions can be easily modified in our computer code to reflect different geologic histories. Even so the quantitative agreement suggests that our model networks are statistically realistic both for the 'forerunners' of caves and for general fracture networks in geologic layers, which should assist the study of underground fluid flow in many applications for which fracture patterns and fluid flow are difficult to determine (e.g., hydrology, watershed management, oil recovery, carbon dioxide sequestration, etc.). Keywords - Fracture Networks, Karst, Caves, Structurally Variable Pathways, hydrogeological modeling 1 Arthur N. Palmer, CAVE GEOLOGY, pub. Cave Books, Dayton OH, (2007).
Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.
2014-01-01
While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.