Science.gov

Sample records for subsurface horizontal flow

  1. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Hill, F. E-mail: stripathy@nso.edu

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  2. Evaluation of unclogging aspects in horizontal subsurface flow constructed wetlands.

    PubMed

    Miranda, Suymara Toledo; de Matos, Antonio Teixeira; Baptestini, Gheila Corrêa Ferres; Borges, Alisson Carraro

    2016-10-01

    In horizontal subsurface flow constructed wetlands (HSSF-CWs), the main operational problem is clogging of the porous medium. In this study, the unclogging of HSSF-CWs was evaluated, at rest, by adding a nitrogen-based nutrient solution to the influent. For this, six HSSF-CWs were used, consisting of two uncultivated (CW-C), two cultivated with Tifton 85-grass (Cynodon spp.) (CW-T) and two cultivated with alligator weed (Alternanthera philoxeroides) (CW-A), which were fully clogged after being used for the treatment of swine wastewater. The results indicated that passage of the nutrient solution for 55 days through the bed of the HSSF-CWs resulted in reductions of 11 and 33%, respectively, in the total volatile solids (TVS) concentration of fine clogging material in the CW-T and CW-A. With regard to the TVS content of the coarse clogging material, the reduction was even greater, being 33% for CW-T and 62% for CW-A. Measurements of K0 made along the beds (thirds 1, 2 and 3) before and after passage of the nutrient solution in the CWs indicated respective increases of 7, 13 and 0.1% in CW-C; 21, 11 and 7% in CW-T; and 52%, 6% and -6% (decrease) in CW-A. Runoff of the nutrient solution decreased gradually over time, presenting at the beginning of the experiment 26, 35 and 150 cm, and at the end (after 55 days of application) 0, 0 and 50 cm in the flow direction of the CW-C and CW-T and CW-A, respectively.

  3. Laboratory and numerical evaluation of borehole methods for subsurface horizontal flow characterization.

    SciTech Connect

    Pedler, William H. (Radon Abatement Systems, Inc., Golden, CO); Jepsen, Richard Alan (Sandia National Laboratories, Carlsbad, NM)

    2003-08-01

    The requirement to accurately measure subsurface groundwater flow at contaminated sites, as part of a time and cost effective remediation program, has spawned a variety of flow evaluation technologies. Validation of the accuracy and knowledge regarding the limitations of these technologies are critical for data quality and application confidence. Leading the way in the effort to validate and better understand these methodologies, the US Army Environmental Center has funded a multi-year program to compare and evaluate all viable horizontal flow measurement technologies. This multi-year program has included a field comparison phase, an application of selected methods as part of an integrated site characterization program phase, and most recently, a laboratory and numerical simulator phase. As part of this most recent phase, numerical modeling predictions and laboratory measurements were made in a simulated fracture borehole set-up within a controlled flow simulator. The scanning colloidal borescope flowmeter (SCBFM) and advanced hydrophysical logging (NxHpL{trademark}) tool were used to measure velocities and flow rate in a simulated fractured borehole in the flow simulator. Particle tracking and mass flux measurements were observed and recorded under a range of flow conditions in the simulator. Numerical models were developed to aid in the design of the flow simulator and predict the flow conditions inside the borehole. Results demonstrated that the flow simulator allowed for predictable, easily controlled, and stable flow rates both inside and outside the well. The measurement tools agreed well with each other over a wide range of flow conditions. The model results demonstrate that the Scanning Colloidal Borescope did not interfere with the flow in the borehole in any of the tests. The model is capable of predicting flow conditions and agreed well with the measurements and observations in the flow simulator and borehole. Both laboratory and model results showed a

  4. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Wang, A L; Yu, Y X; Yang, L Y

    2017-01-01

    A novel electrolysis-integrated horizontal subsurface-flow constructed wetland system (E-HFCWs) was developed for intensified removal of nitrogen and phosphorus contaminated water. The dynamics of nitrogen and phosphorus removal and that of main water qualities of inflow and outflow were also evaluated. The hydraulic retention time (HRT) greatly enhanced nitrate removal when the electrolysis current intensity was stabilized at 0.07 mA/cm(2). When the HRT ranged from 2 h to 12 h, the removal rate of nitrate increased from 20% to 84%. Phosphorus (P) removal was also greatly enhanced-exceeding 90% when the HRT was longer than 4 h in the electrolysis-integrated HFCWs. This improved P removal is due to the in-situ formation of ferric ions by anodizing of sacrificial iron anodes, causing chemical precipitation, physical adsorption and flocculation of phosphorus. Thus, electrolysis plays an important role in nitrate and phosphorus removal. The diversity and communities of bacteria in the biofilm of substrate was established by the analysis of 16S rDNA gene sequences, and the biofilm was abundant with Comamonadaceae and Xanthomonadaceae bacteria in E-HFCWs. Test results illustrated that the electrolysis integrated with horizontal subsurface-flow constructed wetland is a feasible and effective technology for intensified nitrogen and phosphorus removal. Copyright © 2016. Published by Elsevier Ltd.

  5. Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO.

    PubMed

    Llorens, Esther; Saaltink, Maarten W; Poch, Manel; García, Joan

    2011-01-01

    The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs.

  6. Model-based design of horizontal subsurface flow constructed treatment wetlands: a review.

    PubMed

    Rousseau, Diederik P L; Vanrolleghem, Peter A; De Pauw, Niels

    2004-03-01

    The increasing application of constructed wetlands for wastewater treatment coupled with increasingly strict water quality standards is an ever growing incentive for the development of better process design tools. This paper reviews design models for horizontal subsurface flow constructed treatment wetlands, ranging from simple rules of thumb and regression equations, to the well-known first-order k-C* models, Monod-type equations and more complex dynamic, compartmental models. Especially highlighted in this review are the model constraints and parameter uncertainty. A case study has been used to demonstrate the model output variability and to unravel whether or not more complex but also less manageable models offer a significant advantage to the designer.

  7. Limestone and Zeolite as Alternative Media in Horizontal Subsurface Flow Constructed Wetlands: Laboratory-Scale Studies

    NASA Astrophysics Data System (ADS)

    Lizama, K.; Jaque, I.; Ayala, J.

    2016-12-01

    Arsenic is well known for its chronic toxicity. Millions of people around the world are currently at risk, drinking water with As concentrations above 10 ppb, the WHO drinking water guideline. Although different treatment options exist, they are often limited by elevated costs and maintenance requirements. Constructed wetlands are a natural water treatment system, capable to remove metals and metalloids -including As- via different physical, chemical and biological processes. The use of alternative supporting media to enhance As removal in subsurface flow wetlands has been recommended, but not sufficiently studied. Limestone and zeolite have been identified as effective supporting media in subsurface flow wetlands aiming As removal. However, there are still key aspects to be addressed, such as the implications of using these media, the speciation in the solid phase, the role of vegetation, etc. This study investigated the performance of limestone and zeolite in three types of experiments: batch, column and as main supporting media in a bench scale horizontal subsurface flow wetland system. Synthetic water resembling a contaminated river in Chile (As concentration=3 mg/L, Fe concentration= 100 mg/L, pH=2) was used in all experiments. In the batch experiments, the As concentration, the mass of media and the contact time were varied. The column system consisted of three limestone columns and three zeolite columns, operated under a hydraulic loading of 20 mm/d. The wetland system consisted of twelve PVC cells: six filled with zeolite and six with limestone. Phragmites australis were planted in three cells of each media type, as control cells. From the batch experiments, maximum As sorption capacities as indicated by Langmuir model were 1.3 mg/g for limestone and 0.17 mg/g for zeolite, at 18 h contact time and 6.3 g/L medium concentration. EDS and XPS analyses revealed that As and Fe were retained in zeolite at the end of the batch experiments. Zeolite and limestone

  8. [Treatment of 1, 2-dichlorobenzene in wastewater by using horizontal subsurface flow constructed wetlands].

    PubMed

    Ding, Cheng; Yang, Tang-Yi; Yu, Qian; Li, Zhao-Xia; Yang, Chun-Sheng

    2011-09-01

    Pilot-scale horizontal subsurface flow constructed wetlands (SFCW) planted with Phragmites australis were constructed to treat in 1,2-dichlorobenzene (o-DCB) wastewater. Different soil substrates of loam (W-L), fine sand (W-F) and coarse sand (W-C) were used in the three SFCW and a loam wetland with no reeds W-Z was taken as control. Results showed that the optimal hydraulic retention time (HRT) and pollutants surface loading rate(ALR)were 5 d and 150 mg x (m2 x d)(-1). Removal efficiencies for o-DCB of W-L, W-F, W-C and W-Z were 81.2%, 71.1%, 72.4% and 65.2%, respectively. The performance of systems achieved in mid-August and declined from October, with order of W-L > W-C > W-Z > W-F. Spatial concentration dynamics of o-DCB and dissolved oxygen (DO) were also investigated in W-L and W-Z, which indicated that DO was an important role to removal of o-DCB. The residual quantity of o-DCB in wetland substrate decreased along the flow direction and increased with the depth of substrate layers, the mean residual in the root, stem and leaf of reeds were 30.28, 14.85 and 6.18 microg x g(-1).

  9. Optimal conditions for chlorothalonil and dissolved organic carbon in horizontal subsurface flow constructed wetlands.

    PubMed

    Rìos-Montes, Karina A; Casas-Zapata, Juan C; Briones-Gallardo, Roberto; Peñuela, Gustavo

    2017-01-13

    The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L(-1)) and one concentration of glucose (20 mg L(-1)) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18-6.35 mm), coarse gravel (12.70-25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%-85.31%) were found when using fine gravel (3.18-6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18-6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.

  10. Vertical Subsurface Flow Mixing and Horizontal Anisotropy in Coarse Fluvial Aquifers: Structural Aspects

    NASA Astrophysics Data System (ADS)

    Huggenberger, P.; Huber, E.

    2014-12-01

    Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams

  11. Effects of intermittent loading on nitrogen removal in horizontal subsurface flow wetlands.

    PubMed

    Forbes, Margaret G; Yelderman, Joe C; Potterton, Tina; Doyle, Robert D

    2010-01-01

    Removal of CBOD(5) and nitrogen from septic tank effluent was evaluated in four horizontal subsurface flow (HSSF) wetlands. An intermittently loaded cell was compared to a continuously loaded control cell, with both treatments receiving the same weekly volume. The intermittent cell was rapidly drained and "rested" for 24-hr, then refilled in steps, twice weekly. Two media with different particle sizes but similar porosities were also compared. The two media, light weight expanded shale and gravel, were both continuously loaded. As hypothesized, the wetland cell that was intermittently loaded had higher dissolved oxygen, greater ammonia removal, and greater nitrate production than the continuously loaded cells. Areal NH(3)-N removal for the intermittently loaded cell was 0.90 g m(-2) d(-1) compared to 0.47 g m(-2) d(-1) for the control. Ammonia removal was also higher in continuously loaded gravel cells than in cells with expanded shale. Ammonia-N removal was an order of magnitude lower in a similar SSF wetland that had been in operation for 3 years. However, CBOD(5), total suspended solids, and total nitrogen did not vary substantially among the treatments.

  12. Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter.

    PubMed

    Caselles-Osorio, Aracelly; García, Joan

    2006-11-01

    In this study, the effect of the influent type of organic matter (dissolved or particulate) on the efficiency of two experimental horizontal subsurface flow constructed wetlands (SSF CWs) was investigated. The SSF CWs' surface area was 0.54 m(2) and the water depth was 0.3m. They were monitored for a period of 9 months. One of the SSF CWs was fed with dissolved organic matter (glucose, assumed to be readily biodegradable), and the other with particulate organic matter (starch, assumed to be slowly biodegradable). The removal efficiency of the systems was tested at different hydraulic retention times (HRTs) in the presence or absence of sulphate. The removal efficiency of the COD was not different in the two systems, reaching eliminations of around 85% in the presence of sulphates and around 95% in their absence. Ammonia N removal was low in the two SSF CWs; the system fed with glucose generally had statistically significant higher removal (45%) than the one fed with starch (40%). Ammonia N removal was more affected by the HRT than by the presence or absence of sulphates. Hydraulic conductivity measurements showed that it was lower near the inlet of the SFF CW fed with glucose, probably connected to the fact that there was a more substantial development of the biofilm. The results of this study suggest that SSF CWs are not sensitive to the type of organic matter in the influents, whether it is readily (like glucose) or slowly (like starch) biodegradable, for the removal of COD.

  13. Determination and removal of antibiotics in secondary effluent using a horizontal subsurface flow constructed wetland.

    PubMed

    Zhang, Chunhui; Ning, Ke; Zhang, Wenwen; Guo, Yuanjie; Chen, Jun; Liang, Chen

    2013-04-01

    Increased attention is currently being directed towards the potential negative effects of antibiotics and other PPCPs discharged into the aquatic environment via municipal WWTP secondary effluents. A number of analytical methods, such as high performance liquid chromatography technologies, including a high performance liquid chromatography-fluorescence method (HPLC-FLD), high performance liquid chromatography-UV detection method (HPLC-UV) and high performance liquid chromatography-mass spectrometry method (HPLC-MS), have been suggested as determination technologies for antibiotic residues in water. In this study, we implement a HPLC-MS/MS combined method to detect and analyze antibiotics in WWTP secondary effluent and apply a horizontal subsurface flow constructed wetland (CW) as an advanced wastewater treatment for removing antibiotics in the WWTP secondary effluent. The results show that there were 2 macrolides, 2 quinolones and 5 sulfas in WWTP secondary effluent among all the 22 antibiotics considered. After the CW advanced treatment, the concentration removal efficiencies and removal loads of 9 antibiotics were 53-100% and 0.004-0.7307 μg m(-2) per day, respectively.

  14. Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2003-06-01

    Subsurface horizontal flow experimental wetlands (reed beds), were designed and built based on a combination of two design methodologies, that of the WRc and Severn Trent Water plc (1996) and that of the USA, EPA (1988). Four different growing media were used with a combination of top soil, gravel, river sand, and mature sewage sludge compost, to determine the best substrate for total suspended solids (TSS) removal. Eight units were constructed, two for each growing media. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary treated domestic wastewater, was continuously fed to the beds for more than six months. All eight beds performed very well. The best performance was achieved by the gravel reed beds with an almost constant removal rate above 95% and an average effluent concentration of less than 10 mg/L. Soil based beds containing top soil and sand, managed to reach values of removal around 90%. The wetlands containing compost in their substrate, produced an effluent with average concentration of less than 30 mg/L and a percentage removal between 80% and 90%. As expected, there was no significant difference in the performance of planted and unplanted wetlands.

  15. Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland.

    PubMed

    Vohla, Christina; Põldvere, Elar; Noorvee, Alar; Kuusemets, Valdo; Mander, Ulo

    2005-01-01

    During the study period from 1997 to 2002 the purification efficiency of phosphorus in the horizontal subsurface flow (HSSF) constructed wetland (CW) in Kodijärve, has been quite high (63-95%). However, slowly increasing trend in outlet P concentrations and decreasing annual P removal rate are obviously the indicators that show possible saturation processes in filter media. To search for potential filter media with high phosphorus sorption capacity, sorption characteristics and particle size distribution of several local sands, gravels, glauconite-sandstone, LWA, and calcareous waste products from oil-shale industry were investigated. The average P sorption capacity for best materials (crashed ash block, oil, shale fly ash and the sediment from oil shale ash plateau) was higher than 96% and estimated design capacity was around 4-5 g P kg(-1). According to results, sediment from oil shale ash plateau was considered as perspective filter media for P retention. In Summer 2002 experimental sedimentation filter, filled with the sediment from oil shale ash plateau, was installed in the outlet from the Kodijärve HSSF CW. According to preliminary results the average P removal in the sedimentation filter was 52%.

  16. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    PubMed

    Casas-Zapata, Juan C; Ríos, Karina; Florville-Alejandre, Tomás R; Morató, Jordi; Peñuela, Gustavo

    2013-01-01

    This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.

  17. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater.

    PubMed

    Xu, Jingcheng; Zhao, Gang; Huang, Xiangfeng; Guo, Haobo; Liu, Wei

    2017-03-04

    According to the characteristics of the reverse osmosis concentrate (ROC) generated from iron and steel company, we used three sets of parallel horizontal subsurface flow (HSF) constructed wetlands (CWs) with different plants and substrate layouts to treat the high-salinity wastewater. The plant growth and removal efficiencies under saline condition were evaluated. The evaluation was based entirely on routinely collected water quality data and the physical and chemical characteristics of the plants (Phragmites australis, Typha latifolia, Iris wilsonii, and Scirpus planiculmis). The principal parameters of concern in the effluent were chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The results showed that the CWs were able to remove COD, TN, and TP from ROC. S. planiculmis was not suitable for the treatment of high-saline wastewater. The sequence of metals accumulated in CW plants was K>Ca>Na>Mg>Zn>Cu. More than 70% of metals were accumulated in the aboveground of P. australis. The CW filled with gravel and manganese ore and planted with P. australis and T. latifolia had the best performance of pollutant removal, with average removal of 49.96%, 39.45%, and 72.01% for COD, TN, and TP, respectively. The effluent water quality met the regulation in China. These results suggested that HSF CW planted with P. australis and T. latifolia can be applied for ROC pollutants removal.

  18. Comparison of vertical and horizontal flow planted and unplanted subsurface flow wetlands treating municipal wastewater.

    PubMed

    Pandey, M K; Jenssen, P D; Krogstad, T; Jonasson, Sven

    2013-01-01

    In the search for design criteria for constructed wetlands (CWs) in Nepal a semi-scale experimental setup including horizontal flow (HF) and vertical flow (VF) CWs was developed. This paper compares the performance of HF and VF wetlands, and planted with unplanted beds. The experimental setup consists of two units of HF and VF beds of size 6 m × 2 m × 0.6 m and 6 m × 2 m × 0.8 m (length × width × depth) respectively. For both HF and VF systems, one unit was planted with Phragmites karka (local reed) and one was not planted. The systems were fed with wastewater drawn from the grit chamber of a municipal wastewater treatment plant. The media consisted of river gravel. In the first phase of the experiment the hydraulic loading rate (HLR) was varied in steps; 0.2, 0.08, 0.04 m(3)/m(2)/d and the percent removal increase with decrease in HLR for all beds and parameters except for total phosphorus. In the second phase the loading rate of 0.04 m(3)/m(2)/d was run for 7 months. In both parts of the experiment the planted beds performed better than the unplanted beds and the VF better than the HF beds. To meet Nepalese discharge standards HF beds are sufficient, but to meet stricter requirements a combination of HF and VF beds are recommended.

  19. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW).

    PubMed

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin; Anderson, Bruce; Cheng, Shuiping

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg · L(-1)). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (ΦPS II) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities.

  20. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    PubMed

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E

    2013-03-01

    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix.

  1. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.

    PubMed

    Headley, T R; Davison, L; Huett, D O; Müller, R

    2012-02-01

    The balance between evapotranspiration (ET) loss and rainfall ingress in treatment wetlands (TWs) can affect their suitability for certain applications. The aim of this paper was to investigate the water balance and seasonal dynamics in ET of subsurface horizontal flow (HF) TWs in a sub-tropical climate. Monthly water balances were compiled for four pilot-scale HF TWs receiving horticultural runoff over a two year period (Sep. 1999-Aug. 2001) on the sub-tropical east-coast of Australia. The mean annual wetland ET rate increased from 7.0 mm/day in the first year to 10.6 mm/day in the second, in response to the development of the reed (Phragmites australis) population. Consequently, the annual crop coefficients (ratio of wetland ET to pan evaporation) increased from 1.9 in the first year to 2.6 in the second. The mean monthly ET rates were generally greater and more variable than the Class-A pan evaporation rates, indicating that transpiration is an important contributor to ET in HF TWs. Evapotranspiration rates were generally highest in the summer and autumn months, and corresponded with the times of peak standing biomass of P. australis. It is likely that ET from the relatively small 1 m wide by 4 m long HF TWs was enhanced by advection through so-called "clothesline" and "oasis" effects, which contributed to the high crop coefficients. For the second year, when the reed population was well established, the annual net loss to the atmosphere (taking into account rainfall inputs) accounted for 6.1-9.6 % of the influent hydraulic load, which is considered negligible. However, the net loss is likely to be higher in arid regions with lower rainfall. The Water Use Efficiency (WUE) of the wetlands in the second year of operation was 1.3 g of above-ground biomass produced per kilogram of water consumed, which is low compared to agricultural crops. It is proposed that system level WUE provides a useful metric for selecting wetland plant species and TW design alternatives to

  2. Influence of flow velocity on the removal of faecal coliforms in horizontal subsurface flow constructed wetland.

    PubMed

    Lohay, W S; Lyimo, T J; Njau, K N

    2012-01-01

    In order to determine the influence of flow velocity on the removal of faecal coliforms (FC) in constructed wetlands (CWs), removal rate constants of FC (k(FC)) were studied at various flow velocities (u). Membrane filtration technique was used during analysis. Values of k(FC) were determined using Reed's equation of pathogen removal; the results were compared with the plug flow equation. According to Reed's equation, k(FC) values ranged from 1.6 day⁻¹ at a velocity of 4 m/day to 34.5 day⁻¹ at a velocity of 42.9 m/day. The removal rates correlated positively with flow velocity (r = 0.84, p < 0.05). On assuming a plug flow equation, removal rates constants ranged from 0.77 to 11.69 day⁻¹; a more positive correlation (r = 0.93, p < 0.05) was observed. Optimum removal rate constants were observed for the velocity ranging 36 to 43 m/day. Generally, the increase of flow velocity improved FC removal rate constants: implying that pathogen removals are influenced by diffusion of the microorganisms into the biofilms on CW media. The velocity dependent approach together with the plug flow equation is therefore proposed for incorporation in the design of CW in a tropical climate where temperature variations are minor.

  3. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Soltani Mohammadi, Amir; Ghanavati, Hossein

    2016-06-01

    Composting facility leachate usually contains high concentrations of pollutants including heavy metals that are seriously harmful to the environment and public health. The main purpose of this study was to evaluate heavy metals removal from Isfahan composting facility (ICF) leachate by a horizontal flow constructed wetland (HFCWs) system. Two horizontal systems were constructed, one planted with vetiver and the other without plant as a control. They both operated at a flow rate of 24 L/day with a 5-day hydraulic retention time (HRT). The average removal efficiencies for Cr (53 %), Cd (40 %), Ni (35 %), Pb (30 %), Zn (35 %), and Cu (40 %) in vetiver constructed wetland were significantly higher than those of the control (P < 0.05). Accumulations of heavy metals in roots were higher than shoots. Cd and Zn showed the highest and the lowest bioconcentration factor (BCF), respectively. Vetiver tolerates the extreme condition in leachate including high total dissolved solids.

  4. Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland.

    PubMed

    Vohla, Christina; Alas, Reimo; Nurk, Kaspar; Baatz, Sabrina; Mander, Ulo

    2007-07-15

    The dynamics of nitrogen (N), phosphorus (P) and carbon (C) accumulation in the filter material of a horizontal subsurface constructed wetland (HSSF CW; established in 1997) and in a specially designed oil-shale ash filter (2002) for P retention have been studied. Concentrations of N, P and C in filter media (coarse sand) in the HSSF beds show an increasing trend. Both the annual accumulation of P and increasing outflow concentrations of P in the HSSF CW reflect the possible saturation of filter media with P after 8 years working. Tested ash material derived from oil-shale combustion demonstrated very high P removal efficiency in laboratory batch experiments. However, during the first 4 months of the in situ ash filter experiment, the efficiency of P removal was about 71% (an average outflow concentration of 1.9 mg L(-1) was achieved). Subsequently, the efficiency decreased to 10-20%, which might be a sign of saturation or clogging due to quick biofilm development on the ash particles. The increasing of hydraulic retention time and the improvement of design for maximal contact between material and wastewater are considered to be key factors that can provide optimal pH for the removal processes.

  5. Clogging development and hydraulic performance of the horizontal subsurface flow stormwater constructed wetlands: a laboratory study.

    PubMed

    Tang, Ping; Yu, Bohai; Zhou, Yongchao; Zhang, Yiping; Li, Jin

    2017-02-21

    The horizontal subsurface constructed wetland (HSSF CW) is a highly effective technique for stormwater treatment. However, progressive clogging in HSSF CW is a widespread operational problem. The aim of this study was to understand the clogging development of HSSF CWs during stormwater treatment and to assess the influence of microorganisms and vegetation on the clogging. Moreover, the hydraulic performance of HSSF CWs in the process of clogging was evaluated in a tracer experiment. The results show that the HSSF CW can be divided into two sections, section I (circa 0-35 cm) and section II (circa 35-110 cm). The clogging is induced primarily by solid entrapment in section I and development of biofilm and vegetation roots in section II, respectively. The influence of vegetation and microorganisms on the clogging appears to differ in sections I and II. The tracer experiment shows that the hydraulic efficiency (λ) and the mean hydraulic retention time (t mean) increase with the clogging development; although, the short-circuiting region (S) extends slightly. In addition, the presence of vegetation can influence the hydraulic performance of the CWs, and their impact depends on the characteristics of the roots.

  6. Dairy farm wastewater treatment using horizontal subsurface flow wetlands with Typha domingensis and different substrates.

    PubMed

    Schierano, María Celeste; Maine, María Alejandra; Panigatti, María Cecilia

    2017-01-01

    The aim of this work was to evaluate the influence of different substrates in the performance of a horizontal flow constructed wetland employed in dairy farm wastewater treatment. Typha domingensis was chosen for this study due to its high productivity and efficiency in nutrient removal. Fifteen microcosm-scale reactors simulating horizontal flow constructed wetlands were disposed in a greenhouse in triplicate. Five substrates (river gravel, gravel, LECA, river gravel + zeolite and gravel + zeolite) were evaluated. Real effluent with previous treatment was used. Dairy farm effluents favoured T. domingensis growth, probably due to their high nutrient concentrations. The treatments with the different substrates studied were efficient in the treatment of the dairy farm effluent obtaining ammonium ([Formula: see text]) and total phosphorus (TP) removals between 88-99% and 86-99%, respectively. Removal efficiencies were significantly higher in treatments using LECA and combined substrate (gravel + zeolite). After treatment, the quality of the final effluent was significantly improved. Outlet effluent complied with regulations and could be discharged into the environment.

  7. The structure and spatio-temporal distribution of the Archaea in a horizontal subsurface flow constructed wetland.

    PubMed

    Bouali, Moez; Zrafi-Nouira, Ines; Bakhrouf, Amina; Le Paslier, Denis; Chaussonnerie, Sébastien; Ammar, Emna; Sghir, Abdelghani

    2012-10-01

    In this study, archaeal community structure and temporal dynamics were monitored, using 16S rRNA clone libraries construction from a horizontal subsurface flow constructed wetland. Phylogenetic assignation of 1026 16S rRNA gene sequences shows that 96.2% of the total operational taxonomic units (OTUs) were affiliated with Thaumarchaeota, a newly proposed archaeal phylum and 3.7% with unclassified Archaea. Among the total sequences, 42% and 40.2% were affiliated with Candidatus Nitrososphaera and unclassified Nitrosopumilus respectively with more than 99% similarity. Results suggest that several dominant and active nitrifiers may benefit from the micro-aerobic conditions around the reed roots to perform ammonia oxidation. The archaeal diversity detected in the rhizosphere zone is clearly different from that detected in the bottom basin. This engineered habitat revealed the reed root and the water composition effects on the archaeal diversity.

  8. Effect of diffusional mass transfer on the performance of horizontal subsurface flow constructed wetlands in tropical climate conditions.

    PubMed

    Njau, K N; Gastory, L; Eshton, B; Katima, J H Y; Minja, R J A; Kimwaga, R; Shaaban, M

    2011-01-01

    The effect of mass transfer on the removal rate constants of BOD5, NH3, NO3 and TKN has been investigated in a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) planted with Phragmites mauritianus. The plug flow model was assumed and the inlet and outlet concentrations were used to determine the observed removal rate constants. Mass transfer effects were studied by assessing the influence of interstitial velocity on pollutant removal rates in CW cells of different widths. The flow velocities varied between 3-46 m/d. Results indicate that the observed removal rate constants are highly influenced by the flow velocity. Correlation of dimensionless groups namely Reynolds Number (Re), Sherwood Number (Sh) and Schmidt Number (Sc) were applied and log-log plots of rate constants against velocity yielded straight lines with values beta = 0.87 for BOD5, 1.88 for NH3, 1.20 for NO3 and 0.94 for TKN. The correlation matched the expected for packed beds although the constant beta was higher than expected for low Reynolds numbers. These results indicate that the design values of rate constants used to size wetlands are influenced by flow velocity. This paper suggests the incorporation of mass transfer into CW design procedures in order to improve the performance of CW systems and reduce land requirements.

  9. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks.

    PubMed

    Li, Wei; Zhang, Yan; Cui, Lijuan; Zhang, Manyin; Wang, Yifei

    2015-08-01

    A horizontal subsurface flow constructed wetland (HSSF-CW) was designed to improve the water quality of an artificial lake in Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China. Artificial neural networks (ANNs), including multilayer perceptron (MLP) and radial basis function (RBF), were used to model the removal of total phosphorus (TP). Four variables were selected as the input parameters based on the principal component analysis: the influent TP concentration, water temperature, flow rate, and porosity. In order to improve model accuracy, alternative ANNs were developed by incorporating meteorological variables, including precipitation, air humidity, evapotranspiration, solar heat flux, and barometric pressure. A genetic algorithm and cross-validation were used to find the optimal network architectures for the ANNs. Comparison of the observed data and the model predictions indicated that, with careful variable selection, ANNs appeared to be an efficient and robust tool for predicting TP removal in the HSSF-CW. Comparison of the accuracy and efficiency of MLP and RBF for predicting TP removal showed that the RBF with additional meteorological variables produced the most accurate results, indicating a high potentiality for modeling TP removal in the HSSF-CW.

  10. Evaluation of clogging in planted and unplanted horizontal subsurface flow constructed wetlands: solids accumulation and hydraulic conductivity reduction.

    PubMed

    De Paoli, André Cordeiro; von Sperling, Marcos

    2013-01-01

    This study aimed to evaluate the behaviour of two horizontal subsurface flow constructed wetland units regarding solids build up and clogging of the filter medium. In order to analyse the causes of this process, which is considered the major operational problem of constructed wetlands, studies were carried out to characterize accumulated solids and hydraulic conductivity at specific points of the beds of two wetlands (planted with Typha latifolia and unplanted units) receiving effluent from an upflow anaerobic sludge blanket reactor treating sanitary sewage (population equivalent of 50 inhabitants each unit). The experiments were performed after the units were operating for 2 years and 4 months. This study presents comparative results related to the quantification and characterization of accumulated solids and hydraulic conductivity along the length and width of the filter beds. Approximately 80% of the solids found were inorganic (fixed). Near the inlet end, the rate interstitial solids/attached solids was 5.0, while in the outlet end it was reduced to 1.5. Hydraulic conductivity was lower near the inlet of the units (as expected) and, by comparing the planted wetland with the unplanted, the hydraulic conductivity was lower in the former, resulting in larger undesired surface flow.

  11. Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland.

    PubMed

    Tee, Heng-Chong; Lim, Poh-Eng; Seng, Chye-Eng; Mohd Nawi, Mohd Asri; Adnan, Rohana

    2015-01-01

    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effect of primary treatment and flow regime on clogging development in horizontal subsurface flow constructed wetlands: An experimental evaluation.

    PubMed

    Pedescoll, Anna; Corzo, Angélica; Alvarez, Eduardo; García, Joan; Puigagut, Jaume

    2011-06-01

    The effect of both the type of primary treatment (hydrolitic up-flow sludge blanket (HUSB) reactor and conventional settling) and the flow regime (batch and continuous) on clogging development in subsurface flow constructed wetlands (SSF CWs) was studied. Clogging indicators (such as accumulated solids, hydraulic conductivity and drainable porosity) were determined in an experimental plant with three treatment lines. Correlations were encountered between the solids accumulated and both saturated hydraulic conductivity and drainable porosity reduction over time (74.5% and 89.2% of correlation, respectively). SSF CW implemented with a HUSB reactor accumulated ca. 30% lower sludge (1.9 kg DM/m(2)) than a system with a settler (2.5-2.8 kg DM/m(2)). However, no significant differences were recorded among treatment lines concerning hydraulic parameters (such as hydraulic conductivity or porosity). Root system development contributed to clogging. Accordingly, planted wetlands showed between 30% and 40% and 10% lower hydraulic conductivity and porosity reduction, respectively, than non-planted wetlands.

  13. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    PubMed

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  14. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios.

    PubMed

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao

    2016-05-01

    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present.

  15. Effects of step-feeding and intermittent aeration on organics and nitrogen removal in a horizontal subsurface flow constructed wetland.

    PubMed

    Patil, Sagar; Chakraborty, Saswati

    2017-03-21

    The effect of step feed strategy and intermittent aeration on removal of chemical oxygen demand (COD) and nitrogen was investigated in a laboratory scale horizontal subsurface flow constructed wetland (HSSFCW). Wetland was divided into four zones along the length (zone I to IV), and influent was introduced into first and third zones by step feeding. Continuous study was carried out in four phases. In phases I to III, 30% of influent was bypassed to zone III for denitrification along with organics removal. Intermittent aeration was provided only in zone II at 2.5 L/min for 4 h/day, during phases II, III and IV. In phase I, 87% COD and 43% NH4(+)-N (ammonia-nitrogen) removal were obtained from influents of 331 and 30 mg/L, respectively. In phase II study, external aeration resulted in 97% COD and 71% NH4(+)-N removal in the wetland. In phase IV, 40% of feed was delivered to zone III. Higher supply of organic in zone III resulted in higher denitrification, and total nitrogen removal rate increased to 70% from 56%. In the final effluent, concentration of NO3(-)-N was 9-11 mg/L in phase I to III and decreased to 4 mg/L in phase IV. Batch study showed that COD and NH4(+)-N removal followed first order kinetics in different zones of wetland.

  16. Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland.

    PubMed

    Li, Yifei; Zhang, Jiefeng; Zhu, Guibing; Liu, Yu; Wu, Bing; Ng, Wun Jern; Appan, Adhityan; Tan, Soon Keat

    2016-10-01

    Widespread occurrence of trace pharmaceutical residues in aquatic environments is of great concerns due to the potential chronic toxicity of certain pharmaceuticals including ibuprofen on aquatic organisms even at environmental levels. In this study, the phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia were investigated in a horizontal subsurface flow constructed wetland system. The experimental wetland system consisted of a planted bed with Typha angustifolia and an unplanted bed (control) to treat ibuprofen-loaded wastewater (∼107.2 μg L(-1)). Over a period of 342 days, ibuprofen was accumulated in leaf sheath and lamina tissues at a mean concentration of 160.7 ng g(-1), indicating the occurrence of the phytoextraction of ibuprofen. Root-uptake ibuprofen was partially transformed to ibuprofen carboxylic acid, 2-hydroxy ibuprofen and 1-hydroxy ibuprofen which were found to be 1374.9, 235.6 and 301.5 ng g(-1) in the sheath, respectively, while they were 1051.1, 693.6 and 178.7 ng g(-1) in the lamina. The findings from pyrosequencing analysis of the rhizosphere bacteria suggest that the Dechloromonas sp., the Clostridium sp. (e.g. Clostridium saccharobutylicum), the order Sphingobacteriales, and the Cytophaga sp. in the order Cytophagales were most probably responsible for the rhizodegradation of ibuprofen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Performance evaluation of wastewater treatment using horizontal subsurface flow constructed wetlands optimized by micro-aeration and substrate selection.

    PubMed

    Zhong, Fei; Wu, Juan; Dai, Yanran; Xiang, Dongfang; Cheng, Shuiping; Ji, Hongjiu

    2015-01-01

    The effects of micro-aeration and substrate selection on domestic sewage treatment performance were explored using three pairs (with or without micro-aeration) of horizontal subsurface flow (HSSF) constructed wetlands (CWs) filled with zeolite, ceramsite or quartz granules. The individual and combined effects of micro-aeration and substrate selection on the purification performance of the experimental-scale HSSF CWs were evaluated. The results showed that micro-aeration significantly increased the treatment efficiencies for chemical oxygen demand, total nitrogen, total phosphorus (TP), ortho-phosphate (PO4(3-)-P) and ammonium nitrogen (NH4+-N) using HSSF CWs, while the substrate selection significantly affected the TP, PO4(3-)-P and NH4+-N removal efficiencies (p<0.05). A two-way analysis of variance (ANOVA) indicated that there was a significant interaction term (i.e. micro-aeration×substrate selection) for NH4+-N removal (p<0.05). Among the three substrates, ceramsite was the best substrate for the treatment of domestic sewage using HSSF CWs. Therefore, the results of this study suggest that a ceramsite-filled HSSF CW with micro-aeration could be the optimal configuration for decentralized domestic sewage treatment.

  18. Numerical simulation for horizontal subsurface flow constructed wetlands: A short review including geothermal effects and solution bounding in biodegradation procedures

    NASA Astrophysics Data System (ADS)

    Liolios, K.; Tsihrintzis, V.; Angelidis, P.; Georgiev, K.; Georgiev, I.

    2016-10-01

    Current developments on modeling of groundwater flow and contaminant transport and removal in the porous media of Horizontal Subsurface Flow Constructed Wetlands (HSF CWs) are first reviewed in a short way. The two usual environmental engineering approaches, the black-box and the process-based one, are briefly presented. Next, recent research results obtained by using these two approaches are briefly discussed as application examples, where emphasis is given to the evaluation of the optimal design and operation parameters concerning HSF CWs. For the black-box approach, the use of Artificial Neural Networks is discussed for the formulation of models, which predict the removal performance of HSF CWs. A novel mathematical prove is presented, which concerns the dependence of the first-order removal coefficient on the Temperature and the Hydraulic Residence Time. For the process-based approach, an application example is first discussed which concerns procedures to evaluate the optimal range of values for the removal coefficient, dependent on either the Temperature or the Hydraulic Residence Time. This evaluation is based on simulating available experimental results of pilot-scale units operated in Democritus University of Thrace, Xanthi, Greece. Further, in a second example, a novel enlargement of the system of Partial Differential Equations is presented, in order to include geothermal effects. Finally, in a third example, the case of parameters uncertainty concerning biodegradation procedures is considered and the use of upper and a novel approach is presented, which concerns the upper and the lower solution bound for the practical draft design of HSF CWs.

  19. Operation of a horizontal subsurface flow constructed wetland--microbial fuel cell treating wastewater under different organic loading rates.

    PubMed

    Villaseñor, J; Capilla, P; Rodrigo, M A; Cañizares, P; Fernández, F J

    2013-11-01

    The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the system was monitored. The installation consisted of a synthetic domestic wastewater-feeding system and a pilot-scale constructed wetland for wastewater treatment, which also included coupled devices necessary to function as an MFC. The wetland worked under continuous operation for 180 d, treating three types of synthetic wastewater with increasing organic loading rates: 13.9 g COD m(-2) d(-1), 31.1 g COD m(-2) d(-1), and 61.1 g COD m(-2) d(-1). The COD removal efficiencies and the cell voltage generation were continuously monitored. The wetland worked simultaneously as an MFC generating electric power. Under low organic loading rates, the wastewater organic matter was completely oxidised in the lower anaerobic compartment, and there were slight aerobic conditions in the upper cathodic compartment, thus causing an electrical current. Under high organic loading rates, the organic matter could not be completely oxidised in the anodic compartment and flowed to the cathodic one, which entered into anaerobic conditions and caused the MFC to stop working. The system developed in this work offered similar cell voltage, power density, and current density values compared with the ones obtained in previous studies using photosynthetic MFCs, sediment-type MFCs, and plant-type MFCs. The light/darkness changes caused voltage fluctuations due to the photosynthetic activity of the macrophytes used (Phragmites australis), which affected the conditions in the cathodic compartment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Triazophos (TAP) removal in horizontal subsurface flow constructed wetlands (HSCWs) and its accumulation in plants and substrates.

    PubMed

    Wu, Juan; Li, Zhu; Wu, Liang; Zhong, Fei; Cui, Naxin; Dai, Yanran; Cheng, Shuiping

    2017-07-14

    Triazophos (TAP) is a widely used phosphorus pesticide in China that possesses a potential risk for water pollution. We have studied the removal efficiency of TAP using pilot-scale horizontal subsurface flow constructed wetlands (HSCWs) as well as the contribution of plants, substrates and other pathways to its removal. For TAP concentrations of 0.12 ± 0.04 mg L(-1), 0.79 ± 0.29 mg L(-1) and 3.96 ± 1.17 mg L(-1), the removal efficiencies were 94.2 ± 3.7%, 97.8 ± 2.9% and 84.0 ± 13.5%, respectively, at a hydraulic loading rate (HLR) of 100 mm d(-1); at an HLR of 200 mm d(-1), the removal efficiencies were 96.7 ± 1.3%, 96.2 ± 1.7% and 61.7 ± 11.1%, respectively. The isopleth maps of TAP along the direction of flow indicate that most of the TAP removal occurred in the front and middle regions, while the major removal region would move forward with increasing influent TAP. Plant and substrate accumulation accounted for 0.035 ± 0.034% and 4.33 ± 0.43% of the total removal, respectively, indicating that over 95% of the TAP removal was achieved through other mechanisms. Thus, these results suggest HSCWs can be an effective approach with which to treat TAP contaminated water. Furthermore, the longitudinal scale and hydraulic conditions, as well as the roles of plants, substrates and microbes and their interactions, should be further considered in the design and application of CWs for pesticide pollution control.

  1. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox.

    PubMed

    Avila, Cristina; Reyes, Carolina; Bayona, Josep María; García, Joan

    2013-01-01

    This study aimed at assessing the influence of primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and operational strategy (alternation of saturated/unsaturated phases vs. permanently saturated) on the removal of various emerging organic contaminants (i.e. ibuprofen, diclofenac, acetaminophen, tonalide, oxybenzone, bisphenol A) in horizontal subsurface flow constructed wetlands. For that purpose, a continuous injection experiment was carried out in an experimental treatment plant for 26 days. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturate/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line, wetlands had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium D(60) = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 25 mm/d and about 4.7 g BOD/m(2)d, respectively. The injection experiment delivered very robust results that show how the occurrence of higher redox potentials within the wetland bed promotes the elimination of conventional quality parameters as well as emerging microcontaminants. Overall, removal efficiencies were always greater for the batch line than for the control and anaerobic lines, and to this respect statistically significantly differences were found for ibuprofen, diclofenac, oxybenzone and bisphenol A. As an example, ibuprofen, whose major removal mechanism has been reported to be biodegradation under aerobic conditions, showed a higher removal in the batch line (85%) than in the control (63%) and anaerobic (52%) lines. Bisphenol A showed also a great dependence on the redox status of the wetlands, finding an 89% removal rate for the batch line, as opposed to the control and anaerobic lines (79 and 65%, respectively). Furthermore, diclofenac showed a greater

  2. Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience.

    PubMed

    Vymazal, Jan; Kröpfelová, Lenka

    2009-06-15

    Constructed wetlands with horizontal sub-surface flow (HF CWs) have successfully been used for treatment various types of wastewater for more than four decades. Most systems have been designed to treat municipal sewage but the use for wastewaters from agriculture, industry and landfill leachate in HF CWs is getting more attention nowadays. The paper summarizes the results from more than 400 HF CWs from 36 countries around the world. The survey revealed that the highest removal efficiencies for BOD(5) and COD were achieved in systems treating municipal wastewater while the lowest efficiency was recorded for landfill leachate. The survey also revealed that HF CWs are successfully used for both secondary and tertiary treatment. The highest average inflow concentrations of BOD(5) (652 mg l(-1)) and COD (1865 mg l(-1)) were recorded for industrial wastewaters followed by wastewaters from agriculture for BOD(5) (464 mg l(-1)) and landfill leachate for COD (933 mg l(-1)). Hydraulic loading data reveal that the highest loaded systems are those treating wastewaters from agriculture and tertiary municipal wastewaters (average hydraulic loading rate 24.3 cm d(-1)). On the other hand, landfill leachate systems in the survey were loaded with average only 2.7 cm d(-1). For both BOD(5) and COD, the highest average loadings were recorded for agricultural wastewaters (541 and 1239 kg ha(-1) d(-1), respectively) followed by industrial wastewaters (365 and 1212 kg ha(-1) d(-1), respectively). The regression equations for BOD(5) and COD inflow/outflow concentrations yielded very loose relationships. Much stronger relationships were found for inflow/outflow loadings and especially for COD. The influence of vegetation on removal of organics in HF CWs is not unanimously agreed but most studies indicated the positive effect of macrophytes.

  3. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands.

    PubMed

    Caselles-Osorio, Aracelly; García, Joan

    2007-06-01

    The aim of this investigation was to evaluate the effect of continuous and intermittent feeding strategies on contaminant removal efficiency of shallow horizontal subsurface-flow constructed wetlands (SSF CWs). Also it was tested the effect of the presence of plant aboveground biomass on removal efficiency. Two experimental wetlands planted with common reed were subjected to a three-phase, 10-month experiment involving a common source of settled urban wastewater with a hydraulic loading rate of 26 mm/d during the first and second phases and 39 mm/d during the third. In the first and second phases one of the wetlands was fed continuously while the other was fed intermittently. In the third phase both systems were operated intermittently, but in one the macrophyte aboveground biomass was cut in order to study the effect of plant aboveground biomass on the removal efficiency. The intermittently fed system presented systematically more oxidised environmental conditions and higher ammonium removal efficiencies (on average 80 and 99% for the first and the second phases respectively) compared with the continuously fed system (71 and 85%). The mass amount of ammonium removed ranged from 0.58 to 0.67 g N/m2 d for the intermittently fed system and from 0.52 to 0.58 g N/m2 d for the continuously fed system. Sulphate removal was higher in the continuously fed system (on average 76 and 79% for the first and second phases respectively) compared with the intermittently fed system (51 and 58%). In the third phase the wetland that operated with aboveground biomass exhibited more oxidised environmental conditions and better removal efficiencies (on average 81% for COD and 98% for ammonium) than the wetland operated without aboveground biomass (73% for COD and 72% for ammonium). The results of this study indicate that the intermittent feeding strategy improved the removal of ammonium and the presence of aboveground biomass enhanced the removal of COD and ammonium.

  4. [Removal efficiency of C and N in micro-polluted river through a subsurface-horizontal flow constructed wetlands].

    PubMed

    Yang, Xin-ping; Zhou, Li-xiang; Dai, Yuan-yuan; Cui, Chun-hong

    2008-08-01

    A subsurface-horizontal flow constructed wetlands (CWs) planted with reed was used to treat micro-polluted river water in this study with an aim to investigate the long-term treatment efficiency of CWs especially for organic C and N. Average data obtained from two-year plant growth season showed that performance of the wetlands appeared to be affected by both establishment/maturation factors and year-to-year climatic variations. The results displayed that the removal of C and N in the influent depended, to a certain extend, on plant growth and seasonal variations, especially for total N removal. It was observed that C removal occurred mainly in the front of CWs in the first-year's operation period and then was translocated to the rear end of wetlands in the second-year's operation period. C/N ratio in the influent was 5 or more, indicating enough C source supply for denitrification. Organic C removal efficiencies varied from 6.10% to 37.83% throughout the trial. Average total N removal efficiency of 15.51% in the first-year operation period and then declined to 8.61% in the second year. The highest removal efficiency of total N was below 40% throughout the two-year trial. It was found that nitrification and denitrification reached dynamic equilibrium at the middle of the wetlands where the highest total N removal efficiency occurred. The greatest oxygen consumption was observed in the front and middle of CWs. It was noted that nitrification occurred even in deep layer located in the rear end of the wetlands in the second-year operation period. Nitrification and denitrification occurred concurrently with C and total N removal along the stream way. Low-molecular-weight organic acids released from reed rhizosphere seemed to have a significant inhibitory effect on chemoautrophic nitrifying bacteria, which involved in nitrogen removal efficiency of the wetlands, particularly during spring and autumn.

  5. Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of dairy processing factory wastewater.

    PubMed

    Idris, Shaharah Mohd; Jones, Paul L; Salzman, Scott A; Croatto, George; Allinson, Graeme

    2012-09-01

    Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm(-1). The hydraulic loading rate was tested at 3.75 cm day(-1). In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha(-1) year(-1) biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

  6. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration.

    PubMed

    Zhong, Fei; Wu, Juan; Dai, Yanran; Yang, Lihua; Zhang, Zhaohui; Cheng, Shuiping; Zhang, Qiong

    2015-02-01

    Horizontal subsurface flow constructed wetlands (HSSF CWs) with and without redox manipulation by front aeration were operated to treat mechanically pretreated wastewater from a nearby wastewater treatment plant. Polymerase chain reaction-denaturing gradient gel electrophoresis and 454-pyrosequencing were used to characterize the shifts in bacterial community diversity and composition in response to front aeration in the HSSF CWs. Both techniques revealed similar bacterial diversity between the HSSF CWs with (ACW) and without front aeration (NACW). Differences in microbial functional groups between the ACW and the NACW substrate samples were identified with 454-pyrosequencing. Nitrite-oxidizing bacteria (Nitrospira) and ammonia-oxidizing bacteria (Nitrosomonas) had much higher abundances in the ACW, whereas more sequences related to sulfate-reducing bacteria and anaerobic sulfur-oxidizing bacteria (genera Sulfuricella, Sulfuritalea, and Sulfuricurvum) were detected in the NACW. Removal efficiencies for NH₄(+)-N, PO₄(3-)-P and chemical oxygen demand in the ACW were 48.7 ± 15.5, 70.2 ± 13.5, and 82.0 ± 6.4%, respectively, whereas the removal efficiencies for these parameters in the NACW were 10.3 ± 14.0, 53.1 ± 18.9, and 68.8 ± 10.7%, respectively. In the ACW, the stimulation of nitrification via front aeration supplied more NO₂(-)-N and NO₃(-)-N to the subsequent denitrification process than in the NACW, resulting in higher total inorganic nitrogen removal efficiency. The differences in treatment efficiencies between the ACW and the NACW could be partially explained by the different bacterial community compositions in the two CWs.

  7. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wastewater treatment.

    PubMed

    Villaseñor Camacho, J; De Lucas Martínez, A; Gómez Gómez, R; Mena Sanz, J

    2007-12-01

    This project studied domestic wastewater treatment by horizontal subsurface flow (HSSF) constructed wetlands (CW) and compared the effect of four different plant species on the operating conditions, dissolved oxygen (DO), and redox potential (ORP), and their efficiency on pollutants removal. Five HSSF CWs were fed for 10 months with low loaded synthetic domestic wastewater, using theoretical hydraulic residence time of 7.6 days. The plant species under study were the following: Phragmites australis (CW1), Lythrum salicaria (CW3), Cladium mariscus (CW4) and Iris pseudacorus (CW5). CW2 was not planted and this was used as control. Qualitative measurements determined a greater growth of Lythrum salicaria and Iris pseudacorus than the others. Dissolved oxygen concentrations were very low in the entire bulk liquid of all the CWs. Also ORP values were very similar in all wetlands, dealing with facultative anaerobic environments. All planted wetlands improved pollutants removal compared with the unplanted control wetland. The performances in terms of COD, TN, TP and SO4(2-) removal obtained by the different CWs were in the ranges 80-90%, 35-55%, 15-40% and 45-60% respectively. Lythrum salicaria and Iris pseudacorus, which exhibited greater growth, were always the most efficient species that improved not only nutrients plant uptake but also other microbial removal processes probably due to a higher aeration potential, such as nitrification or aerobic respiration. Sulphate reduction was the most important mechanism for COD removal. Cladium mariscus, an autochthonous plant that grows in the south-central Iberian Peninsula, was less efficient than Lythrum salicaria and Iris pseudacorus, but improved the unplanted wetland wastewater efficiency.

  8. Effect of the inlet outlet positions on the hydraulic performance of horizontal subsurface-flow wetlands constructed with heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Suliman, F.; Futsaether, C.; Oxaal, U.; Haugen, L. E.; Jenssen, P.

    2006-09-01

    Effects of the inlet and outlet position on flow patterns of saturated fluids in a horizontal subsurface-flow constructed wetland were investigated experimentally using a quasi two-dimensional flow cell representing a vertical cross-section in the longitudinal direction of the wetland. The filter medium consisted of glass beads that were either uniformly sized or a mixture of sizes with a distribution corresponding to wetland filter media. Flow through the filter bed was visualized by injecting dyed fluid into the water-saturated model. Next, breakthrough curves were obtained using chloride tracer. Flow through the homogeneous filter formed by uniformly sized beads displayed a clear density-driven component. Using mixed sizes, finer and coarser beads tended to separate into alternating and incomplete layers. Flow occurred preferentially along roughly horizontal high-conductivity paths of coarser filter material. Density-driven vertical flow was much slower than the horizontal flow. Nevertheless, appropriate positioning of the inlet and less importantly the outlet could to some extent mitigate the dominant effect of the medium stratification on the flow patterns. Using inlet-outlet configurations that forced the flow through larger portions of the filter bed by injecting into low-conductivity layers and opposing the gravity-driven flow increased the treatment efficiency.

  9. Effects of tidal operation on pilot-scale horizontal subsurface flow constructed wetland treating sulfate rich wastewater contaminated by chlorinated hydrocarbons.

    PubMed

    Chen, Zhongbing; Vymazal, Jan; Kuschk, Peter

    2017-01-01

    Three different flow regimes were carried out in a pilot-scale horizontal subsurface flow constructed wetland-treating sulfate rich wastewater contaminated with monochlorobenzene (MCB) and perchloroethene (PCE). The three regimes were continuous flow, 7-day cycle discontinuous flow, and 2.5-day cycle discontinuous flow. The results show that intensifying the tidal regime (2.5-day cycle) significantly enhanced MCB removal before 2 m from the inlet and increasing PCE removal efficiency at 0.5 m. The PCE dechlorination process was promoted with tidal operation, especially under the 2.5-day cycle regime, with significant increases of cis-1,2- dichloroethenes (DCEs), vinyl chloride (VC), and ethene, but trans-1,2-DCE was significantly decreased after tidal operation. Due to the high sulfate concentration in the influent, sulfide was observed in pore water up to 20 and 23 mg L(-1) under continuous flow and 7-day cycle regime, respectively. However, sulfide concentrations decreased to less than 4 mg L(-1) under intensified tidal operation (2.5-day cycle). The increase of oxygen concentration in pore water through intensified tidal operation resulted in better MCB removal performance and the successful inhibition of sulfate reduction. In conclusion, intensifying tidal operation is an effective approach for the treatment of chlorinated hydrocarbons and inhibiting sulfide accumulation in horizontal subsurface flow constructed wetland.

  10. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands.

    PubMed

    Morató, Jordi; Codony, Francesc; Sánchez, Olga; Pérez, Leonardo Martín; García, Joan; Mas, Jordi

    2014-05-15

    Constructed wetlands constitute an interesting option for wastewater reuse since high concentrations of contaminants and pathogenic microorganisms can be removed with these natural treatment systems. In this work, the role of key design factors which could affect microbial removal and wetland performance, such as granular media, water depth and season effect was evaluated in a pilot system consisting of eight parallel horizontal subsurface flow (HSSF) constructed wetlands treating urban wastewater from Les Franqueses del Vallès (Barcelona, Spain). Gravel biofilm as well as influent and effluent water samples of these systems were taken in order to detect the presence of bacterial indicators such as total coliforms (TC), Escherichia coli, fecal enterococci (FE), Clostridium perfringens, and other microbial groups such as Pseudomonas and Aeromonas. The overall microbial inactivation ratio ranged between 1.4 and 2.9 log-units for heterotrophic plate counts (HPC), from 1.2 to 2.2 log units for total coliforms (TC) and from 1.4 to 2.3 log units for E. coli. The presence of fine granulometry strongly influenced the removal of all the bacterial groups analyzed. This effect was significant for TC (p=0.009), E. coli (p=0.004), and FE (p=0.012). Shallow HSSF constructed wetlands were more effective for removing Clostridium spores (p=0.039), and were also more efficient for removing TC (p=0.011) and E. coli (p=0.013) when fine granulometry was used. On the other hand, changes in the total bacterial community from gravel biofilm were examined by using denaturing gradient gel electrophoresis (DGGE) and sequencing of polymerase chain reaction (PCR)-amplified fragments of the 16S rRNA gene recovered from DGGE bands. Cluster analysis of the DGGE banding pattern from the different wetlands showed that microbial assemblages separated according to water depth, and sequences of different phylogenetic groups, such as Alpha, Beta and Delta-Proteobacteria, Nitrospirae, Bacteroidetes

  11. The Cartridge Theory: a description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results.

    PubMed

    Samsó, Roger; García, Joan

    2014-03-01

    Despite the fact that horizontal subsurface flow constructed wetlands have been in operation for several decades now, there is still no clear understanding of some of their most basic internal functioning patterns. To fill this knowledge gap, on this paper we present what we call "The Cartridge Theory". This theory was derived from simulation results obtained with the BIO_PORE model and explains the functioning of urban wastewater treatment wetlands based on the interaction between bacterial communities and the accumulated solids leading to clogging. In this paper we start by discussing some changes applied to the biokinetic model implemented in BIO_PORE (CWM1) so that the growth of bacterial communities is consistent with a well-known population dynamics models. This discussion, combined with simulation results for a pilot wetland system, led to the introduction of "The Cartridge Theory", which states that the granular media of horizontal subsurface flow wetlands can be assimilated to a generic cartridge which is progressively consumed (clogged) with inert solids from inlet to outlet. Simulations also revealed that bacterial communities are poorly distributed within the system and that their location is not static but changes over time, moving towards the outlet as a consequence of the progressive clogging of the granular media. According to these findings, the life-span of constructed wetlands corresponds to the time when bacterial communities are pushed as much towards the outlet that their biomass is not anymore sufficient to remove the desirable proportion of the influent pollutants.

  12. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic.

    PubMed

    Kröpfelová, Lenka; Vymazal, Jan; Svehla, Jaroslav; Stíchová, Jana

    2009-04-01

    Between March 2006 and June 2008 removal of 34 trace elements was measured on a monthly basis at three horizontal-flow constructed wetlands in the Czech Republic designed to treat municipal wastewater. In general, the results indicated a very wide range of removal efficiencies among studied elements. The highest degree of removal (average of 90%) was found for aluminum. High average removal was also recorded for zinc (78%). Elements removed in the range of 50-75% were uranium, antimony, copper, lead, molybdenum, chromium, barium, iron and gallium. Removal of cadmium, tin, mercury, silver, selenium and nickel varied between 25 and 50%. Low retention (0-25%) was observed for vanadium, lithium, boron, cobalt and strontium. There were two elements (manganese and arsenic) for which average outflow concentrations were higher compared to inflow concentrations. Reduced manganese compounds are very soluble and therefore they are washed out under anaerobic conditions.

  13. Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage.

    PubMed

    Wiessner, A; Rahman, K Z; Kuschk, P; Kästner, M; Jechorek, M

    2010-12-01

    The knowledge regarding the dynamics of sulphur compounds inside constructed wetlands is still insufficient. Experiments in planted (Juncus effusus) and unplanted horizontal sub-surface-flow laboratory-scale constructed wetlands fed with artificial wastewater were carried out to evaluate the sulphate reduction, the composition and dynamics of generated sulphur compounds, as well as the influence of carbon load and plants on processes of sulphur transformation. In planted and unplanted wetlands, the addition of organic carbon (TOC of about 120 mg L(-1)) immediately affected the transformation of up to 90% of the incoming sulphate (150 mg L(-1)), directing it mainly towards elemental sulphur (30%) and sulphide (8%). During this experimental period, nearly 52% of the transformed sulphate-sulphur was calculated to be immobilized inside the planted wetland and 66% inside the unplanted one. In subsequent experiments, the deficiency of organic carbon inside the planted wetlands favoured the decrease of elemental sulphur in the pore water coupled to retransformation of depot-sulphur to dissolved sulphate. Nearly 90% of the deposited and reduced sulphur was found to be reoxidized. In principle, the results indicate a substantial improvement of this reoxidation of sulphur by oxygen released by the helophytes. Surplus of organic carbon promotes the ongoing sulphate reduction and the stability of deposed and dissolved reduced sulphur compounds. In contrast, inside the unplanted control wetland, a relative stability of the formed sulphur depots and the generated amount of dissolved sulphur compounds including elemental sulphur could be observed independently of the different loading conditions.

  14. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.

    PubMed

    da Costa, Jocilene Ferreira; Martins, Weber Luiz Pinto; Seidl, Martin; von Sperling, Marcos

    2015-01-01

    The main objective of the work is to characterize the role of plants in a constructed wetland in the removal of nitrogen (N) and phosphorus (P). The experiments were carried out in a full-scale system in the city of Belo Horizonte, Brazil, with two parallel horizontal subsurface-flow constructed wetland units (one planted with Typha latifolia and one unplanted) treating the effluent from a system composed of an upflow anaerobic sludge blanket reactor and a trickling filter (TF). Each wetland unit received a mean flow of approximately 8.5 m³ d⁻¹ (population equivalent around 60 inhabitants each), with a surface hydraulic loading rate 0.12 m³m⁻²d⁻¹. The experiments were conducted from September 2011 to July 2013. Mean effluent concentrations from the wetlands were: (a) planted unit total nitrogen (TN) 22 mg L⁻¹, ammonia-N 19 mg L⁻¹, nitrite-N 0.10 mg L⁻¹, nitrate-N 0.25 mg L⁻¹, P-total 1.31 mg L⁻¹; and (b) unplanted unit TN 24 mg L⁻¹, ammonia-N 20 mg L⁻¹, nitrite-N 0.54 mg mL⁻¹, nitrate-N 0.15 mg L⁻¹, P-total 1.31 mg L⁻¹. The aerial part of the plant contained mean values of 24.1 gN (kg dry matter)⁻¹ and 4.4 gP (kg dry matter)⁻¹, and the plant root zone was composed of 16.5 gN (kg dry matter)⁻¹ and 4.1 gP (kg dry matter)⁻¹. The mean extraction of N by the plant biomass was 726 kgN ha⁻¹y⁻¹, corresponding to 17% of the N load removed. For P, the extraction by the plant biomass was 105 kgP ha⁻¹y⁻¹, corresponding to 9% of the P load removed. These results reinforce the reports that N and P removal due to plant uptake is a minor mechanism in horizontal subsurface-flow constructed wetlands operating under similar loading rates, typical for polishing of sanitary effluent.

  15. Temporal and spatial variations of contaminant removal, enzyme activities, and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff.

    PubMed

    Yi, Xiao-Hui; Jing, Dan-Dan; Wan, Jinquan; Ma, Yongwen; Wang, Yan

    2016-05-01

    A pilot-scale horizontal subsurface flow constructed wetland (HSSFCW) was operated to purify industrial runoff containing polycyclic aromatic hydrocarbons (PAHs) in Guangzhou, China. Synthetic industrial runoff was fed into the HSSFCW with continuous flow at an average loading rate of 0.128 m(3)/(m(2)/day) for about 2 years. Pollutants such as chemical oxygen demand (COD), total phosphorus (TP), and phenanthrene were mainly removed in the front quarter of the HSSFCW, and in the vertical direction, the average removal rates of COD, TP, total nitrogen (TN), ammonia, and phenanthrene of the upper layer were 64.23, 71.16, 50.81, 65.38, and 92.47 %, which were 1.23, 2.08, 1.48, 1.72, and 1.17 times higher than those of the bottom, respectively. Correlations among pollutant removal, soil environmental indexes, enzyme activities, and soil microbial community structure were evaluated. Enzyme assays (dehydrogenase, catalase, nitrate reductase, and polyphenol oxidase) showed significant associations between enzyme activities and pollutant removal (p < 0.01 and p < 0.05). Soil microbial community structure was assessed with denaturing gradient gel electrophoresis (DGGE) fingerprinting method, and results demonstrated that bacterial communities remained relatively stable in different seasons. Proteobacteria and Bacteroidetes were found to be the dominant phyla of the bacteria communities, and three clones which might be related to the biodegradation of phenanthrene were also detected. Results of the present work would broaden the knowledge of the purification mechanism of contaminants in the constructed wetlands (CWs), and identification of the treatment performances and temporal and spatial variations of biological activities of subsurface flow constructed wetlands (SSFCWs) would help to improve the operations of CWs for surface water protection.

  16. Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system

    Treesearch

    Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling. Xu

    2013-01-01

    In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...

  17. Treatment of a sulfate-rich groundwater contaminated with perchloroethene in a hydroponic plant root mat filter and a horizontal subsurface flow constructed wetland at pilot-scale.

    PubMed

    Chen, Zhongbing; Kuschk, Peter; Paschke, Heidrun; Kästner, Matthias; Müller, Jochen A; Köser, Heinz

    2014-12-01

    A hydroponic plant root mat filter (HPRMF) was compared over 7months with a horizontal subsurface flow constructed wetland (HSSF CW) regarding the removal of perchloroethene (PCE) (about 2 mg L(-1)) from a sulfate- (850 mg L(-1)) and ammonia-rich (50 mg L(-1)) groundwater with a low TOC content. At a mean area specific inflow PCE load of 56 mg m(-2)d(-1), after 4m from inlet, the mean PCE removal during summer time reached 97% in the HPRMF and almost 100% in the HSSF CW. Within the first 2m in the HSSF CW metabolites like dichloroethenes, vinyl chloride and ethene accumulated, their concentrations decreased further along the flow path. Moreover, the tidal operation (a 7-d cycle) in the HSSFCW decreased the accumulation of PCE metabolites within the first 1m of the bed. The carcinogenic degradation metabolite vinyl chloride was not detected in the HPRMF. The smaller accumulation of the degradation metabolites in the HPRMF correlated with its higher redox potential. It can be concluded from this study that HPRMF appears an interesting alternative for special water treatment tasks and that tidal operation will show some positive effects on the removal of the accumulated PCE metabolites in HSSF CW.

  18. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands.

    PubMed

    Li, Jianbo; Wen, Yue; Zhou, Qi; Xingjie, Zhao; Li, Xie; Yang, Silu; Lin, Tao

    2008-07-01

    The fate of dissolved organic matter (DOM) during horizontal subsurface-flow constructed wetlands (HSSF CWs) was examined. In several studies it had been demonstrated that factors such as vegetation and substrates type affected the treatment efficiency of DOM, while very few studies discerned their influence on the transformations of DOM. Thus three pilot-scale HSSF CWs, i.e. reed (Phragmites australis)/gravel bed (W1), hybrid vegetation{cattail (Typha latifolia), bulrush (Scirpus validus), reed}/gravel bed (W2) and reed/hybrid substrates bed (gravel, zeolite, slag) (W3), were designed, and were operated continuously to investigate soluble COD (SCOD) removal and DOM transformations affected by vegetation and substrate type, and to explore the correlation between SCOD and biodiversity. The results showed that cattail and bulrush contributed to higher SCOD removal than common reed, and that gravel, zeolite and slag did not show significant influence on SCOD removal. The composition of the dissolved organic carbon (DOC) could undergo a considerable shift in composition due to metabolism and senescence from plant and microorganism. Nonlabile aromatic hydrocarbons and alkyl hydrocarbons in the effluent were a significant portion compared with labile alcoholic and alkene in the influent. It was also observed that the type of vegetation and substrate had great influence on the structure of bacteria, and the Shannon-Wiener Index increased linearly with the decrease of SCOD concentration along water flow in W2 and W3 (R2=0.96).

  19. Analysis of conservative tracer measurement results using the Frechet distribution at planted horizontal subsurface flow constructed wetlands filled with coarse gravel and showing the effect of clogging processes.

    PubMed

    Dittrich, Ernő; Klincsik, Mihály

    2015-11-01

    A mathematical process, developed in Maple environment, has been successful in decreasing the error of measurement results and in the precise calculation of the moments of corrected tracer functions. It was proved that with this process, the measured tracer results of horizontal subsurface flow constructed wetlands filled with coarse gravel (HSFCW-C) can be fitted more accurately than with the conventionally used distribution functions (Gaussian, Lognormal, Fick (Inverse Gaussian) and Gamma). This statement is true only for the planted HSFCW-Cs. The analysis of unplanted HSFCW-Cs needs more research. The result of the analysis shows that the conventional solutions (completely stirred series tank reactor (CSTR) model and convection-dispersion transport (CDT) model) cannot describe these types of transport processes with sufficient accuracy. These outcomes can help in developing better process descriptions of very difficult transport processes in HSFCW-Cs. Furthermore, a new mathematical process can be developed for the calculation of real hydraulic residence time (HRT) and dispersion coefficient values. The presented method can be generalized to other kinds of hydraulic environments.

  20. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation.

    PubMed

    Akratos, Christos S; Papaspyros, John N E; Tsihrintzis, Vassilios A

    2009-01-01

    The aim of this paper is to examine if artificial neural networks (ANNs) can predict nitrogen removal in horizontal subsurface flow (HSF) constructed wetlands (CWs). ANN development was based on experimental data from five pilot-scale CW units. The proper selection of the components entering the ANN was achieved using principal component analysis (PCA), which identified the main factors affecting TN removal, i.e., porous media porosity, wastewater temperature and hydraulic residence time. Two neural networks were examined: the first included only the three factors selected from the PCA, and the second included in addition meteorological parameters (i.e., barometric pressure, rainfall, wind speed, solar radiation and humidity). The first model could predict TN removal rather satisfactorily (R(2)=0.53), and the second resulted in even better predictions (R(2)=0.69). From the application of the ANNs, a design equation was derived for TN removal prediction, resulting in predictions comparable to those of the ANNs (R(2)=0.47). For the validation of the results of the ANNs and of the design equation, available data from the literature were used and showed a rather satisfactory performance.

  1. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters.

    PubMed

    Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong

    2017-04-10

    This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH3-N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH3-N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.

  2. High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands.

    PubMed

    Li, Yifei; Wu, Bing; Zhu, Guibing; Liu, Yu; Ng, Wun Jern; Appan, Adhityan; Tan, Soon Keat

    2016-08-15

    The potential toxicity of pharmaceutical residues including ibuprofen on the aquatic vertebrates and invertebrates has attracted growing attention to the pharmaceutical pollution control using constructed wetlands, but there lacks of an insight into the relevant microbial degradation mechanisms. This study investigated the bacteria associated with the cometabolic and metabolic degradation of ibuprofen in a horizontal subsurface flow constructed wetland system by high-throughput pyrosequencing analysis. The ibuprofen degradation dynamics, bacterial diversity and evenness, and bacterial community structure in a planted bed with Typha angustifolia and an unplanted bed (control) were compared. The results showed that the plants promoted the microbial degradation of ibuprofen, especially at the downstream zones of wetland. However, at the upstream one-third zone of wetland, the presence of plants did not significantly enhance ibuprofen degradation, probably due to the much greater contribution of cometabolic behaviors of certain non-ibuprofen-degrading microorganisms than that of the plants. By analyzing bacterial characteristics, we found that: (1) The aerobic species of family Flavobacteriaceae, family Methylococcaceae and genus Methylocystis, and the anaerobic species of family Spirochaetaceae and genus Clostridium_sensu_stricto were the most possible bacteria relevant to the cometabolic degradation of ibuprofen; (2) The family Rhodocyclaceae and the genus Ignavibacterium closely related to the plants appeared to be associated with the metabolic degradation of ibuprofen.

  3. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works.

    PubMed

    Mburu, Njenga; Tebitendwa, Sylvie M; van Bruggen, Johan J A; Rousseau, Diederik P L; Lens, Piet N L

    2013-10-15

    The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE.

    PubMed

    Chen, Zhongbing; Kuschk, Peter; Reiche, Nils; Borsdorf, Helko; Kästner, Matthias; Köser, Heinz

    2012-03-30

    In order to evaluate technology options for the treatment of groundwater contaminated with benzene and MTBE in constructed wetlands (CWs), a scarcely applied plant root mat system and two horizontal subsurface-flow (HSSF) CWs were investigated. The inflow load of benzene and MTBE were 188-522 and 31-90 mg d(-1)m(-2), respectively. Higher removal efficiencies were obtained during summer in all systems. The benzene removal efficiencies were 0-33%, 24-100% and 22-100% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively; the MTBE removal efficiencies amounted to 0-33%, 16-93% and 8-93% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively. The volatilisation rates in the plant root mat amounted to 7.24 and 2.32 mg d(-1)m(-2) for benzene and MTBE, which is equivalent to 3.0% and 15.2% of the total removal. The volatilisation rates in the HSSF-CW reached 2.59 and 1.07 mg d(-1)m(-2), corresponding to 1.1% and 6.1% of the total removal of benzene and MTBE, respectively. The results indicate that plant root mats are an interesting option for the treatment of waters polluted with benzene and MTBE under moderate temperatures conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands.

    PubMed

    Deng, Huanhuan; Ge, Liyun; Xu, Tan; Zhang, Minghua; Wang, Xuedong; Zhang, Yalei; Peng, Hong

    2011-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands. To improve the performance of constructed wetlands, it is very important to know the metabolic properties and functional diversity of the microbial communities. The purpose of this study is to analyze the metabolic properties and functional diversity of the microbial community in a horizontal subsurface-flow constructed wetland (CW) in a laboratory study through the sole-carbon-source utilization profiles using Biolog-ECO microplates. The technique has advantages over traditional cell culture techniques, such as molecular-level techniques-RNA amplification, which are time-consuming, expensive, and only applicable to the small number of species that may be cultured. This CW was designed to treat rural eutrophic water in China, using the plant L. This study showed that the metabolic activities of upper front substrate microorganisms (UF) were greater than those of the lower back substrate microorganisms (LB) in the CW. Integrated areas under average well color development (AWCD) curves of substrate microorganisms in the UF were 131.9, 4.8, and 99.3% higher than in the lower front part (LF), the upper back part (UB), and the LB part of the CW, respectively. Principal components analysis showed significant differences in both community structure and metabolic utilization of carbon sources between substrate microorganisms from different sampling sites. Carbon source utilization of polymers, carbohydrates, carboxylic acids, and amino acids was higher in UF than in LF, but that of amines and phenolic compounds was very similar in UF and LF. The richness, evenness, and diversity of upper substrate microbial communities were significantly higher than those of lower substrate. The LF substrate microbial communities had lower evenness than the other sampling plots, and the lowest richness of substrate microbial community was found in the LB part of the CW.

  6. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters.

    PubMed

    Çakir, Recep; Gidirislioglu, Ali; Çebi, Ulviye

    2015-12-01

    The research into the treatment of domestic wastewaters originating from Büyükdöllük village in Edirne Province was carried out over a 3 year experimental period. The wastewaters of the settlement were treated using a constructed wetland with subsurface horizontal flow, and the effects of different hydraulic loading levels on removal efficiency were studied. In order to achieve this goal, three equal chambers (ponds) of 300 m(2) each were constructed and planted with Phragmites australis. Each of the chambers was loaded with domestic wastewater with average flow discharge creating hydraulic loading rates of 0. m(3) day(-1) m(-2); 0.075 m(3) day(-1) m(-2) and 0.125 m(3) day(-1) m(-2), respectively. According to the results of the study, the inlet levels of the pollutant parameters with carbon origin in the water samples taken from the system entrance are high and the average values for three years are respectively: Biological Oxygen Demand, BOD5 -324.5 mg L(-1); Chemical Oxygen Demand, COD -484,0 mg L(-1); suspended solids (TSS) -147.3 mg L(-1) and Oil and Grease -0.123 mg L(-1). It was also determined that the removal rates of the system were closely dependent on the applied hydraulic loading levels and the highest removal rates of 64.9%, 62.5%, 86.3% and 80.34% for BOD5, COD, TSS and Oil and Grease, respectively, were determined in the pond with a hydraulic loading rate of 0.050 m(3) day(-1) m(-2). Lower removal of 57.9%, 55.5%, 81.4% and 74.5% for BOD5, COD, TSS and Oil and Grease were recorded in the pond with a hydraulic loading rate of 0.075 m(3) day(-1) m(-2); and these values were 49.1%, 47.8%, 70.9% and 62.1% for the pond with a hydraulic loading rate of 0.125 m(3) day(-1) m(-2). High removal rates were also recorded for the other investigated pollution parameters.

  7. The Effectiveness of Organic Pollutants Removal in Constructed Wetland with Horizontal Sub-Surface Flow / Efektywność Usuwania Zanieczyszczeń Organicznych W Oczyszczalni Hydrofitowej

    NASA Astrophysics Data System (ADS)

    Jakubaszek, Anita; Sadecka, Zofia

    2015-03-01

    This paper presents the results of the research work related to the removal efficiency from wastewater organic pollutants and suspended solids at HSSF (horizontal subsurface flow) constructed wetland. The average effectiveness defined as loss of value COD in wastewater has reached 77%, for BOD5 - 80% and TOC - 82%. The effect of seasonal temperature changes and the period of plant vegetation and rest on the effectiveness of wastewater treatment were also analyzed. The results of the presented research showed a decrease in the efficiency of removing organic pollutants from wastewater and suspended solids in the autumn and winter. During the vegetation the object in Małyszyn has been characterized by the effectiveness of wastewater treatment at the level of 78% for COD, 82% for BOD5, and in the non-vegetation period the effectiveness has decreased up to 75% for COD and 74% for BOD5. During the plants growth the total suspension was removed in 88%, whereas during the plants rest efficiency of removing lowered to 69%. W pracy przedstawiono wyniki badań dotyczące efektywności usuwania ze ścieków zanieczyszczeń organicznych w oczyszczalni hydrofitowej. Średnia skuteczność oczyszczania wyrażona jako obniżenie wartości ChZT w ściekach była na poziomie 77%, dla BZT5 80%, a dla OWO 82%. Analizowano również wpływ sezonowych zmian temperatury oraz okresu wegetacji i spoczynku roślin na skuteczność oczyszczania ścieków. Wyniki badań wykazały obniżenie efektywności usuwania zanieczyszczeń organicznych ze ścieków wyrażonych przez ChZT i BZT5 oraz zawiesiny ogólnej w okresie jesienno-zimowym. W okresie wegetacyjnym obiekt w Małyszynie charakteryzował się efektywnością oczyszczania ścieków na poziomie: 78% dla ChZT, 82% dla BZT5, a w sezonie pozawegetacyjnym skuteczność uległa obniżeniu do 75% w przypadku ChZT oraz 74% dla BZT5. Zawiesina ogólna w okresie wegetacji trzciny usuwana była w 88%, a w okresie powegetacyjnym w 69%.

  8. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.

    PubMed

    Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias

    2013-02-01

    For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems.

    PubMed

    Zheng, Yucong; Wang, Xiaochang; Dzakpasu, Mawuli; Zhao, Yaqian; Ngo, Huu Hao; Guo, Wenshan; Ge, Yuan; Xiong, Jiaqing

    2016-05-01

    The outcome of competition between adjoining interspecific colonies of Phragmites and Typha in two large field pilot-scale free water surface (FWS) and subsurface flow (SSF) CWs is evaluated. According to findings, the effect of interspecific competition was notable for Phragmites australis, whereby it showed the highest growth performance in both FWS and SSF wetland. In a mixed-culture, P. australis demonstrates superiority in terms of competitive interactions for space between plants. Furthermore, the interspecific competition among planted species seemed to cause different ecological responses of plant species in the two CWs. For example, while relatively high density and shoot height determined the high aboveground dry weight of P. australis in the FWS wetland, this association was not evident in the SSF. Additionally, while plants nutrients uptake accounts for a higher proportion of the nitrogen removal in FWS, that in the SSF accounts for a higher proportion of the phosphorous removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands

    Treesearch

    Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu

    2015-01-01

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...

  11. Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels

    SciTech Connect

    Pastuszko, Robert

    2008-09-15

    Complex experimental investigations of boiling heat transfer on structured surfaces covered with perforated foil were taken up. Experimental data were discussed for two kinds of enhanced surfaces formed by joined horizontal and vertical tunnels: tunnel structures (TS) and narrow tunnel structures (NTS). The experiments were carried out with water, ethanol and R-123 at atmospheric pressure. The TS and NTS surfaces were manufactured out of perforated copper foil of 0.05 mm thickness (hole diameters: 0.3, 0.4, 0.5 mm) sintered with the mini-fins, formed on the vertical side of the 5 mm high rectangular fins and horizontal inter-fin surface. The effects of hole (pore) diameters, tunnel pitch for TS and tunnel width for NTS on nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing structures with subsurface tunnels, but at higher heat fluxes range. (author)

  12. Solar subsurface flows from local helioseismology

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Chen, Ruizhu

    2016-07-01

    In this article, we review recent progresses in subsurface flows obtained from two local helioseismology methods: time-distance helioseismology and ring-diagram analysis. We review results in the following four topics: flows beneath sunspots and active regions, supergranular subsurface flows, shallow meridional flow and its variations with solar cycles, and meridional circulation in the deep solar interior. Despite recent advancements in methodology, modeling, and observations, many questions are still to be answered and a few topics remain controversial. More efforts, especially in numerical modeling and accurate interpretation of acoustic wave travel-time measurements, are needed to improve the derivations of subsurface flows.

  13. Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse.

    PubMed

    Fibbi, Donatella; Doumett, Saer; Lepri, Luciano; Checchini, Leonardo; Gonnelli, Cristina; Coppini, Ester; Del Bubba, Massimo

    2012-01-15

    In this study, during a two-year period, we investigated the fate of hexavalent and trivalent chromium in a full-scale subsurface horizontal flow constructed wetland planted with Phragmites australis. The reed bed operated as post-treatment of the effluent wastewater from an activated sludge plant serving the textile industrial district and the city of Prato (Italy). Chromium speciation was performed in influent and effluent wastewater and in water-suspended solids, at different depths and distances from the inlet; plants were also analyzed for total chromium along the same longitudinal profile. Removals of hexavalent and trivalent chromium equal to 72% and 26%, respectively were achieved. The mean hexavalent chromium outlet concentration was 1.6 ± 0.9 μg l(-1) and complied with the Italian legal limits for water reuse. Chromium in water-suspended solids was in the trivalent form, thus indicating that its removal from wastewater was obtained by the reduction of hexavalent chromium to the trivalent form, followed by accumulation of the latter inside the reed bed. Chromium in water-suspended solids was significantly affected by the distance from the inlet. Chromium concentrations in the different plant organs followed the same trend of suspended solids along the longitudinal profile and were much lower than those found in the solid material, evidencing a low metal accumulation in P. australis.

  14. Paracetamol removal in subsurface flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.

    2011-07-01

    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  15. On the Hydraulics of Flowing Horizontal Wells

    NASA Astrophysics Data System (ADS)

    Bian, A.; Zhan, H.

    2003-12-01

    A flowing horizontal well is a special type of horizontal well that does not have pumping/injecting facility. The discharge rate of a flowing horizontal well is controlled by the hydraulic gradient between the aquifer and the well and it generally varies with time if the hydraulic head of the aquifer is transient. This type of well has been used in landslide control, mining dewatering, water table control, underground water transportation through a horizontal tunnel, agricultural water drainage, and other applications. Flowing horizontal wells have quite different hydrodynamic characteristics from horizontal wells with fixed pumping or injecting rates because their discharge rates are functions of the aquifer hydraulic heads (Zhan et al, 2001; Zhan and Zlotnik, 2002). Hydraulics of flowing horizontal wells have rarely been studied although the hydraulics of flowing vertical wells have been extensively investigated before. The purpose of this paper is to obtain analytical solutions of groundwater flow to a flowing horizontal-well in a confined aquifer, in a water table aquifer without precipitation, and in a water table aquifer with precipitation. The functions of the flowing horizontal well discharge rates versus time will be obtained under above mentioned different aquifer conditions. The relationships of the aquifer hydraulic heads versus the discharge rates of the well will be investigated. The rate of water table decline due to the dewatering of the well will also be computed, and this solution is particularly useful for landslide control and mining dewatering. The theoretical solutions will be compared with results of experiments that will be conducted in the hydrological laboratory at Texas A&M University. Reference: Zhan, H., Wang, L.V., and Park, E, On the horizontal well pumping tests in the anisotropic confined aquifers, J. hydrol., 252, 37-50, 2001. Zhan, H., and Zlotnik, V. A., Groundwater flow to a horizontal or slanted well in an unconfined aquifer

  16. Flow stabilization by subsurface phonons

    PubMed Central

    Hussein, M. I.; Biringen, S.; Bilal, O. R.; Kucala, A.

    2015-01-01

    The interaction between a fluid and a solid surface in relative motion represents a dynamical process that is central to the problem of laminar-to-turbulent transition (and consequent drag increase) for air, sea and land vehicles, as well as long-range pipelines. This problem may in principle be alleviated via a control stimulus designed to impede the generation and growth of instabilities inherent in the flow. Here, we show that phonon motion underneath a surface may be tuned to passively generate a spatio-temporal elastic deformation profile at the surface that counters these instabilities. We theoretically demonstrate this phenomenon and the underlying mechanism of frequency-dependent destructive interference of the unstable flow waves. The converse process of flow destabilization is illustrated as well. This approach provides a condensed-matter physics treatment to fluid–structure interaction and a new paradigm for flow control. PMID:27547095

  17. Subsurface Flow in Gravel River Bars

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2014-12-01

    The geomorphic and hydraulic characteristics of gravel bars control the direction, magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. Bed undulation, water-surface gradient, alluvial depth, and the spatial variation of hydraulic conductivity (both deterministic trends and stochastic variability) affect the hydrologically-driven groundwater-surface water exchange. In this paper, we use a set of field measurements of morphological and hydrological characteristics along two reaches of the San Joaquin River, California to motivate a systematic analysis of the factors that affect paths and residence times of flow through gravel bars under an observed range of streamflow values. In the field investigation, it is shown that asymmetry of bar morphology is a first-order control on the extent and magnitude of infiltration, which is often represented to produce approximately equal areas of infiltration and seepage under the assumption of sinusoidal bedforms. Infiltration over the length of a bar is shown to be greater at low flow than at high flow because of the effect of water-surface gradient. Hydraulic conductivity (ksat) varies by orders of magnitude and systematic downstream coarsening arises related to the process of bar evolution. The lowest values of ksat were observed where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where the infiltration would be greatest into a uniform bar of homogeneous gravel. Morphology and fine sediment accumulation in recharge zones exert an important control over the mechanisms driving subsurface fluid exchange. Simulations from a numerical groundwater flow model that isolate the signatures of morphology and streambed sediment patterns on subsurface flow corroborate our interpretation that the infiltration patterns and rates are primarily controlled by bed morphology, with ksat playing a secondary role.

  18. Phononic subsurface: Flow stabilization by crystals

    NASA Astrophysics Data System (ADS)

    Hussein, Mahmoud I.; Biringen, Sedat; Bilal, Osama R.; Kucala, Alec

    2015-11-01

    Flow control is a century-old problem where the goal is to alter a flow's natural state to achieve improved performance, such as delay of laminar-to-turbulent transition or reduction of drag in a fully developed turbulent flow. Meeting this goal promises to significantly reduce the dependence on fossil fuels for global transport. In this work, we show that phonon motion underneath a surface interacting with a flow may be tuned to cause the flow to stabilize, or destabilize, as desired. This concept is demonstrated by simulating a fully developed plane Poiseuille (channel) flow whereby a small portion of an otherwise rigid wall is replaced with a one-dimensional phononic crystal. A Tollmien-Schlichting (TS) wave is introduced to the flow as an evolving disturbance. Upon tuning the frequency-dependent phase and amplitude relations of the surface of the phononic crystal that interfaces with the flow, the TS wave is shown to stabilize, or destabilize, as needed. A theory of subsurface phonons is presented that provides an accurate prediction of this behavior without the need for a flow simulation. This represents an unprecedented capability to passively synchronize wave propagation across a fluid-structure interface and achieve favorable, and predictable, alterations to the flow properties. National Science Foundation, Grant No. 1131802.

  19. Subsurface Flow and Transport: A Stochastic Approach

    NASA Astrophysics Data System (ADS)

    Desbarats, Alexandre

    Anyone who has examined core or petrophysical logs from well bores has wondered at the rhythmic successions of sedimentary fades and has puzzled at their sudden disruption or reappearance. Such wonderment is no doubt shared by those who have stood at a quarry face gazing up at the intricate hierarchy of depositional patterns and the varied textures of sediments. A fortunate few have even slogged along a mine drift and observed at close hand the perplexing relationship between the geological fabric of a rock mass and occurrences of groundwater inflow. Happily, the heterogeneity of geological materials is now widely recognized and efforts over the last 20 years have been concerned with its incorporation into models of fluid flow and solute transport in the subsurface. These research efforts are, at least in part, driven by acute societal concerns over the contamination of groundwater resources and proposed plans for the disposal of nuclear and other toxic wastes in the subsurface.

  20. Subsurface heat flow in an urban environment

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2004-02-01

    The subsurface temperature field beneath Winnipeg, Canada, is significantly different from that of the surrounding rural areas. Downward heat flow to depths as great as 130 m has been noted in some areas beneath the city and groundwater temperatures in a regional aquifer have risen by as much as 5°C in some areas. Numerical simulation of heat transport supports the conjecture that these temperature changes can be largely attributed to heat loss from buildings and the temperature at any given point is sensitive to the distance from and the age of any buildings. The effect is most noticable when buildings are closely spaced, which is typical of urban areas. Temperature measurements in areas more than a few hundred meters away from any heated structure were only a few tenths of a degree Celsius greater than those observed outside the city, suggesting that other reasons for increases in subsurface temperature, such as changes in surface cover or climate change, may be responsible for some of the some of the observed increase in temperatures. These sources of additional heat to the subsurface make it difficult to resolve information on past climates from temperatures measured in boreholes and monitoring wells. In some areas, the temperature increases may also have an impact on geothermal energy resources. This impact might be in the form of an increase in heat pump efficiency or in the case of the Winnipeg area, a decrease in the efficiency of direct use of groundwater for cooling.

  1. Using soil moisture and spatial yield patterns to identify subsurface flow pathways.

    PubMed

    Gish, T J; Walthall, C L; Daughtry, C S T; Kung, K-J S

    2005-01-01

    Subsurface soil water dynamics can influence crop growth and the fate of surface-applied fertilizers and pesticides. Recently, a method was proposed using only ground-penetrating radar (GPR) and digital elevation maps (DEMs) to identify locations where subsurface water converged into discrete pathways. For this study, the GPR protocol for identifying horizontal subsurface flow pathways was extended to a 3.2-ha field, uncertainty is discussed, and soil moisture and yield patterns are presented as confirming evidence of the extent of the subsurface flow pathways. Observed soil water contents supported the existence of discrete preferential funnel flow processes occurring near the GPR-identified preferential flow pathways. Soil moisture also played a critical role in the formation of corn (Zea mays L.) grain yield patterns with yield spatial patterns being similar for mild and severe drought conditions. A buffer zone protocol was introduced that allowed the impact of subsurface flow pathways on corn grain yield to be quantified. Results indicate that when a GPR-identified subsurface clay layer was within 2 m of the soil surface, there was a beneficial impact on yield during a drought year. Furthermore, the buffer zone analysis demonstrated that corn grain yields decreased as the horizontal distance from the GPR-identified subsurface flow pathways increased during a drought year. Averaged real-time soil moisture contents at 0.1 m also decreased with increasing distance from the GPR-identified flow pathways. This research suggests that subsurface flow pathways exist and influence soil moisture and corn grain yield patterns.

  2. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    SciTech Connect

    HALVERSON, NANCY

    2004-09-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  3. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  4. Potential for horizontal gene transfer in microbial communities of the terrestrial subsurface.

    PubMed

    Coombs, Jonna M

    2009-01-01

    The deep terrestrial subsurface is a vast, largely unexplored environment that is oligotrophic, highly heterogeneous, and may contain extremes of both physical and chemical factors. In spite of harsh conditions, subsurface studies at several widely distributed geographic sites have revealed diverse communities of viable organisms, which have provided evidence of low but detectable metabolic activity. Although much of the terrestrial subsurface may be considered to be distant and isolated, the concept of horizontal gene transfer (HGT) in this environment has far-reaching implications for bioremediation efforts and groundwater quality, industrial harvesting of subsurface natural resources such as petroleum, and accurate assessment of the risks associated with DNA release and transport from genetically modified organisms. This chapter will explore what is known about some of the major mechanisms of HGT, and how the information gained from surface organisms might apply to conditions in the terrestrial subsurface. Evidence for the presence of mobile elements in subsurface bacteria and limited retrospective studies examining genetic signatures of potential past gene transfer events will be discussed.

  5. Understanding Subsurface Flow Mechanisms by Studying Recession Flow Curves

    NASA Astrophysics Data System (ADS)

    patnaik, S.; Biswal, B.; D, N.

    2013-12-01

    The recession flows offer valuable information on the subsurface systems of the drainage which cannot be observed due to technological limitations. Many analytical frameworks have been proposed in the past to analyze recession flow curves assess. Among them the most widely used one is Brutsaert-Neiber method of expressing negative time derivative of Q (discharge at the basin outlet at time t), -dQ/dt, as a function of Q itself, which eliminates the need of finding a reference time. Typically, basins across geographical regions display a power law relationship of the type: -dQ/dt = kQ^α. For a particular basin, the exponent α remains fairly constant recession events while the coefficient k varies greatly from one recession event to another, indicating the dynamic nature -dQ/dt-Q relationship. Recent observations show that subsurface storage in a basin mainly controls the dynamic parameter k. As subsurface water takes long time to fully drain, k of a recession event can also be influenced by the storage that occurred during the past rainfall events. We indirectly analyze the effect of past storage on recession flow by considering past streamflow as a proxy of past storage. A stronger relationship implies that the basin is able to store water for longer duration, and vice versa. In this study, we used streamflow data from 388 USGS basins that are relatively unaffected by human activities to find out the factors that affect the relationship between the power law correlation (R^2_PN) between past discharge and k, where the subscript N is the number of days of past streamflow observations considered for the recession event. For most of the basins R^2_PN decreases with N. We then selected 18 physical and climatological parameters for each study basin and investigated how they influence the value of R^2_PN for each N. We followed multiple linear regression method and found that R^2_PN is strongly influenced by the selected parameters (R^2 = 0.58) for N =30 days. We also

  6. BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands.

    PubMed

    Toro-Vélez, A F; Madera-Parra, C A; Peña-Varón, M R; Lee, W Y; Bezares-Cruz, J C; Walker, W S; Cárdenas-Henao, H; Quesada-Calderón, S; García-Hernández, H; Lens, P N L

    2016-01-15

    It has been recognized that numerous synthetic compounds like Bisphenol A (BPA) and nonylphenols (NP) are present in effluents from wastewater treatment plants (WWTP) at levels of parts per billion (μg L(-1)) or even parts per trillion (ng L(-1)) with a high potential to cause endocrine disruption in the aquatic environment. Constructed wetlands (CW) are a cost-effective wastewater treatment alternative with promising performance to treat these afore mentioned compounds. This research was aimed to evaluate the efficacy of CW treatment of WWTP effluent for mitigating the effects endocrine disrupting compounds (EDCs). This research goal was accomplished by (1) quantifying the removal of BPA and NP in CWs; (2) isolating CW fungal strains and testing for laccase production; and (3) performing endocrine disruption (reproduction) bioassays using the fruit fly Drosophila melanogaster. Three pilot scale horizontal subsurface flow constructed wetlands (HSSF-CW) were operated for eight weeks: one planted with Phragmites australis; one planted with Heliconia psitacorum; and one unplanted. The Heliconia CW showed a removal efficiency of 73.3(± 19%) and 62.8(± 20.1%) for BPA and NP, respectively; while the Phragmites CW demonstrated a similar removal for BPA (70.2 ± 27%) and lower removal efficiency for NP 52.1(± 37.1%).The unplanted CW achieved 62.2 (± 33%) removal for BPA and 25.3(± 37%) removal for NP. Four of the eleven fungal strains isolated from the Heliconia-CW showed the capacity to produce laccase. Even though complete removal of EDCs was not achieved by the CWs, the bioassay confirmed a significant improvement (p < 0.05) in fly viability for all CWs, with Heliconia sp. being the most effective at mitigating adverse effects on first and second generational reproduction. This study showed that a CW planted with a native Heliconia sp. CW demonstrated a higher removal of endocrine disrupting compounds and better mitigation of reproductive disruption in the

  7. Surface and subsurface nitrate flow pathways on a watershed scale.

    PubMed

    Daughtry, C S; Gish, T J; Dulaney, W P; Walthall, C L; Kung, K J; McCarty, G W; Angier, J T; Buss, P

    2001-11-30

    Determining the interaction and impact of surface runoff and subsurface flow processes on the environment has been hindered by our inability to characterize subsurface soil structures on a watershed scale. Ground penetrating radar (GPR) data were collected and evaluated in determining subsurface hydrology at four small watersheds in Beltsville, MD. The watersheds have similar textures, organic matter contents, and yield distributions. Although the surface slope was greater on one of the watersheds, slope alone could not explain why it also had a nitrate runoff flux that was 18 times greater than the other three watersheds. Only with knowledge of the subsurface hydrology could the surface runoff differences be explained. The subsurface hydrology was developed by combining GPR and surface topography in a geographic information system. Discrete subsurface flow pathways were identified and confirmed with color infrared imagery, real-time soil moisture monitoring, and yield monitoring. The discrete subsurface flow patterns were also useful in understanding observed nitrate levels entering the riparian wetland and first order stream. This study demonstrated the impact that subsurface stratigraphy can have on water and nitrate (NO3-N) fluxes exiting agricultural lands, even when soil properties, yield distributions, and climate are similar. Reliable protocols for measuring subsurface fluxes of water and chemicals need to be developed.

  8. Horizontal mantle flow controls subduction dynamics.

    PubMed

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  9. Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2016-08-01

    The analytical evaluation of diurnal temperature variation in riverbed sediments provides detailed information on exchange fluxes between rivers and groundwater. The underlying assumption of the stationary, one-dimensional vertical flow field is frequently violated in natural systems where subsurface water flow often has a significant horizontal component. In this paper, we present a new methodology for identifying the geometry of the subsurface flow field using vertical temperature profiles. The statistical analyses are based on model optimisation and selection and are used to evaluate the shape of vertical amplitude ratio profiles. The method was applied to multiple profiles measured around in-stream geomorphological structures in a losing reach of a gravel bed river. The predominant subsurface flow field was systematically categorised in purely vertical and horizontal (hyporheic, parafluvial) components. The results highlight that river groundwater exchange flux at the head, crest and tail of geomorphological structures significantly deviated from the one-dimensional vertical flow, due to a significant horizontal component. The geometry of the subsurface water flow depended on the position around the geomorphological structures and on the river level. The methodology presented in this paper features great potential for characterising the spatial patterns and temporal dynamics of complex subsurface flow geometries by using measured temperature time series in vertical profiles.

  10. A Helioseismic Survey to Investigate Relationships between Subsurface Flows beneath Large Active Regions and Solar Flares

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Leka, K D.; Barnes, Graham

    2014-06-01

    A survey of the subsurface flow properties of about 120 of the largest active regions, determined from the application of helioseismic holography to Dopplergrams obtained with the HMI instrument onboard the Solar Dynamics Observatory, is being carried out. The overriding goal is to characterize differences in the subsurface flows between active regions associated with eruptive flares and the flows observed in relatively quiescent regions. Applications to flare forecasting comprise only one part of this investigation, since the potential response of the subsurface environment to eruptive events during and after their occurrence is also of scientific interest. Other priorities include understanding the limitations of the helioseismic methods, identifying and correcting systematic effects, and validating the reliability of the measurements using artificial data. While inversions to determine the variation with depth of subsurface flows are planned, preliminary results will be discussed which make use of proxies for near-surface depth-integrated properties, including the horizontal component of the flow divergence and the vertical component of the flow vorticity.This work is supported by the Solar Terrestrial Program of the National Science Foundation, through grant AGS-1127327, and by the National Oceanic and Atmospheric Administration SBIR program.

  11. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    PubMed Central

    Labonté, Jessica M.; Field, Erin K.; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K. Eric; Kieft, Thomas L.; Onstott, Tullis C.; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  12. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Winkler, G.; Birk, S.

    2016-05-01

    Preferential flow patterns in the subsurface are of great importance for the availability and the quality of water resources. However, knowledge of their spatial structure is still behind their importance, so that understanding the nature of preferential flow patterns is a major issue in subsurface hydrology. Comparing the statistics of river catchment sizes and spring discharges, we found that the morphology of preferential subsurface flow patterns is probably scale invariant and similar to that of dendritic river networks. This result is not limited to karstic aquifers where the occurrence of dendritic structures has been known at least qualitatively for a long time. The scale invariance even seems to be independent of the lithology of the aquifer. However, scale invariance of river patterns seems to be only limited by the continental scale, while scale invariance of subsurface flow patterns breaks down at much smaller scales. The upper limit of scale invariance in subsurface flow patterns is highly variable. We found a range from thousands of square kilometers for limestone aquifers down to less than 1 km2 in the weathered zone and debris accumulations of crystalline rocks.

  13. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  14. Integrated Surface/subsurface flow modeling in PFLOTRAN

    SciTech Connect

    Painter, Scott L

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  15. Analysis of nitrogen removal processes in a subsurface flow carbonate sand filter treating municipal wastewater.

    PubMed

    Kløve, Bjørn; Søvik, Anne-Kristine; Holtan-Hartwig, Liv

    2005-01-01

    Controlled experiments were carried out in a mesoscale subsurface flow sand filter treating municipal wastewater from a single household. The system consisted of a 50 cm high vertical flow column (pre-filter) with unsaturated flow and a 3 m long horizontal subsurface flow unit (main filter) with saturated flow. Fluxes of nitrogen and carbon were analyzed in 4 different operating conditions (low and high loading, with and without the prefilter unit). Water samples were taken from the inlet, the outlet and within the sand filter at different depths and locations and analysed for water quality (Tot N, NO3-N, NH4-N, TOC, DOC, CODcr, BOD5, SS, pH, and EC) and dissolved gas content (N2O, CH4, and CO2). Emissions of N2O, CH4, and CO2 were measured with the closed-chamber technique adjacent to water quality sampling points. The results show that prefiltering in a vertical, unsaturated flow column changed the incoming ammonium to nitrate during low loading. During high loading part of the ammonium nitrified in the pre-filter was lost by denitrification. Within the horizontal main filter there were two pathways for the incoming nitrate: denitrification and dissimilatory nitrate reduction to ammonium (DNRA).

  16. Researchers Mine Information from Next-Generation Subsurface Flow Simulations

    SciTech Connect

    Gedenk, Eric D.

    2015-12-01

    A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.

  17. Time-distance helioseismology of subsurface flows

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen J.; Thompson, Michael J.

    2003-02-01

    We revisit the work of Giles (1999) in an attempt to extend the work on large scale flows using the technique of time-distance helioseismology. The basic process and techniques are discussed and some initial results are shown. The behaviour of the meridional and zonal flows is found to be similar to that found by Giles and separately by ring diagram methods (Haber et al. 2002).

  18. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  19. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  20. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  1. Southward subsurface flow below the Somali current

    SciTech Connect

    Quadfasel, D.R.; Schott, F.

    1983-07-20

    The existence of a southward-flowing current beneath the northern part of the seasonally reversing Somali Current is documented in a 2 1/2 -year-long time series of currents obtained at moored stations near 5/sup 0/N about 30 km off the somali coast. Its mean annual transport in the layer 150-600 m amounts to about 5 x 10/sup 6/ m/sup 3//s. The undercurrent has a pronounced seasonal cycle in phase with the near surface flow, suggesting a close coupling to the monosoonal wind forcing. With the spin-up of the deep-reaching northern Somali gyre after the onset of the southwest monsoon, the undercurrent is temporarily destroyed in the northern Somali Basin during June/July but is re-established in August. The undercurrent does not reach 3/sup 0/N but turns offshore north of that latitude.

  2. Moat flow system around sunspots in shallow subsurface layers

    SciTech Connect

    Švanda, Michal; Sobotka, Michal; Bárta, Tomáš

    2014-08-01

    We investigate the subsurface moat flow system around McIntosh H-type symmetrical sunspots and compare it to the flow system within supergranular cells. Representatives of both types of flows are constructed by means of the statistical averaging of flow maps obtained by time-distance helioseismic inversions. We find that moat flows around H-type sunspots replace supergranular flows but there are two principal differences between the two phenomena: the moat flow is asymmetrical, probably due to the proper motion of sunspots with respect to the local frame of rest, while the flow in the supergranular cell is highly symmetrical. Furthermore, the whole moat is a downflow region, while the supergranule contains the upflow in the center, which turns into the downflow at about 60% of the cell radius from its center. We estimate that the mass downflow rate in the moat region is at least two times larger than the mass circulation rate within the supergranular cell.

  3. A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.

    PubMed

    Xu, Jin; Wang, Xudong

    2016-09-01

    A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems.

  4. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, Stefan; Winkler, Gerfried; Birk, Steffen

    2015-04-01

    The morphology of river networks at the Earth's surface has been addressed in numerous studies. Numerical simulations of fluvial erosion processes and concepts of optimization have provided a rather comprehensive understanding about the scale invariance of river networks. Less is known about the structure of preferential flow patterns in the subsurface because these are only accessible by indirect measurements in most cases. As preferential flow patterns are crucial for all transport processes in the subsurface, unraveling their structure is a major challenge in subsurface hydrology. Transferring the idea of optimization from surface flow to subsurface flow it was recently suggested that preferential subsurface flow patterns should also have a dendritic, scale-invariant structure similar to that of river networks. In this study we analyzed the mean discharges of serval thousand springs with respect to scale invariance. For this purpose we reanalyzed a data set comprising about 17,000 springs from Spain already published in the literature and three new data sets from the Eastern Alps in Austria. We found that the probability density f(Q) of the discharge distribution can be described by a power law with an exponential cutoff, f(Q) ≈ Q-τe- QQc. The scaling exponent τ was found to be about 1.6, which is slightly larger than the exponent τ = 1.5 of river networks. In contrast to rivers, the distributions of the spring discharges are characterized by a significant cutoff at large discharges. This cutoff strongly depends on the lithology of the aquifers, while the scaling exponent τ ˜ 1.6 seems to be universal. The highest cutoff was found for limestones being one of the primary host rocks for karstic aquifers. We found Qc ˜ 6000 l/s for the limestones in the data set from Spain, suggesting a scale-invariant subsurface flow pattern up to catchment sizes of several thousand square kilometers. At the other edge, we found a cutoff at catchment sizes in the order of

  5. Effects of hillslope geometry on surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Sabzevari, T.; Noroozpour, S.

    2014-07-01

    Dividing a catchment to subcatchment or hillslope scales allows for better scrutiny of the changes in spatial distribution of rainfall, soil attributes and plant cover across the catchment. An instantaneous unit hydrograph model is suggested for simulating runoff hydrographs for complex hillslopes. This model is able to estimate surface and subsurface flows of the catchment based on the Dunne-Black mechanism. For this purpose, a saturation model is used to separate the saturated and unsaturated zones in complex hillslopes. The profile curvatures (concave, straight and convex) and plan shapes (convergent, parallel and divergent) of complex hillslopes are considered, in order to compute the travel time of surface and subsurface flows. The model was used for prediction of the direct runoff hydrograph and subsurface flow hydrograph of Walnut Gulch No. 125 catchment in Arizona (USA). Based on results, the geometry of hillslopes can change the peak of the direct runoff hydrograph up to two-fold, either higher or lower. The divergent hillslopes show higher peaks in comparison with the parallel and convergent hillslopes. The highest and lowest peak flows correspond to divergent-concave and convergent-straight hillslopes, respectively.

  6. Theory and numerical application of subsurface flow and transport for transient freezing conditions

    SciTech Connect

    White, M.D.

    1995-04-01

    Protective barriers are being investigated for the containment of radioactive waste within subsurface environments. Predicting the effectiveness of cryogenic barriers and near-surface barriers in temperate or arctic climates requires capabilities for numerically modeling subsurface flow and transport for freezing soil conditions. A predictive numerical model is developed herein to simulate the flow and transport of radioactive solutes for three-phase (water-ice-air) systems under freezing conditions. This physically based model simulates the simultaneous flow of water, air, heat, and radioactive solutes through variably saturated and variably frozen geologic media. Expressions for ice (frozen water) and liquid water saturations as functions of temperature, interfacial pressure differences, and osmotic potential are developed from nonhysteretic versions of the Brooks and Corey and van Genuchten functions for soil moisture retention. Aqueous relative permeability functions for variably saturated and variably frozen geologic media are developed from the Mualem and Burdine theories for predicting relative permeability of unsaturated soil. Soil deformations, caused by freezing and melting transitions, are neglected. Algorithms developed for predicting ice and liquid water saturations and aqueous-phase permeabilities were incorporated into the finite-difference based numerical simulator STOMP (Subsurface Transport Over Multiple Phases). Application of the theory is demonstrated by the solution of heat and mass transport in a horizontal cylinder of partially saturated porous media with differentially cooled ends, with the colder end held below the liquid water freezing point. This problem represents an essential capability for modeling cryogenic barriers in variably saturated geologic media.

  7. Two-phase flow in horizontal pipes

    SciTech Connect

    Maeder, P.F.; Michaelides, E.E.; DiPippo, R.

    1981-09-01

    A method is developed in this paper which calculates the two-phase flow friction factor at any state of the fluid in the pipe. The mixing-length theory was employed for the calculation of the Reynolds stresses in turbulent two-phase flow. The friction factors obtained this way are in good agreement with experimental data. It is clear that the choice of the parameter m, or the density distribution, is rather arbitrary. Careful experimentation is required to refine the analysis given in this study, and in particular to provide guidance in the proper selection of the parameter m.

  8. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    SciTech Connect

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  9. Connecting Surface Planting with Subsurface Erosion Due to Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Reardon, M.; Curran, J. C.

    2014-12-01

    Bank erosion and failure is a major contributor of fine sediment to streams and rivers, and can be driven by subsurface flow. In restoration projects, vegetation is often planted on banks to reduce erosion and stabilize the banks. However, the relationship between subsurface flow, erosion and vegetation remains somewhat speculative. A comparative study quantified the effect of surface planting on subsurface erosion and soil strength. Six 32-gallon containers were layered with a sandy loam overlying a highly conductive sand layer and a confining clay. Three treatments were applied in pairs: switchgrass (Panicum virgatum L.), sod (turf-type tall fescue and Kentucky bluegrass mix), and no vegetation. After a vegetation establishment period, the 2, 10, and 100 year rainfalls were simulated. Samples collected from ports in the containers were analyzed for subsurface drainage volume and suspended sediment concentration. After all rainfall simulations, a sediment core was taken from each container to measure shear strength and root density. Results indicate the relative benefits of vegetative planting to reduce subsurface erosion during storms and enhance soil strength. Switchgrass reduced the total amount of sediment removed from containers during all three storms when compared to the sod and during the 10 and 100 year storms when compared to the bare ground. Results from the volume analysis were more variable. Switchgrass retained the greatest volume of water from the 100 year storm event, but also released the largest fraction of water in the 2 and 10 year storms. Both sod and switchgrass planting considerably increased the time required for the soil samples to fail despite reducing the shear stress at failure. Where switchgrass grew long, woody roots, the sod developed a dense mat of interconnected thin roots. We suspect the different root patterns between sod and switchgrass to be a dominant factor in the response of the different containers.

  10. The role of fragipan soils properties for hillslope subsurface flow dynamics

    NASA Astrophysics Data System (ADS)

    Dahlke, Helen; Easton, Zachary; Brown, Larry; Steenhuis, Tammo

    2010-05-01

    In watersheds characterized by fragipan, soils runoff generation is traditionally assumed to be dominated by shallow subsurface flow perched by a nearly impenetrable, low-conductive, subsurface soil horizon. However, several irrigation studies have indicated that fragipan soils can conduct subsurface flow vertically in considerable amounts resulting from differences in fragipan properties (e.g., prism diameter, interprism cracks, etc). These fragipan properties remain difficult to measure at the hillslope and watershed scales and consequently are inadequately accounted for in hydrological models. In the present study, a geophysical survey using ground penetrating radar of a 0.5 ha hillslope in central New York, USA has shown that spatial variability of the continuity and depth of fragipan soils is more influential on subsurface flow pathways than the physical characteristics of the fragipan itself. The geophysical survey revealed that the depth to fragipan varied between 0.3 and 0.8 m, resulting in water table and subsurface flow dynamics similar to the ‘fill and spill hypothesis'. The survey also indicated that the fragipan is interrupted by a higher conductive glacial sand lens that facilitates percolation of subsurface flow beneath the fragipan. The effect of the spatial variability of fragipan soils on subsurface flow pathways and flux was examined in further detail by installation of a 1.5 m wide, 1.5 m deep and 12.5 m long trench at the base of the 125 m long hillslope. The trench was installed in a variable source area (VSA) that forms at the base of the hillslope. The trench was instrumented with a surface flow collector measuring runoff from the upper 5 cm of the soil, and two collector drains installed at the soil-fragipan interface in 0.4 m depth and at the base of the trench (1.5 m depth). In addition, water levels were recorded at 5-min intervals in a 10 m x 10 m grid at the upslope contributing area of the trench. Soils in the study site are

  11. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    SciTech Connect

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  12. Horizontal Transfer of Tetracycline Resistance Genes in the Subsurface of a Poultry Farm

    NASA Astrophysics Data System (ADS)

    You, Y.; Ward, M.; Hilpert, M.

    2008-12-01

    Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. At a poultry farm, we, together with Mr.~James Doolittle from USDA, measured the apparent subsurface electrical conductivity (ECa) using a EM38 meter. The resulting ECaR) associated with the poultry farm due to the fact that tetracycline (Tc) is one of the most frequently used antibiotics in food animal production and therefore is probably used at this farm. Soil and aquifer samples were taken from the farm. TcR bacteria were detected, with higher concentrations in the top layer of soil than in the aquifer. TcR bacteria were then enriched from a soil sample, and two classes of TcR genes were detected: tet(M) genes encoding ribosomal protection proteins and tet(L) genes encoding tet efflux pumps. Sequences of the PCR products were compared to known tet(M) and tet(L) genes in GenBank using BLASTN. Phylogenetic trees were also built based on the sequence information. The tet(M) genes found in our soil sample were highly similar to those located on transposons. In a soil microcosm experiment, we used the aforementioned soil sample as incubation medium as well as genetic donor (TcR soil bacteria), and a green fluorescent strain of E. coli as a model genetic recipient to study horizontal transfer of TcR genes from soil bacteria to naïve bacteria. Concentrations of inoculated E. coli were continuously monitored for 15 days, TcR E. coli isolated, and colony PCR performed. The tet(M) genes were found to be transferred to naïve E. coli. The highest horizontal transfer ratio, 0.62 transconjugant per recipient, was observed when Tc was supplemented to a soil microcosm at a concentration of 140 μg/kg soil. Modeling is also ongoing to obtain a better understanding of this complex phenomenon.

  13. Horizontal extent of the urban heat dome flow.

    PubMed

    Fan, Yifan; Li, Yuguo; Bejan, Adrian; Wang, Yi; Yang, Xinyan

    2017-09-15

    Urban heat dome flow, which is also referred to as urban heat island circulation, is important for urban ventilation and pollutant transport between adjacent cities when the background wind is weak or absent. A "dome-shaped" profile can form at the upper boundary of the urban heat island circulation. The horizontal extent of the heat dome is an important parameter for estimating the size of the area it influences. This study reviews the existing data on the horizontal extent of the urban heat dome flow, as determined by using either field measurements or numerical simulations. A simple energy balance model is applied to obtain the maximum horizontal extent of a single heat dome over the urban area, which is found to be approximately 1.5 to 3.5 times the diameter of the city's urban area at night. A linearized model is also re-analysed to calculate the horizontal extent of the urban heat dome flow. This analysis supports the results from the energy balance model. During daytime, the horizontal extent of the urban heat dome flow is found to be about 2.0 to 3.3 times the urban area's diameter, as influenced by the convective turbulent plumes in the rural area.

  14. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow.

    PubMed

    Meutia, A A

    2001-01-01

    Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.

  15. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands.

    PubMed

    Cui, Lihua; Ouyang, Ying; Yang, Weizhi; Huang, Zhujian; Xu, Qiaoling; Yu, Guangwei

    2015-04-15

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs). Results showed that the optimal HRT was two days for maximal removal of N and P from the septic tank effluent among the four CWs. At this HRT, the Z1, Z2, Z3 and Z4 CWs removed, respectively, 49.93, 58.50, 46.01 and 44.44% of TN as well as 87.82, 93.23, 95.97 and 91.30% of TP. Our study further revealed that the Z3 CW was the best design for overall removal of N and P from the septic tank effluent due to its hybrid flow directions with better oxygen supply inside the CW system.

  16. Efficiency of subsurface flow constructed wetland with trickling filter.

    PubMed

    Vucinic, Aleksandra Anic; Hrenovic, Jasna; Tepes, Predrag

    2012-06-01

    Effective wastewater purification in subsurface flow constructed wetlands must include adequate pretreatment and ensure a sufficient amount of dissolved oxygen. In a pilot-scale operation, a subsurface flow constructed wetland (CW) consisted of a primary settlement tank, a trickling filter for pretreatment and two serially assembled basins. The trickling filter was added to ensure sufficient aeration, increase purification of the wastewater and shorten the wastewater purification time. The estimated nominal flow was 0.7 m3/d. The experiments were conducted using the wastewater from the municipal sewage canal of the city of Zagreb, with utilization of three different flows: 0.72 (A), 1.44 (B) and 2.88 (C) m3/d. The efficiency of the purification process was monitored over a period of three years (TSS, BOD5, COD, NH4-N, NO2-N, PO4-P, dissolved oxygen, temperature and pH). The experimental results showed an increase in the removal efficiency with a doubling of the nominal flow from 0.7 to 1.44 m3/d, which could be related to the implementation of the trickling filter where high removal rates were achieved.

  17. Solar-Cycle Variation of Subsurface-Flow Divergence: A Proxy of Magnetic Activity?

    NASA Astrophysics Data System (ADS)

    Komm, R.; Howe, R.; Hill, F.

    2017-09-01

    We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.

  18. Design and operation of a horizontal liquid helium flow facility

    SciTech Connect

    Van Sciver, S.W.; Wiesend, J.G. II

    1988-01-01

    The University of Wisconsin horizontal liquid helium flow facility (LHFF) consists of a five meter long 20 cm ID horizontal dewar connected to two end boxes. Several heat exchanger inserts have been built to allow variable temperature operation of 1.6 K less than or equal to T less than or equal to 4.2 K. A centrifugal pump is installed at one end of the facility permitting experiments in forced flow liquid helium up to 100 gm/s. The horizontal design allows experimentation on long straight test sections which may be used either to study fundamental properties of heat and mass transfer in helium or prototype cryogenic components under realistic conditions. A detailed description of the design and operating experience of the LHFF is presented. 5 refs., 5 figs.

  19. Horizontal Gene Transfer of PIB-Type ATPases among Bacteria Isolated from Radionuclide- and Metal-Contaminated Subsurface Soils

    PubMed Central

    Martinez, Robert J.; Wang, Yanling; Raimondo, Melanie A.; Coombs, Jonna M.; Barkay, Tamar; Sobecky, Patricia A.

    2006-01-01

    Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with cooccurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pbr) isolates was amplified with PCR primers specific for PIB-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired PIB-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pbr PIB-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO22+) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of PIB-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC. PMID:16672448

  20. DETECTION OF SUPERSONIC HORIZONTAL FLOWS IN THE SOLAR GRANULATION

    SciTech Connect

    Bellot Rubio, L. R.

    2009-07-20

    Hydrodynamic simulations of granular convection predict the existence of supersonic flows covering {approx}3%-4% of the solar surface at any time, but these flows have not been detected unambiguously as yet. Using data from the spectropolarimeter aboard the Hinode satellite, I present direct evidence of fast horizontal plasma motions in quiet-Sun granules. Their visibility increases toward the limb due to more favorable viewing conditions. At the resolution of Hinode, the horizontal flows give rise to asymmetric intensity profiles with very inclined blue wings and even line satellites located blueward of the main absorption feature. Doppler shifts of up to 9 km s{sup -1} are observed at the edges of bright granules, demonstrating that the flows reach supersonic speeds. The strongest velocities occur in patches of 0.''5 or less. They tend to be associated with enhanced continuum intensities, line widths, and equivalent widths, but large values of these parameters do not necessarily imply the existence of supersonic flows. Time series of spectropolarimetric measurements in regions away from the disk center show the transient nature of the strong horizontal motions, which last only for a fraction of the granule lifetime. Supersonic flows are expected to produce shocks at the boundaries between granules and intergranular lanes, and may also play a role in the emergence of small-scale magnetic fields in quiet-Sun internetwork regions.

  1. CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands.

    PubMed

    Langergraber, Guenter; Rousseau, Diederik P L; García, Joan; Mena, Javier

    2009-01-01

    This paper presents the Constructed Wetland Model No1 (CWM1), a general model to describe biochemical transformation and degradation processes for organic matter, nitrogen and sulphur in subsurface flow constructed wetlands. The main objective of CWM1 is to predict effluent concentrations from constructed wetlands without predicting gaseous emissions. CWM1 describes aerobic, anoxic and anaerobic processes and is therefore applicable to both horizontal and vertical flow systems. 17 processes and 16 components (8 soluble and 8 particulate) are considered. CWM1 is based on the mathematical formulation as introduced by the IWA Activated Sludge Models (ASMs). It is important to note that besides the biokinetic model a number of other processes including porous media hydrodynamics, the influence of plants, the transport of particles/suspended matter to describe clogging processes, adsorption and desorption processes and physical re-aeration must be considered for the formulation of a full model for constructed wetlands.

  2. Void fraction correlations in two-phase horizontal flow

    SciTech Connect

    Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

    1983-05-01

    This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.

  3. Monitoring Subsurface Fluid Flow Using Perfluorocarbon Tracers: Another Tool Potentially Available for Subsurface Fluid Flow Assessments

    EPA Pesticide Factsheets

    Perfluorocarbon Tracers (PFTs) Complement stable Isotopes and Geochemistry for Verifying, Assessing or Modeling Fluid Flow. Geochemistry, Isotopes and PFT’s complement Geophysics to monitor and verify plume movement, leakage to shallow aquifers or surface

  4. How do horizontal neutral winds create vertical plasma flows?

    NASA Astrophysics Data System (ADS)

    Vasyliunas, V. M.

    2012-12-01

    The neutral-wind dynamo process produces a configuration of plasma flow that in general (particularly at low magnetic latitudes) includes vertical bulk flow components, even when the neutral winds are assumed to be purely horizontal at all altitudes. Conventionally the plasma flow is described as the E × B drift from the dynamo electric field, the vertical flow component being ascribed to the meridional component of E crossed with the horizontal component of B. This relation between the plasma flow and the electric field, however, merely states a necessary condition for the assumed quasi-steady state; it says nothing about how the quasi-steady state was created, or how either of the two quantities was produced. It has been shown (Buneman, 1992; Vasyliūnas, 2001) that, in a plasma sufficiently dense so that {VA2<flow, not its cause. To create a plasma bulk flow, linear momentum must be added to the plasma, by some force acting on it. In the ionospheric dynamo process, linear momentum is carried by the neutral wind, but it can be transferred to the plasma only by plasma-neutral collisions; with the plasma initially at rest and the neutral wind assumed to flow horizontally everywhere, collisions cannot add vertical linear momentum to the plasma. The Lorentz force J × B, as long as J is described by the conventional ionospheric Ohm's law, simply balances the collisional frictional force (from plasma-neutral velocity difference) and does not add any net momentum to the plasma. In a time-dependent calculation of neutral-wind dynamo evolution (steady neutral wind imposed on an initially stationary plasma), a transient initial current appears, which does not obey the conventional ionospheric Ohm's law but produces an unbalanced J × B force that accelerates the plasma. The vertical component of this force can create the vertical plasma flows that exist in the asymptotic quasi-steady-state configuration. (The low

  5. Planetary heat flow from shallow subsurface measurements: Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Marc; Hagermann, Axel

    2016-10-01

    Planetary heat flow probes measure heat flow (depth-resolved temperature and thermal conductivity) to provide insight into the internal state of a planet. The probes have been utilized extensively on Earth, twice on the Moon, and once on the Surface of comet 67P-CG. Mars is an important target for heat flow measurement as heat flow is a critical parameter in Martian thermal history models. Earlier studies indicate that Martian planetary heat flow can be accessed at 5 m below the surface in dry regolith monitored over at least one Martian year. A one Martian year monitoring period is necessary because, in the shallow subsurface, heat flow from the interior is superposed with time varying heat flow contributions, primarily due to insolation. Given that a heat flow probe may not achieve its target depth or monitoring period, this study investigates how the depth (2-5 m), duration (0-1 Martian year) and quality of measurements influence the accuracy of planetary heat flow. An inverse model is used to show that, in the preceding scenarios, the accuracy of planetary heat flow directly estimated from depth-dependent thermal conductivity with 10-20% precision errors, temperatures with 50-100 mK precision errors and modelling uncertainties up to 500 mK, can, on average, be improved by a factor of 27 with optimization to 13%. Accuracies increase with sensor penetration depth and regolith monitoring period. Heat flow optimized from instantaneous measurements or those with the shortest regolith monitoring periods have increased accuracy where the frequency and amplitude of the temperature variation are lowest. The inverse model is based on the Function Specification Inversion method. This study demonstrates that a solution subspace can be identified within a space of uncertainties modelled for the temperature measurements and planetary heat flow: the subspace is defined by a constant log-ratio of their respective standard deviations. Optimized heat flow estimates display

  6. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands.

    PubMed

    Samsó, Roger; García, Joan; Molle, Pascal; Forquet, Nicolas

    2016-01-01

    Horizontal subsurface Flow Constructed Wetlands (HF CWs) are biofilters planted with aquatic macrophytes within which wastewater is treated mostly through contact with bacterial biofilms. The high concentrations of organic carbon and nutrients being transported leads to high bacterial biomass production, which decreases the flow capacity of the porous material (bioclogging). In severe bioclogging scenarios, overland flow may take place, reducing overall treatment performance. In this work we developed a mathematical model using COMSOL Multiphysics™ and MATLAB(®) to simulate bioclogging effects in HF CWs. Variably saturated subsurface flow and overland flow were described using the Richards equation. To simplify the inherent complexity of the processes involved in bioclogging development, only one bacterial group was considered, and its growth was described using a Monod equation. Bioclogging effects on the hydrodynamics were taken into account by using a conceptual model that affects the value of Mualem's unsaturated relative permeability. Simulation results with and without bioclogging were compared to showcase the impact of this process on the overall functioning of CWs. The two scenarios rendered visually different bacteria distributions, flow and transport patterns, showing the necessity of including bioclogging effects on CWs models. This work represents one of the few studies available on bioclogging in variably saturated conditions, and the presented model allows simulating the interaction between overland and subsurface flow occurring in most HF CWs. Hence, this work gets us a step closer to being able to describe CWs functioning in an integrated way using mathematical models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A novel technique to measure subsurface flow velocity

    NASA Astrophysics Data System (ADS)

    Bachmair, S.; Weiler, M.

    2010-12-01

    To better understand subsurface flow (SSF) processes at the hillslope scale, measuring subsurface flow velocity should be of great interest. However, due to the large heterogeneity in time and space, we are faced with the need to continuously measure SSF velocity at several locations within a hillslope over a distance being representative for certain hillslope segments. At present, SSF velocity is either measured by tracer tests over larger distances or via centimeter-scale measurements using heat dissipation or other tracers. This calls for a cheap and easily applicable method to continuously detect subsurface flow velocity in the field over a distance representative for certain hillslope segments. We currently develop a novel technique, which has shown promising results in the laboratory. The technique is based on an automatic salt tracer injection into a small-diameter borehole once the soil matrix has reached saturation. The tracer signal is captured by a 5TE probe (Decagon Devices) measuring soil moisture, electrical conductivity, and temperature every two minutes, which is inserted a few decimetres downslope of the injection point into the soil. The automatic injection is also controlled by the 5TE probe, which is connected to a CR1000 Logger (Campbell Scientific). Once saturated conditions have been established, a plug valve attached to an above-mounted bottle with NaCl solution is opened for 2 seconds and the tracer is injected into the borehole via a small steel tube screened at the bottom. Under saturated conditions the automatic injection is conducted every two hours and the breakthrough curves are analyzed for the mean effective velocity. In a first step, the technique was tested in a sand filled box with constant in- and outflow conditions representing a homogeneous miniature hillslope. Several experimental set-ups differing in hydraulic gradient, distance from injection point to 5TE probe, orientation of 5TE probe, and amount and concentration of

  8. Phase-locked measurements of gas-liquid horizontal flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2014-11-01

    A flow of gas and liquid in a horizontal pipe can be described in terms of various flow regimes, e.g. wavy stratified, annular or slug flow. These flow regimes appear at characteristic gas and liquid Reynolds numbers and feature unique wave phenomena. Wavy stratified flow is populated by low amplitude waves whereas annular flow contains high amplitude and long lived waves, so called disturbance waves, that play a key role in a liquid entrainment into the gas phase (droplets). In a slug flow regime, liquid-continuous regions travel at high speeds through a pipe separated by regions of stratified flow. We use a refractive index matched dynamic shadowgraphy technique using a high-speed camera mounted on a moving robotic linear rail to track the formation and development of features characteristic for the aforementioned flow regimes. We show that the wave dynamics become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the shadowgraphy measurements we present, over a range of conditions: (i) phenomenological observations of the formation, and (ii) statistical data on the downstream velocity distribution of different classes of waves. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. Simulating Subsurface Flow and Transport on Ultrascale Computers using PFLOTRAN

    SciTech Connect

    Mills, Richard T; Lu, Chuan; Hammond, Glenn; Lichtner, Peter

    2007-01-01

    We describe PFLOTRAN, a recently developed code for modeling multi-phase, multicomponent subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop--with a relatively modest investment in development effort--a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.

  10. Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Tran Mills, Richard; Lu, Chuan; Lichtner, Peter C.; Hammond, Glenn E.

    2007-07-01

    We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop—with a relatively modest investment in development effort—a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.

  11. Hillslope characteristics as controls of subsurface flow variability

    NASA Astrophysics Data System (ADS)

    Bachmair, S.; Weiler, M.

    2012-10-01

    Hillslope hydrological dynamics, particularly subsurface flow (SSF), are highly variable and complex. A profound understanding of factors controlling this variability is needed. Therefore we investigated the relationship between variability of shallow water table dynamics and various hillslope characteristics. We ask whether measurable hillslope properties explain patterns of subsurface flow variability. To approach this question, shallow water table dynamics of three adjacent large-scale hillslopes were monitored with high spatial and temporal resolution over 18 months. The hillslopes are similar in terms of topography and parent material, but different in vegetation cover (grassland, coniferous forest, and mixed forest). We expect vegetation to be an important driver of water table dynamics at our study site, especially given the minor differences in topography. Various hillslope properties were determined in the field and via GIS analysis: common topography descriptors, well depth, soil properties via slug tests, and several vegetation parameters. Response variables characterizing the water table response per well were calculated for different temporal scales (entire time series, seasonal scale, event scale). Partial correlation analysis and a Random Forest machine learning approach were carried out to assess the explainability of SSF variability by measurable hillslope characteristics. We found a complex interplay of predictors, yet soil properties and topography showed the highest single explanatory power. Surprisingly, vegetation characteristics played a minor role. Solely throughfall and canopy cover exerted a slightly stronger control, especially in summer. Most importantly, the examined hillslope characteristics explained only a small proportion of the observed SSF variability. Consequently there must be additional important drivers not represented by current measurement techniques of the hillslope configuration (e.g. bedrock properties, preferential

  12. Hillslope characteristics as controls of subsurface flow variability

    NASA Astrophysics Data System (ADS)

    Bachmair, S.; Weiler, M.

    2012-06-01

    Hillslope hydrological dynamics, particularly subsurface flow (SSF), are highly variable and complex. A profound understanding of factors controlling this variability is needed. Therefore we investigated the relationship between variability of shallow water table dynamics and various hillslope characteristics. We ask whether measurable hillslope properties explain patterns of subsurface flow variability. To approach this question shallow water table dynamics of three adjacent large-scale hillslopes were monitored with high spatial and temporal resolution over 18 months. The hillslopes are similar in terms of topography and parent material, but different in vegetation cover (grassland, coniferous forest, and mixed forest). We expect vegetation to be an important driver of water table dynamics at our study site, especially given the minor differences in topography. Various hillslope properties were determined in the field and via GIS analysis: common topography descriptors, well depth, soil properties via slug tests, and several vegetation parameters. Response variables characterizing the water table response per well were calculated for different temporal scales (entire time series, seasonal scale, event scale). Partial correlation analysis and a Random Forest machine learning approach were carried out to assess the explainability of SSF variability by measurable hillslope characteristics. We found a complex interplay of predictors, yet soil properties and topography showed the highest single explanatory power. Surprisingly, vegetation characteristics played a minor role. Solely throughfall and canopy cover exerted a slightly stronger control, especially in summer. Most importantly, the examined hillslope characteristics explained only a small proportion of the observed SSF variability. Consequently there must be additional important drivers not represented by current measurement techniques of the hillslope configuration (e.g. bedrock properties, preferential

  13. Experimental measurements of the cavitating flow after horizontal water entry

    NASA Astrophysics Data System (ADS)

    Tat Nguyen, Thang; Hai, Duong Ngoc; Quang Thai, Nguyen; Phuong, Truong Thi

    2017-10-01

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles.

  14. Horizontal flow and capillarity-driven redistribution in porous media.

    PubMed

    Doster, F; Hönig, O; Hilfer, R

    2012-07-01

    A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating phases, and they highlight the differences from traditional theory. Two initial and boundary value problems are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution of the fluids. Errors in the literature are reported and corrected.

  15. HORIZONTAL FLOWS IN ACTIVE REGIONS FROM RING-DIAGRAM AND LOCAL CORRELATION TRACKING METHODS

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Komm, R.; Hill, F.; Ravindra, B.

    2016-01-01

    Continuous high-cadence and high spatial resolution Dopplergrams allow us to study subsurface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager, we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using the local correlation tracking (LCT) method, while the ring-diagram technique of helioseismology is used to infer flows in the subphotospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from the surface measurements. However, the magnitudes are significantly different; the flows from the LCT method are smaller by a factor of 2 than the helioseismic measurements. Also, the median difference between the direction of corresponding vectors is 49°.

  16. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  17. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    SciTech Connect

    Aleman, S.E.

    2000-05-05

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  18. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Treesearch

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  19. Fragipan controls on nitrogen loss by surface and subsurface flow pathways in an upland agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of nutrient transport by surface and subsurface flow pathways is critical to protecting water quality in agricultural watersheds. We sought to compare nitrogen loss in overland and subsurface flow on two opposing hillslopes (north versus south facing), each with contrasting so...

  20. Phosphorus transport by surface and subsurface flow pathways in an upland agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of phosphorus transport by surface and subsurface flow pathways is critical to protecting water quality in agricultural watersheds. While considerable attention has been devoted to understanding phosphorus losses in overland flow, comparatively limited research has examined ph...

  1. Geometry of channel networks incised by subsurface flow

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Cohen, Y.; Devauchelle, O.; Seybold, H. F.; Yi, R.

    2016-12-01

    When groundwater returns to the surface at springs, the material atthe surface may erode and channels may be incised. Over time,ramified networks can form. Alternatively, water flowing over landcan also incise channels. Networks formed by overland flow have beenmore widely studied, but, paradoxically, the geometric aspects ofgroundwater-fed networks, which depend only weakly on topography, maybe more straightforwardly understood from elementary fluid mechanics.Here we focus on two aspects of the geometry of growinggroundwater-fed networks: the direction in which channels advanceand the angle at which they branch. First, using a conventionaltwo-dimensional approximation of the groundwater flow, we remark thatthe direction taken by moving channel tips may be equivalentlyunderstood from the maintenance of local symmetry in the groundwaterfield, the maximization of flux to tips, or motion along thegroundwater streamline into tips. Next, we use these ideas toshow that a bifurcated tip that grows in the predicted directionsresults in a branching angle of 2 pi/5 = 72 degrees. Our studies of astream network on the Florida Panhandle that is unequivocally drivenby subsurface flow accords well with this prediction. We also presentthe results of an empirical study of branching angles throughout thecontiguous United States. Our results show that in humid climates,branching angles appear to asymptotically approach 72 degrees as theso-called aridity index--the ratio of rainfall rate to potentialevapotranspiration--increases. The tendency toward this angle foraridity indicies greater than one is evident over approximatelyone-half of the country, suggesting that groundwater may play asignificant role in channelization processes wherever climates aresufficiently humid.

  2. Evaluating the Effects of Horizontal Spatial Discretization on Interflow in the Soil Zone Using the Richards and Groundwater Flow Equations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Niswonger, R. G.

    2011-12-01

    In many mountainous regions, a large proportion of streamflow originates as shallow subsurface storm flow (interflow) within the shallow soils of hillslopes. Infiltration can accumulate to form perched groundwater within the upper few meters of the soil horizon that drains to streams through both macropores and soil-matrix. Richards Equation has become a commonly used governing equation for simulating interflow in regional-scale models. Recent research has shown that optimal vertical discretization for Richards Equation near land surface and the water table is much smaller than the discretization typically used in basin-scale hydrologic models, yet little is known about optimal horizontal discretization or potential effects of horizontal discretization on interflow solutions. Most of the work related to the effects of discretization on the solution of Richards Equation has focused on the vertical infiltration problem. This study evaluates horizontal spatial discretization effects on interflow predictions using 1) a modified version of GSFLOW and 2) VS2DT. The modified GSFLOW couples Smith-Parlange 1-D infiltration equations with 3-D unconfined groundwater flow equation, whereas VS2DT uses Richards Equation to represent infiltration and variably saturated flow. Interflow solutions and breakthrough at the stream were compared using a model domain similar to Vauclin and others (1979) with horizontal grid resolutions ranging from 0.05-5m and vertical resolutions ranging between 0.05-1m, with horizontal flow path lengths of 25m to the stream. Variable horizontal spatial resolutions affected VS2DT interflow solutions (RMSE up to 0.12) and interflow breakthrough at the stream, whereas GSFLOW solutions were well correlated (RMSE <0.052). Interflow breakthrough was delayed by up to 10 days with increasing resolution in VS2DT, whereas GSFLOW breakthrough was consistently the same day. Results indicate that the solution of Richards Equation for soil-zone interflow is much

  3. Steady particulate flows in a horizontal rotating cylinder

    SciTech Connect

    Yamane, K.; Nakagawa, M.; Altobelli, S.A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio {approximately}7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit. {copyright} {ital 1998 American Institute of Physics.}

  4. Heat transfer during intermittent/slug flow in horizontal tubes

    SciTech Connect

    Shoham, O.; Dukler, A.E.; Taitel, Y.

    1982-08-01

    Heat transfer characteristics for two-phase gas-liquid slug flow in a horizontal pipe have been measured. The time variation of temperature, heat transfer coefficients, and heat flux is reported for the different zones of slug flow: the mixing region at the nose, the body of the slug, the liquid film, and the gas bubble behind the slug. Substantial differences in heat transfer coefficient exist between the bottom and top of the slug. This results from the fact that each slug is effectively a thermally developing entry region caused by the presence of a hot upper wall just upstream of each slug. A qualitative theory is presented which explains this behavior. 18 refs.

  5. Analysis of horizontal flows in the solar granulation

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Suematsu, Y.

    2016-04-01

    Solar limb observations sometimes reveal the presence of a satellite lobe in the blue wing of the Stokes I profile from pixels belonging to granules. The presence of this satellite lobe has been associated in the past to strong line-of-sight gradients and, as the line-of-sight component is almost parallel to the solar surface, to horizontal granular flows. We aim to increase the knowledge about these horizontal flows studying a spectropolarimetric observation of the north solar pole. We will make use of two state of the art techniques, the spatial deconvolution procedure that increases the quality of the data removing the stray light contamination, and spectropolarimetric inversions that will provide the vertical stratification of the atmospheric physical parameters where the observed spectral lines form. We inverted the Stokes profiles using a two component configuration, obtaining that one component is strongly blueshifted and displays a temperature enhancement at upper photospheric layers while the second component has low redshifted velocities and it is cool at upper layers. In addition, we examined a large number of cases located at different heliocentric angles, finding smaller velocities as we move from the centre to the edge of the granule. Moreover, the height location of the enhancement on the temperature stratification of the blueshifted component also evolves with the spatial location on the granule being positioned on lower heights as we move to the periphery of the granular structure.

  6. Gas phase depletion and flow dynamics in horizontal MOCVD reactors

    NASA Astrophysics Data System (ADS)

    Van de Ven, J.; Rutten, G. M. J.; Raaijmakers, M. J.; Giling, L. J.

    1986-08-01

    Growth rates of GaAs in the MOCVD process have been studied as a function of both lateral and axial position in horizontal reactor cells with rectangular cross-sections. A model to describe growth rates in laminar flow systems on the basis of concentration profiles under diffusion controlled conditions has been developed. The derivation of the growth rate equations includes the definition of an entrance length for the concentration profile to developed. In this region, growth rates appear to decrease with the 1/3 power of the axial position. Beyond this region, an exponential decrease is found. For low Rayleigh number conditions, the present experimental results show a very satisfactory agreement with the model without parameter fitting for both rectangular and tapered cells, and with both H 2 and N 2 as carrier gases. Theory also predicts that uniform deposition can be obtained over large areas in the flow direction for tapered cells, which has indeed been achieved experimentally. The influence of top-cooling in the present MOCVD system has been considered in more detail. From the experimental results, conclusions could be drawn concerning the flow characteristics. For low Rayleigh numbers (present study ≲ 700) it follows that growth rate distributions correspond with forced laminar flow characteristics. For relatively high Rayleigh numbers (present work 1700-2800), free convective effects with vortex formation are important. These conclusions are not specific for the present system, but apply to horizontal cold-wall reactors in general. On the basis of the present observations, recommendations for a cell design to obtain large area homogeneous deposition have been formulated. In addition, this work supports the conclusion that the final decomposition of trimethylgallium in the MOCVD process mainly takes place at the hot substrate and susceptor and not in the gas phase.

  7. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    SciTech Connect

    Zhou, Qi; Diamessis, Peter J.

    2015-12-15

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.

  8. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical

  9. Effect of Periodic Surface Air Temperature Variations on Subsurface Thermal Structure with Vertical Fluid flow

    NASA Astrophysics Data System (ADS)

    D, R. V.; Ravi, M.; Srivastava, K.

    2016-12-01

    The influence of climate change on near subsurface temperatures is an important research topic for global change impact assessment at the regional scale. The varying temperature of the air over the surface in long term will disturb subsurface thermal structure. Groundwater flow is another important process which perturbs the thermal distribution into the subsurface. To investigate the effect of periodic air temperature on nonisothermal subsurface, one dimensional transient heat conduction-advection equation is solved numerically using finite element method. Thermal response of subsurface for periodic variations in surface air temperature (SAT) with robin type boundary condition on the surface with vertical ground water flow are calculated and the amplitude attenuation of propagation of surface temperature information in the subsurface for different scenarios of advection and convective coefficient are discussed briefly. The results show the coupled response of trigonometric variation in air temperature with surface temperatures along with ground water velocity has significant implications for the effects of climate change.

  10. Subsurface Water Flow and its Subsequent Impact on Chemical Behavior

    USDA-ARS?s Scientific Manuscript database

    The impact of the subsurface stratigraphy on crop growth and agrichemical behavior has been studied for several years at the OPE3 research site located at the USDA-ARS Beltsville Agricultural Research Center, in Beltsville Maryland. This site contains subsurface restricting layers that have been id...

  11. Simulating Subsurface Reactive Flows on Ultrascale Computers with PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hammond, G. E.; Lichtner, P. C.; Lu, C.; Smith, B. F.; Philip, B.

    2009-12-01

    To provide true predictive utility, subsurface simulations often must accurately resolve--in three dimensions--complicated, multi-phase flow fields in highly heterogeneous geology with numerous chemical species and complex chemistry. This task is especially daunting because of the wide range of spatial scales involved--from the pore scale to the field scale--ranging over six orders of magnitude, and the wide range of time scales ranging from seconds or less to millions of years. This represents a true "Grand Challenge" computational problem, requiring not only the largest-scale ("ultrascale") supercomputers, but accompanying advances in algorithms for the efficient numerical solution of systems of PDEs using these machines, and in mathematical modeling techniques that can adequately capture the truly multi-scale nature of these problems. We describe some of the specific challenges involved and present the software and algorithmic approaches that are being using in the computer code PFLOTRAN to provide scalable performance for such simulations on tens of thousands of processors. We focus particularly on scalable techniques for solving the large (up to billions of total degrees of freedom), sparse algebraic systems that arise. We also describe ongoing work to address disparate time and spatial scales by both the development of adaptive mesh refinement methods and the use of multiple continuum formulations. Finally, we present some examples from recent simulations conducted on Jaguar, the 150152 processor core Cray XT5 system at Oak Ridge National Laboratory that is currently one of the most powerful supercomputers in the world.

  12. Characterization of interfacial waves in horizontal core-annular flow

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  13. Optimizing SVE Remediation With Subsurface Flow and Mass Transfer Measurements

    NASA Astrophysics Data System (ADS)

    Spansky, M. C.; Riha, B. D.; Rossabi, J.; Hyde, W. K.; Dixon, K. L.; Nichols, R. L.

    2002-05-01

    The 5.9-acre A-Area Miscellaneous Rubble Pile (ARP) at the DOE Savannah River Site (SRS) was created in the 1950s as a general disposal area. An aerial photograph from 1953 shows evidence of disposal activities; however, the exact materials disposed and dates of operation at ARP remain unknown. Within the larger ARP unit exists an approximately 2-acre T-shaped trench filled with ash debris to a depth of 10-14 feet. Soil sampling analysis of the ARP trench indicates the presence of the volatile organic compounds (VOCs) trichloroethelyne (TCE) and tetrachloroetheylene (PCE). TCE and PCE contamination in the trench has the potential to migrate and poses a groundwater contamination risk. Several remediation options have been considered at ARP to date. The first, passive soil vapor extraction (PSVE), uses barometric pressure fluctuations to create a differential pressure between subsurface soil vapors and the atmosphere. Five wells were installed along the axes of the ARP trench. Differential pressure in the wells was monitored to determine the potential for PSVE. Results showed that the ash formation was too shallow and permeable to create pressure gradients sufficient for effective PSVE. The addition of a temporary cap over the formation did little to improve the differential pressure. Two pumping tests were subsequently conducted at the ARP trench. Air was pumped from two separate wells and drawdowns recorded at three observation wells. Data from the tests were used to model permeability of the ash unit and to estimate the zone of influence for the proposed active soil vapor extraction (SVE) system. Results indicate a high permeability for the ash. Contaminant concentrations were monitored with a portable infrared photoacoustic multigas monitor during continuous, pulsed, and variable flow rate scenarios. The concentration and flow data were used to evaluate mass transfer limitations of the system and to optimize the full-scale SVE remediation.

  14. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  15. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, T.M.; Raffensperger, J.P.; Hornberger, G.M.; Clapp, R.B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two-storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  16. Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands.

    PubMed

    Saeed, Tanveer; Al-Muyeed, Abdullah; Afrin, Rumana; Rahman, Habibur; Sun, Guangzhi

    2014-04-01

    This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD/(m(2)·day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efficiencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Dairy washwater treatment using a horizontal flow biofilm system.

    PubMed

    Rodgers, M; de Paor, D; Clifford, E

    2008-01-01

    In Ireland, dairy farmyard washwater commonly comprises farmyard run-off and dairy parlour washings. Land-spreading is the most widely used method for treating this wastewater. However, this method can be labour intensive and can cause, in some cases, the degradation of surface and ground waters, mainly due to nitrogen contamination. In this study, a horizontal flow biofilm reactor (HFBR) with step-feed was constructed and tested in the laboratory, to remove organic carbon and nitrogen from a agricultural strength synthetic washwater (SWW). The HFBR had an average top plan surface area (TPSA) of 0.1002 m(2) and consisted of a stack of 45 polystyrene horizontal sheets--15 sheets embedded with 25 mm deep frustums above 30 sheets with 10 mm deep frustums. The frustums acted as miniature reservoirs. The sheets were alternately offset to allow the wastewater to flow horizontally along each sheet and vertically from sheet to sheet down through the reactor. Biofilms developed on the sheets and treated the wastewater. During the 212-d study, the total hydraulic loading rate based on the TPSA of the sheets was 35 l m(-2) d(-1). SWW was pumped for 10 min each hour, in a step feed arrangement at a rate of 23.33 l m(-2) d(-1) on to the top sheet during Phases 1 and 2, and 11.67 l m(-2) d(-1) onto Sheet 16 during Phase 1 (days 1-92) and onto Sheet 30 during Phase 2 (days 93-212). The substrate loading rate during Phases 1 and 2 was 94.8 g total chemical oxygen demand (COD) m(-2) d(-1) and 10.5 g total nitrogen (TN) m(-2) d(-1), based on the TPSA. At steady state in Phase 2, the unit achieved excellent carbon removal of 99.7% 5-day biochemical oxygen demand (BOD(5)) and 96.7% total COD, equivalent to TPSA removal rates of 67.5 g BOD(5)m(-2)d(-1) and 91.7 g COD m(-2) d(-1). The nitrogen removal percentages were 98.3% total ammonium-nitrogen (NH(4)-N(t)) and 72.8% TN, which equated to TPSA removal rates of 4.8 g NH(4)-N(t) m(-2) d(-1) and 7.6g TN m(-2) d(-1). No sloughing of

  18. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators.

    PubMed

    Kahl, Stefanie; Nivala, Jaime; van Afferden, Manfred; Müller, Roland A; Reemtsma, Thorsten

    2017-09-05

    Six pilot-scale subsurface flow treatment wetlands loaded with primary treated municipal wastewater were monitored over one year for classical wastewater parameters and a set of emerging organic compounds (EOCs) serving as process indicators for biodegradation: caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine. The wetland technologies investigated included conventional horizontal flow, unsaturated vertical flow (single and two-stage), horizontal flow with aeration, vertical flow with aeration, and reciprocating. Treatment efficiency for classical wastewater parameters and EOCs generally increased with increasing design complexity and dissolved oxygen concentrations. The two aerated wetlands and the two-stage vertical flow system showed the highest EOC removal, and the best performance in warm season and most robust performance in the cold season. These three systems performed better than the adjacent conventional WWTP with respect to EOC removal. Acesulfame was observed to be removed (>90%) by intensified wetland systems and with use of a tertiary treatment sand filter during the warm season. Elevated temperature and high oxygen content (aerobic conditions) proved beneficial for EOC removal. For EOCs of moderate to low biodegradability, the co-occurrence of aerobic conditions and low content of readily available carbon appears essential for efficient removal. Such conditions occurred in the aerated systems and with use of a tertiary treatment sand filter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Generalized Subsurface Flow Parameterization Considering Subgrid Spatial Variability of Recharge and Topography

    SciTech Connect

    Huang, Maoyi; Liang, Xu; Leung, Lai R.

    2008-12-05

    Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that when the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.

  20. Particle seeding flow system for horizontal shock tube

    SciTech Connect

    Johnston, Stephen; Garcia, Nicolas J.; Martinez, Adam A.; Orlicz, Gregory C.; Prestridge, Katherine P.

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  1. Surface and subsurface hydrothermal flow pathways at Norris Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Graham Wall, B. R.

    2005-12-01

    During summer 2003 at Yellowstone's Norris Geyser Basin notable changes were observed in the discharge of heat and steam, creating new thermal features, dying vegetation, and the consequent closure of trails to protect public safety. In order to interpret data collected from GPS, seismic, and temperature instruments deployed in response to the increased hydrothermal activity, a study has been undertaken to provide a more complete knowledge of the spatial distribution of subsurface fluid conduits. Geologic data, including mapped outcrops, aerial imagery, thermal infrared imagery, and subsurface core, indicate that fracture pathways in the Lava Creek Tuff (LCT) channel flow in the hydrothermal system. These data show clear evidence that NE-SW and NW-SE trending structures provide major flow pathways at Norris. By mapping fracture sets in outcrops of LCT with varied degrees of hydrothermal alteration, one can consistently identify fractures that localize hydrothermal fluid flow, alteration, and the geometry of surface thermal features. Alteration is characterized by acid leaching that quickly alters LCT mafic minerals and glassy groundmass, which in outcrop is recognized by corroded and disaggregated LCT with local secondary mineral deposition. Mapping the sequence from unaltered to altered LCT has identified vertical cooling joints as primary conduits for hydrothermal fluids. These vertical joints correlate with the NE-SW trending geomorphic expression of the LCT in this area, and parallel the adjacent caldera boundary. Horizontal fractures parallel depositional stratigraphy, and in core from drill holes Y-9 (248 m) and Y-12 (332 m) appear to initiate at collapsed vapor-phase cavities or regions of altered fiamme. Vertical fractures in the core show sequences of hydrothermal minerals locally derived from water-rock interaction that line fracture walls, characteristic of mineral deposition associated with repeat reactivation. Although the hydrothermal system is

  2. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model

    EPA Pesticide Factsheets

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  3. Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (3DFATMIC) Model

    EPA Pesticide Factsheets

    This model simulates subsurface flow, fate and transport of contaminants that are undergoing chemical or biological transformations. The model is applicable to transient conditions in both saturated and unsaturated zones.

  4. Statistical analysis of the horizontal divergent flow in emerging solar active regions

    SciTech Connect

    Toriumi, Shin; Hayashi, Keiji; Yokoyama, Takaaki

    2014-10-10

    Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23 flux emergence events over a period of 14 months, the total flux of which ranges from 10{sup 20} to 10{sup 22} Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s{sup –1}. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s{sup –1}. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is a rather common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has the capability of determining the subsurface properties of emerging fields that cannot be directly measured.

  5. Statistical Analysis of the Horizontal Divergent Flow in Emerging Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Hayashi, Keiji; Yokoyama, Takaaki

    2014-10-01

    Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23 flux emergence events over a period of 14 months, the total flux of which ranges from 1020 to 1022 Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s-1. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s-1. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is a rather common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has the capability of determining the subsurface properties of emerging fields that cannot be directly measured.

  6. compartment transfer rates in horizontal flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Maier, Uli; Oswald, Sascha; Thullner, Martin; Grathwohl, Peter

    2010-05-01

    A conceptual computer model has been constructed to simulate the compartment transfer rates in horizontal flow constructed wetlands. The model accounts for flow and transport in the variably saturated porous medium as well as biogeochemical change reactions. The most concentrated contaminants such as BTEX, MTBE and gasoline hydrocarbons and dissolved as well as mineral phase electron acceptors are considered. Also of major interest are reduced species with high oxygen demand such as ammonium. The influence of marsh plants on microbial activity, gas transport, water balance and contaminant fate in general is matter of current investigation. The constructed wetlands consist of a coarse sand or fine gravel porous medium. Marsh plants were introduced after installation, however, a number of control basins are operated unplanted. Water levels and through flow rates are adjusted to optimize the remediation efficiency. The system is likely to be neither reaction nor mixing limited, thus both, values of dispersivity and degradation kinetics may be crucial for remediation efficiency. Biogeochemical modelling is able to delineate in detail (i) the zonation of processes, (ii) temporal variation (breakthrough curves) and (iii) mass balance information. The contributions of biodegradation and volatilisation and the influence of plants (compartment transfer) can generally best be evaluated by the component's mass balance. More efficient mixing is expected in the wetlands with open water body which leads to both, more biodegradation and volatilisation. An important task is to quantify the role of plants and root systems for contaminant attenuation in constructed wetlands. The long term goal of investigation is to allow for predictions for the design of large scale compartment transfer wetlands that may be applied to remediate the site as a whole.

  7. Advances in Fluid Dynamics of Subsurface Flow of Groundwater, Hydrocarbons, and CO2

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2015-12-01

    In the past, the chemical methods of contaminant hydrogeology have dominated much of hydrogeological thinking. In their wake, understanding the physics of subsurface fluid flow and its application to practice and science seemingly has played a secondary role and it often has been replaced by numerical modelling only. Building an understanding of the actual physics of subsurface flow beyond numerical modelling, however, is a confusing experience exposing one to conflicting statements from the sides of engineers, hydrogeologists, and, for a decade or more, by the followers of free convection and density-driven flow. Within the physics of subsurface flow a number of questions arise, such as: Is water really incompressible as assumed in engineering hydraulics? How does buoyancy work? Are underground buoyancy forces generally directed vertically upwards or downwards? What is the consequential difference between hydrostatic and hydrodynamic conditions? What are the force fields causing subsurface flow for water, hydrocarbons and CO2? Is fluid flow really driven by pressure gradients as assumed in reservoir engineering? What is the effect of geothermal gradients on subsurface flow? Do convection cells and free convection exist on-shore? How does variable density flow work? Can today's numerical codes adequately determine variable density flow? Does saltwater really sink to the bottom of geologic systems due to its higher density? Aquitards create confining conditions and thereby confine fluid movements to aquifers? Does more water flow in aquifers than aquitards? The presentation will shed light on the maze of conflicting statements issued within engineering hydraulics and groundwater dynamics. It will also present a field case and its numerical modelling of variable density flow at a major industrial landfill site. The presentation will thereby foster the understanding of the correct physics involved and how this physics can be beneficially applied to practical cases

  8. Approaches and Applications of Physically-based, Spatially-distributed Integrated surface / subsurface flow modeling

    NASA Astrophysics Data System (ADS)

    Panday, S.; Huyakorn, P. S.

    2004-12-01

    Physically-based, spatially-distributed (PBSD) modeling of integrated surface water and groundwater flow is necessary for evaluating the complex processes of runoff, recharge, evapotranspiration, subsurface flow, and baseflow, to comprehensively manage water resources for diverse and competing needs such as conjunctive use, aquifer storage and recovery, flood protection, wetland restoration and minimum flow evaluation. Some current approaches to PBSD modeling of integrated surface and subsurface flow will be discussed. Challenges to PBSD integrated modeling will be presented, and application case studies will be presented.

  9. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.

    PubMed

    Huett, D O; Morris, S G; Smith, G; Hunt, N

    2005-09-01

    Subsurface horizontal flow reed beds are being evaluated for Nitrogen (N) and Phosphorus (P) removal from plant nursery runoff water in New South Wales Australia. The need to include plants (Phragmites australis), the effect of reaction time (3.5 v 7.0 d) and dissolved organic carbon (DOC) on N and P removal in batch fed gravel wetland tubs (55 L) was studied over 19 months. Simulated nursery runoff water containing N (10.1 mg L(-1), 74% as NO3) and P (0.58 mg L(-1), 88% as PO4) and DOC (2-5 mg L(-1)) was used. The planted wetland tubs removed >96% TN and TP over most of the 19-month study period while unplanted tubs were inefficient (<16% N and <45% P removal) and occasionally discharged nutrients. Doubling the reaction time to 7.0 days had no effect on nutrient removal. Plant nutrient uptake accounted for most of the N (76%) and P (86%) removed while roots and rhizomes were the dominant sink (N 58%, P 67%). The addition of methanol (C:N-3:1) to unplanted tubs achieved 81-98% N removal. In Carbon limited low nutrient nursery runoff, plants were essential to a gravel-based wetland to achieve efficient nutrient removal with effluent TN and TP concentrations of <1 mg L(-1) and 0.05 mg L(-1), respectively with a 3.5 day reaction time.

  10. Anaerobic biodegradation tests and gas emissions from subsurface flow constructed wetlands.

    PubMed

    García, Joan; Capel, Vanessa; Castro, Anna; Ruíz, Isabel; Soto, Manuel

    2007-11-01

    Anaerobic tests with gravel from horizontal subsurface flow constructed wetlands (SSF) used for the treatment of urban wastewater were developed in order to evaluate the anaerobic biodegradability of their effluents. Two types of assays were conducted. The reactors used for the first type were glass vials of 45 mL, that were used for only one measurement, requiring starting experiments with a number of reactors equal to the measurements to be made. For the second type of experiments multiple measurements were done in the same reactors, by using flasks of 2.2L. The COD of the SSF effluents used for the tests ranged from 60 to 130 mg/L. The evolution of CO(2) in the headspace of the reactors was used as indicator of anaerobic biodegradation rates. CO(2) mass emission rates ranged from 0.005 to 0.015 micromol/mL day. CH(4) generation was not detected in the tests in relation with the refractory properties of the effluent organic matter of the studied SSF. In situ measurement of CO(2) and CH(4) emissions from the gravel of the SSF ranged from 0.106 to 0.464 and from 0.039 to 0.107 mmol/m(2)h, respectively. Several CO(2) fluxes measured in the field were quite consistent with the emissions observed in the laboratory. The developed tests can help to understand the performance of SSF and improve their operation.

  11. [Segregation effect of purification for nitrogen and phosphate pollution in the subsurface flow constructed wetlands].

    PubMed

    Liu, Shu-Yuan; Yan, Bai-Xing; Wang, Li-Xia

    2011-03-01

    Three minitype subsurface-horizontal flow constructed wetlands planted with Calamagrostis angustifolia and Phragmites australis and filled with soil and slag were used to investigate the N, P and pH for upper layer and underlayer wetland system by intermission operation. Results demonstrated that TN removal rates in the superstratum of Calamagrostis angustifolia and Phragmites australis wetlands were 0.771 g x (m2 x d)(-1), 1.481 g x(m2 x d)(-1) with 10 days of the hydraulic retention, which were 1.15 and 1.31 times higher than that of underlayer wetland systems, respectively. Simultaneity, TP removal rates in the superstratum of Calamagrostis angustifolia and Phragmites australis wetlands were 1.655 g x (m2 x d)(-1), 6.838 g x (m2 x d)(-1), respectively, which were 1.13 and 1.28 times higher than that of underlayer wetland systems, respectively. The purification ability of upper layer in the wetland system was higher than that of underlayer. A regular trend of pH changes and upstanding buffer ability of wetland system were found. The pH values in the upper layer of soil-slag wetlands were smaller than that of underlayer which was contrary to the soil wetland. The break-point of pH curve indicates the termination of NH4(+) -N reaction in constructed wetland.

  12. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    NASA Astrophysics Data System (ADS)

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups

  13. Subsurface conditions in hydrothermal vents inferred from diffuse flow composition, and models of reaction and transport

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.

    2015-08-01

    Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.

  14. CO2 exsolution - challenges and opportunities in subsurface flow management

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Benson, Sally

    2014-05-01

    for storage security. Falta et al. [2013] show that if carbonated brine migrates upwards and exsolution occurs, brine migration would be greatly reduced and limited by the presence of exsolved CO2 and the consequent low relatively permeability to brine. Similarly, if an exsolved CO2 phase were to evolve in seals, for example, after CO2 injection stops, the effect would be to reduce the permeability to brine and the CO2 would have very low mobility. This flow blocking effect is also studied with water/oil/CO2 [Zuo et al., 2013]. Experiments show that exsolved CO2 performs as a secondary residual phase in porous media that effectively blocks established water flow paths and deviates water to residual oil zones, thereby increasing recovery. Overall, our studies suggest that CO2 exsolution provides an opportunity for mobility control in subsurface processes. However, the lack of simulation capability that accounts for differences between gas injection and gas exsolution creates challenges for modeling and hence, designing studies to exploit the mobility reduction capabilities of CO2 exsolution. Using traditional drainage multiphase flow parameterization in simulations involving exsolution will lead to large errors in transport rates. Development of process dependent parameterizations of multiphase flow properties will be a key next step and will help to unlock the benefits from gas exsolution. ACKNOWLEDGEMENT This work is funded by the Global Climate and Energy Project (GCEP) at Stanford University. This work was also supported by U.S. EPA, Science To Achieve Results (STAR) Program, Grant #: 834383, 2010-2012. REFERENCES Falta, R., L. Zuo and S.M. Benson (2013). Migration of exsolved CO2 following depressurization of saturated brines. Journal of Greenhouse Gas Science and Technology, 3(6), 503-515. Zuo, L., S.C.M. Krevor, R.W. Falta, and S.M. Benson (2012). An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water

  15. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    NASA Astrophysics Data System (ADS)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  16. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement

    USGS Publications Warehouse

    Vugrinovich, R.

    1989-01-01

    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  17. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China.

    PubMed

    Duan, Jian; Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated

  18. A field study of colloid transport in surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly

  19. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    EPA Science Inventory

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  20. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    EPA Science Inventory

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  1. Fluid flow through a vertical to horizontal 90 elbow bend III three phase flow

    SciTech Connect

    Spedding, P.L.; Benard, E.; Crawford, N.M.

    2008-01-15

    Three phase water/oil/air flow was studied around a vertical upward to horizontal 90 elbow bend of R/d = 0.654. The results were more complex than corresponding two phase data. The pressure drop recorded for the two tangent legs sometimes showed significant variations to the straight pipe data. In most cases this variation was caused by differences in the flow regimes between the two systems. The elbow bend tended to constrict the flow presented by the vertical inlet tangent leg while sometimes acting as a wave and droplet generator for the horizontal outlet tangent leg. It could be argued that the inclusion of the elbow bend altered the flow regime map transitional boundaries but it also is possible that insufficient settling length was provided in the apparatus design. The elbow bend pressure drop was best presented as l{sub e}/d the equivalent length to diameter ratio using the actual total pressure drop in the vertical inlet tangent leg. Generally l{sub e}/d values rose with gas rate, but exhibited an increasingly complex relation with f{sub o} the oil to liquid volumetric ratio as liquid rate was increased. A significant maximum in l{sub e}/d was in evidence around the inversion from water dominated to oil dominated flows. Several models are presented to predict the data. (author)

  2. Subsurface barrier design alternatives for confinement and controlled advection flow

    SciTech Connect

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.

  3. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  4. Relationship Between Storm Hydrograph Components and Subsurface Flow Processes in a Hilly Headwater Basin, Toyota, Japan

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Asai, K.; Takei, R.

    2001-05-01

    Temporal and spatial distribution of tracer elements and subsurface flow processes were investigated to study relationship between storm hydrograph components and behavior of subsurface water in a headwater catchment of Toyota Hill, Aichi prefecture, central Japan. The catchment has an area of 0.857 ha with an altitude of 60 to 100 m, and is underlain by granite. The soil depth revealed by sounding test ranges from 0.5 to 4.0 m. Rain, stream, soil and ground waters were sampled once in a week, and the stream water was sampled at 5 to 60 minute intervals during rainstorms. The pressure head of subsurface water was monitored using tensiometers and piezometers nests, and the stream flow was monitored using V-notch weir. The stable isotopic ratios of deuterium and oxygen 18 and inorganic ion concentrations were determined on all water samples. The oxygen 18 isotopic ratio in stream water decreased with rainfall during the rainstorms. The ratio of event water component to the total runoff water at the peak discharge ranged from 16 to 92 %, and the event water ratio correlated with the peak discharge rate and rainfall intensity. The tesiometric data showed that the shallow subsurface water with low isotopic ratios at the lower slope discharged directly to the stream during the heavy rainstorms. The shallow subsurface flow at the lower slope and overland flow on the raiparian zone contributed much to the stream water chemistry during heavy rainstorms.

  5. Hillslope permeability architecture controls on subsurface transit time distribution and flow paths

    NASA Astrophysics Data System (ADS)

    Ameli, A. A.; Amvrosiadi, N.; Grabs, T.; Laudon, H.; Creed, I. F.; McDonnell, J. J.; Bishop, K.

    2016-12-01

    Defining the catchment transit time distribution remains a challenge. Here, we used a new semi-analytical physically-based integrated subsurface flow and advective-dispersive particle movement model to assess the subsurface controls on subsurface water flow paths and transit time distributions. First, we tested the efficacy of the new model for simulation of the observed groundwater dynamics at the well-studied S-transect hillslope (Västrabäcken sub-catchment, Sweden). This system, like many others, is characterized by exponential decline in saturated hydraulic conductivity and porosity with soil depth. The model performed well relative to a tracer-based estimate of transit time distribution as well as observed groundwater depth-discharge relationship within 30 m of the stream. Second, we used the model to assess the effect of changes in the subsurface permeability architecture on flow pathlines and transit time distribution in a set of virtual experiments. Vertical patterns of saturated hydraulic conductivity and porosity with soil depth significantly influenced hillslope transit time distribution. Increasing infiltration rates significantly decreased mean groundwater age, but not the distribution of transit times relative to mean groundwater age. The location of hillslope hydrologic boundaries, including the groundwater divide and no-flow boundary underlying the hillslope, changed the transit time distribution less markedly. These results can guide future decisions on the degree of complexity that is warranted in a physically-based rainfall-runoff model to efficiently and explicitly estimate time invariant subsurface pathlines and transit time distribution.

  6. Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency

    USGS Publications Warehouse

    Burns, Douglas A.; Hooper, R.P.; McDonnell, Jeffery J.; Freer, J.E.; Kendall, C.; Beven, K.

    1998-01-01

    A 20-m-wide trench was excavated to bedrock on a hillslope at the Panola Mountain Research Watershed in the Piedmont region of Georgia to determine the effect of upslope drainage area from the soil and bedrock surfaces on the geochemical evolution of base cation concentrations in subsurface flow. Samples were collected from ten 2-m sections and five natural soil pipes during three winter rainstorms in 1996. Base cation concentrations in hillslope subsurface flow were generally highest early and late in the storm response when flow rates were low, but during peak flow, concentrations varied little. Base cation concentrations in matrix flow from the 10 trench sections were unrelated to the soil surface drainage area and weakly inversely related to the bedrock surface drainage area. Base cation concentrations in pipe flow were lower than those in matrix flow and were also consistent with the inverse relation to bedrock surface drainage area found in matrix flow. The left side of the trench, which has the highest bedrock surface drainage area, had consistently lower mean base cation concentrations than the right side of the trench, which has the lowest bedrock surface drainage area. During moderate size rain events of about 20-40 mm, subsurface flow occurred only on the left side of the trench. The greater volume of water that has flowed through the left side of the trench appears to have resulted in greater leaching of base cations from soils and therefore lower base cation concentrations in subsurface flow than in flow from the right side of the trench. Alternatively, a greater proportion of flow that bypasses the soil matrix may have occurred through the hillslope on the left side of the trench than on the right side. Flushing frequency links spatial hillslope water flux with the evolution of groundwater and soil chemistry.

  7. Subsurface thermal regime to delineate the paleo-groundwater flow system in an arid area, Al Kufra, Libya

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom El-Said

    2016-12-01

    The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.

  8. Subsurface transport of phosphorus in riparian floodplains: influence of preferential flow paths.

    PubMed

    Fuchs, John W; Fox, Garey A; Storm, Daniel E; Penn, Chad J; Brown, Glenn O

    2009-01-01

    For phosphorus (P) transport from upland areas to surface water systems, the primary transport mechanism is typically considered to be surface runoff with subsurface transport assumed negligible. However, certain local conditions can lead to an environment where subsurface transport may be significant. The objective of this research was to determine the potential of subsurface transport of P along streams characterized by cherty or gravel subsoils, especially the impact of preferential flow paths on P transport. At a field site along the Barren Fork Creek in northeastern Oklahoma, a trench was installed with the bottom at the topsoil/alluvial gravel interface. Fifteen piezometers were installed surrounding the trench to monitor flow and transport. In three experiments, water was pumped into the trench from the Barren Fork Creek to maintain a constant head. At the same time, a conservative tracer (Rhodamine WT) and/or potassium phosphate solution were injected into the trench at concentrations at 3 and 100 mg/L for Rhodamine WT and at 100 mg/L for P. Laboratory flow-cell experiments were also conducted on soil material <2 mm in size to determine the effect that flow velocity had on P sorption. Rhodamine WT and P were detected in some piezometers at equivalent concentrations as measured in the trench, suggesting the presence of preferential flow pathways and heterogeneous interaction between streams and subsurface transport pathways, even in nonstructured, coarse gravel soils. Phosphorus transport was retarded in nonpreferential flow paths. Breakthrough times were approximately equivalent for Rhodamine WT and P suggesting no colloidal-facilitated P transport. Results from laboratory flow-cell experiments suggested that higher velocity resulted in less P sorption for the alluvial subsoil. Therefore, differences in flow rates between preferential and nonpreferential flow pathways in the field led to variable sorption. The potential for nutrient subsurface transport

  9. Adaptive and Efficient Computing for Subsurface Simulation within ParFlow

    SciTech Connect

    Tiedeman, H; Woodward, C S

    2010-11-16

    This project is concerned with the PF.WRF model as a means to enable more accurate predictions of wind fluctuations and subsurface storage. As developed at LLNL, PF.WRF couples a groundwater (subsurface) and surface water flow model (ParFlow) to a mesoscale atmospheric model (WRF, Weather Research and Forecasting Model). It was developed as a unique tool to address coupled water balance and wind energy questions that occur across traditionally separated research regimes of the atmosphere, land surface, and subsurface. PF.WRF is capable of simulating fluid, mass, and energy transport processes in groundwater, vadose zone, root zone, and land surface systems, including overland flow, and allows for the WRF model to both directly drive and respond to surface and subsurface hydrologic processes and conditions. The current PF.WRF model is constrained to have uniform spatial gridding below the land surface and matching areal grids with the WRF model at the land surface. There are often cases where it is advantageous for land surface, overland flow and subsurface models to have finer gridding than their atmospheric counterparts. Finer vertical discretization is also advantageous near the land surface (to properly capture feedbacks) yet many applications have a large vertical extent. However, the surface flow is strongly dependent on topography leading to a need for greater lateral resolution in some regions and the subsurface flow is tightly coupled to the atmospheric model near the surface leading to a need for finer vertical resolution. In addition, the interactions (e.g. rain) will be highly variable in space and time across the problem domain so an adaptive scheme is preferred to a static strategy to efficiently use computing and memory resources. As a result, this project focussed on algorithmic research required for development of an adaptive simulation capability in the PF.WRF system and its subsequent use in an application problem in the Central Valley of

  10. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-09-02

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  11. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters.

    PubMed

    Hernández-Crespo, C; Gargallo, S; Benedito-Durá, V; Nácher-Rodríguez, Beatriz; Rodrigo-Alacreu, M A; Martín, M

    2017-10-01

    Three medium size constructed wetlands (CWs) with a total surface of 90ha are working since 2009 in the Albufera de Valencia Natural Park (Spain). Two of them are fed with eutrophic waters from l'Albufera Lake. Their objectives are both reduce the phytoplankton biomass and increase the biodiversity; consequently, improved water quality is returned to the lake. A "science based governance" of these CWs is ongoing inside the LIFE+12 Albufera Project to demonstrate the environmental benefits of these features. In this paper, results and relationships among hydraulic operation, physicochemical variables and plankton in two different CWs typologies, five free water surface CW (FWSCW) and one horizontal subsurface flow CW (HSSFCW), were analysed showing that CWs were capable of improving the water quality and biodiversity but showing clear differences depending on the CW type. The CWs worked under different hydraulic load rates (HLR) from <0.12 to 54.75myr(-1). Inflow water quality was typical from eutrophic waters with mean values of chlorophyll a (Chl a) about 22-90μgChlal(-1) and mean total phosphorus (TP) between 0.122 and 0.337mgl(-1). The main conclusion is that HSSFCW was much more efficient than FWSCW in the removal of organic matter, suspended solids and nutrients. The biological role of several shallow lagoons located at the end of the CWs has also been evaluated, showing that they contribute to increase the zooplankton biomass, a key factor to control the phytoplankton blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy.

    PubMed

    Mietto, Anna; Borin, Maurizio

    2013-01-01

    The performance of a vertical and a horizontal subsurface flow wetland (v-SSF and h-SSF), designed for treating domestic wastewater from a single family, was investigated by monitoring total nitrogen (TN), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total phosphorus (TP), chemical oxygen demand (COD) and the dissolved oxygen (DO) content of the influent and the effluent wastewater of each system during the first two years of operation. The growth of Phragmites australis in each system was recorded by measuring the height and observing their general conditions. The treated domestic wastewater presented similar chemical-physical characteristics in the two systems which operated in analogous environmental conditions. The median influent characteristics were: TN 81.9mg L(-1), NO3-N 0.19 mg L(-1), NH4-N 33.5 mg L(-1), TP 11.9 mg L(-1) and COD 354.5 mg L(-1). During the whole monitoring period median reductions in the v-SSF were TN 71%, NH4-N 94%, TP 27% and COD 92% whereas in the h-SSF they were TN 59%, NH4-N 21%, TP 52% and COD 70%. Internal production of NO3-N was observed, mainly in the v-SSF probably due to the difference in oxygen availability in the medium and the design of the system. DO concentration increased in the effluents in both years, with higher values measured in v-SSF than in h-SSF. The reduction performance increased in the second year, particularly in v-SSF, whereas no statistical differences were observed between spring-summer and autumn-winter periods. P. australis reached maximum development at the end of summer in both systems and maintained a stable height during autumn-winter. In h-SSF the vegetation located close to the influent showed lower growth than in the rest of the bed.

  13. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands.

    PubMed

    Tyroller, Lina; Rousseau, Diederik P L; Santa, Santa; García, Joan

    2010-07-01

    The oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L x W x d 125 x 50 x 35 cm filled with a 30-cm layer of 10-11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L x W x d 110 x 70 x 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O(2) m(-2) d(-1) in the unplanted gravel bed and from 0.3 to 3.2 g O(2) m(-2) d(-1) in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR.

  14. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands.

    PubMed

    Matamoros, Victor; Bayona, Josep M

    2006-09-15

    Removal efficiency and elimination rates of 11 pharmaceuticals and personal care products (PPCPs)were measured in two subsurface horizontal flow constructed wetlands (SSFs) characterized by different water depths (i.e. 0.3 and 0.5 m) in a 2-year study. Dissolved and particulate phases of wastewater and gravel samples were collected and analyzed. The PPCP influent concentration ranged from 1 to 25 microg L(-1). The best removal efficiency was found in the shallower bed SSF due to its less negative redox potential. PPCPs were classified in four groups according to their removal behavior: (i) the efficiently removed (>80%) namely caffeine, salicylic acid, methyl dihydrojasmonate, and carboxy-ibuprofen, (ii) the moderately removed (50-80%) namely ibuprofren, hydroxy-ibuprofen, and naproxen, (iii) the recalcitrant to the elimination namely ketoprofen and diclofenac, and,finally, (iv) compounds that were eliminated by hydrophobic interactions namely polycyclic musks (i.e. galaxolide and tonalide). These compounds were removed more than 80% from the effluent but occurred at high concentrations (up to 824 microg kg(-1)) in the gravel bed. Accordingly, their elimination by sorption onto the organic matter retained is the predominant removal mechanism. Furthermore, the constructed wetland clogging appears to induce a negative effect in the PPCP degradation in the SSF evaluated. The PPCP elimination classified as efficiently and moderately removed through the shallow bed fitted to either zero- or a first-order areal kinetics. Finally, the apparent distribution coefficients between suspended solids (Kd'ss) or gravel bed (Kd'gb) and water were determined in the different sampling points of the wetland obtaining values comparable to the described previously for sewage sludge.

  15. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...

    2017-09-05

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  16. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  17. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  18. Flow Visualization Study of a 1/48-Scale AFTI/F111 Model to Investigate Horizontal Tail Flow Disturbances

    NASA Technical Reports Server (NTRS)

    Bjarke, Lisa J.

    1991-01-01

    During flight testing of the AFTI/F111 aircraft, horizontal tail buffet was observed. Flutter analysis ruled out any aeroelastic instability, so a water-tunnel flow visualization study was conducted to investigate possible flow disturbances on the horizontal tail which might cause buffet. For this study, a 1/48-scale model was used. Four different wing cambers and one horizontal tail setting were tested between 0 and 20 deg angle of attack. These wing cambers corresponded to the following leading training edge deflections: 0/2, 10/10, 10/2, and 0/10. Flow visualization results in the form of still photographs are presented for each of the four wing cambers between 8 and 12 deg angle of attack. In general, the horizontal tail experiences flow disturbances which become more pronounced with angle of attack or wing trailing-edge deflection.

  19. Horizontal multiphase flow correlations for large diameter pipes and high flow rates

    SciTech Connect

    Al-Ne`aim, S.A.; Aggour, M.A.; Al-Yousef, H.Y.

    1995-10-01

    The most widely used horizontal multiphase flow correlations have been tested against field measurements in order to determine the best correlation(s) for Saudi Arabian field conditions. A total of 450 field data points covering pipe sizes from 6 in. to 10 in., oil flow rates form 2200 to 25600 STB/D, water cut up to 60% and GOR up to 984 SCF/STB were used in this study. The standard Beggs and Brill correlation provided the best prediction considering all data combined. However, Dukler Case II correlation provided better prediction for the 6 in. pipes; and Beggs and Brill correlation was the best for the 8 in. and 10 in. pipes.

  20. Multi-Physics Markov Chain Monte Carlo Methods for Subsurface Flows

    NASA Astrophysics Data System (ADS)

    Rigelo, J.; Ginting, V.; Rahunanthan, A.; Pereira, F.

    2014-12-01

    For CO2 sequestration in deep saline aquifers, contaminant transport in subsurface, and oil or gas recovery, we often need to forecast flow patterns. Subsurface characterization is a critical and challenging step in flow forecasting. To characterize subsurface properties we establish a statistical description of the subsurface properties that are conditioned to existing dynamic and static data. A Markov Chain Monte Carlo (MCMC) algorithm is used in a Bayesian statistical description to reconstruct the spatial distribution of rock permeability and porosity. The MCMC algorithm requires repeatedly solving a set of nonlinear partial differential equations describing displacement of fluids in porous media for different values of permeability and porosity. The time needed for the generation of a reliable MCMC chain using the algorithm can be too long to be practical for flow forecasting. In this work we develop fast and effective computational methods for generating MCMC chains in the Bayesian framework for the subsurface characterization. Our strategy consists of constructing a family of computationally inexpensive preconditioners based on simpler physics as well as on surrogate models such that the number of fine-grid simulations is drastically reduced in the generated MCMC chains. In particular, we introduce a huff-puff technique as screening step in a three-stage multi-physics MCMC algorithm to reduce the number of expensive final stage simulations. The huff-puff technique in the algorithm enables a better characterization of subsurface near wells. We assess the quality of the proposed multi-physics MCMC methods by considering Monte Carlo simulations for forecasting oil production in an oil reservoir.

  1. Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications

    SciTech Connect

    Oldenburg, Curtis M.; Borglin, Sharon E.; Moridis, George J.

    1997-05-05

    Ferrofluids are suspensions of magnetic particles of diameter approximately 10 nm stabilized by surfactants in carrier liquids. The large magnetic susceptibility of ferrofluids allows the mobilization of ferrofluid through permeable rock and soil by the application of strong external magnetic fields. We have developed simulation capabilities for both miscible and immiscible conceptualizations of ferrofluid flow through porous media in response to magnetic forces arising from the magnetic field of a rectangular permanent magnet. The flow of ferrofluid is caused by the magnetization of the particles and their attraction toward a magnet, regardless of the orientation of the magnet. The steps involved in calculating the flow of ferrofluid are (1) calculation of the external magnetic field, (2) calculation of the gradient of the external magnetic field, (3) calculation of the magnetization of the ferrofluid, and (4) assembly of the magnetic body force term and addition of this term to the standard pressure gradient and gravity force terms. We compare numerical simulations to laboratory measurements of the magnetic field, fluid pressures, and the two-dimensional flow of ferrofluid to demonstrate the applicability of the methods coded in the numerical simulators. We present an example of the use of the simulator for a field-scale application of ferrofluids for barrier verification.

  2. Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications

    SciTech Connect

    Oldenburg, Curtis M.; Borglin, Sharon E.; Moridis, George J.

    1997-05-05

    Ferrofluids are suspensions of magnetic particles of diameter approximately 10 nm stabilized by surfactants in carrier liquids. The large magnetic susceptibility of ferrofluids allows the mobilization of ferrofluid through permeable rock and soil by the application of strong external magnetic fields. We have developed simulation capabilities for both miscible and immiscible conceptualizations of ferrofluid flow through porous media in response to magnetic forces arising from the magnetic field of a rectangular permanent magnet. The flow of ferrofluid is caused by the magnetization of the particles and their attraction toward a magnet, regardless of the orientation of the magnet. The steps involved in calculating the flow of ferrofluid are (1) calculation of the external magnetic field, (2) calculation of the gradient of the external magnetic field, (3) calculation of the magnetization of the ferrofluid, and (4) assembly of the magnetic body force term and addition of this term to the standard pressure gradient and gravity force terms. We compare numerical simulations to laboratory measurements of the magnetic field, fluid pressures, and the two-dimensional flow of ferrofluid to demonstrate the applicability of the methods coded in the numerical simulators. We present an example of the use of the simulator for a field-scale application of ferrofluids for barrier verification.

  3. Horizontal flow stratification modifications for RELAP5/MOD3

    SciTech Connect

    Riemke, R.A.

    1989-02-01

    The report documents the modifications to the horizontal stratification model in RELAP5/MOD3. Background information, model description and solution method, coding changes, and assessment of these changes are described in the report. The use of the phasic velocity difference in the Taitel-Dukler criterion along with a mass flux criterion improved the void fraction data comparison for the TPTF tests. Modifications and error corrections to the void gradient term improved the code's capability to calculate the correct velocities. 15 refs., 23 figs., 1 tab.

  4. Predicted Variations in Flow Patterns in a Horizontal CVD Reactor

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    Expressions in terms of common reactor operating parameters were derived for the ratio of the Grashof number to the Reynolds number, Gr/Re, the ratio of the Grashof to the square of 2 the Reynolds number, Gr/Re(exp 2), and the Rayleigh number, Ra. Values for these numbers were computed for an example horizontal CVD reactor and compared to numerical simulations to gauge their effectiveness as predictors of the presence or absence of transverse and longitudinal rolls in the reactor. Comparisons were made for both argon and hydrogen carrier gases over the pressure range 2- 101 kPa. Reasonable agreement was achieved in most cases when using Gr/Re to predict the presence of transverse rolls and Ra to predict the presence of longitudinal rolls. The ratio Gr/Re(exp 2) did not yield useful predictions regarding the presence of transverse rolls. This comparison showed that the ratio of the Grashof number to the Reynolds number, as well as the Rayleigh number, can be used to predict the presence or absence of transverse and longitudinal rolls in a horizontal CVD reactor for a given set of reactor conditions. These predictions are approximate, and care must be exercised when making predictions near transition regions.

  5. Sparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulation

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammadreza Mohammad; Jafarpour, Behnam; Li, Lianlin

    2012-04-01

    Inference of heterogeneous rock properties from low-resolution dynamic flow measurements often leads to underdetermined nonlinear inverse problems that can have many non-unique solutions. The problem is usually regularized by reducing the number of unknown parameters and/or incorporating direct or indirect prior information. In subsurface flow modeling, structural connectivity in hydraulic properties plays a critical role in determining local and global flow and displacement processes. When reliable prior information about the structural connectivity of a formation is available it can be used to discourage implausible inversion solutions. In this two-part paper, we introduce a geologically-inspired conceptual framework, geologic dictionaries, for reconstructing complex subsurface physical properties from the flow data. We evaluate the performance of our method under both reliable and highly uncertain prior knowledge and measurements. In Part I, we present inversion with sparse geologic dictionaries, learned from prior models, for estimation of complex heterogeneous subsurface hydraulic properties. We show how learning methods can be adapted to build, from a prior training library, specialized sparse geologic dictionaries that contain relevant structural elements (words) for constructing the solution of subsurface flow inverse problems. The key property of the constructed geologic dictionaries that we invoke during flow data integration is its "sparsity"; that is, we require that only a small subset of geologic dictionary elements be sufficient for accurately approximating any prior model realizations in the training library, and hence the model calibration solution. Using the sparsity property of the geologic dictionary, we formulate and solve the nonlinear model calibration as a feature estimation problem. To construct a solution, we adopt an iteratively reweighted least-squares (IRLS) algorithm to identify the important dictionary elements by minimizing a

  6. Flooding characteristics of gas-liquid two-phase flow in a horizontal U bend pipe

    SciTech Connect

    Sakaguchi, T.; Hosokawa, S.; Fujii, Y.

    1995-09-01

    For next-generation nuclear reactors, hybrid safety systems which consist of active and passive safety systems have been planned. Steam generators with horizontal U bend pipelines will be used as one of the passive safety systems. It is required to clarify flow characteristics, especially the onset of flooding, in the horizontal U bend pipelines in order to examine their safety. Flooding in vertical pipes has been studied extensively. However, there is little study on flooding in the horizontal U bend pipelines. It is supposed that the onset of flooding in the horizontal U bend pipelines is different from that in vertical pipes. On the other hand, liquid is generated due to condensation of steam in pipes of the horizontal steam generators at the loss of coolant accident because the steam generators will be used as a condenser of a cooling system of steam from the reactor. It is necessary to simulate this situation by the supply of water at the middle of horizontal pipe. In the present paper, experiments were carried out using a horizontal U bend pipeline with a liquid supply section in the midway of pipeline. The onset of flooding in the horizontal U bend pipeline was measured. Effects of the length of horizontal pipe and the radius of U bend on the onset of flooding were discussed.

  7. Sediment mobilization deposits from episodic subsurface fluid flow - A new tool to reveal long-term earthquake records?

    NASA Astrophysics Data System (ADS)

    Reusch, Anna; Moernaut, Jasper; Anselmetti, Flavio S.; Strasser, Michael

    2016-04-01

    Subsurface fluid flow can be affected by earthquakes: increased spring activity, mud volcano eruptions, groundwater fluctuations, changes in geyser frequency and other forms of altered subsurface fluid flow have been documented during, after, or even prior to earthquakes. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge karstic groundwater from the Jura Mountains and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from phases of sediment expulsion and their time correlative multiple mass-transport deposits. We report striking evidence for five events of concurrent multiple subsurface sediment deposits and multiple mass-transport deposits since Late Glacial times, for which we propose past earthquakes as trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum macroseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as new paleoseismic proxy. Comparable processes must also be relevant for other mountain front ranges and coastal mountain ranges, where groundwater flow triggers subsurface sediment mobilization and discharges into lacustrine and marine settings.

  8. Coupling surface and subsurface flows with curved interfaces

    NASA Astrophysics Data System (ADS)

    Song, Pu; Yotov, Ivan

    2013-11-01

    A mortar multiscale method is developed for the coupled Stokes andDarcy flows with the Beavers-Joseph-Saffman interface condition in irregular domains. Conforming Stokes elements and multipoint flux mixed finite elements in Darcy are used to discretize the subdomains on the fine scale. A coarse scale mortar finite element space is used to approximate interface stresses and pressures and impose weakly continuity of velocities and fluxes. Matching conditions on curved interfaces are imposed by mapping the physical grids to reference grids with flat interfaces.

  9. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater.

    PubMed

    VanderZaag, A C; Gordon, R J; Burton, D L; Jamieson, R C; Stratton, G W

    2010-01-01

    Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an effective treatment option. During treatment, however, some C and N are converted to CH(4), N(2)O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH(4), N(2)O, and CO(2) emissions from surface flow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m(2) each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fluxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were significantly (p < 0.01) different between SF and SSF wetlands changed significantly with time. Overall, SF wetlands had significantly (p < 0.01) higher emissions of CH(4) N(2)O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N(2)O to CH(4) emissions (CO(2)-equivalent) was nearly 1:1 in both wetland types. Emissions of CH(4)-C as a percentage of C removal varied seasonally from 0.2 to 27% were 2 to 3x higher in SF than SSF wetlands. The ratio of N(2)O-N emitted to N removed was between 0.1 and 1.6%, and the difference between wetland types was inconsistent. Thus, N(2)O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH(4) while removing more C from the wastewater than SF wetlands.

  10. Development, testing and application of DrainFlow: A fully distributed integrated surface-subsurface flow model for drainage study

    NASA Astrophysics Data System (ADS)

    Shokri, Ali; Bardsley, William Earl

    2016-06-01

    Hydrological and hydrogeological investigation of drained land is a complex and integrated procedure. The scale of drainage studies may vary from a high-resolution small scale project through to comprehensive catchment or regional scale investigations. This wide range of scales and integrated system behaviour poses a significant challenge for the development of suitable drainage models. Toward meeting these requirements, a fully distributed coupled surface-subsurface flow model titled DrainFlow has been developed and is described. DrainFlow includes both the diffusive wave equation for surface flow components (overland flow, open drain, tile drain) and Richard's equation for saturated/unsaturated zones. To overcome the non-linearity problem created from switching between wet and dry boundaries, a smooth transitioning technique is introduced to buffer the model at tile drains and at interfaces between surface and subsurface flow boundaries. This gives a continuous transition between Dirichlet and Neumann boundary conditions. DrainFlow is tested against five well-known integrated surface-subsurface flow benchmarks. DrainFlow as applied to some synthetic drainage study examples is quite flexible for changing all or part of the model dimensions as required by problem complexity, problem scale, and data availability. This flexibility enables DrainFlow to be modified to allow for changes in both scale and boundary conditions, as often encountered in real-world drainage studies. Compared to existing drainage models, DrainFlow has the advantage of estimating actual infiltration directly from the partial differential form of Richard's equation rather than through analytical or empirical infiltration approaches like the Green and Ampt equation.

  11. A mechanistic determination of horizontal flow regime bound using void wave celerity

    SciTech Connect

    Park, J.W.

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  12. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  13. Dissecting the variable source area concept - Subsurface flow pathways and water mixing processes in a hillslope

    NASA Astrophysics Data System (ADS)

    Dahlke, Helen E.; Easton, Zachary M.; Lyon, Steve W.; Todd Walter, M.; Destouni, Georgia; Steenhuis, Tammo S.

    2012-02-01

    SummaryThis study uses an instrumented (trenched) 0.5 ha hillslope in the southern tier of New York State, USA, to provide new data and insights on how variable source areas and associated flow pathways form and combine to connect rainfall with downstream water flows across a hillslope. Measurements of water fluxes in the trench, upslope water table dynamics, surface and bedrock topography, and isotopic and geochemical tracers have been combined for a four-dimensional (space-time) characterization of subsurface storm flow responses. During events with dry antecedent conditions infiltrating rainwater was found to percolate through a prevailing fragipan layer to deeper soil layers, with much (33-71%) of the total discharge of the hillslope originating from deeper water flow below the fragipan. During storm events with wet antecedent conditions and large rainfall amounts, shallow lateral flow of event and pre-event water above the fragipan occurred and was one magnitude greater than the deeper water flow contribution. Spatial surface and subsurface water quality observations indicate that water from a distance of up to 56 m contributed runoff from the hillslope during storm events. In addition, mobilization of total dissolved phosphorus (TDP) with subsurface flow played a greater role than with overland or near-surface flow. During all events TDP loads were highest in the total discharge during peak flows (8-11.5 kg ha -1 d -1), except during the largest storm event, when TDP concentrations were highly diluted. These results have implications for strategies to protect streams and other downstream water recipients from waterborne nutrient and pollutant loading.

  14. Investigation of single-substance horizontal two-phase flow

    SciTech Connect

    Dickinson, D.A.; Maeder, P.F.

    1984-03-01

    Despite the abundance of work in the field of two-phase flow, it seems as though a consensus has not been reached on some of the fundamental points. Although exceptions exist, adequate physical interpretation of the flow seems to be hindered either by complexity of analysis or, in the opposite extreme, the trend toward limited-range analysis and correlations. The dissertation presents the derivation of basic conservation equations for the phases. The combined equations are used to examine the phenomenon of slip and its practical limitations, the Fanno line for single-substance flow and the effect of slip on choking. Equations for critical mass flux in the presence of slip are derived. The Mach, Reynolds and Froude numbers based on conditions at flashing are introduced as the characteristic parameters, and the importance of compressibility in single-substance two-phase flow is discussed. Experimental measurements of pressure change and void fraction for flow in the highly compressible range (.5 < Ma < 1) are presented. The working fluid is Refrigerant R-114, at room temperature, in a test section of diameter 5 cm and length 8 m. The effect of the Froude and Mach numbers is examined. The experimental facility is operated intermittently with running times of approximately two minutes and is instrumented for rapid measurements using a computer data acquisition and control system. A description of the facility and procedure is provided.

  15. Thresholds in Subsurface Flow Generation: An Intercomparison of Three Different Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Hjerdt, K. N.; McGlynn, B.; Tromp-van Meerveld, I.; McDonnell, J. J.; Hooper, R. P.

    2001-12-01

    Dynamic thresholds in catchment response and subsurface stormflow initiation are poorly understood. This remains a problem for the generalization and transferability of hydrologic models, as well as for the simulation of catchment response under variable antecedent and input conditions. Threshold processes appear to operate both spatially and temporally within a catchment and introduce non-linearity to the system response function. We present a catchment intercomparison to illustrate the common features of threshold dynamics at the hillslope and catchment scales. While our overall goal is to generalize a model structure to work in humid areas where storm response is dominated by subsurface flow, cross-comparing internal catchment dynamics is a necessary prerequisite in order to define first order controls on the generation of subsurface stormflow across different landscape types. We analyzed physical data series collected from three catchments with extremely diverse climatic and physical characteristics: (1) Sleepers River Research Watershed in northeastern Vermont, USA; (2) Panola Mountain Research Watershed in central Georgia, USA; and (3) Maimai Watershed on the South Island of New Zeeland. The physical data series included continuous runoff, soil moisture probes, wells, piezometers and, for some catchments, tensiometers and hillslope trench flow. We calculated indices that characterized the timing, magnitude and duration of subsurface response in relation to stream discharge for a large number of events within each catchment. Analysis of these indices across space and time revealed distinguishable patterns of threshold behavior in the different catchments and our presentation will demonstrate the value of catchment intercomparision in this regard.

  16. Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels

    2016-04-01

    Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects

  17. A kinematic investigation of the influence of anvil air flow over convective nephsystems on high-level horizontal flow

    NASA Technical Reports Server (NTRS)

    Balogun, E. E.

    1977-01-01

    The interactions between horizontal ambient flow and divergent wind fields, such as those that obtain atop cumulonimbus complexes, were investigated (theoretically) kinematically. The following were observed from the results of the analyses. First, for a particular divergent field, the relative mass flux over the area of the nephsystem decreased as the strength of the horizontal flow increased. Secondly, while in some of the cases analyzed the interaction between the two flows only resulted in the fanning out of streamlines and a slight redistribution in the wind speed, in many cases backflows and a total reorganization of the wind field occurred. Backflows have a blocking effect on the horizontal flow. Some of the computed patterns were compared with upper level cloud vectors (from geostationary satellite photographs). The comparison indicated that the computed resultant wind field could be used to explain some features of such satellite-derived wind fields.

  18. Measurement and prediction of two-phase flow patterns for new refrigerants inside horizontal tubes

    SciTech Connect

    Kattan, N.; Favrat, D.; Thome, J.R.

    1995-12-31

    Two-phase flow pattern data were obtained with 12-mm-bore sight glasses for five refrigerants: R-123, R-134a, R-502, R-402A, and R-404A. The existing flow pattern maps of Taitel and Dukler (1976) and Hashizume (1983) poorly represented the data, while, with the exception of mist flows, the VDI map identified the flow patterns successfully. Methods used in horizontal flow boiling correlations to determine the threshold between all wet wall and partially wet wall flows were shown to be unreliable.

  19. Gamma radiation techniques in subsurface multifluid flow and transport studies

    SciTech Connect

    Oostrom, Mart ); Dane, J H.; Wietsma, Thomas W. ); David E. Stock

    2000-01-01

    In the study of flow and transport in porous media, dual-energy gamma radiation is used to either simultaneously determine the bulk density and the volumetric liquid content in an air-liquid system (porous medium either rigid or non-rigid), the volumetric liquid contents of two liquids in a two-liquid system (rigid porous medium with or without air), or the salt concentration and volumetric liquid content in a saturated one-liquid-system (rigid porous medium). As was recently pointed out by Oostrom et al. (1998), the use of a single radiation source is sometimes sufficient and, in fact, provides more reliable data. An application of the use of one radioactive source is the determination of the volumetric liquid content values in two-liquid systems, such as a porous medium containing water and a non-aqueous phase liquid (NAPL). In this paper we will briefly review the principles involved in, and the possible errors associated with, the measurements of single- and dual-energy gamma radiation systems for the determination of volumetric liquid contents in rigid porous media containing water and a NAPL. The discussion will include an outline of an improved calibration procedure to determine the incident count rates. Subsequently, we will discuss the advantages and disadvantages (limitations) of gamma radiation measurements. Finally, we will present examples of experiments in which gamma radiation measurements were obtained to determine volumetric liquid content values of light and dense NAPLs after NAPL spills had occurred and during remediation processes. The use of gamma radiation is not only attractive for NAPL saturation measurements after spills and during remediation, but also for the measurements of capillary pressure-saturation curves. The latter are needed as input into computer models to predict NAPL behavior in porous media.

  20. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  1. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow.

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2015-10-15

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess long-term environmental benefits of conservation tillage data may be needed that quantify both surface and subsurface contaminant fluxes. This study focused on the herbicide fluometuron (N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]-urea) and its soil degradate DMF (N-methyl-N'-[3-(trifluoromethyl) phenyl]-urea). Both compounds are classed as "leachable". They were measured for 10 years in surface runoff and lateral subsurface flow from paired fields located on a hill slope in the Atlantic Coastal Plain region of the southeastern USA. One group of fields was conventionally tilled incorporating all crop residues into soil prior to planting. The second was strip tilled, a common conservation tillage practice. Seven fluometuron applications were made to cotton (Gossypium hirsutum) produced in rotation with peanut (Arachis hypogea). Combined fluometuron and DMF surface and subsurface losses from the conventionally tilled fields were equivalent to 1.2% and 0.13% of fluometuron applied and 0.31% and 0.32% from the strip tilled fields. Annual surface runoff losses were significantly greater from the conventionally tilled fields while the strip tilled fields had significantly greater annual subsurface losses. Results demonstrated that shifting from conventional to conservation tillage management of farm fields in this landscape will reduce surface runoff losses of herbicides like fluometuron but subsurface losses will likely increase. The same trends can be expected in landscapes with similar soil and hydrologic properties. This should be considered when planning implementation of programs that promote conservation tillage use. Published by Elsevier B.V.

  2. Focused subsurface flow in the Amargosa Desert characterized by direct-current resistivity profiling

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Abraham, J. D.; Lucius, J. E.; Prudic, D. E.

    2003-12-01

    Environmental-tracer studies have shown that ground-water recharge in the thick alluvial fill of the Amargosa Desert is localized beneath ephemeral stream channels and anthropogenic sources of water, with little recharge beneath native vegetation on interfluvial areas under current climatic conditions. These borehole-based studies provided relatively robust but limited, one-dimensional (vertical) information that can be only tentatively regionalized using geomorphologic, pedologic, and vegetational mapping. The ability of direct-current (DC) resistivity profiling to complement and extend studies of the spatial distribution of subsurface flow was examined by making surface-based measurements ("soundings") along one transect normal to the depositional fabric in each of three geomorphologically distinct settings: a well-incised ephemeral channel system, a poorly incised (distributory) ephemeral channel system, and an interfluvial upland. Linear arrays of 32 to 80 electrodes were deployed with a uniform 2 to 5-m spacing between adjacent electrodes. A multiplexing 8-channel resistivity instrument made automated inverse-Schlumberger-array soundings along the deployed line, using up to 10 electrodes at a time. The line was shifted piecemeal until composite transects consisted of 168 to 232 electrode positions. This approach allowed rapid profiling of long transects at high resolution. Numerical inversions assumed horizontal constancy normal to the vertical slices being imaged, producing solution sets of optimized resistivity values for several thousand points within each modeled slice. Imaged slices were ˜30 to 80 m deep and ˜1 km wide. RMS errors between apparent resistivities in the model inversions and field-measured apparent resistivities were ˜10%. On the basis of borehole studies, inverted resistivity (ρ ) values denoted three categories of alluvium: (1) low-water-content coarse gravel and highly desiccated surface materials, with ρ > ˜200 Ω -m, (2) vertical

  3. Clogging in subsurface-flow treatment wetlands: measurement, modeling and management.

    PubMed

    Nivala, Jaime; Knowles, Paul; Dotro, Gabriela; García, Joan; Wallace, Scott

    2012-04-15

    This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported.

  4. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  5. Counter-current flow in a vertical to horizontal tube with obstructions

    SciTech Connect

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A.

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  6. Influence of soil spatial variability on surface and subsurface flow at a vegetative buffer strip scale.

    NASA Astrophysics Data System (ADS)

    Gatel, Laura; Lauvernet, Claire; Carluer, Nadia; Paniconi, Claudio; Leblois, Etienne

    2015-04-01

    The objective of this study is to evaluate the influence of soil hydrodynamic characteristics variability on surface and subsurface flow at a vegetative buffer strip scale, using mecanistic modeling. Cathy (CATchment HYdrology, Camporese et al. 2010) is a research physically based model able to simulate coupled surface/subsurface flow. The evaluation of soil hydrodynamic characteristics variability is based essentially on saturated hydraulic conductivity because of its large spatial variability in the 3 dimensions and its important influence on flow pathways, as well as its high influence on the model output variables. After testing the model sensitivity to some input variables, to the boundary conditions and to the mesh definition, the work focuses on hydraulic conductivity parametrization. The study was first conducted with uniform (by horizons) conductivity domains based on field measurements. In a second step, heterogeneous fields were generated by a statistical tool which allows the user to choose the statistical law (in this case, lognormal or Gauss), the hydraulic conductivity auto-correlation length and the possibility to condition the fields with measured points. With all these different ways to represent spatial variability of hydraulic conductivity, model simulated surface and subsurface fluxes consistent with datasets from artificial run-off experiments on an French wineyard hillslope (Morcille catchment, Beaujolais, France). Model simulations are evaluated and compared to observations on several criteria : consistency, stability, interaction with water table, etc...

  7. Conceptual Uncertainty and Parameter Sensitivity in Subsurface Pathway Flow and Transport Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    NASA Astrophysics Data System (ADS)

    Magnuson, S. O.

    2002-05-01

    As part of an ongoing CERCLA evaluation, the migration of contaminants through the hydrologically complex subsurface at the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area (SDA) were modeled. The 180-meter thick vadose zone beneath the SDA is primarily composed of extrusive basalt flows that are extensively fractured. These flows are interrupted by thin, mostly continuous sedimentary interbeds that were deposited through aeolian and fluvial processes during periods of volcanic quiescence. The subsurface pathway modeling for the CERCLA assessment has been conducted in phases utilizing the results of characterization activities. The most recent model for the SDA used an equivalent porous continuum approach in a three-dimensional domain to represent movement of water and contaminants in the subsurface. Given the complexity of the subsurface at this site, the simulation results were acknowledged to be uncertain. This presentation will provide an overview of the current modeling effort for the SDA and how conceptual uncertainty was addressed by modeling different scenarios. These scenarios included assignment of infiltration boundary conditions, the effect of superimposing gaps in the interbeds, including the effect within the vadose zone from Big Lost River water discharged to the spreading areas approximately 1 km away, and a simplistic approximation to represent facilitated transport. Parametric sensitivity simulations were used to determine possible effects from assigned transport parameters such as partition coefficients and solubility limits that can vary widely with presumed geochemical conditions. Comparisons of simulated transport results to measured field concentrations in both the vadose zone and in the underlying Snake River Plain aquifer were made to determine the representativeness of the model results. Results of the SDA subsurface transport modeling have been used in part to guide additional field characterization

  8. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  9. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars

    USGS Publications Warehouse

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.

    2010-01-01

    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  10. Large-scale horizontal flows in the solar photosphere. III. Effects on filament destabilization

    NASA Astrophysics Data System (ADS)

    Roudier, T.; Švanda, M.; Meunier, N.; Keil, S.; Rieutord, M.; Malherbe, J. M.; Rondi, S.; Molodij, G.; Bommier, V.; Schmieder, B.

    2008-03-01

    Aims:We study the influence of large-scale photospheric motions on the destabilization of an eruptive filament, observed on October 6, 7, and 8, 2004, as part of an international observing campaign (JOP 178). Methods: Large-scale horizontal flows were investigated from a series of MDI full-disc Dopplergrams and magnetograms. From the Dopplergrams, we tracked supergranular flow patterns using the local correlation tracking (LCT) technique. We used both LCT and manual tracking of isolated magnetic elements to obtain horizontal velocities from magnetograms. Results: We find that the measured flow fields obtained by the different methods are well-correlated on large scales. The topology of the flow field changed significantly during the filament eruptive phase, suggesting a possible coupling between the surface flow field and the coronal magnetic field. We measured an increase in the shear below the point where the eruption starts and a decrease in shear after the eruption. We find a pattern in the large-scale horizontal flows at the solar surface that interact with differential rotation. Conclusions: We conclude that there is probably a link between changes in surface flow and the disappearance of the eruptive filament.

  11. Invertebrates associated with a horizontal-flow, subsurface constructed wetland in a northern climate.

    PubMed

    Giordano, Rosanna; Weber, Everett; Darby, Brian J; Soto-Adames, Felipe N; Murray, Robert E; Drizo, Aleksandra

    2014-04-01

    Wetlands function as buffers between terrestrial and aquatic ecosystems, filtering pollutants generated by human activity. Constructed wetlands were developed to mimic the physical and biological filtering functions of natural systems for the treatment of human and animal waste under controlled conditions. Previous studies on the effect of constructed wetlands on native invertebrate populations have concentrated almost exclusively on mosquitoes. Here, we present the first study investigating the relationship between vegetation cover and aeration regime, and the diversity and abundance of nematodes and springtails (Collembola) in a constructed wetland designed to treat dairy farm wastewater in northwestern Vermont. We investigated four treatment cells differing in aeration regime and vegetation cover, but equally overlaid by a layer of compost to provide insulation. Analysis showed that nematodes were most abundant in the nonplanted and nonaerated cells, and that bacterivorous nematodes dominated the community in all cells. Springtails were found to be most numerous in the planted and nonaerated cells. We hypothesize that the vegetation provided differing environmental niches that supported a more diverse system of bacteria and fungi, as well as offering protection from predators and inclement weather. Nematodes were likely imported with the original compost material, while springtails migrated into the cells either via air, water, or direct locomotion.

  12. A novel horizontal subsurface flow constructed wetland: Reducing area requirements and clogging risk.

    PubMed

    Tatoulis, Triantafyllos; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V; Stefanakis, Alexandros I

    2017-11-01

    The use of Constructed Wetlands (CWs) has been nowadays expanded from municipal to industrial and agro-industrial wastewaters. The main limitations of CWs remain the relatively high area requirements compared to mechanical treatment technologies and the potential occurrence of the clogging phenomenon. This study presents the findings of an innovative CW design where novel materials were used. Four pilot-scale CW units were designed, built and operated for two years. Each unit consisted of two compartments, the first of which (two thirds of the total unit length) contained either fine gravel (in two units) or random type high density polyethylene (HDPE) (in the other two units). This plastic media type was tested in a CW system for the first time. The second compartment of all four units contained natural zeolite. Two units (one with fine gravel and one with HDPE) were planted with common reeds, while the other two were kept unplanted. Second cheese whey was introduced into the units, which were operated under hydraulic residence times (HRT) of 2 and 4 days. After a two-year operation and monitoring period, pollutant removal rates were approximately 80%, 75% and 90% for COD, ammonium and ortho-phosphate, respectively, while temperature and HRT had no significant effect on pollutant removal. CWs containing the plastic media achieved the same removal rates as those containing gravel, despite receiving three times higher hydraulic surface loads (0.08 m/d) and four times higher organic surface loads (620 g/m(2)/d). This reveals that the use of HDPE plastic media could reduce CW surface area requirements by 75%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Horizontal gene transfer as adaptive response to heavy metal stress in subsurface microbial communities. Final report for period October 15, 1997 - October 15, 2000

    SciTech Connect

    Smets, B. F.

    2001-12-21

    Horizontal gene transfer as adaptive response to heavy metal stress in the presence of heavy metal stress was evaluated in oligotrophic subsurface soil laboratory scale microcosms. Increasing levels of cadmium (10, 100 and 1000 mM) were applied and an E. coli donor was used to deliver the target plasmids, pMOL187 and pMOL222, which contained the czc and ncc operons, and the helper plasmid RP4. Plasmid transfer was evaluated through monitoring of the heavy metal resistance and presence of the genes. The interactive, clearly revealed, effect of biological and chemical external factors on the extent of plasmid-DNA propagation in microbial communities in contaminated soil environments was observed in this study. Additionally, P.putida LBJ 415 carrying a suicide construct was used to evaluate selective elimination of a plasmid donor.

  14. Akuna - Integrated Toolsets Supporting Advanced Subsurface Flow and Transport Simulations for Environmental Management

    SciTech Connect

    Schuchardt, Karen L.; Agarwal, Deborah A.; Finsterle, Stefan A.; Gable, Carl W.; Gorton, Ian; Gosink, Luke J.; Keating, Elizabeth H.; Lansing, Carina S.; Meyer, Joerg; Moeglein, William A.M.; Pau, George S.H.; Porter, Ellen A.; Purohit, Sumit; Rockhold, Mark L.; Shoshani, Arie; Sivaramakrishnan, Chandrika

    2012-04-24

    A next generation open source subsurface simulator and user environment for environmental management is being developed through a collaborative effort across Department of Energy National Laboratories. The flow and transport simulator, Amanzi, will be capable of modeling complex subsurface environments and processes using both unstructured and adaptive meshes at very fine spatial resolutions that require supercomputing-scale resources. The user environment, Akuna, provides users with a range of tools to manage environmental and simulator data sets, create models, manage and share simulation data, and visualize results. Underlying the user interface are core toolsets that provide algorithms for sensitivity analysis, parameter estimation, and uncertainty quantification. Akuna is open-source, cross platform software that is initially being demonstrated on the Hanford BC Cribs remediation site. In this paper, we describe the emerging capabilities of Akuna and illustrate how these are being applied to the BC Cribs site.

  15. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  16. Study of the stratified-slug flow transition in a horizontal pipe containing a rod bundle

    SciTech Connect

    Krishnan, V.S.; Kowalski, J.E.

    1985-01-01

    The experimental measurements related to the stratified-slug flow transition in a horizontal pipe containing a 7-rod bundle are described. The experiments were carried out in air-water and Freon gas-water flows with liquid-to-gas density ratios in the range 46 to 392. The results are compared with the predictions of a modified form of the Taitel-Dukler theory. The predictions are also compared with other published experimental data on the stratified-slug flow transition in air-water and steam-water flows in pipes containing 37-rod bundles. Reasonable agreement is obtained in all cases. This work has particular application to the study of heat transfer in the horizontal fuel channels of a CANDU nuclear reactor under certain postulated fault conditions.

  17. Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts.

    PubMed

    Tiani, R; De Wit, A; Rongy, L

    2017-07-20

    Chemical reactions can interplay with hydrodynamic flows to generate various complex phenomena. Because of their relevance in many research areas, chemically-induced hydrodynamic flows have attracted increasing attention in the last decades. In this context, we propose to give a review of the past and recent theoretical and experimental works which have considered the interaction of such flows with chemical fronts, i.e. reactive interfaces, formed between miscible solutions. We focus in particular on the influence of surface tension- (Marangoni) and buoyancy-driven flows on the dynamics of chemical fronts propagating horizontally in the gravity field. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A chaotic system of two-phase flow in a small, horizontal, rectangular channel

    SciTech Connect

    Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1995-07-01

    Various measurement tools that are used in chaos theory were applied to analyze two-phase pressure signals with the objective of identifying and interpreting flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identifying certain two-phase flow patterns and transitions.

  19. Horizontal Flow of Semantic and Phonological Information in Chinese Spoken Sentence Production

    ERIC Educational Resources Information Center

    Yang, Jin-Chen; Yang, Yu-Fang

    2008-01-01

    A variant of the picture--word interference paradigm was used in three experiments to investigate the horizontal information flow of semantic and phonological information between nouns in spoken Mandarin Chinese sentences. Experiment 1 demonstrated that there is a semantic interference effect when the word in the second phrase (N3) and the first…

  20. Horizontal Flow of Semantic and Phonological Information in Chinese Spoken Sentence Production

    ERIC Educational Resources Information Center

    Yang, Jin-Chen; Yang, Yu-Fang

    2008-01-01

    A variant of the picture--word interference paradigm was used in three experiments to investigate the horizontal information flow of semantic and phonological information between nouns in spoken Mandarin Chinese sentences. Experiment 1 demonstrated that there is a semantic interference effect when the word in the second phrase (N3) and the first…

  1. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  2. Factors Affecting the Performance of Horizontal Flow Constructed Treatment Wetland Vegetated with Cyperus Papyrus for Municipal Wastewater Treatment.

    PubMed

    Abou-Elela, Sohair I; Elekhnawy, Mohamed A; Khalil, Magdy T; Hellal, Mohamed S

    2017-04-24

    The effect of hydraulic loading rate (HLR) and hydraulic retention time (HRT) on the bioremediation of municipal wastewater using a pilot scale subsurface horizontal flow constructed treatment wetland (HFCTW) vegetated with Cyprus papyrus was investigated. Three different HLRs were applied to the treatment system namely; 0.18, 0.10 and 0.07 m(3)/m(2). d with corresponding HRTs of 1.8, 3.2 and 4.7 days, respectively. The flow rate was 8 m(3)/ d and the average organic loading rate (OLR) was 0.037 kg BOD/m(3)/d. Results showed that the performance of the HFCTW was linearly affected by decreasing the HLR and increasing the HRT. The highest treatment efficiency was achieved at HRT (4.7 days) and HLR (0.07 m(3)/m(2). d). The percentage reductions of chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) were 86% 87% and 80%, respectively. Satisfactory nutrient removal was obtained. Also, removal of 2-3 logs of bacterial indicators of pollution were achieved. The dry biomass of Cyperus was 7.7 kg/m(2) and proved to be very efficient in nitrification processes due to high diversity of the roots that increase the treatment surface area.

  3. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    USGS Publications Warehouse

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  4. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.

  5. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.

  6. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  7. [Correlation of substrate structure and hydraulic characteristics in subsurface flow constructed wetlands].

    PubMed

    Bai, Shao-Yuan; Song, Zhi-Xin; Ding, Yan-Li; You, Shao-Hong; He, Shan

    2014-02-01

    The correlation of substrate structure and hydraulic characteristics was studied by numerical simulation combined with experimental method. The numerical simulation results showed that the permeability coefficient of matrix had a great influence on hydraulic efficiency in subsurface flow constructed wetlands. The filler with a high permeability coefficient had a worse flow field distribution in the constructed wetland with single layer structure. The layered substrate structure with the filler permeability coefficient increased from surface to bottom could avoid the short-circuited flow and dead-zones, and thus, increased the hydraulic efficiency. Two parallel pilot-scale constructed wetlands were built according to the numerical simulation results, and tracer experiments were conducted to validate the simulation results. The tracer experiment result showed that hydraulic characteristics in the layered constructed wetland were obviously better than that in the single layer system, and the substrate effective utilization rates were 0.87 and 0.49, respectively. It was appeared that numerical simulation would be favorable for substrate structure optimization in subsurface flow constructed wetlands.

  8. Multilevel Monte Carlo for Two Phase Flow and Transport in a Subsurface Reservoir with Random Permeability

    NASA Astrophysics Data System (ADS)

    Müller, Florian; Jenny, Patrick; Daniel, Meyer

    2014-05-01

    To a large extent, the flow and transport behaviour within a subsurface reservoir is governed by its permeability. Typically, permeability measurements of a subsurface reservoir are affordable at few spatial locations only. Due to this lack of information, permeability fields are preferably described by stochastic models rather than deterministically. A stochastic method is needed to asses the transition of the input uncertainty in permeability through the system of partial differential equations describing flow and transport to the output quantity of interest. Monte Carlo (MC) is an established method for quantifying uncertainty arising in subsurface flow and transport problems. Although robust and easy to implement, MC suffers from slow statistical convergence. To reduce the computational cost of MC, the multilevel Monte Carlo (MLMC) method was introduced. Instead of sampling a random output quantity of interest on the finest affordable grid as in case of MC, MLMC operates on a hierarchy of grids. If parts of the sampling process are successfully delegated to coarser grids where sampling is inexpensive, MLMC can dramatically outperform MC. MLMC has proven to accelerate MC for several applications including integration problems, stochastic ordinary differential equations in finance as well as stochastic elliptic and hyperbolic partial differential equations. In this study, MLMC is combined with a reservoir simulator to assess uncertain two phase (water/oil) flow and transport within a random permeability field. The performance of MLMC is compared to MC for a two-dimensional reservoir with a multi-point Gaussian logarithmic permeability field. It is found that MLMC yields significant speed-ups with respect to MC while providing results of essentially equal accuracy. This finding holds true not only for one specific Gaussian logarithmic permeability model but for a range of correlation lengths and variances.

  9. Subsurface Zonal and Meridional Flow Derived from GONG and SDO/HMI: A Comparison of Systematics

    NASA Astrophysics Data System (ADS)

    Komm, R.; González Hernández, I.; Howe, R.; Hill, F.

    2015-04-01

    We study the subsurface flows in the near-surface layers of the solar convection zone from the surface to a depth of 16 Mm derived from Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams using a ring-diagram analysis. We characterize the systematic east-west and north-south variations present in the zonal and meridional flows and compare flows derived from GONG and HMI data before and after the correction. The average east-west variation with depth of one flow component resembles the average north-south variation with depth of the other component. The east-west variation of the zonal flow together with the north-south variation of the meridional flow can be modeled as a systematic radial velocity. This indicates a solar center-to-limb variation as the underlying cause. The north-south variation of the zonal flow and the east-west variation of the meridional flow require two separate functions. The east-west variation of the meridional flow consists mainly of an annual variation with the B 0 angle, while the north-south trend of the zonal flow consists of a constant non-zero component in addition to an annual variation. This indicates a geometric projection artifact. After compensating for these systematic effects, the meridional and zonal flows derived from HMI data agree well with those derived from GONG data. An offset remains between the zonal flow derived from GONG and HMI data. The equatorward meridional flows at high latitude that appear episodically depending on the B 0 angle are absent from the corrected flows.

  10. Flow patterns in a rotating horizontal cylinder partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor; Polezhaev, Denis

    2015-07-01

    The dynamics of an annular layer of low-viscosity liquid inside a rapidly rotating horizontal cylinder is experimentally studied. Under gravity, the liquid performs forced azimuthal oscillations in the cavity frame. We examined the stability of the two-dimensional azimuthal flow and discovered two novel types of axisymmetric liquid flows. First, a large-scale axially symmetric flow is excited near the end walls. The inertial modes generated in the corner regions are proven to be responsible for such a flow. Second, a small-scale flow in the form of the Taylor-Gortler vortices appears due to the centrifugal instability of the oscillatory liquid flow. The spatial period of the vortices is in qualitative agreement with the data obtained in the experimental and numerical studies of cellular flow in librating containers.

  11. Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment.

    PubMed

    Puigagut, Jaume; Salvadó, Humbert; García, David; Granes, Francesc; García, Joan

    2007-04-01

    In order to evaluate the microfauna composition and distribution in two horizontal subsurface flow constructed wetlands used as secondary and tertiary treatment a full-scale wastewater treatment plant was monitored during five months. Results indicate that total microfauna abundance in the wetland treating primary influents is around five times higher than that found in the wetland treating secondary influents. Ciliated protozoa and microflagellates are the most important microfauna groups in both wetlands; microflagellates in terms of abundance and ciliates in terms of biomass. The most abundant ciliate species in the wetland treating primary influents are polysaprobic organisms as Dexiostoma campylum, Trimyema compressum, and to a lesser extend Metopus spp. On the other hand, the most important ciliate species found in the wetland treating secondary influents are mainly aerobic ciliates as Vorticella comvallaria-complex, Aspidisca cicada, Litonotus lamella and some ciliates belonging to the group of the scuticociliates and Hypotrichidae. The sort of the organic matter treated (particulated or dissolved) is at least as important as the amount of it in order to explain microfauna dynamics in constructed wetlands.

  12. Venus' nighttime horizontal plasma flow, 'magnetic congestion', and ionospheric hole production

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Mayr, H. G.; Curtis, S. A.; Taylor, H. A., Jr.

    1983-01-01

    A simple rectilinear, two-dimensional MHD model is used to investigate the effects of field-aligned plasma loss and cooling on a dense plasma convecting across a weak magnetic field, in order to illumine the Venus nighttime phenomena of horizontal plasma flow, magnetic congestion and ionospheric hole production. By parameterizing field-aligned variations and explicitly solving for cross magnetic field variations, it is shown that the abrupt horizontal enhancements of the vertical magnetic field, as well as sudden decreases of the plasma density to very low values (which are characteristic of ionospheric holes), can be produced in the presence of field-aligned losses.

  13. Venus' nighttime horizontal plasma flow, 'magnetic congestion', and ionospheric hole production

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Mayr, H. G.; Curtis, S. A.; Taylor, H. A.

    1983-04-01

    A simple rectilinear, two-dimensional MHD model is used to investigate the effects of field-aligned plasma loss and cooling on a dense plasma convecting across a weak magnetic field, in order to illumine the Venus nighttime phenomena of horizontal plasma flow, magnetic congestion and ionospheric hole production. By parameterizing field-aligned variations and explicitly solving for cross magnetic field variations, it is shown that the abrupt horizontal enhancements of the vertical magnetic field, as well as sudden decreases of the plasma density to very low values (which are characteristic of ionospheric holes), can be produced in the presence of field-aligned losses.

  14. Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments.

    PubMed

    Nesbø, Camilla L; S Swithers, Kristen; Dahle, Håkon; Haverkamp, Thomas H A; Birkeland, Nils-Kåre; Sokolova, Tatiana; Kublanov, Ilya; Zhaxybayeva, Olga

    2015-07-01

    Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the 'burial and isolation' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.

  15. Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing

    NASA Astrophysics Data System (ADS)

    Hammond, Glenn; Lichtner, Peter; Lu, Chuan

    2007-07-01

    Numerical modeling is a critical tool to the U.S. Department of Energy for evaluating the environmental impact of remediation strategies for subsurface legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern is the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. There is clearly a need for higher-resolution modeling (i.e. increased spatial and temporal resolution) and increasingly mechanistic descriptions of subsurface physicochemical processes (i.e. increased chemical degrees of freedom). We present SciDAC-funded research being performed in furthering the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN to simulate uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  16. Effects of macro-pores on water flow in coastal subsurface drainage systems

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Yu, Xiayang; Lu, Chunhui; Li, Ling

    2016-01-01

    Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.

  17. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  18. A semi-analytical model for transient flow to a subsurface tile drain

    NASA Astrophysics Data System (ADS)

    Stillman, Jennifer S.; Haws, Nathan W.; Govindaraju, R. S.; Rao, P. Suresh C.

    2006-02-01

    The goal of this paper is to develop and test a semi-analytical model for event-based transient flow to a subsurface tile drain. A sharp-front theory was used to describe redistribution of infiltrated water in the vadose zone. New approximate analytical solutions in terms of Fourier series were sought for the Boussinesq equation describing subsurface saturated flow subject to time-dependent recharge. Both one and two-term solutions of the series approximation were compared with observed tile hydrograph data from the Purdue Water Quality Field Station (WQFS) in West Lafayette, Indiana. In general, the models were able to capture the peaks of the tile-drain hydrographs, as well as the times-to-peak and the times-of-initial-response to rainfall events. The models performed particularly well for rainfall events with single-burst hyetographs, and in the prediction of the first hydrograph peak from multiple-burst hyetographs, though subsequent peaks could not be captured as well. A further comparison of results from the one-term model with those from HYDRUS 2D suggested that the one-term model is adequate for estimating transient flow to a tile drain. The solution developed here holds promise for extension to larger watersheds where the hydrology is governed by tile drains.

  19. Correlation Equation for Predicting the Single-Collector Contact Efficiency of Colloids in a Horizontal Flow.

    PubMed

    Li, Jing; Xie, Xiaohu; Ghoshal, Subhasis

    2015-07-07

    The single-collector contact efficiency (η0) for physicochemical colloid filtration under horizontal flow in saturated porous media was calculated using trajectory analysis in three dimensions. Past studies have developed correlation equations for colloids with densities close to that of water, such as bacteria and latex particles. A new correlation equation was developed for predicting η0 based on a large number of trajectory simulations to account for higher-density particles representative of metal colloids. The correlation equation was developed by assuming Brownian diffusion, interception, and gravitational sedimentation contributed to η0 in an additive manner. Numerical simulations for colloid trajectory analysis used for calculating η0 were based on horizontal flow around a collector under the action of van der Waals attractive forces, gravity, and hydrodynamic forces as well as Brownian motion. The derived correlation equation shows excellent agreement with existing correlation equations for particles with density close to that of water. However, the correlation equation presented in this study shows that η0 of high-density colloids, such as metal particles, transported under horizontal flow deviates from that predicted by existing correlations for colloids larger than 4 μm and under low approach velocities. Simulations of trajectory paths show that a significantly reduced contact of high-density colloids larger than 4 μm in size with a collector is due to gravity forces causing trajectory paths to deviate away from the underside of collectors. The new correlation equation is suitable for predicting the single collector efficiency of large particles (several hundred nanometers to several micrometers) and with a large amount of density transport in the horizontal flow mode but is unsuitable for particles with a quite small size (several to tens of nanometers) and for the particle with a large amount of density flow in the vertical flow mode. The

  20. A model for fluid flow during saturated boiling on a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Kheyrandish, K.; Dalton, C.; Lienhard, J. H.

    1987-01-01

    A model has been developed to represent the vapor removal pattern in the vicinity of a cylinder during nucleate flow boiling across a horizontal cylinder. The model is based on a potential flow representation of the liquid and vapor regions and an estimate of the losses that should occur in the flow. Correlation of the losses shows a weak dependence on the Weber number and a slightly stronger dependence on the saturated liquid-to-vapor density ratio. The vapor jet thickness, which is crucial to the prediction of the burnout heat flux, and the shape of the vapor film are predicted. Both are verified by qualitative experimental observations.

  1. A model for fluid flow during saturated boiling on a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Kheyrandish, K.; Dalton, C.; Lienhard, J. H.

    1987-01-01

    A model has been developed to represent the vapor removal pattern in the vicinity of a cylinder during nucleate flow boiling across a horizontal cylinder. The model is based on a potential flow representation of the liquid and vapor regions and an estimate of the losses that should occur in the flow. Correlation of the losses shows a weak dependence on the Weber number and a slightly stronger dependence on the saturated liquid-to-vapor density ratio. The vapor jet thickness, which is crucial to the prediction of the burnout heat flux, and the shape of the vapor film are predicted. Both are verified by qualitative experimental observations.

  2. Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope

    NASA Astrophysics Data System (ADS)

    Kim, Min Seok; Onda, Yuichi; Uchida, Taro; Kim, Jin Kwan

    2016-10-01

    Shallow landslides are affected by various conditions, including soil depth and subsurface flow via an increase in the pore water pressure. In this study, we evaluate the effect of soil depth and subsurface flow on shallow landslide prediction using the shallow landslide stability (SHALSTAB) model. Three detailed soil depth data-the average soil depth, weathered soil depth, and bedrock soil depth-were collected using a knocking pole test at a small hillslope site composed of granite in the Republic of Korea. The SHALSTAB model was applied to a ground surface topographic digital elevation model (DEM) using the three soil depths and upslope contributing area (SCA) assuming subsurface flow calculated from four DEMs: a ground surface topography (GSTO) DEM, weathered soil topography (WSTO) DEM, bedrock topography (BSTO) DEM, and low-level bedrock topography (EBSTO) DEM. The model performance was measured using a receiver operating characteristic (ROC) analysis. While evaluating the effect of the soil depth with SCA using GSTO DEM, it was found that the bedrock soil depth had higher prediction accuracy compared to that of the average soil depth or weathered soil depth. To evaluate the saturated subsurface flow between the soil and bedrock, SCAs calculated using WSTO and BSTO DEMs were applied. From these simulations, we found that SCA from BSTO DEM and the bedrock soil depth affect the shallow landslide prediction; however, these prediction effects are not significantly increased by large differences in the elevation (between the lowest and highest elevation values). Therefore, we considered the influence of the bedrock depression and SCA from EBSTO DEM. In applying SCA from EBSTO, the prediction accuracy was significantly increased compared to the other predictions. Our results demonstrate that the influence of the bedrock topography on the prediction of shallow landslides may be particularly significant at the scale of a hillslope.

  3. Instability of a thin film flowing on a rotating horizontal or inclined plane.

    PubMed

    Dávalos-Orozco, L A; Busse, F H

    2002-02-01

    In this paper the instability of a thin fluid film flowing under the effects of gravity, Coriolis, and centrifugal forces is investigated. It is supposed that the film flows far from the axis of rotation on a plane which may be horizontal or inclined with respect to the horizontal. In the former case, the flow is only driven by the centrifugal force while in the latter case, the flow is driven by the components of centrifugal force and gravity along the plane. This case may also be considered as the flow down a rotating cone but far from the apex. The stabilizing influence of rotation on the film flow increases with the rotation rate. Up to a certain critical rate of rotation, the film flowing down the rotating inclined plane (or cone) is more stable than the flow on the horizontal rotating plane while above this rate of rotation the situation is reversed. The instability above the critical rate is associated with a finite wave number in contrast to the vanishing wave number of the instability below the critical rate. The possibility of Ekman layer instabilities is also investigated. An equation describing the nonlinear evolution of surface waves is also obtained. Moreover, this equation is simplified for the case in which the amplitudes are very small. An equation including dissipation as well as dispersion is derived whose solutions may possess solitary waves, as in the case of similar equations considered in the literature. These solutions are likely to correspond to the solitary spiral waves observed in experiments.

  4. A study of oil-water flow patterns in horizontal pipes

    SciTech Connect

    Trallero, J.L.; Intevep, S.A.; Sarica, C.; Brill, J.P.

    1996-12-31

    Oil-water flow pattern transitions in horizontal pipes have been studied both experimentally and theoretically. A new state-of-the-art, oil-water test facility was designed, constructed and operated. A transparent test section (5.013-cm inside diameter x 15.54-m long) can be inclined at any angle, to study both upward and downward flow simultaneously. Mineral oil and water were the working fluids ({mu}{sub o}/{mu}{sub w} = 29.6, {rho}{sub o}/{rho}{sub w} = 0.85 and {sigma} = 36 dynes/cm @ 25.6{degrees}C). Only horizontal flow tests were conducted. A new classification for oil-water flow patterns based on published and acquired data is proposed. Six flow patterns were identified and classified into two categories: Segregated flow and Dispersed flow. Stratified flow and stratified flow with some mixing at the interface (ST & MI) are segregated flow patterns. The dispersed flow can be either water dominated or oil dominated. A dispersion of oil in water over a water layer and an emulsion of oil in water are water dominated flow patterns. An emulsion of water in oil and a dual dispersion are oil dominant flow patterns. Conductance probe data and high speed photographs were found to be adequate flow pattern identification tools while wall pressure fluctuations are not. Pressure drop decreases when the transition to dispersed flow is crossed. Slippage is only relevant for segregated flow patterns. The oil-water flow pattern transitions for light oils are predicted using the two-fluid model and a balance between gravity and turbulent fluctuations normal to the axial flow direction. Linear and non-linear analyses reveal that the stratified/non-stratified transition must be addressed with the complete two-fluid model. Stratified flow is predicted by the viscous Kelvin-Helmholtz analysis while inviscid Kelvin-Helmholtz theory predicted the ST & MI flow pattern. Both the viscous Kelvin-Helmholtz analysis and structural stability criterion are satisfied simultaneously.

  5. Numerical simulation of two-phase flow in horizontal interconnected subchannels

    SciTech Connect

    Shourki, M.; Carver, M.B.; Tahir, A.

    1985-11-01

    Different subchannel computer codes have been successfully used for the thermal-hydraulic analysis of coolant flow in vertical fuel channels. None of these methods, however, is suitable for two-phase flow in horizontal fuel channels, such as those of the CANDU nuclear reactors, due to the lack of appropriate constitutive relationships that can correctly account for the gravity separation effects. A transverse vapor drift model that accounts for the combined effect of gravity separation and turbulent diffusion has been incorporated into the existing subchannel computer code SAGA. Although the basic structure of the code remains similar to SAGA III, some modifications in both the mathematical formulation and numerical solution have been incorporated. These modifications resulted in significant improvements in the code's ability to model horizontal two-phase subchannel flow. The new version of the code was tested and found to be capable of simulating the complex exchange phenomenon between adjacent horizontal subchannels caused by the interaction of turbulent diffusion, pressure gradient, and gravity-induced cross flows. The code predictions were compared with experimental data obtained from two different sources and showed good agreement.

  6. The influence of subsurface flow on lake formation and north polar lake distribution on Titan

    NASA Astrophysics Data System (ADS)

    Horvath, David G.; Andrews-Hanna, Jeffrey C.; Newman, Claire E.; Mitchell, Karl L.; Stiles, Bryan W.

    2016-10-01

    Observations of lakes, fluvial dissection of the surface, rapid variations in cloud cover, and lake shoreline changes indicate that Saturn's moon Titan is hydrologically active, with a hydrocarbon-based hydrological cycle dominated by liquid methane. Here we use a numerical model to investigate the Titan hydrological cycle - including surface, subsurface, and atmospheric components - in order to investigate the underlying causes of the observed distribution and sizes of lakes in the north polar region. The hydrocarbon-based hydrological cycle is modeled using a numerical subsurface flow model and analytical runoff scheme, driven by a general circulation model with an active methane-cycle. This model is run on synthetically generated topography that matches the fractal character of the observed topography, without explicit representation of the effects of erosion and deposition. At the scale of individual basins, intermediate to high permeability (10-8-10-6 cm2) aquifers are required to reproduce the observed large stable lakes. However, at the scale of the entire north polar lake district, a high permeability aquifer results in the rapid flushing of methane through the aquifer from high polar latitudes to dry lower polar latitudes, where methane is removed by evaporation, preventing large lakes from forming. In contrast, an intermediate permeability aquifer slows the subsurface flow from high polar latitudes, allowing greater lake areas. The observed distribution of lakes is best matched by either a uniform intermediate permeability aquifer, or a combination of a high permeability cap at high latitudes surrounded by an intermediate permeability aquifer at lower latitudes, as could arise due to karstic processes at the north pole. The stability of Kraken Mare further requires reduction of the evaporation rate over the sea to 1% of the value predicted by the general circulation model, likely as a result of dissolved ethane, nitrogen, or organic solutes, and/or a

  7. Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing.

    PubMed

    Calheiros, C S C; Teixeira, A; Pires, C; Franco, A R; Duque, A F; Crispim, L F C; Moura, S C; Castro, P M L

    2010-09-01

    This study is focused on the diversity of bacterial communities from two series of horizontal subsurface flow constructed wetlands (CW) polishing high salinity tannery wastewater. Each series was planted with Arundo donax or Sarcocornia sp. in a substrate composed by expanded clay and sand. Chemical and biochemical oxygen demand removal efficiencies were similar in each series, varying between 58 and 67% (inlet COD 218 ± 28 mg L(-1)) and 60 and 77% (inlet BOD(5) 37 ± 6 mg L(-1)), respectively. High numbers of culturable bacteria were obtained from substrate and root samples - 5.75 × 10(6)-3.95 × 10(8) CFU g(-1) recovered on marine agar and 1.72 × 10(7)-8.46 × 10(8) CFU g(-1) on nutrient agar. Fifty bacterial isolates were retrieved from the CW, related phylogenetically to Firmicutes, Actinobacteria, Bacteroidetes, α-, β-, and γ-Proteobacteria. Changes in the bacterial communities, from roots and substrate of each series, related to the plant species, hydraulic loading rates and along CW operation were examined using denaturating gradient gel electrophoresis (DGGE). The clustering analysis suggested that a diverse and distinct bacterial community inhabits each series, which was related to the type of plant present in each CW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    SciTech Connect

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2013-06-01

    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss–Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates.

  9. Impact of thawing ground on subsurface water flow and transport in a modelled permafrost system

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew

    2015-04-01

    Long-term simulations representing warming temperature trends in cold regions indicate that the temporal and seasonal variability characteristics of groundwater and its discharges into surface waters is expected to decrease in a warming climate. A compelling question for waterborne transport of substances relevant for climate feedbacks, biogeochemical cycling and/or water pollution is how different scenarios of hydro-climatic change influence permafrost formation and degradation dynamics and through that also the residence times of subsurface water, from land surface recharge to surface water discharge. In this contribution, heat transport and water flow in permafrost systems which include the active layer are simulated and changes in water fluxes and associated travel times of water parcels through the subsurface are investigated. Initial results indicate that the geological setting can notably impact the spread and change in travel time distributions during warming. Also, for all cases investigated the median and minimum travel times of solute transport consistently increase, indicating longer flow pathways and greater attenuation potential as permafrost thaws. Possible related effects on carbon transport and subsequent climatic feedbacks are highlighted.

  10. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    NASA Astrophysics Data System (ADS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2013-06-01

    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss-Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates.

  11. Estimation of lateral water flow and bromide transport in a subsurface seepage irrigation system.

    PubMed

    Ouyang, Y

    2009-01-01

    Subsurface seepage irrigation is a common method used by growers in the Tri-County Agricultural Area (TCAA), Florida, USA, owing to its cost-effectiveness and low maintenance requirements. This study investigated the lateral flow of the perched water and the lateral transport of bromide (Br-) in this irrigation system in the TCAA and estimated the potential discharge of Br- into the drainage canals at the edges of the field, using the Visual MODFLOW/ MT3DMS models in conjunction with field experiments. Simulations showed that the perched water flowed from the northeast to the southwest of the field. Migration of the Br- plume from the source areas toward the canals was very slow and varied depending on the selection of the outer Br- concentration contour levels. However, the lateral transport of Br- from the perched water into the canals occurred after about 61 days. The simulations further revealed that the rate of perched water Br- discharge into the canals averaged 8.6 g day(-1) during a 30-day discharge period (from 61 to 91 days). This rate is very important for estimating Br- discharge into the canals and could also provide useful information for evaluating dissolved nutrient discharge into canals from the subsurface seepage irrigation system.

  12. Spatial Variation of Phosphorous Retention Capacity in Subsurface Flow Constructed Wetlands: Effect of Wetland Type and Inflow Loading.

    PubMed

    Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian

    2015-01-01

    For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.

  13. Spatial Variation of Phosphorous Retention Capacity in Subsurface Flow Constructed Wetlands: Effect of Wetland Type and Inflow Loading

    PubMed Central

    Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian

    2015-01-01

    For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation. PMID:26218872

  14. Correlations for laminar mixed convection flows on vertical, inclined, and horizontal flat plates

    NASA Astrophysics Data System (ADS)

    Chen, T. S.; Armaly, B. F.; Ramachandran, N.

    1986-11-01

    Local Nusselt numbers for laminar mixed convection flows along isothermal vertical, inclined, and horizontal flat plates are presented for the entire mixed convection regime for a wide range of Prandtl numbers. Simple correlation equations for the local and average mixed convection Nusselt numbers are developed, which are found to agree well with the numerically predicted values and available experimental data for both buoyancy assisting and opposing flow conditions. The threshold values of significant buoyancy effects on forced convection and forced flow effects on free convection, as well as the maximum increase in the local mixed convection Nusselt number from the respective pure convection limits, are also presented for all flow configurations. It is found that the buoyancy or forced flow effect can increase the surface heat transfer rate from pure forced or pure free convection by about 20 percent.

  15. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into

  16. Pattern formation in the flow between two horizontal coaxial cylinders with a partially filled gap

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Hegseth, John J.; Andereck, C. David; Wesfreid, Jose E.

    1988-11-01

    Flow between two horizontal coaxial cylinders with a partially filled gap is subject to several types of centrifugal instabilities which lead to the formation of a variety of spatial patterns. An experimental investigation has shown that there are five distinct branches of primary instabilities occurring in the system and that four codimension-2 points are easily reached. Theoretical predictions are in qualitative agreement with the observations.

  17. Simulation of the treatment performance of outdoor subsurface flow constructed wetlands in temperate climates.

    PubMed

    Langergraber, Günter

    2007-07-15

    Numerical models are a means to increase the understanding of the processes occurring in the "black box" constructed wetland. Once reliable models for constructed wetlands are available they can be also used for evaluating and improving existing design criteria. The paper shows simulation results for outdoor experimental subsurface vertical flow constructed wetlands using CW2D, a multi-component reactive transport module developed to simulate transport and reactions of the organic matter, nitrogen and phosphorus in subsurface flow constructed wetlands. The surface area of the experimental vertical flow bed was 20 m(2). The organic load applied was 27 g COD m(-2) d(-1) (corresponding to a specific surface area of 3 m(2) per person). The aim of the work is to calibrate the model for temperature dependency that has been implemented in CW2D. Water temperature during the investigation period varied between 4 degrees C and 18 degrees C. The measured effluent concentrations during summer could be simulated using the standard CW2D parameter set when the flow model was calibrated well. However, the increasing effluent concentrations at low temperatures could not be simulated with the standard CW2D parameter set where temperature dependencies are considered only for maximum growth, decay, and hydrolysis rates. By introducing temperature dependencies for half-saturation constants for the hydrolysis and nitrification processes it was possible to simulate the observed behaviour. The work presented is a step on the way to validate the CW2D module. Model validation is a necessary step before numerical simulation can be finally used in practice, e.g. for checking existing design guidelines.

  18. Effects of plant root on hydraulic performance of clogging process in subsurface flow constructed wetland

    NASA Astrophysics Data System (ADS)

    Hua, Guofen; Zhao, Zhongwei; Zeng, Yitao

    2013-04-01

    Subsurface flow constructed wetlands (SFCWs) have proven to be an efficient ecological technology for the treatment of various kinds of wastewaters. The clogging issue is the main operational problem, which limits its wide application. Clogging is a complicated process with physical (such as physical filtration), biogeochemical and plant-related processes. It was generally stated that suspended solids accumulation and biofilm play dominant roles response for clogging. However, the role of plants in SFCWs clogging remains unclear and debatable. In this paper, the performance of plants in the whole clogging process was addressed based on the lab-experiments between planted and unplanted system by measuring effective porosity, coefficient of permeability of the substrate within different operation periods. Furthermore, flow pattern and transport properties of the clogging process in the planted and unplanted wetland systems were evaluated by hydraulic performance (e.g. mean residence time, short-circuiting, volumetric efficiency, number of continuously stirred tank reactors, hydraulic efficiency factor, etc.) with salt tracer experiments. Plants played different roles in different clogging stage. In the earlier clogging stage, there were no obvious different effects on clogging process between planted and unplanted system. The effective porosity and coefficient of permeability slightly decreased within the planted system, which indicated that plant root restricted the flow of water when the pore spaces were lager. In the middle and later clogging stage, especially, in the later stage, the effective porosity and the coefficient of permeability increased considerably in the plant root zone. Furthermore, the longer retention times and higher hydraulic efficiency factors were gained in the planted system compared to that of unplanted, which implied that growing roots might open the new pore spaces in the substrate. The results are expected to be useful in the design of

  19. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    PubMed

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modeling of particle removal in the first coarse media of direct horizontal-flow roughing filtration.

    PubMed

    Ahn, H W; Park, N S; Kim, S; Park, S Y; Wang, C K

    2007-03-01

    Horizontal-Flow Roughing Filtration (HRF) is an alternative pretreatment method e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200NTU) and at higher filtration rate (>1 m h(-1)). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing Filtration (HRF) by addition of a low dose of coagulant prior to filtration. To optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settler. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments. The conventional column settling test has been found to be handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different amounts of organic matter, etc.) and different initial process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20 mm) has been found to be of 3m h(-1) filtration rate with filter length of 4-4.5 m.

  1. Understanding the rapidity of subsurface storm flow response from a fracture-oriented shallow vadose through a new perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Zhao, Pei; Liang, Chuan; Li, Tianyang; Zhou, Baojia

    2017-01-01

    Velocity and celerity in hydrologic systems are controlled by different mechanisms. Efforts were made through joint sample collection and the use of hydrographs and tracers to understand the rapidity of the subsurface flow response to rainstorms on hourly time scales. Three deep subsurface flows during four natural rainstorm events were monitored. The results show that (1) deeper discharge was observed early in responding rainfall events and yielded a high hydrograph amplitude; (2) a ratio index, k, reflecting the dynamic change of the rainfall perturbation intensity in subsurface flow, might reveal inner causal relationships between the flow index and the tracer signal index. Most values of k were larger than 1 at the perturbation stage but approximated 1 at the no-perturbation stage; and (3) for statistical analysis of tracer signals in subsurface flows, the total standard deviation was 17.2, 11.9, 7.4 and 3.5 at perturbation stages and 4.4, 2.5, 1.1, and 0.95 at the non-perturbation stage for observed events. These events were 3-7 times higher in the former rather than the later, reflecting that the variation of tracer signals primarily occurred under rainfall perturbation. Thus, we affirmed that the dynamic features of rainfall have a key effect on rapid processes because, besides the gravity, mechanical waves originating from dynamic rainfall features are another driving factor for conversion between different types of rainfall mechanical energy. A conceptual model for pressure wave propagation was proposed, in which virtual subsurface flow processes in a heterogeneous vadose zone under rainfall are analogous to the water hammer phenomenon in complex conduit systems. Such an analogy can allow pressure in a shallow vadose to increase and decrease and directly influence the velocity and celerity of the flow reflecting a mechanism for rapid subsurface hydrologic response processes in the shallow vadose zone.

  2. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    SciTech Connect

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.

  3. Flow velocity impact on biofilm development in subsurface environments - A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Boisson, A.; Aquilina, L.; Bour, O.; Davy, P.

    2012-12-01

    Biofilm development is the result of complex interactions between structural, physical, chemical and biological properties. Natural circulation of chemically rich water in subsurface environments both promotes and limits biofilm growth, with a strong impact on its shape and reactivity. Understanding the interaction between hydrodynamic processes and biofilm properties requires more experimental and modeling investigations. We propose an experimental approach to study the relationship between hydrodynamic parameters and reactivity at the pore-scale. The experimental set-up allows monitoring denitrification process for nitrate rich site water passing continuously through plastic tubes for several flow velocities. This idealized 1D flow experiment enables to reproduce pore-scale interactions between flow velocity and biological activities in natural conditions. The observed dynamic of nitrate transformation is related to different evolution of the biofilm structure and illustrates the impact of flow velocity on biofilm growth and shape. It leads to identify several regimes at the different phases of the biofilm development where flow velocity is a determinant factor for biofilm stability and performance.

  4. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less

  5. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  6. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    SciTech Connect

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  7. Nitrogen removal in a combined system: vertical vegetated bed over horizontal flow sand bed.

    PubMed

    Kantawanichkul, S; Neamkam, P; Shutes, R B

    2001-01-01

    Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater. This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2 x d and 11 g/m2 x d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2 x d or dry biomass production was 2.8 kg/m2 over 100 days.

  8. An experimental and numerical investigation of thin film flow in an axially rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lay, Keary; Schultz, William; Perlin, Marc

    2003-11-01

    Two dimensional film flow in an axially rotating horizontal cylinder is studied both experimentally and numerically. The physical setup is a 610 cm long glass tube with inside radius of 1.634 cm. This tube is filled partially with four different fluids: treated water and 1, 20, and 500 cSt silicone oils (dimethylpolysiloxane). The free surface profile is captured via video imaging and laser sheet illumination of the dye laden fluid. Transition to rimming flow (snap through") during rotational acceleration as well as from rimming flow during deceleration is recorded. A long working distance microscope observes the depth of the thin film region as it reenters the "puddle" during non-rimming flow. A lubrication analysis numerical study includes centrifugal force in addition to pressure gradients in the direction of the polar angle [1]. Surface profiles generated from the experiments are compared with this simulation as well as other numerical and analytical studies. 1. Liu, Z. 2001 "Film flow within an axially rotating horizontal cylinder and contact lines on an oscillating plate," Ph.D. dissertation, University of Michigan.

  9. Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments

    PubMed Central

    Nesbø, Camilla L; S Swithers, Kristen; Dahle, Håkon; Haverkamp, Thomas HA; Birkeland, Nils-Kåre; Sokolova, Tatiana; Kublanov, Ilya; Zhaxybayeva, Olga

    2015-01-01

    Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the ‘burial and isolation' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development. PMID:25500512

  10. Patterns of subsurface fluid-flow at cold seeps: the Hikurangi Margin, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Bialas, J.; Klaucke, I.; Crutchley, G. J.; Papenberg, C. A.; Netzeband, G. L.

    2012-12-01

    Based on multichannel seismic, geoacoustic, and methane sensor data, four different areas along the Hikurangi Margin show multiple indications for seep activity including bright spots, transparent zones, vertical chimneys, and the occurrence and distribution of bottom simulating reflectors. Locations where these features reach the seafloor are characterised by high backscatter intensity on sidescan sonar images and transparent zones in sediment echosounder profiles, while methane sensors show episodic, elevated methane concentrations near the seep sites. Methane discharge is facilitated by reduced hydrostatic pressure during low tides. The greatest number of seeps at Opouawe Bank correlates with the highest methane activity along the Hikurangi Margin. High heat flow values on flanks of ridges and low heat flow values on anticlines reflect a topographic effect on subsurface temperatures. Elevated heat flow occurs in the vicinity of seeps on Opouawe Bank. We propose that there are two drivers behind methane seepage with respect to the migration pathways of methane through the gas hydrate stability zone (GHSZ) to the seafloor: (1) structurally controlled and (2) stratigraphically controlled. In the structural model, vertical chimneys are the major pathways for methane through the GHSZ. Part of the upwardly migrating methane forms gas hydrate within the chimney. In the stratigraphic model, methane migration is stratigraphically controlled beneath seeps that are located on bathymetric highs and/or where subsurface anticlines occur beneath seeps. The structurally controlled seeps produce higher methane escape at the seafloor than those that are stratigraphically controlled. A combination of both driving mechanisms results in the highest methane seepage rates at the Tui Seep on Opouawe Bank.

  11. Direct numerical simulation of interfacial wave generation in turbulent gas-liquid flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2014-11-01

    For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  13. Measuring groundwater flow at the Sanford Laboratory with coupled surface/subsurface time-lapse gravity measurements

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Murdoch, L.; Long, A. J.; Koth, K.

    2011-12-01

    Limited options exist to measure groundwater processes, particularly at large depths. Coupled time-lapse gravity measurements at the surface and underground are one possibility, but despite recent advances in borehole instruments, no repeat underground gravity measurements of water-mass change have been reported. At the Sanford Laboratory-located at the Homestake Mine in Lead, South Dakota, and site of the proposed Deep Underground Science and Engineering Laboratory (DUSEL)-the U.S. Geological Survey has established a network of 19 surface and 5 underground gravity stations to monitor groundwater-storage change over the projected 20-year existence of the underground laboratory. Continuous pumping is planned to dewater the mine to a depth of 2,500 m; the current pumping regime began in 2007 and current water levels (2011) are at a depth of about 1,700 m. Measurements using a field-portable A-10 absolute gravimeter have been made approximately annually at surface stations since 2007. Underground stations forming a vertical profile along the Ross Shaft on the 300, 800, 2000, 4100, and 4850 levels (numbers indicate approximate depth in feet) were established in 2011, and it is expected all stations will be surveyed annually. To date, surface time-lapse measurements show gravity increases of 50 to 100 nm/s^2 (10 nm/s^2 = 1 microgal) at some stations and equivalent decreases at others, indicating little evidence of water-mass change from pumping. Preliminary modeling, in which the dewatered zone is represented by a series of horizontal prisms that undergo mass change equal to the porosity (assumed 0.005, an average of rock porosity and mined-out voids), indicates that this is the expected result. At pumping rates required to maintain drawdown to a depth of 2,500 m, however, the expected gravity change increases from about 50 nm/s^2 at the surface to 250 nm/s^2 at the 4850 level. Gravity stations in the subsurface are advantageous because they are both closer to the water

  14. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    NASA Astrophysics Data System (ADS)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  15. Sparse Randomized Maximum Likelihood (SpRML) for subsurface flow model calibration and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammadreza M.; Jafarpour, Behnam

    2014-07-01

    Despite their apparent high dimensionality, spatially distributed hydraulic properties of geologic formations can often be compactly (sparsely) described in a properly designed basis. Hence, the estimation of high-dimensional subsurface flow properties from dynamic performance and monitoring data can be formulated and solved as a sparse reconstruction inverse problem. Recent advances in statistical signal processing, formalized under the compressed sensing paradigm, provide important guidelines on formulating and solving sparse inverse problems, primarily for linear models and using a deterministic framework. Given the uncertainty in describing subsurface physical properties, even after integration of the dynamic data, it is important to develop a practical sparse Bayesian inversion approach to enable uncertainty quantification. In this paper, we use sparse geologic dictionaries to compactly represent uncertain subsurface flow properties and develop a practical sparse Bayesian method for effective data integration and uncertainty quantification. The multi-Gaussian assumption that is widely used in classical probabilistic inverse theory is not appropriate for representing sparse prior models. Following the results presented by the compressed sensing paradigm, the Laplace (or double exponential) probability distribution is found to be more suitable for representing sparse parameters. However, combining Laplace priors with the frequently used Gaussian likelihood functions leads to neither a Laplace nor a Gaussian posterior distribution, which complicates the analytical characterization of the posterior. Here, we first express the form of the Maximum A-Posteriori (MAP) estimate for Laplace priors and then use the Monte-Carlo-based Randomize Maximum Likelihood (RML) method to generate approximate samples from the posterior distribution. The proposed Sparse RML (SpRML) approximate sampling approach can be used to assess the uncertainty in the calibrated model with a

  16. Evaluation of a Heterogeneity Preserving Inversion Method for Subsurface Unsaturated Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.; Neuman, S. P.; Guadagnini, A.; Riva, M.

    2013-12-01

    Natural recharge to groundwater in semi-arid regions is driven by unsaturated flow through an often deep vadose zone. Understanding and modeling such flow requires knowledge of the subsurface heterogeneity of hydraulic properties. It is expensive and labor intensive to measure such properties, making it necessary to rely on other sources of information. Pedotransfer functions (PTFs) constitute cheap and viable tools to estimate hydraulic properties from soil or sediment texture. Due to the predominantly empirical nature of PTFs and the fact that PTFs are often based on data derived from small laboratory samples, biased estimates of hydraulic parameters may be produced that would likely bias modeled field scale deep vadose zone flow. In this work, an inversion framework that treats the subsurface as a composite medium formed by different zones, each associated with spatially heterogeneous hydraulic parameters, is developed to allow (a) preserving the details of the subsurface heterogeneous nature and (b) assuring consistency among hydraulic parameters associated with different regions of the domain. The approach is demonstrated through a field application, which considers the Maricopa site near Phoenix, Arizona. The study site is a 50x50 meter and 15 meter deep vadose zone at which a 28-day constant-rate infiltration experiment was conducted in 2001. Moisture content at the site was measured daily with neutron thermalization at 400 locations during the infiltration period, and at irregular intervals 100 and 200 days prior and after infiltration, respectively. A PTF based on the Rosetta model is applied on the basis of measured spatial distributions of textural and bulk density data to provide initial estimates of the three-dimensional structure of hydraulic properties. Simple linear functions are defined that transform the PTF estimates of soil hydraulic properties values into hydraulic parameters that minimize the objective functions for the domain, while zonation

  17. Surrogate model based iterative ensemble smoother for subsurface flow data assimilation

    NASA Astrophysics Data System (ADS)

    Chang, Haibin; Liao, Qinzhuo; Zhang, Dongxiao

    2017-02-01

    Subsurface geological formation properties often involve some degree of uncertainty. Thus, for most conditions, uncertainty quantification and data assimilation are necessary for predicting subsurface flow. The surrogate model based method is one common type of uncertainty quantification method, in which a surrogate model is constructed for approximating the relationship between model output and model input. Based on the prediction ability, the constructed surrogate model can be utilized for performing data assimilation. In this work, we develop an algorithm for implementing an iterative ensemble smoother (ES) using the surrogate model. We first derive an iterative ES scheme using a regular routine. In order to utilize surrogate models, we then borrow the idea of Chen and Oliver (2013) to modify the Hessian, and further develop an independent parameter based iterative ES formula. Finally, we establish the algorithm for the implementation of iterative ES using surrogate models. Two surrogate models, the PCE surrogate and the interpolation surrogate, are introduced for illustration. The performances of the proposed algorithm are tested by synthetic cases. The results show that satisfactory data assimilation results can be obtained by using surrogate models that have sufficient accuracy.

  18. Deformation band clusters on Mars and implications for subsurface fluid flow

    USGS Publications Warehouse

    Okubo, C.H.; Schultz, R.A.; Chan, M.A.; Komatsu, G.

    2009-01-01

    High-resolution imagery reveals unprecedented lines of evidence for the presence of deformation band clusters in layered sedimentary deposits in the equatorial region of Mars. Deformation bands are a class of geologic structural discontinuity that is a precursor to faults in clastic rocks and soils. Clusters of deformation bands, consisting of many hundreds of individual subparallel bands, can act as important structural controls on subsurface fluid flow in terrestrial reservoirs, and evidence of diagenetic processes is often preserved along them. Deformation band clusters are identified on Mars based on characteristic meter-scale architectures and geologic context as observed in data from the High-Resolution Imaging Science Experiment (HiRISE) camera. The identification of deformation band clusters on Mars is a key to investigating the migration of fluids between surface and subsurface reservoirs in the planet's vast sedimentary deposits. Similar to terrestrial examples, evidence of diagenesis in the form of light- and dark-toned discoloration and wall-rock induration is recorded along many of the deformation band clusters on Mars. Therefore, these structures are important sites for future exploration and investigations into the geologic history of water and water-related processes on Mars. ?? 2008 Geological Society of America.

  19. Python scripting libraries for subsurface fluid and heat flow simulations with TOUGH2 and SHEMAT

    NASA Astrophysics Data System (ADS)

    Florian Wellmann, J.; Croucher, Adrian; Regenauer-Lieb, Klaus

    2012-06-01

    Numerical simulations of subsurface fluid and heat flow are commonly controlled manually via input files or from graphical user interfaces (GUIs). Manual editing of input files is often tedious and error-prone, while GUIs typically limit the full capability of the simulator. Neither approach lends itself to automation, which is desirable for more complex simulations. We propose an alternative approach based on the use of scripting. To this end we have developed Python libraries for scripting subsurface simulations using the SHEMAT and TOUGH2 simulators. For many problems the entire modeling process including grid generation, model setup, execution, post-processing and analysis of results can be carried out from a single Python script. Through example problems we demonstrate some of the potential power of the scripting approach, which does not only make model setup simpler and less error-prone, but also facilitates more complex simulations involving, for example, multiple model runs with varying parameters (e.g. permeabilities, heat inputs, and the level of grid refinement). It is also possible to apply the developed methods for extending the functionality of graphical user interfaces. Basing our approach on the Python language makes it simple to take advantage of other libraries available for scientific computation, with sophisticated analysis of results often a matter of a single function call. We envisage many other possible applications of the approach, including linking with geological modeling software, running stochastic ensembles of models and hybrid modeling using multiple interacting simulators.

  20. System analysis to estimate subsurface flow: From global level to the State of Minnesota

    USGS Publications Warehouse

    Shmagin, B.A.; Kanivetsky, R.

    2002-01-01

    Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 1 s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream

  1. On Subsurface Flow Modeling in a Physical-based Model Dedicated to Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, A.; Roux, H.; Larnier, K.; Labat, D.; Dartus, D.

    2015-12-01

    Spatial and temporal soil moisture dynamic is a major factor influencing flash flood modelling. Interactions between localized, intense rainfall patterns and initial soil moisture spatial distributions make soil saturation excess to be reached quickly (ref: Anquetin et al., 2010 and Zocatelli et al., 2010) The few observations on hillslope flows suggest significant lateral flow transfer from the soil layers to the river. Moreover, Vannier et al. (2013) and Garambois et al. (2015) point out the importance of the catchment geological properties on flash flood dynamics, and in particular on the water storage during those events. According to these observations, this study proposes a new modelling of the soil water dynamic in the distributed and physical-based model MARINE. The objective is to improve the representation of the physical processes in an operational flash flood model. The soil column is divided in two compartments in order to represent in the upper layer the interflow in the vadose-zone with transmissivity and suction forces depending on Van Genuchten's formula and in the lower layer the groundwater flow and the storage in the weathered bedrock with a free water table model based on Darcy's law. Furthermore boundary conditions of lateral flow at channel interface are adapted using the conductance concept in order to better represent the dynamic interaction between both hydrological elements. The model is applied to several catchments of the French Mediterranean area ranging from 100 km2 to 500 km2. As expected, the new process representation impacts the simulation of the flow dynamic. The rising time of the subsurface flow is consistent with the catchment characteristic response time of a storm event. The recession curves are also improved. The sensitivity analysis suggests a strong influence of stream-aquifer flows and their representation.

  2. Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation

    NASA Astrophysics Data System (ADS)

    Saljoshi, P. S.; Autee, A. T.

    2017-09-01

    Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.

  3. Modelling and evaluation of nitrogen removal performance in subsurface flow and free water surface constructed wetlands.

    PubMed

    Tunçsiper, B; Ayaz, S C; Akça, L

    2006-01-01

    With the aim of protecting drinking water sources in rural regions, pilot-scale subsurface water flow (SSF) and free water surface flow (FWS) constructed wetland systems were evaluated for removal efficiencies of nitrogenous pollutants in tertiary stage treated wastewaters (effluent from the Pasaköy biological nutrient removal plant). Five different hydraulic application rates and emergent (Canna, Cyperus, Typhia sp., Phragmites sp., Juncus, Poaceae, Paspalum and Iris) and floating (Pistia, Salvina and Lemna) plant species were assayed. The average annual NH4-N, NO3-N and organic-N treatment efficiencies were 81, 40 and 74% in SSFs and 76, 59 and 75% in FWSs, respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances. Nitrification, denitrification and ammonification rate constants (k20) values in SSF and FWS systems were 0.898 d-1 and 0.541 d(-1), 0.486 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908, respectively. Results show that the first-order plug flow model clearly estimates slightly higher or lower values than observed when compared with the other model.

  4. Comparison between polishing (maturation) ponds and subsurface flow constructed wetlands (planted and unplanted) for the post-treatment of the effluent from UASB reactors.

    PubMed

    von Sperling, M; Dornelas, F L; Assunção, F A L; de Paoli, A C; Mabub, M O A

    2010-01-01

    This paper presents the results of a comparison of the performance of two treatment systems operating in parallel, with the same influent wastewater. The investigated systems are (i) UASB + three polishing ponds in series + coarse filter (200 population equivalents) and (ii) UASB + subsurface flow constructed wetlands (50 population equivalents). Two wetland units, operating in parallel, were analysed, being one planted (Typha latifolia) and the other unplanted. The systems were located in Belo Horizonte, Brazil. The wetland systems showed to be more efficient in the removal of organic matter and suspended solids, leading to good effluent BOD and COD concentrations and excellent SS concentrations. The planted wetland performed better than the unplanted unit, but the latter was also able to provide a good effluent quality. The polishing pond system was more efficient in the removal of nitrogen (ammonia) and coliforms (E. coli). Land requirements and cost considerations are presented.

  5. DETECTION OF THE HORIZONTAL DIVERGENT FLOW PRIOR TO THE SOLAR FLUX EMERGENCE

    SciTech Connect

    Toriumi, S.; Yokoyama, T.; Hayashi, K.

    2012-06-01

    It is widely accepted that solar active regions including sunspots are formed by the emerging magnetic flux from the deep convection zone. In previous numerical simulations, we found that the horizontal divergent flow (HDF) occurs before the flux emergence at the photospheric height. This paper reports the HDF detection prior to the flux emergence of NOAA AR 11081, which is located away from the disk center. We use SDO/HMI data to study the temporal changes of the Doppler and magnetic patterns from those of the reference quiet Sun. As a result, the HDF appearance is found to come before the flux emergence by about 100 minutes. Also, the horizontal speed of the HDF during this time gap is estimated to be 0.6-1.5 km s{sup -1}, up to 2.3 km s{sup -1}. The HDF is caused by the plasma escaping horizontally from the rising magnetic flux. And the interval between the HDF and the flux emergence may reflect the latency during which the magnetic flux beneath the solar surface is waiting for the instability onset to the further emergence. Moreover, SMART H{alpha} images show that the chromospheric plages appear about 14 minutes later, located cospatial with the photospheric pores. This indicates that the plages are caused by plasma flowing down along the magnetic fields that connect the pores at their footpoints. One important result of observing the HDF may be the possibility of predicting the sunspot appearances that occur in several hours.

  6. Lateral Mixing Mechanisms in Vertical and Horizontal Interconnected Subchannel Two-Phase Flows

    SciTech Connect

    Gencay, Sarman; Teyssedou, Alberto; Tye, Peter

    2002-05-15

    A lateral mixing model based on equal volume exchange between two laterally interconnected subchannels is presented. The following mixing mechanisms are taken into account in this model: (a) diversion cross flow, caused by the lateral pressure difference between adjacent subchannels; (b) turbulent void diffusion, which is governed by the lateral void fraction difference between the subchannels; (c) void drift, responsible for the tendency of the vapor phase to drift toward unobstructed regions; and (d) buoyancy drift, which takes into account the effect of gravity in horizontal flows. Experimental two-phase air-water data obtained using two test sections having different geometries and orientations are used to determine the diffusion coefficients required by the mixing model. Under the absence of diversion crossflow, i.e., negligible lateral pressure difference between the subchannels, it is observed that the diffusion coefficient increases with increasing average void fraction in the subchannels. Moreover, for vertical flows turbulent void diffusion seems to be considerably affected by the geometry of the subchannels. For horizontal flows under nonsymmetric inlet void fraction conditions, even though the interconnected subchannels have the same geometry, different turbulent void diffusion and void drift coefficients are required to satisfy the conditions of hydrodynamic equilibrium. In the present study this condition is achieved by introducing a new void drift coefficient expressed as a correction term applied to the turbulent void drift term.

  7. Effect of Drag Reducing Polymers on Stratified and Stratified/Annular Flow in a Horizontal Duct

    NASA Astrophysics Data System (ADS)

    Pernica, Patricia; Fleck, Brian; Heidrick, Ted

    2006-11-01

    An investigation was carried out to determine the effects of a drag reducing additive (DRA) on two phase flow in horizontal stratified and stratified/annular flow patterns. Experiments were conducted in an air-water flow in a transparent rectangular channel of cross-section 25.4 mm x 50.8 mm and 2.5 m in length. Pressure drop measurements, wave characteristics and observations of entrainment with and without DRA are presented. A non-contact measurement technique using laser induced fluorescence and high speed videography was used to measure span-wise liquid wave heights and to characterize the air-water interface. Pressure drop was measured at the centerline of the duct over a one meter distance. The onset of entrainment was observed visually. Effects of DRA were observed even at a low concentration of 5ppm. This concentration yielded pressure drop reductions of 10-15% which correlate with previous experiments done in horizontal pipelines. Observations also show dampening of roll waves and the suppression of atomization. Al-Sarkhi, A., Hanratty, T.J., Int J. Multiphase Flow, 27, 1151 (2001)

  8. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    SciTech Connect

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  9. Characterization of Horizontal Gas-Liquid Two-Phase Flow Using Markov Model-Based Complex Network

    NASA Astrophysics Data System (ADS)

    Hu, Li-Dan; Jin, Ning-De; Gao, Zhong-Ke

    2013-05-01

    Horizontal gas-liquid two-phase flow widely exists in many physical systems and chemical engineering processes. Compared with vertical upward gas-liquid two-phase flow, investigations on dynamic behavior underlying horizontal gas-liquid flows are quite limited. Complex network provides a powerful framework for time series analysis of complex dynamical systems. We use a network generation method based on Markov transition probability to infer directed weighted complex networks from signals measured from horizontal gas-liquid two-phase flow experiment and find that the networks corresponding to different flow patterns exhibit different network structure. To investigate the dynamic characteristics of horizontal gas-liquid flows, we construct a number of complex networks under different flow conditions, and explore the network indices for each constructed network. In addition, we investigate the sample entropy of different flow patterns. Our results suggest that the network statistic can well represent the complexity in the transition among different flow patterns and further allows characterizing the interface fluctuation behavior in horizontal gas-liquid two-phase flow.

  10. Microbial abundance and community in subsurface flow constructed wetland microcosms: role of plant presence.

    PubMed

    Wang, Qian; Xie, Huijun; Ngo, Huu Hao; Guo, Wenshan; Zhang, Jian; Liu, Cui; Liang, Shuang; Hu, Zhen; Yang, Zhongchen; Zhao, Congcong

    2016-03-01

    In this research, the role of plants in improving microorganism growth conditions in subsurface flow constructed wetland (CW) microcosms was determined. In particular, microbial abundance and community were investigated during summer and winter in Phragmites australis-planted CW microcosms (PA) and unplanted CW microcosms (control, CT). Results revealed that the removal efficiencies of pollutants and microbial community structure varied in winter with variable microbial abundance. During summer, PA comprised more dominant phyla (e.g., Proteobacteria, Actinobacteria, and Bacteroidetes), whereas CT contained more Cyanobacteria and photosynthetic bacteria. During winter, the abundance of Proteobacteria was >40 % in PA but dramatically decreased in CT. Moreover, Cyanobacteria and photosynthetic bacterial dominance in CT decreased. In both seasons, bacteria were more abundant in root surfaces than in sand. Plant presence positively affected microbial abundance and community. The potential removal ability of CT, in which Cyanobacteria and photosynthetic bacteria were abundant during summer, was more significantly affected by temperature reduction than that of PA with plant presence.

  11. Sequential nitrification/identification in subsurface flow constructed wetlands. A literature review. Master's thesis

    SciTech Connect

    Titus, F.W.

    1992-12-01

    Even though there is currently no consensus on the design of subsurface flow constructed wetlands, the ability of constructed wetlands to meet municipal wastewater requirements is well documented. Nitrogen removal appears from the existing performance data to be one of the primary problems with these systems. The negative effects of excessive levels of nitrogen on the aquatic environment include eutrophication of receiving waters and the increased risk of methemoglobinemia in human infants where elevated levels of nitrate (NO3-) or nitrite (NO2-) nitrogen are present in drinking water supplies. The performance of constructed wetlands for nitrogen removal, at best, can be rated poor to fair. As a result of the negative effects of excessive nitrogen on the environment and the problems with constructed wetlands in consistently removing nitrogen to within acceptable levels, this report will be directed towards the sequential nitrification/denitrification process.

  12. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    SciTech Connect

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  13. Sequential data assimilation with multiple nonlinear models and applications to subsurface flow

    NASA Astrophysics Data System (ADS)

    Yang, Lun; Narayan, Akil; Wang, Peng

    2017-10-01

    Complex systems are often described with competing models. Such divergence of interpretation on the system may stem from model fidelity, mathematical simplicity, and more generally, our limited knowledge of the underlying processes. Meanwhile, available but limited observations of system state could further complicate one's prediction choices. Over the years, data assimilation techniques, such as the Kalman filter, have become essential tools for improved system estimation by incorporating both models forecast and measurement; but its potential to mitigate the impacts of aforementioned model-form uncertainty has yet to be developed. Based on an earlier study of Multi-model Kalman filter, we propose a novel framework to assimilate multiple models with observation data for nonlinear systems, using extended Kalman filter, ensemble Kalman filter and particle filter, respectively. Through numerical examples of subsurface flow, we demonstrate that the new assimilation framework provides an effective and improved forecast of system behavior.

  14. Laboratory Validation of Passive Flow Focusing of Horizontal Wells for in Situ Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    DiMarco, A.; Crimi, M.; Holsen, T.; Bellona, C.; Kumarage, P.; Divine, C.; O'Fallon, T.

    2014-12-01

    A new concept for in situgroundwater remediation was recently developed where drilled horizontal wells filled with granular treatment media are installed in the direction of groundwater flow. Due to the differences in hydraulic conductivity (K) of the media in the well and the surrounding aquifer, groundwater is "focused" into the well and treated (Figure 1). Initial computer simulations demonstrate that the horizontal well will have a substantial capture zone making this a viable and appealing remediation strategy. In this work, a laboratory scale model was constructed to validate the computer simulations and determine the expected capture zone of a horizontal well under a range of hydraulic conductivity differentials. We have built a physical model to replicate a horizontal well in a confined aquifer. The model is constructed inside a 55-gallon drum packed with sand and water is pumped into the bottom of the drum and flows upward through the system. Within the aquifer, we installed a 1" screened well packed with lime-soda beads. To define the capture zone, we placed manometers in the aquifer. Finally, a constant head is applied to the system (Figure 2 and 3). Initial tests have shown that the 1" well with a hydraulic conductivity 65 times greater than the surrounding aquifer (kwell= 1.3 cm/sec vs. kaquifer= 0.02cm/sec) will capture a significant percentage (over 80% in some configurations) of the water applied to the system. A tracer test has shown that the water velocity in the well is substantially higher than the aquifer. Manometer readings confirm the flowfield effects of the well and these data are being used to calibrate numerical models. The presentation will focus on the observed behavior of the physical model under varying applied head and hydraulic conductivities and discuss the potential design implications for full-scale application.

  15. Performance of a subsurface-flow constructed wetland in southern China.

    PubMed

    Shi, Lei; Wang, Bao-zhen; Cao, Xiang-dong; Wang, Jin; Lei, Zhi-hong; Wang, Zhi-ren; Liu, Zheng-ying; Lu, Bing-nan

    2004-01-01

    The operational performance of a full-scale subsurface-flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD5/COD mean ratio of 0.33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m3/d, and the actual influent flow is in the range of < 2000 to > 10000 m3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard (GB 8978-1996), with the following parameters(mean values): COD 33.90 mg/L, BOD, 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0.56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year-round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.

  16. Peatland Subsurface Water Flow Monitoring Using Polarimetric L-Band PALSAR

    NASA Astrophysics Data System (ADS)

    Touzi, R.; Gosselin, G.; Li, J.; Brook, R.

    2011-03-01

    The potential of L-band PALSAR for monitoring water flow beneath the peat surface is demonstrated on a bog near Lac Saint Pierre (Canada). Two polarimetric ALOS acquisitions collected at spring and fall under different water conditions are used. The Touzi decomposition [1], which was shown to be very promising for peatland characterization using the C-band Convair 580 SAR [2], is applied. Like in [2], the information provided by the multi-polarization (HH, HV, and VV), the scattering type magnitude (the Cloude α or the Touzi αs), the single scattering eigenvalues and the entropy, cannot detect the presence of water underneath the peat surface. The Touzi scattering phase ϕ αs is shown to be the only target scattering decomposition parameter that can detect water flow variations beneath the peat surface. The fall acquisition that took place after two days rain permits demonstrating that the wave can penetrate deep into the acrotelm layer to detect the rain water that has sinked rapidly into the peat layer of high hydraulic conductivity. The spring acquisition at dry conditions permits better discrimination of poor fen from bog. Similar performance have been observed in a subarctic peatland in the Wapusk National Park using PALSAR data collected between June and September 2010. While the multi-polarization information could not detect any hydraulic changes in a sedge bulrush fen, ϕ αs can detect the peatland subsurface water level variations between the June starting permafrost melting season (13 cm active layer) and the more advanced July melting seasons (27 cm active layer). However, the scattering type phase could not detect the water level change between July and August of more advanced melting conditions (active layer thickness of 60 cm). The L-band wave does not go so deep into the fen to detect the presence of the subsurface (deeper than 27 cm) water.

  17. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-08-01

    Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  18. Performance of subsurface flow constructed wetland mesocosms in enhancing nutrient removal from municipal wastewater in warm tropical environments.

    PubMed

    Bateganya, Najib Lukooya; Kazibwe, Alex; Langergraber, Guenter; Okot-Okumu, James; Hein, Thomas

    2016-01-01

    Nutrient-rich effluents from municipal wastewater treatment plants (WWTPs) have significantly contributed to eutrophication of surface waters in East Africa. We used vertical (VF, 0.2 m(2)) and horizontal (HF, 0.45 m(2)) subsurface flow (SSF) constructed wetland (CW) configurations to design single-stage mesocosms planted with Cyperus papyrus, and operating under batch hydraulic loading regime (at a mean organic loading rate of 20 g COD m(-2) d(-1) for HF and 77 g COD m(-2) d(-1) for VF beds). The aim of the investigation was to assess the performance of SSF CWs as hotspots of nutrient transformation and removal processes between the WWTP and the receiving natural urban wetland environment in Kampala, Uganda. C. papyrus coupled with batch loading enhanced aerobic conditions and high efficiency regarding the elimination of suspended solids, organic matter, and nutrients with significant performance (P < .05) in VF mesocosms. The mean N and P elimination rates (g m(-2) d(-1)) were 9.16 N and 5.41 P in planted VF, and 1.97 N and 1.02 P in planted HF mesocosms, respectively. The lowest mean nutrient elimination rate (g m(-2) d(-1)) was 1.10 N and 0.62 P found in unplanted HF controls. Nutrient accumulation in plants and sediment retention were found to be essential processes. It can be concluded that whereas the SSF CWs may not function as independent treatment systems, they could be easily adopted as flexible and technologically less intensive options at a local scale, to increase the resilience of receiving environments by buffering peak loads from WWTPs.

  19. Sub-surface Meridional Flow Results from MWO, GONG, and MDI during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Pinkerton, Stephen; Rhodes, Edward J.; Bogart, Richard S.

    2014-06-01

    Time series of full-disk Dopplergrams were acquired at the 60-Foot Solar tower of the Mount Wilson Observatory every year between 1987 and 2009. Analysis of this archive revealed that the focal plane of the Tower did experience a small amount of systematic rotation, which suggested that the alignment of the optics had changed slightly over the years since its construction in 1907. This has caused some of the initial daily flow maps to possess a so-called “washing machine” effect similar to the pattern that was seen in raw GONG flow maps. We have incorporated a systematic program of ring-diagram analysis in which we have tracked the raw solar images using five differing assumed instrumental rotation rates. We have then gone on to compute synoptic maps of the horizontal flow vectors at several different depths over much of Solar Cycle 23 in order to study how such an instrumental rotation might affect both the zonal and meridional flows as functions of latitude, depth, and time. We compare these results with GONG and MDI flow measurements to empirically determine the regime within which the MWO results are reliable and extend our analysis into Solar Cycle 22.

  20. Dynamic model for horizontal two-phase flow predicting low head flooding

    SciTech Connect

    Saarinen, M. . Nuclear Engineering Lab.)

    1994-10-01

    The countercurrent flow of gas and water in a short horizontal pipe is studied numerically with a two-phase flow model. It is observed that the onset of flooding cannot be predicted at low liquid flow rates using conventional one-dimensional equations. The conventional equations yield the same underestimated results as the Taitel-Dukler criterion. Utilizing physical reasoning, improved equations have been derived. The basic idea is that the distribution of the phase velocities should not be treated as uniform in the cross-sectional area occupied by phases but transverse dependencies for the velocities should be allowed. By comparing measurement data and calculated results, it is shown that flooding transition can be predicted accurately with these equations.

  1. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  2. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  3. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  4. Hotspot Liquid Microfluidic Cooling: Comparing The Efficiency between Horizontal Flow and Vertical Flow

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuki; Ryoson, Hiroyuki; Fujimoto, Koji; Honjo, Keiji; Ohba, Takayuki; Mita, Yoshio

    2016-11-01

    This paper reports a novel cooling method for a local high-temperature block in an integrated circuit, which is called a “hotspot”. The method is to cool the chip in out-of-plane (3-D) direction to overcome efficiency limit of traditional horizontal (2-D) cooling. Our result indicates that high-temperature (over 180 °C) circuit block such as a phase-locked-loop (PLL), which is a performance limiting block in a modern CPU, can more efficiently be cooled by the vertical (3-D) cooling scheme.

  5. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    SciTech Connect

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors.

  6. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands.

    PubMed

    Saeed, Tanveer; Sun, Guangzhi

    2011-05-01

    This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.

  7. A coupled field study of subsurface fracture flow and colloid transport

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Weisbrod, Noam; Zhao, Pei; Reid, Brian J.

    2015-05-01

    Field studies of subsurface transport of colloids, which may act as carriers of contaminants, are still rare. This is particularly true for heterogeneous and fractured matrices. To address this knowledge gap, a 30-m long monitoring trench was constructed at the lower end of sloping farmland in central Sichuan, southwest China. During the summer of 2013, high resolution dynamic and temporal fracture flow discharging from the interface between fractured mudrock and impermeable sandstone was obtained at intervals of 5 min (for fast rising stages), 30-60 min (for slow falling stages) or 15 min (at all other times). This discharge was analyzed to elucidate fracture flow and colloid transport in response to rainfall events. Colloid concentrations were observed to increase quickly once rainfall started (∼15-90 min) and reached peak values of up to 188 mg/L. Interestingly, maximum colloid concentration occurred prior to the arrival of flow discharge peak (i.e. maximum colloid concentration was observed before saturation of the soil layer). Rainfall intensity (rather than its duration) was noted to be the main factor controlling colloid response and transport. Dissolved organic carbon concentration and δ18O dynamics in combination with soil water potential were used to apportion water sources of fracture flow at different stages. These approaches suggested the main source of the colloids discharged to be associated with the flushing of colloids from the soil mesopores and macropores. Beyond the scientific interest of colloid mobilization and transport at the field scale, these results have important implications for a region of about 160,000 km2 in southwest China that featured similar hydrogeologic settings as the experimental site. In this agriculture-dominated area, application of pesticides and fertilizers to farmland is prevalent. These results highlight the need to avoid such applications immediately before rainfall events in order to reduce rapid migration to

  8. Sub-horizontal channel flow: an exhumation mechanism during the Gondwana collision

    NASA Astrophysics Data System (ADS)

    Abu-Alam, Tamer; Stüwe, kurt

    2013-04-01

    The Arabian-Nubian Shield is made up of juvenile crust which was formed due to arc-arc accretion during the East- and West-Gondwana collision (Pan-African event) and the closing of the Mozambique Ocean. Thus the shield is composed of ophiolitic and volcanic material with oceanic affinity. However rocks with continental affinity can be found as high grade metamorphic complexes that were exposed from underneath the arc-related rocks during the late stages of the Pan-African event. Two tectonic models explain the exhumation mechanism of these metamorphic complexes. The first model is exhumation as core complexes in extension setting. This model appears to pertain to the metamorphic complexes of the Eastern Desert of Egypt. The second model is exhumation in oblique transpressional regime as it was found - for example - for the Feiran-Solaf complex of Sinai Peninsula. These models are correct with regard to the structural elements in the outer zones of the metamorphic complexes, which formed during the final exhumation mechanism during the later stages of the deformation history (e.g. D3 of the Feiran complex). However the models cannot explain the sub-horizontal lineations that formed during the early deformation phases and are still recorded in the core of the metamorphic complexes (e.g. D1 of the Feiran-Solaf complex). Here we propose sub-horizontal channel flow as a mechanism to exhume the metamorphic complexes and a mechanism that can account for both types of structural elements as part of one exhumation history. We suggest that the rocks flowed horizontally at mid-crustal levels to the NW of the Arabian-Nubian Shield. The front of the channel flows was then exhumed to the Earth surface in a transpression regime. This middle crustal flow will produce extensional tectonic regime in the upper crust (i.e. ?3 is horizontal and oriented in the NW-SE direction). This extensional setting produces low-angle detachments which assisted the middle crustal rocks to be exhumed

  9. Mixed convection boundary layer flow over a horizontal circular cylinder in a Jeffrey fluid

    NASA Astrophysics Data System (ADS)

    Zokri, S. M.; Arifin, N. S.; Mohamed, M. K. A.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.

    2017-05-01

    In this paper, the mixed convection boundary layer flow and heat transfer of Jeffrey fluid past a horizontal circular cylinder with viscous dissipation effect and constant heat flux is discussed. The governing nonlinear partial differential equations are transformed into dimensionless forms using the appropriate non-similar transformation. Numerical solutions are obtained by using the Keller-box method, which is proven well-tested, flexible, implicit and unconditionally stable. The numerical results for the velocity, temperature, skin friction coefficient and local Nusselt number are attained for various values of mixed convection parameter.

  10. Subsurface flow velocities through selected forest soils, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Mosley, M. P.

    1982-02-01

    Subsurface flow through soils in Tawhai, Big Bush and Craigieburn State Forests has been studied by applying water at a line source 1 m upslope from a pit, in the base of which an intercepting trough is located. By measuring lag times between the centres of mass of input and outflow and between the start of input and start of outflow, minimum estimates of mean and maximum flow velocity, V¯ and Vmax, at 51 locations were obtained. Mean values for the Tawhai sites were for V¯ 0.3 cm/s and for Vmax 0.42 cm/s, but a considerable degree of variability was present, with coefficients of variation up to 90%. A number of different pathways through the soil are followed by flowing water; macropore networks (root channels, etc.) are effective transmitters of water and at some sites conveyed up to 40% of the input rapidly to the interception trough. Variability in flow velocity and the proportion of the input appearing as rapid outflow is a function of antecedent moisture conditions and of the relative importance of the various pathways at a given site, which is in turn a function of the characteristics of the soil, the macropore network and the parent material at the base of the soil. At sites where the soil had an open structure and the parent material was shattered or permeable, the macropore network was a less important control upon soil hydrological behavior than where the subsoil had a less open structure and was underlain by impermeable bedrock. Measurements of flow velocities on undisturbed, logged, and logged/burned/planted sites were made at Tawhai SF, but the spatial and temporal variability was such that no statistically significant differences could be discerned. The time lapse since logging may be insufficient for changes in the root systems to be having a hydrological impact, but the high variability would require a sample size of over 1000 to show a significant difference in velocity of even 10%. For rapid flow through macropores to have a significant

  11. On the Inclusion of the Interfacial Area Between Phases in the Physical and Mathematical Description of Subsurface Multiphase Flow

    SciTech Connect

    Gray, W.G.

    2001-01-25

    This project has contributed to the improved understanding and precise physical description of multiphase subsurface flow by combining theoretical derivation of equations, lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and simplification of field-scale equations to assess the advantages and disadvantages of the complete theory.

  12. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Treesearch

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  13. Modeling flow into horizontal wells in a Dupuit-Forchheimer model.

    PubMed

    Haitjema, Henk; Kuzin, Sergey; Kelson, Vic; Abrams, Daniel

    2010-01-01

    Horizontal wells or radial collector wells are used in shallow aquifers to enhance water withdrawal rates. Groundwater flow patterns near these wells are three-dimensional (3D), but difficult to represent in a 3D numerical model because of the high degree of grid refinement needed. However, for the purpose of designing water withdrawal systems, it is sufficient to obtain the correct production rate of these wells for a given drawdown. We developed a Cauchy boundary condition along a horizontal well in a Dupuit-Forchheimer model. Such a steady-state 2D model is not only useful for predicting groundwater withdrawal rates but also for capture zone delineation in the context of source water protection. A comparison of our Dupuit-Forchheimer model for a radial collector well with a 3D model yields a nearly exact production rate. Particular attention is given to horizontal wells that extend underneath a river. A comparison of our approach with a 3D solution for this case yields satisfactory results, at least for moderate-to-large river bottom resistances.

  14. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  15. Mixed convection in liquid metal flow in a horizontal duct with strong axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Zikanov, Oleg

    2016-11-01

    The work is motivated by design of self-cooled liquid-metal breeder blankets for Tokamak fusion reactors. Thermal convection caused by non-uniform internal heating in a liquid metal flow in a horizontal duct with strong axial magnetic field is analyzed numerically. Axial magnetic field is considered strong enough (the Hartmann number up to 104 corresponding to typical reactor condition) to suppress the streamwise variation of the flow, so a two-dimensional fully developed flow is studied. Duct walls are assumed to be thermally and electrically insulated. The non-uniform internal heat deposited by captured neutrons is fully diverted by the mean flow. Realistically high Grashof (up to 1011) and Reynolds (up to 106) numbers are considered. It is found that the state of the flow is strongly affected by the vertical stable stratification developing in response to the streamwise growth of mean temperature. Two flow regimes are identified: the regime with developed transverse convection at moderate Grashof numbers, and the regime, in which convection is suppressed at high Grashof numbers. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269) and by the University of Michigan - Dearborn.

  16. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  17. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.

    PubMed

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q. We explored convection regimes in a parameter range, at 2×10^{3}flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra/Q=10, where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach.

  18. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q . We explored convection regimes in a parameter range, at 2 ×103flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra /Q =10 , where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach.

  19. A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport

    SciTech Connect

    Scheibe, Timothy D.; Yang, Xiaofan; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Palmer, Bruce J.; Tartakovsky, Alexandre M.

    2014-12-16

    Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes has been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.

  20. Form and function in hillslope hydrology: characterization of subsurface flow based on response observations

    NASA Astrophysics Data System (ADS)

    Angermann, Lisa; Jackisch, Conrad; Allroggen, Niklas; Sprenger, Matthias; Zehe, Erwin; Tronicke, Jens; Weiler, Markus; Blume, Theresa

    2017-07-01

    The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches

  1. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable

  2. Analytical framework for borehole heat exchanger (BHE) simulation influenced by horizontal groundwater flow and complex top boundary conditions

    NASA Astrophysics Data System (ADS)

    Rivera, Jaime; Blum, Philipp; Bayer, Peter

    2015-04-01

    Borehole heat exchangers (BHE) are the most widely used technologies for tapping low-enthalpy energy resources in the shallow subsurface. Analysis of these systems requires a proper simulation of the relevant processes controlling the transfer of heat between the BHE and the ground. Among the available simulation approaches, analytical methods are broadly accepted, especially when low computational costs and comprehensive analyses are demanded. Moreover, these methods constitute the benchmark solutions to evaluate the performance of more complex numerical models. Within the spectrum of existing (semi-)analytical models, those based on the superposition of problem-specific Green's functions are particularly appealing. Green's functions can be derived, for instance, for nodal or line sources with constant or transient strengths. In the same manner, functional forms can be obtained for scenarios with complex top boundary conditions whose temperature may vary in space and time. Other relevant processes, such as advective heat transport, mechanical dispersion and heat transfer through the unsaturated zone could be incorporated as well. A keystone of the methodology is that individual solutions can be added up invoking the superposition principle. This leads to a flexible and robust framework for studying the interaction of multiple processes on thermal plumes of BHEs. In this contribution, we present a new analytical framework and its verification via comparison with a numerical model. It simulates a BHE as a line source, and it integrates both horizontal groundwater flow and the effect of top boundary effects due to variable land use. All these effects may be implemented as spatially and temporally variable. For validation, the analytical framework is successfully applied to study cases where highly resolved temperature data is available.

  3. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks (Postprint)

    DTIC Science & Technology

    2013-11-01

    Figure 1. The apparatus for the current work consists of two separate loops , 1) R-134a test loop and 2) Water Cooling loop . A pumped refrigeration loop ...measurements are taken between an L/D of 280 and 300 to ensure that the two phase flow is fully developed. Testing was performed with refrigerant...analysis demonstrates the liquid vapor distributions for each flow regime as seen in Figure 3. Each test point described in this paper is accompanied

  4. Clogging influence on metals migration and removal in sub-surface flow constructed wetlands.

    PubMed

    Ranieri, Ezio; Young, Thomas M

    2012-03-15

    Chromium (Cr) and Nickel (Ni) removal from secondary effluent has been evaluated in a four year research program to determine the effectiveness of Sub-Surface Flow (SSF) Constructed Wetlands (cw(s)). Tests were performed in small scale (10 l/h) and full scale (150 m(3)/d) SSF cw(s). Metals removal was also assessed as a function of increased clogging that occurred in the cw(s) over the course of the study. Cr and Ni content were evaluated in sediments at various locations along the flow path and in plant tissues by sampling Phragmites australis roots, stems and leaves. Clogging was evaluated by measuring hydraulic conductivity at the same sampling locations at the beginning and at the end of the experiment. Residence Time Distribution (RTD) curves were also assessed at the beginning and after 48months; the skewness of the RTDs increased over this period. Proportionality between increasing clogging and sediment accumulation of metals was observed, especially for Ni. Adsorption to the original matrix and the accumulated sediment is a removal mechanism consistent with available data.

  5. Nested sparse grid collocation method with delay and transformation for subsurface flow and transport problems

    NASA Astrophysics Data System (ADS)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-06-01

    In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.

  6. Data assimilation in density-driven subsurface flows through a localized Iterative Ensemble Kalman Smoother

    NASA Astrophysics Data System (ADS)

    Xia, Chuanan; Hu, Bill X.; Tong, Juxiu; Guadagnini, Alberto

    2017-04-01

    We apply a lag-one localization scheme for the Iterative Ensemble Kalman Smoother (LIEnKSlag-one) to jointly update system parameters and state variables in a variable-density groundwater flow setting. We consider a seawater intrusion scenario corresponding to a variant of the Henry problem under the action of pumping. Equivalent freshwater head, hf, and salinity, Sa, are taken as state variables and hydraulic conductivity, K, as system parameter. The performance of LIEnKSlag-one is assessed in terms of its ability to cope with different observation types and quantity, magnitude of measurement error, and temporal frequency of data assimilation. We find that LIEnKSlag-one performs generally well when only hf data are assimilated. Our results show that hf data are more informative than Sa under the conditions examined. The most informative hf data are those which are collected in the proximity of the transition region between fresh and salt water and close to the pumping well. Our results suggest that implementing the Iterative Ensemble Kalman Smoother through a lag-one localization scheme is a viable and efficient strategy to enable data assimilation in density-driven subsurface flow.

  7. Comparison of operational design criteria for subsurface flow constructed wetlands for wastewater treatment.

    PubMed

    Leonard, K M; Swanson, G W

    2001-01-01

    Many communities are investigating the use of constructed wetlands as a simple, viable alternative to poorly operating on-site wastewater treatment. Currently, the most popular design models in the U.S.A. for subsurface flow units are the US Environmental Protection Agency (EPA) and the Tennessee Valley Authority (TVA) methods. However, there has been limited data verifying if the operating performance is up to design standards. In order to address this problem, this paper documents the performance of such treatment systems over a broad range of conditions in North Alabama. The operational data is used to determine a best-fit value of reaction rate constant and proposes improved input parameters for both design models. According to this data, the average plug-flow reaction rate constant was calculated to be 0.70 d-1 for the EPA method, while the recommended organic loading criterion is 11.4 m2/kg BOD5 per day into the wetland for the TVA method.

  8. SUB-SURFACE MERIDIONAL FLOW, VORTICITY, AND THE LIFETIME OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Maurya, R. A.; Ambastha, A. E-mail: ambastha@prl.res.i

    2010-05-10

    Solar sub-surface fluid topology provides an indirect approach to examine the internal characteristics of active regions (ARs). Earlier studies have revealed the prevalence of strong flows in the interior of ARs having complex magnetic fields. Using the Doppler data obtained by the Global Oscillation Network Group project for a sample of 74 ARs, we have discovered the presence of steep gradients in meridional velocity at depths ranging from 1.5 to 5 Mm in flare productive ARs. The sample of these ARs is taken from the Carrington rotations 1980-2052 covering the period 2001 August-2007 January. The gradients showed an interesting hemispheric trend of negative (positive) signs in the northern (southern) hemisphere, i.e., directed toward the equator. We have discovered three sheared layers in the depth range of 0-10 Mm, providing evidence of complex flow structures in several ARs. An important inference derived from our analysis is that the location of the deepest zero vertical vorticity is correlated with the remaining lifetime of ARs. This new finding may be employed as a tool for predicting the life expectancy of an AR.

  9. Flow of a thin liquid film coating a horizontal stationary cylinder.

    PubMed

    Cachile, M; Aguirre, M A; Lenschen, M; Calvo, A

    2013-12-01

    An experimental and theoretical study of the flow of liquid films around a stationary horizontal cylinder is reported. The film presents two different behaviors: The flow is stable in the upper zone (up to ∼150° with the vertical) and Rayleigh-Taylor-like instabilities appear in the lower zone. For the stable region, film thickness evolution could be described by numerically integrating an evolution equation obtained using a lubrication approximation. For the unstable region, a linear stability analysis allows us to determine the maximum growth wavelength for the Rayleigh-Taylor instability. Approximate analytical solutions were obtained for generatrices at an angle with the vertical θ=0 (stable region) and θ=π (where the instability appears).

  10. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  11. Flow boiling heat transfer characteristics of methane in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Wang, S.; Gong, M. Q.; Chen, G. F.; Sun, Z. H.; Wu, J. F.

    2014-01-01

    Forced two-phase flow boiling heat transfer coefficients of methane through a smooth horizontal tube with an inner diameter of 6 mm were measured. Experimental investigations were carried out at a particular set of test variables with the pressure range from 0.3 MPa to 0.6 MPa, heat flux range from 5 kW/m2 to 63 kW/m2, mass flux from 110 kg/m2-s to 275 kg/m2-s, and the vapor quality from 0 to 0.25. The influences of different experimental parameters on the flow boiling heat transfer coefficient were discussed. The data were also compared against ten heat transfer coefficient predictive methods. The correlations suggested by Kew-Conwell and Lazarek-Black both show good agreements with a mean absolute relative deviation less than 10%, and over 95% points within an error bandwidth of ±30.0%.

  12. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

    NASA Astrophysics Data System (ADS)

    Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang

    2017-08-01

    Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

  13. Three-dimensional numerical simulations of three-phase slug flows in horizontal pipes

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Yang, Junfeng; Matar, Omar

    2015-11-01

    One of the most common flow regimes in pipelines is that of slug flow: slug bodies corresponding to alternating blocks of aerated liquid which bridge the pipe, separated by elongated bubbles; the latter ride atop a liquid layer. The slugs travel at velocities that exceed the mixture superficial velocity; this can potentially cause structural damage, particularly at pipe bends and junctions. Two-phase slug flows have received considerable attention in the literature both experimentally and computationally but there has been very little work carried out on three-phase slugging. In the present work, the evolution of oil-water-air three-phase slug flow in a horizontal cylindrical pipe is investigated using two-dimensional and three-dimensional computational fluid dynamics simulations. The parameters characterising three-phase slug flow, e.g. slug length, propagation velocity, and slug formation frequency, are determined for various gas and liquid superficial velocities for a given pipe geometry. The results of this work are compared to available experimental data and numerical solutions based on approximate, one-dimensional models relying on the use of empirical correlations. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  14. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  15. Flow switchability of motions in a horizontal impact pair with dry friction

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Fu, Xilin

    2017-03-01

    Using the flow switchability theory of the discontinuous dynamical systems, the present paper is to develop mechanical complexity in a periodic-excited horizontal impact pair with dry friction. The impact pair studied models the motions of a single bolted connection which is vibrated in the plane perpendicular to the bolt axis. According to motion character, the phase space can be partitioned into several domains and boundaries, in which a continuous dynamical system is defined in each domain, and it possesses dynamical properties different from its adjacent subsystem, the boundaries have different properties and can fall into two kinds - displacement boundaries and velocity boundaries. In this paper, using G-functions defined on separation boundaries to study flow switching on corresponding boundaries, the analytical switching conditions on each boundary are developed: the sufficient and necessary conditions of occurrence and disappearance of sliding-stick motion and side-stick motion are obtained, the sufficient and necessary conditions of grazing motion appearing on velocity boundaries are also obtained, and the analytical conditions of appearance for grazing motion on displacement boundaries are preliminarily discussed. Thus it can be seen that dynamical behaviors of the horizontal impact pair with or without dry friction are essentially different, in particular flow switchability on displacement boundaries depend on whether the conditions of passable flows on velocity boundaries are satisfied. The numerical simulations are given to demonstrate the analytical results of two stick motions and grazing motions in such pair. More details of the motions for the object reaching the intersection point of displacement boundary and velocity boundary need to be considered further in the future.

  16. Modeling Subsurface Heterogeneity and River Aquifer Interactions in an Alluvial Fan System - Implications for River Flow Restoration

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Niswonger, R.; Fogg, G. E.

    2002-12-01

    Diminishing fall flows in the Cosumnes River in Sacramento County, California have led to declining fall runs of endangered Chinook salmon. Severe overdraft of the regional aquifer over the last 60 years has drawn down groundwater levels below the elevation of the channel over extended reaches of the river, practically eliminating baseflows. Efforts to restore Chinook salmon fall runs have led to investigations of river aquifer interactions along the lower Cosumnes River with the aim of building simulation models of river aquifer interactions that can guide the development of management strategies to restore fall flows. Simulations of regional groundwater flow indicate that large reductions in groundwater pumping over extended time periods would be necessary to reconnect the channel with the regional aquifer. Surface flow augmentation and artificial recharge could provide alternative short and long term measures to enhance fall flows. Field measurements suggest complex interactions between the river and the subsurface, including the formation of perched aquifers above the regional water table, that are not captured by the coarse regional model. Subsurface heterogeneities in the alluvial aquifer system, which is characterized by a large proportion of fine-grained sediments, seem to exert important local and intermediate scale controls on the exchange between the river and aquifer. Subsurface heterogeneities in a 420 sqkm area around the river, are simulated with a transition probability / Markov-Chain based three dimensional geostatistical model. Results from the geostatistical model are used as a basis for simulations of river aquifer interactions including variably saturated flow below the river channel. Results will quantify the role of subsurface heterogeneity on river aquifer exchange in a river aquifer system that is disconnected by an unsaturated zone and could provide guidelines for fall flow restoration in the Cosumnes River.

  17. [Effect of free surface flow wetland and subsurface flow wetland on bacterial diversity in Beijing Cuihu Wetland Park].

    PubMed

    Wang, Xiao-dan; Zhai, Zhen-hua; Zhao, Shuang; Li, Rong-qi; Ma, Wen-lin; Li, Yan-hong

    2009-01-01

    To achieve the effects of artificial wetland on the bacterial diversity, the culturable bacteria and total cell counts of three wetland cells, including sewage pond (SP), free surface wetland (SF) and subsurface flow wetland (SSF), were investigated using the traditional culture-dependent approach and flow cytometry method, based on the detecting the water quality. The bacterial diversity and dominant groups were also compared by PCR-DGGE profiles and 16S rDNA library technique based on its V3 region. Results show that SF and SSF cells can remove the nutrients effectively, the highest removal ratio of COD, total nitrogen, and total phosphorus reach to 42.33%, 52.92% and 41.4%, respectively; The total microbes are increased continuously with the treatment by SF and SSF, and the culturable bacteria clones are decreased after treatment by SF, and increased after further train by SSF. The Shannon-Weaver index is increased to 3.2850 from 3.0819 while the water flowing through SF, but decreased to 3.0181 after flowing through SSF; The dominant groups in SP include Actinobacteria, Cyanobacteria and alpha-Proteobacteria, reach to 38%, 18% and 18%, respectively; but the most dominant bacteria is changed to beta-Proteobacteria with the ratio of 32% and 44%, after treatment by SF and SSF, respectively. Cytophagal Flexibacter/Bacteroides (CFB) phylum is also increased to 24% finally. Therefore, while the Cuihu Wetland removing the nutrients,the bacterial counts, diversity and dominant groups are also changed,some beneficial bacteria in beta-Proteobacteria and CFB phylum increased, and part of those deleterious bacteria in Actinobacteria and Cyanobacteria decreased.

  18. Measurement of interfacial structures in horizontal air-water bubbly flows

    SciTech Connect

    Talley, J. D.; Worosz, T.; Dodds, M. R.; Kim, S.

    2012-07-01

    In order to predict multi-dimensional phenomena in nuclear reactor systems, methods relying on computational fluid dynamics (CFD) codes are essential. However, to be applicable in assessing thermal-hydraulic safety, these codes must be able to accurately predict the development of two-phase flows. Therefore, before practical application these codes must be assessed using experimental databases that capture multi-dimensional phenomena. While a large database exists that can be employed to assess predictions in vertical flows, the available database for horizontal flows is significantly lacking. Therefore, the current work seeks to develop an additional database in air-water horizontal bubbly flow through a 38.1 mm ID test section with a total development length of approximately 250 diameters. The experimental conditions are chosen to cover a wide range of the bubbly flow regime based upon flow visualization using a high-speed video camera. A database of local time-averaged void fraction, bubble velocity, interfacial area concentration, and bubble Sauter mean diameter are acquired throughout the pipe cross-section using a four-sensor conductivity probe. To investigate the evolution of the flow, measurements are made at axial locations of 44, 116, and 244 diameters downstream of the inlet. In the current work, only measurements obtained at L/D = 244 are presented. It is found that increasing the liquid superficial velocity tends to reduce both the bubble size and the degree of bubble packing near the upper wall. However, it is observed that the position of the maximum void fraction value remains nearly constant and is located approximately one bubble diameter away from the upper wall. It is also found that the bubble velocity exhibits a power law behavior resembling a single phase liquid turbulent velocity profile. Moreover, the local bubble velocity tends to decrease as the local void fraction increases. Conversely, increasing the gas superficial velocity is found to

  19. Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows

    NASA Astrophysics Data System (ADS)

    Sochala, P.; Ern, A.; Piperno, S.

    2009-05-01

    Robust and accurate schemes are designed to simulate the coupling between subsurface and overland flows. The coupling conditions at the interface enforce the continuity of both the normal flux and the pressure. Richards' equation governing the subsurface flow is discretized using a Backward Differentiation Formula and a symmetric interior penalty Discontinuous Galerkin method. The kinematic wave equation governing the overland flow is discretized using a Godunov scheme. Both schemes individually are mass conservative and can be used within single-step or multi-step coupling algorithms that ensure overall mass conservation owing to a specific design of the interface fluxes in the multi-step case. Numerical results are presented to illustrate the performances of the proposed algorithms.

  20. Observations on preferential flow and horizontal transport of nitrogen fertilizer in the unsaturated zone

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.

    1999-01-01

    A study site underlain by a claypan soil was instrumented to examine the transport of fertilizer nitrogen (N) under corn (Zea mays L.) cultivation. The study was designed to examine N transport within the unsaturated zone and in interflow (the saturated flow of water on top of the claypan). A 15N- labeled fertilizer (labeled N), bromide (Br), and chloride (Cl) were used as field tracers. Rapid or prolonged infiltration events allowed water and dissolved solutes to perch on the claypan for brief periods. However, a well- developed network of preferential flow paths quickly diverted water and solutes through the claypan and into the underlying glacial till aquifer. Excess fertilizer N in the unsaturated zone supplied a continuous, but declining input of N to ground water for a period of 15 mo after a single fertilizer application. Calculated solute velocities through the claypan matrix (6.4 x 10-6 cm s-1) were similar to horizontal transport rates along the claypan (3.5 to 7.3 x 10-6 cm s-1) but much slower than infiltration rates determined for preferential flow paths (1.67 x 10-3 cm s-1). These flow paths accounted for 35% of the transport. A seasonally variable, dual mode of transport (matrix and preferential flow) prevented the claypan from being an effective barrier to vertical transport. Simulations of selected field observations, conducted using the variably saturated two- dimensional flow and transport model, VS2DT, confirmed the presence of a dual flow regime in the claypan.

  1. Flow characteristics of two immiscible liquid layers subjected to a horizontal temperature gradient.

    PubMed

    Someya, Satoshi; Munakata, Tetsuo; Nishio, Masahiro; Okamoto, Koji; Madarame, Haruki

    2002-10-01

    Marangoni convection, driven by an interfacial instability due to a surface tension gradient, presents a significant problem in crystal growth in normal microgravity environments. It is important to suppress and control the convection phenomenon for better material processing, especially in crystal growth by the liquid encapsulated Czochralski or liquid encapsulated floating zone techniques, in which the melt is encapsulated in an immiscible medium. Marangoni convection can occur on the liquid-liquid interface and on the gas-liquid free surface. Buoyancy driven convection can also affect and complicate the flow. In the study we report here, experiments were carried out with two liquid layers, silicone oil and fluorinert, in an open and enclosed rectangular cavity. The flow in the cavity was subjected to a horizontal temperature gradient. The interactive flow near the liquid-liquid interface was measured by the particle image velocimetry technique. The measured flow field is in agreement with numerical predictions. Free surface fluctuations with several dominant frequencies were also measured.

  2. Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo

    2013-07-01

    Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.

  3. Centrifugal scaling of isothermal gas-liquid flows in horizontal tubes

    NASA Astrophysics Data System (ADS)

    Geraets, Jacques Joseph Marie

    1986-05-01

    To test the similarity criteria of two-phase gas-liquid flows, arising from the governing equations and boundary conditions, the flow of air and a water-glycerine mixture in a 50 mm diameter horizontal tube is compared with a two-phase flow of helium and water in a 5 mm diameter tube rotating around a parallel vertical axis (the effective gravity is 113 g0). Results emphasize that in general only dimensionless correlations provide meaningful predictions. The homogeneous Dukler case 1 (1964b) correlation, which contains no two-phase information, provides the best fit (the standard deviation is 21%) with the measured pressure drops. For predicting flow pattern the most promising approach is that of Taitel and Dukler (1976). Examples of scaling down large diameter, high pressure pipelines are presented. With a scale factor of 1/30 equality of the Froude number, the gas-liquid density ratio, and either the Reynolds number or the Weber number can be realized. Compressibility and gas viscosity are not properly scaled.

  4. Experiments and simulations of oil-water flows in horizontal pipes

    NASA Astrophysics Data System (ADS)

    Ibarra-Hernandes, Roberto; Wright, Stuart; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    The extraction of detailed information (e.g. velocity and turbulent data) in the flow of two immiscible liquid phases in horizontal pipes is of great importance for the fundamental understanding of the in situ hydrodynamics (and transport properties) of these flows, and the validation and improvement of advanced multiphase flow models. This detailed flow information can be obtained by the application of advanced laser-based diagnostic techniques, such as Planar Laser-Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV), however, the difference in the refractive index between the most relevant test fluids (oil, water) prevents the extraction of accurate information simultaneously in both phases, especially when the phases begin to develop interfacial instabilities, droplets and dispersions. In this work, a simultaneous, combined two-line technique is employed to obtain spatiotemporally resolved information in a 32 mm ID quartz pipe in terms of liquid phase distributions, velocity profiles and turbulence measurements. The experimental results are compared with numerical simulations carried out using the Fluidity code based on control-volume, finite-elements, and adaptive, unstructured meshing. Funding from BP (for R-IH), Cameron (for SW), and the EPSRC UK through the MEMPHIS programme (Grant Number EP/K0039761/1) is gratefully acknowledged.

  5. Uncertainties have a Meaning: Quantitative Interpretation of the Relationship between Subsurface Flow and Geological Data Quality

    NASA Astrophysics Data System (ADS)

    Wellmann, J.; Regenauer-Lieb, K.; Western Australian Geothermal Centre of Excellence

    2011-12-01

    We present a new method to assess system-based measures to classify uncertainties in geological models and in subsurface flow fields. Information entropy is proposed to evaluate uncertainties in geological models, and thermal entropy production is proposed to analyze uncertainties related to hydrothermal flow. As these measures have a fundamental theoretical basis and are related to the internal state of the system, they can be interpreted quantitatively and, consequently, give uncertainties a meaning. Information entropy values are directly related to the state of uncertainty of a geological model. For a point within the model, information entropy is a measure of the minimum number of geological units that could occur at its location. If the information entropy is zero, only one unit is possible and no uncertainty exists. If the value is greater than zero, at least two units are probable. If it increases above 1, three units can occur. In general the measure provides a weight of probabiliy for different states. A strong point of the method is that it gives an entropy measure for the state of the entire model and therefore lends itself as a robust measure to quantitatively compare uncertainties in difference models. In a similar sense, the thermal entropy production provides a quantitative measure of the thermodynamic state of a hydrothermal system. When the entropy production is zero, the system must be in a conductive steady state for a closed system. If the entropy production is larger than zero, the system can be in a convective or transient conductive state. For higher values of entropy production, the convective units show higher complexities and, hence, uncertainty of the hydrothermal field increases. Moreover, the average model entropy production gives a measure of the convective vigour that can be expected in the system. This is directly related to the efficiency of heat transfer over the system. The measure is therefore not only useful for a

  6. Finding the best windows: An apparent environmental threshold determines which diffuse flows are dominated by subsurface microbes

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.

    2014-12-01

    Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical

  7. Massively parallel multiple interacting continua formulation for modeling flow in fractured porous media using the subsurface reactive flow and transport code PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Mills, R. T.; Lichtner, P. C.; Hammond, G. E.

    2010-12-01

    Fracture dominated flows occur in numerous subsurface geochemical processes and at many different scales in rock pore structures, micro-fractures, fracture networks and faults. Fractured porous media can be modeled as multiple interacting continua which are connected to each other through transfer terms that capture the flow of mass and energy in response to pressure, temperature and concentration gradients. However, the analysis of large-scale transient problems using the multiple interacting continuum approach presents an algorithmic and computational challenge for problems with very large numbers of degrees of freedom. A generalized dual porosity model based on the Dual Continuum Disconnected Matrix approach has been implemented within a massively parallel multiphysics-multicomponent-multiphase subsurface reactive flow and transport code PFLOTRAN. Developed as part of the Department of Energy's SciDAC-2 program, PFLOTRAN provides subsurface simulation capabilities that can scale from laptops to ultrascale supercomputers, and utilizes the PETSc framework to solve the large, sparse algebraic systems that arises in complex subsurface reactive flow and transport problems. It has been successfully applied to the solution of problems composed of more than two billions degrees of freedom, utilizing up to 131,072 processor cores on Jaguar, the Cray XT5 system at Oak Ridge National Laboratory that is the world’s fastest supercomputer. Building upon the capabilities and computational efficiency of PFLOTRAN, we will present an implementation of the multiple interacting continua formulation for fractured porous media along with an application case study.

  8. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent.

  9. Mechanical resistance properties of gravel used in subsurface flow constructed wetlands: implications for clogging.

    PubMed

    Pedescoll, Anna; Passos, Fabiana; Alba, Elisenda; García, Joan; Puigagut, Jaume

    2011-01-01

    Gravel constitutes the filter medium in subsurface flow constructed wetlands (SSF CWs) and its porosity and hydraulic conductivity decrease over time (clogging), limiting the lifespan of the systems. Using gravel of poor quality accelerates clogging in wetlands. In this study, gravel samples from six different wetland systems were compared with regards to their mineral composition and mechanical resistance properties. Results showed that both mineralogy and texture are related to mechanical resistance. Accordingly, gravel with high content of quartz (> 80%) showed a lower percentage of broken particles (0.18-1.03%) than those with lower content of quartz (2.42-4.56% media broken). Although granite is formed by high durability minerals, its non-uniform texture results in a lower resistance to abrasion (ca. 10% less resistance than calcareous gravel). Therefore, it is recommended to use gravels composed mainly of quartz or, when it is not available, limestone gravels (rounded and uniform) are recommended instead. The resistance to abrasion (LAA test) seems to be a good indicator to determine the mechanical properties of gravels used in CWs. It is recommended to use gravels with LAA below 30% in order to avoid a rapid clogging due to gravel crumbling and subsequent mineral solids accumulation.

  10. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands.

    PubMed

    Collison, R S; Grismer, M E

    2013-09-01

    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  11. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter

    NASA Astrophysics Data System (ADS)

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-09-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4+-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter.

  12. Performance of a vertical subsurface flow (VSF) wetland treatment system using woodchips to treat livestock stormwater.

    PubMed

    Niu, Siping; Guerra, Heidi B; Chen, Yaoping; Park, Kisoo; Kim, Youngchul

    2013-08-01

    This study was conducted to develop a vertical subsurface flow (VSF) wetland remediation system packed with woodchips to control stormwater pollution arising from livestock agriculture. Three lab-scale VSF wetlands were operated with recirculation during the interval (Δ) between storms as 2, 4 and 8 days, respectively. The fed water was 100% recirculated one time per 24 h; the recirculation frequency was 1, 3 and 7 times at Δ of 2, 4 and 8 days, respectively. The constructed wetland systems proved to be effective in reducing total suspended solid (TSS), but also had potential for increasing TSS in the effluent due to the properties of the woodchips. The release of organic matter, especially in the dissolved form, occurred during the initial 60 days. The removal efficiencies of total nitrogen (TN) were 26.2%, 34.1% and 50.0% at Δ of 2, 4 and 8 days, respectively. Nitrification was promoted by the abundant oxygen supplied when the water in wetland was recirculated and fed into the wetland. Denitrification was stable and effective due to the availability of carbon sources. The influent total phosphorus (TP) was reduced from an average of 2.05 mg L(-1) to 1.79 mg L(-1), 1.36 mg L(-1) and 0.86 mg L(-1) at Δ as 2, 4 and 8 days, respectively. The result shows that woodchips can be used as substrate material for VSF wetland treatment systems to control nutrient influx from livestock stormwater.

  13. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands.

    PubMed

    Grüneberg, B; Kern, J

    2001-01-01

    The suitability of iron-ore and blast furnace slag for subsurface flow (SSF) constructed wetlands was studied over a period of four months. Dairy farm wastewater (TP 45 mg l(-1)) was percolated through buckets planted with reed (volume 9.1 l; hydraulic load 151 m(-2) d(-1)). One group of buckets was kept under aerobic conditions and the other group under anaerobic conditions, monitored by continuous redox potential measurements. Even at high mass loading rates of 0.65 g P m(-1) d(-1) the slag provided 98% removal efficiency and showed no decrease in performance with time. However, phosphorus fractionation data indicate that the high phosphorus retention capacity under aerobic conditions is to a great extent attributable to unstable sorption onto calcium compounds (NH4Cl-P). Phosphorus sorption of both the slag (200 microg P g(-1)) and the iron-ore (140 microg P g(-1)) was promoted by predominantly anaerobic conditions due to continuous formation of amorphous ferrous hydroxides. None of the substrates had adverse affects on reed growth.

  14. Nitrogen removal from wastewater by an aerated subsurface-flow constructed wetland in cold climates.

    PubMed

    Redmond, Eric D; Just, Craig L; Parkin, Gene F

    2014-04-01

    The objective of this study was to assess the role of cyclic aeration, vegetation, and temperature on nitrogen removal by subsurface-flow engineered wetlands. Aeration was shown to enhance total nitrogen and ammonia removal and to enhance removal of carbonaceous biochemical oxygen demand, chemical oxygen demand, and phosphorus. Effluent ammonia and total nitrogen concentrations were significantly lower in aerated wetland cells when compared with unaerated cells. There was no significant difference in nitrogen removal between planted and unplanted cells. Effluent total nitrogen concentrations ranged from 9 to 12 mg N/L in the aerated cells and from 23 to 24 mg N/L in unaerated cells. Effluent ammonia concentrations ranged from 3 to 7 mg N/L in aerated wetland cells and from 22 to 23 mg N/L in unaerated cells. For the conditions tested, temperature had only a minimal effect on effluent ammonia or total nitrogen concentrations. The tanks-in-series and the PkC models predicted the general trends in effluent ammonia and total nitrogen concentrations, but did not do well predicting short-term variability. Rate coefficients for aerated systems were 2 to 10 times greater than those for unaerated systems.

  15. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland.

    PubMed

    Boog, Johannes; Nivala, Jaime; Aubron, Thomas; Wallace, Scott; van Afferden, Manfred; Müller, Roland Arno

    2014-06-01

    In this study, a side-by-side comparison of two pilot-scale vertical subsurface flow constructed wetlands (6.2 m(2)×0.85 m, q(i)=95 L/m(2) d, τ(n)=3.5 d) handling primary treated domestic sewage was conducted. One system (VA-i) was set to intermittent aeration while the other was aerated continuously (VAp-c). Intermittent aeration was provided to VA-i in an 8 h on/4 h off pattern. The intermittently aerated wetland, VA-i, was observed to have 70% less nitrate nitrogen mass outflow than the continuously aerated wetland, VAp-c. Intermittent aeration was shown to increase treatment performance for TN while saving 33% of running energy cost for aeration. Parallel tracer experiments in the two wetlands showed hydraulic characteristics similar to one Continuously Stirred Tank Reactor (CSTR). Intermittent aeration did not significantly affect the hydraulic functioning of the system. Hydraulic efficiencies were 78% for VAp-c and 76% for VA-i. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Purification of landscape water by using an innovative application of subsurface flow constructed wetland.

    PubMed

    Chyan, Jih Ming; Lu, Chien Chang; Shiu, Ruei Feng; Bellotindos, Luzvisminda M

    2016-01-01

    This study attempted to purify eutrophic landscape water under a low pollutant concentration and high hydraulic volume loading using an embedded subsurface flow (SSF) constructed wetland (CW). Three species of aquatic plants (i.e., Cyperus alternifolius subsp. flabelliformis, Canna indica, and Hydrocotyle verticillata) were found to be conducive to the requirements of purifying the low-polluted water. Field results of nearly 2 years of experiments showed that SSF CW purified the eutrophic water and maintained the landscape water in a visibly clear condition. In an environment approaching the SSF CW background concentration, pollutant removal processes were divided into modulation and optimum performance periods. Average concentrations of biochemical oxygen demand (BOD), ammonium-nitrogen (NH4 (+)-N), and total phosphorous (TP) in the optimum performance period were 0.69-1.00, 0.35-1.42, and 0.19-0.23 mg/L, respectively. Almost 500 days of BOD and NH4 (+)-N removals were necessary to perform optimally. A shorter period, 350 days, was required for TP optimum removal. This feature of two stage removals was not found in chlorophyll-a (Chl-a) and suspended solids (SS), whose averages were 11.86-17.98 and 13.30 μg/L, respectively. Filter cleaning and water replacement were unnecessary, while only water recharging was needed to compensate for the water lost by evapotranspiration. The field SSF CW has maintained its performance level for over 7 years.

  17. Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland.

    PubMed

    Shardendu; Salhani, N; Boulyga, S F; Stengel, E

    2003-03-01

    The phytoremediation of selenium by two different wetland species was investigated. Selenium (20.4 microg/l) was supplied continuously to subsurface flow constructed wetlands, one vegetated with Typha latifolia L. and the other with Phragmites australis (Cav.) Trin. ex Steud. The beds of both species had same hydraulic loading rate (0.079 m(3)/m(2)/d) and water retention time (24 h). However, the mass loading rate was 1.27 mg Se/m(2)/d for Phragmites and 1.35 mg Se/m(2)/d for Typha. In the Typha bed Se migrated faster than in the Phragmites bed. After 25 d of Se supplementation in the Typha bed about 54% of the Se inlet concentration remained in the outlet water. In the Phragmites bed Se was removed completely from the water after passing through 3/4 of the bed length. After 65 d of Se supplementation the highest amount of Se (2.8 microg/g dry matter) was determined in the organic material of the Typha bed. Roots and rhizomes accumulated 2.2 and 1.8 microg/g dry matter respectively. Phragmites accumulated Se in the leaves and stems, but not in the rhizomes. The accumulation in the leaves (1.8 microg Se/g dry matter) was three times higher than in the stems (0.6 microg Se/g dry matter). Copyright 2002 Elsevier Science Ltd.

  18. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads.

    PubMed

    Lee, Chi-Yuan; Lee, Chun-Chih; Lee, Fang-Yin; Tseng, Szu-Kung; Liao, Chiu-Jung

    2004-04-01

    Subsurface flow constructed wetlands (SSFCW) subjected to changing of loading rates are poorly understood, especially when used to treat swine waste under heavy loads. This study employed a SSFCW system to take pretreated swine effluent at three hydraulic retention times (HRT): 8.5-day HRT (Phase I), 4.3-day HRT (Phase II), and 14.7-day HRT (Phase III). Results showed that the system responded well to the changing hydraulic loads in removing suspended solids (SS) and carbonaceous oxygen demands. The averaged reduction efficiencies for four major constituents in the three phases were: SS 96-99%, chemical oxygen demand (COD) 77-84%, total phosphorus 47-59%, and total nitrogen (TN) 10-24%. While physical mechanisms were dominant in removing pollutants, the contributions of microbial mechanisms increased with the duration of wetland use, achieving 48% of COD removed and 16% of TN removed in the last phase. Water hyacinth made only a minimal contribution to the removal of nutrients. This study suggested that the effluent from SSFCW was appropriate for further treatment in land applications for nutrient assimilation.

  19. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter

    PubMed Central

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-01-01

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4+-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter. PMID:27646687

  20. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter.

    PubMed

    Wang, Penghe; Zhang, Hui; Zuo, Jie; Zhao, Dehua; Zou, Xiangxu; Zhu, Zhengjie; Jeelani, Nasreen; Leng, Xin; An, Shuqing

    2016-09-20

    The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4(+)-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter.

  1. Subsurface-flow constructed wetlands treatment in the plains: five years of experience.

    PubMed

    Dahab, M F; Surampalli, R Y

    2001-01-01

    This paper documents the performance of a subsurface-flow constructed wetlands system during its initial five years of operation under variable loading and operating conditions associated with a northern midwestern US climate. The results indicate that effective and sufficient CW seasonal removals of TSS, VSS, CBOD5, COD, and fecal coliform were achieved. Wastewater temperatures seemed to affect CBOD5 and COD removal rates. Nitrogen and phosphorus reductions were not as effective and varied seasonally, as well as with wastewater temperature. The addition of a sand filter, to aid in further nitrification and disinfection following CW treatment, markedly improved the performance of the wetlands system. After a few years of operation, the remarkable performance of the CW system was dampened by apparent clogging and subsequent eruption of wastewater at the head-end of the treatment cells. While clogging was partially caused by biomass build-up in the wetlands substrate, visual observations suggest that excessive vegetation coupled with relaxed maintenance may also be responsible for clogging.

  2. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  3. Partitioning of heavy metals in sub-surface flow treatment wetlands receiving high-strength wastewater.

    PubMed

    Wojciechowska, Ewa; Gajewska, Magdalena

    2013-01-01

    The retention of heavy metals at two pilot-scale treatment wetlands (TWs), consisting of two vertical flow beds (VSSF) followed by a horizontal flow bed (HSSF) was studied. The TWs received high-strength wastewater: reject waters from sewage sludge centrifugation (RW) and landfill leachate (LL). The concentrations of the metals Fe, Mn, Zn, Al, Pb, Cu, Cd, Co, and Ni were measured in treated wastewater, substrate of the beds and in plant material harvested from the beds (separately in above ground (ABG) parts and below ground (BG) parts). The TWs differed in metals retention. In the RW treating TW the metal removal efficiencies varied from 27% for Pb to over 97% for Fe and Al. In the LL treating system the concentrations of most metals decreased after VSSF-1 and VSSF-2 beds; however, in the outflow from the last (HSSF) bed, the concentrations of metals (apart from Al) increased again, probably due to the anaerobic conditions at the bed. A major removal pathway was sedimentation and adsorption onto soil substrate as well as precipitation and co-precipitation. In the LL treating facility the plants contained substantially higher metal concentrations in BG parts, while the upward movement of metals was restricted. In the RW treating facility the BG/ABG ratios were lower, indicating that metals were transported to shoots.

  4. Heat flow and subsurface temperature distributions in central and western New York. Final report

    SciTech Connect

    Hodge, D.S.; Fromm, K.

    1984-01-01

    Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.

  5. Developing Training Image-Based Priors for Inversion of Subsurface Geophysical and Flow Data

    NASA Astrophysics Data System (ADS)

    Caers, J.

    2014-12-01

    Forecasting in subsurface formations, whether for groundwater, storage or oil & gas production, can rely on a wealth of geological information. Currently, most of this information remains underused in both the theory and practice of forecasting based on inverse models which heavily relies on spatial covariances and multi-Gaussian theory. By means of real field studies, I will provide an outline of how such geological information can be accounted through the construction and validation of a large set of training images and the generation of model realizations with MPS (multiple-point geostatistics). Often most critical in solving such inverse problems is the development of prior models that are later used for posterior sampling or stochastic search. I propose therefore a two-stage approach where the first stage consists of a validation of the training image-based prior with the geophysical and flow data. This stage will require only the generation of a few (100s) geological models and the forward modeling of the data response on these models. For geophysical data, the validation consists of comparing histograms of multi-scale wavelet transforms between the forward models and the field data. For flow data, the validation is based on a reduction of dimensionality of the forward response and the data using multi-dimensional scaling. The outcome of this validation is an estimate of the prior probability assigned to each training image, with several training images getting assigned zero probability (incompatible with field data). These prior probabilities are used in the second stage to actually invert for the data using stochastic search. In such stochastic search, I avoid parameterizing the model space and present methods that efficiently perform a direct search in the space of the validated training image-based prior model realizations.

  6. Modeling Effects of Subsurface Heterogeneity on River Aquifer Interaction in an Alluvial Fan System - Implications for River Flow Restoration

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Suzuki, E.; Fogg, G. E.

    2001-12-01

    Decreasing fall flows in the Cosumnes River in Sacramento County, California have led to declining fish populations of endangered Chinook salmon. Severe overdraft of the regional aquifer over the last 70 years has resulted in a hydraulic disconnection between the groundwater system and extended reaches of the river, practically eliminating baseflows. Efforts to restore Chinook salmon fall runs have resulted in investigations of river aquifer interactions along the lower Cosumnes River. Aim of these investigations is to build simulation models of river aquifer interactions that can guide the development of management strategies to restore fall flows. Preliminary simulations of regional groundwater flow indicate that large reductions in groundwater pumping would be necessary to hydraulically reconnect the channel with the regional aquifer. However flow augmentation and artificial recharge could provide alternative short and long term measures to enhance fall flows. Field measurements of seepage losses from the river channel suggest complex interactions between the river and the subsurface that are not captured by the coarse regional model, which simulates river seepage through a uniform streambed layer into a homogeneous aquifer. It is rather assumed that subsurface heterogeneity including laterally extensive low conductivity layers above and below the groundwater table exerts important local controls on the exchange between the river and aquifer. Low conductivity layers, like paleosols and hardpans, are commonly found in the alluvial sediments forming the regional aquifer system and can decrease river seepage where they outcrop in the channel. Under certain conditions these layers can also perch water above the regional groundwater table and cause seepage into the river channel as suggested by influent seepage-meter measurements. To account for these phenomena in river aquifer exchange variably saturated flow simulations as well as a detailed representation of

  7. Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity

    NASA Astrophysics Data System (ADS)

    Bause, Markus

    2008-02-01

    In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is

  8. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part I: Analysis of infiltration shape on two different waste deposit cells.

    PubMed

    Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N

    2016-09-01

    Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Oscillatory modes in the flow between two horizontal corotating cylinders with a partially filled gap

    NASA Astrophysics Data System (ADS)

    Mutabazi, I.; Normand, C.; Peerhossaini, H.; Wesfreid, J. E.

    1989-01-01

    The linear stability of viscous flow between two rotating coaxial horizontal cylinders with a partially filled gap is investigated. It is shown that, for a range of values of the rotation ratio μ, the stability diagram for stationary modes consists of two separate curves connected by an oscillatory branch. For 0.26<μ<0.61 the critical point is on the oscillatory branch. Therefore it can be expected that, at onset, the instability will set in as an oscillatory mode. We have established the existence of codimension-2 points for two particular values of the rotation ratio μ=0.26 and 0.61, where the onset of instability for stationary as well as oscillatory modes occurs for the same value of the Taylor number.

  10. Analytical solutions for flow of horizontal well in compressible, three-dimensional unconsolidated formations

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Chen, Jun; Li, Long-Xin; Zhou, Yuan

    2014-08-01

    A novel mathematical model for single-phase fluid flow from unconsolidated formations to a horizontal well with the consideration of stress-sensitive permeability is presented. The model assumes the formation permeability is an exponential function of the pore pressure. Using a perturbation technique, the model is solved for either constant pressure or constant flux or infinite lateral boundary conditions with closed top and bottom boundaries. Through Laplace transformation, finite Fourier transformation and numerical inversion methods, the solutions are obtained and the pressure response curves are analyzed. The agreement between the analytical solutions in this paper and the numerical results from commercial software (Saphir) is excellent, which manifests the accuracy of the results derived in this paper.

  11. Free-convection flow past a horizontal surface in a nanofluid with suction/injection

    NASA Astrophysics Data System (ADS)

    Adnan, Nurul Shahirah Mohd; Arifin, Norihan Md; Bachok, Norfifah; Nazar, Roslinda

    2017-08-01

    The present work deals with the steady free-convection boundary-layer flow past a horizontal permeable surface embedded in a porous medium filled with a nanofluid. The similarity transformation was applied to the governing equations to transform into a system of ordinary differential equations, which are then solved numerically using Runge-Kutta-Fehlberg fourth-fifth order (RKF45) method. Three types of nanoparticles which are titania (TiO2), alumina (Al2O3), and copper (Cu) in the based fluid of water are considered to investigate the effect of the nanoparticle volume fraction parameter, υ. Results are presented and discussed for the local Nusselt number, the surface velocity, the temperature profiles, and the velocity profile. It is found that the imposition of suction/injection has an impact on the velocity profiles and temperature profiles.

  12. Horizontal annular flow modelling using a compositional based interface capturing approach

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitrios; Xie, Zhizhua; Percival, James; Gomes, Jefferson; Pain, Chris; Matar, Omar

    2014-11-01

    Progress on a consistent approach for interface-capturing in which each component represents a different phase/fluid is described. The aim is to develop a general multi-phase modelling approach based on fully-unstructured meshes that can exploit the latest mesh adaptivity methods, and in which each fluid phase may have a number of components. The method is compared against experimental results for a collapsing water column test case and a convergence study is performed. A number of numerical test cases are undertaken to demonstrate the method's ability to model arbitrary numbers of phases with arbitrary equations of state. The method is then used to simulate horizontal annular flows. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. Modeling of ground-water flow in subsurface Austin Chalk and Taylor marl in Ellis County, Texas, near the superconducting super collider site

    SciTech Connect

    Mace, R.E. . Bureau of Economic Geology)

    1993-02-01

    Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near a test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.

  14. Numerical study of the laminar natural convection flow around an array of two horizontal isothermal cylinders

    SciTech Connect

    Chouikh, R.; Guizani, A.; Maalej, M.; Belghith, A.

    1999-04-01

    The amount of work accomplished in the area of natural convection heat transfer in interacting flow fields around an array of cylinders has increased in the last years. There is a growing demand for a better understanding of this phenomenon in areas like heat exchangers, electronic devices, solar heating and storing technology among others. Here, natural convection heat transfer from an array of heated cylinders has received attention in recent years. However, most of the previous investigations has been experimental and has been restricted to the influence of geometrical parameters on the overall heat transfer. The present work is devoted to the numerical study of laminar natural convection flow from an array of two horizontal isothermal cylinders. This work, that enters within the framework of general study dealing with an array of several cylinders, states the problem in Cartesian coordinates system, involves the use of a control-volume method and solves the full vorticity transport equation together with the stream function and energy equations. The modifications of the average Nusselt number evolution compared with the single cylinder are explained in terms of velocity and temperature fields of the flow around the cylinders. Results are obtained for variety of combinations of spacing and numbers of Rayleigh.

  15. A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow

    NASA Astrophysics Data System (ADS)

    Rao, K. J.; de Bruyn Kops, S. M.

    2011-06-01

    It is often desirable to study turbulent flows at steady state even if the flow has no inherent source of turbulence kinetic energy. Doing so requires a forcing schema, and various methods applicable to laboratory experiments or numerical simulations have been studied extensively for turbulence that is isotropic and homogeneous in three dimensions. A review of existing schemata for simulations is used to form a framework for more general forcing methods. In this framework, the problem of developing a forcing method is abstracted into the two problems of (1) prescribing the spectrum of the input power and (2) specifying a force that has the desired characteristics and that adds energy to the flow with the correct spectrum. The framework is used to construct three forcing methods for simulating horizontally homogeneous and isotropic, vertically stratified turbulence. They are implemented in a pseudo-spectral large-eddy simulations and their characteristics are analyzed. The framework is then used to characterize existing laboratory experiments. While no exact analogy can be drawn between forcing in esoteric pseudo-spectral simulations and forcing in physical experiments, there are many similarities. It is suggested that the forcing framework can be applied to predict and systematically test the effects of configuration choices made in the design of simulations and laboratory experiments.

  16. Experimental and numerical simulations of heat transfers between flowing water and a horizontal frozen porous medium

    NASA Astrophysics Data System (ADS)

    Roux, N.; Costard, F.; Grenier, C. F.

    2013-12-01

    In permafrost-affected regions, hydrological changes due to global warming are still under investigation. But yet, we can already foresee from recent studies that for example, the variability and intensity of surface/subsurface flow are likely to be affected by permafrost degradation. And the feedback induced by such changes on permafrost degradation is still not clearly assessed. Of particular interest are lake and river-taliks. A talik is a permanently unfrozen zone that lies below rivers or lake. They should play a key role in these interactions given that they are the only paths for groundwater flow in permafrost regions. Thus heat transfers on a regional scale are potentially influenced by groundwater circulation. The aim of our study is therefore to investigate the evolution of river taliks. We developed a multidisciplinary approach coupling field investigation, experimental studies in a cold room and numerical modeling. In Central Yakutia, Siberia, where permafrost is continuous, we recently installed instruments to monitor ground temperature and water pressure in a river talik between two thermokarst lakes. We present here the coupling of numerical modeling and laboratory experiments in order to look after the main parameters controlling river-talik installation. In a cold room at IDES, where a metric scale channel is filled with sand as a porous medium, we are able to control air, water and permafrost temperature, but also water flow, so that we can test various parameter sets for a miniaturized river. These results are confronted with a numerical model developed at the LSCE with Cast3m (www-cast3m.cea.fr), that couples heat and water transfer. In particular, expressions for river-talik heat exchange terms are investigated. A further step will come in the near future with results from field investigation providing the full complexity of a natural system. Keywords: Talik, River, Numerical Modeling, Cold Room, Permafrost.

  17. Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C.

    2012-02-01

    Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description. Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence. Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region. Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal

  18. Study on the two-phase critical flow through a small bottom break in a pressurized horizontal pipe

    NASA Astrophysics Data System (ADS)

    Chung, Moon-Sun

    2008-06-01

    Two-phase critical flow rates through a small bottom break of a pressurized horizontal pipe are calculated by using an improved critical flow model with a well-known quality prediction model. This phenomenon has many difficulties in predicting the two-phase critical flow rate at the break points mainly due to the inaccuracies of the critical flow model as well as the quality prediction model. In this study, the critical flow model is improved as a first step that is based on a new sound speed criterion derived from the hyperbolic two-fluid model for non-equilibrium flow and this model is applied to a system analysis code. Following to a conceptual problem of the vertically upward flow with quality variation, the small bottom break of a pressurized horizontal pipe is simulated and discussed in some detail. From the test results without any adjustment like empirical discharge coefficient, the assessment results on the critical flow test through a small bottom break in a horizontal pipe show that just improving the critical flow model can remarkably reduce the relative error.

  19. Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Krekeler, Mark P. S.; Probst, Pete; Samsonov, Misha; Tselepis, Cynthia M.; Bates, William; Kearns, Lance E.; Maynard, J. Barry

    2007-12-01

    Subsurface flow constructed wetlands in the village of Akumal, Quintana Roo, Mexico were surveyed to determine the general status of the wetland systems and provide baseline information for long term monitoring and further study. Twenty subsurface flow wetlands were surveyed and common problems observed in the systems were overloading, poor plant cover, odor, and no secondary containment. Bulk mineral composition of aggregate from two subsurface flow constructed wetlands was determined to consist solely of calcite using bulk powder X-ray diffraction. Some soil structure is developed in the aggregate and aggregate levels in wetlands drop at an estimated rate between 3 and 10 cm/year for overloaded wetlands owing to dissolution. Mineral composition from fresh aggregate samples commonly is a mixture of calcite and aragonite. Trace amounts of Pb, Zn, Co, and Cr were observed in fresh aggregate. Coefficients of permeability ( k) varied from 0.006 to 0.027 cm/s with an average values being 0.016 cm/s. Grain size analysis of fresh aggregate samples indicates there are unimodal and multimodal size distributions in the samples with modes in the coarse and fine sand being common. Investigations of other geologic media from the Reforma region indicate that a dolomite with minor amounts of Fe-oxide and palygorskite is abundant and may be a better aggregate source that the current materials used. A Ca-montmorillonite bed was identified in the Reforma region as well and this unit is suitable to serve as a clay liner to prevent leaks for new and existing wetland systems. These newly discovered geologic resources should aid in the improvement of subsurface flow constructed wetlands in the region. Although problems do exist in these wetlands with respect to design, these systems represent a successful implementation of constructed wetlands at a community level in developing regions.

  20. Effectiveness of vegetation on phosphorus removal from reclaimed water by a subsurface flow wetland in a coastal area.

    PubMed

    Shan, Baoqing; Ao, Liang; Hu, Chunming; Song, Jiayu

    2011-01-01

    This work was conducted to evaluate the effectiveness and influence factors of vegetation on phosphorus (P) removal from reclaimed water in constructed wetlands. Comparisons were conducted between one pilot scale subsurface flow wetland (P-SSFW) and two demonstration subsurface flow wetlands, which were series-wound and named as first subsurface flow wetland (F-SSFW), and second subsurface flow wetland (S-SSFW), respectively. The three wetlands had the same vegetation and substrate, but different pH values, total dissolved solids (TDS) and P loads. Results showed that the P content in the vegetation shoots of the F-SSFW was 2.16 mg/g, while 2.31 mg/g in the S-SSFW and 2.69 mg/g in the P-SSFW. These differences were likely caused by the higher pH and TDS in the reclaimed water. The P content also differed among the tissues of the plant, which were 5.94-6.44 mg/g, 2.20-2.77 mg/g, 1.31-1.46 mg/g and 1.53-1.88 mg/g in the flowers, leaves, stems, and roots, respectively. The greatest discrepancy was observed in the leaves, indicating that the environment of the wetlands had the greatest influence on the leaves. When the total phosphorus (TP) load was lower, the proportion of P removed by vegetation assimilation was 16.17% in the P-SSFW, 12.90% in the F-SSFW and 13.29% in the S-SSFW. However, the relative removal efficiency by vegetation among the three wetlands did not vary greatly from that observed in other studies. Moreover, the influence of pH, TDS and TP load was not as great as the influence of the vegetation species, type of substrate, influent style or climate.

  1. Transition to turbulence in a plane plume above a horizontal heat source: Measurement of flow properties and flow visualization

    NASA Astrophysics Data System (ADS)

    Wakitani, Shunichi; Yosinobu, Hirowo

    1988-04-01

    Flow properties and flow visualization are measured during the process of transition to turbulence in a natural convection plume above a horizontal line heat source. Streamwise variations of time-mean vertical velocity and temperature on the center plane of the plume suggest the beginning and the end of the transition. Smoke photographs show that a pair of vortices are formed at a certain distance from the source as a result of growth of an anti-symmetric disturbance and break down a short distance downstream. The experimentally obtained profiles of mean temperature show that no similarity holds among them all through the process observed, but that there seems to be a similarity in the final stage, when the scaling law for turbulent profiles is adopted. However, this similarity profile is quite different from those given previously by other investigators, whose turbulent plumes were established without passing through such a gradual process of transition as was observed in the present experiment. Our flow visualization, on the other hand, supports the validity of our profile. Hence, there remains the question of whether our similarity profile is self-preserved in a fully-developed turbulent state or whether it will conform to others further downstream.

  2. EOSHYDR: A TOUGH2 Module for CH4-Hydrate Release and Flow in theSubsurface

    SciTech Connect

    Moridis, George; Apps, John; Pruess, Karsten; Myer, Larry

    1998-09-01

    EOSHYDR is a new module for the TOUGH2 general-purpose simulator for multi-component, multiphase fluid and heat flow and transport in the subsurface. EOSHYDR is designed to model the non-isothermal CH{sub 4} release, phase behavior and flow under the conditions of the comrilon methane hydrate deposits (i.e., in the permafrost and in deep ocean sediments) by solving the coupled equations of mass and heat balance. As with all other members of the TOUGH2 family of codes, EOSHYDR can handle multidimensional flow domains and cartesian, cylindrical or irregular grids, as well as porous and fractured media. EOSHYDR extends the thermophysical description of water to temperatures as low as -30 C. Both an equilibrium and a kinetic model of hydrate formation or dissociation are included. Two new solid phases are introduced, one for the CH{sub 4}-hydrate and the other for ice. Under equilibrium conditions, water and methane, as well as heat, are the main components. In the kinetic model, the solid hydrate is introduced as the fourth component. The mass components are partitioned among the gas, liquid and the two solid phases. The thermodynamic phase equilibrium in EOSHYDR is described by the P-T-X diagram of the H{sub 2}O-CH{sub 4}system. Phase changes and the corresponding heat transfers are fully described. The effect of salt in pore waters on CH{sub 4} solubility and on the growth and decomposition of gas hydrates is also taken into account. Results are presented for three test problems designed to explore different mechanisms and strategies for production from CH{sub 4}-hydrate reservoirs. These tests include thermal stimulation and depressurization under both permafrost and suboceanic conditions. The results of the tests tend to indicate that CH{sub 4} production from CH{sub 4}-hydrates is technically feasible and has significant potential. Both depressurization and thermal stimulation seem to be capable of producing substantial amounts of CH{sub 4} gas.

  3. Improved design and optimization of subsurface flow constructed wetlands and sand filters

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Carranza-Díaz, O.; Rossi, L.; Barry, D. A.

    2010-05-01

    Subsurface flow constructed wetlands and sand filters are engineered systems capable of eliminating a wide range of pollutants from wastewater. These devices are easy to operate, flexible and have low maintenance costs. For these reasons, they are particularly suitable for small settlements and isolated farms and their use has substantially increased in the last 15 years. Furthermore, they are also becoming used as a tertiary - polishing - step in traditional treatment plants. Recent work observed that research is however still necessary to understand better the biogeochemical processes occurring in the porous substrate, their mutual interactions and feedbacks, and ultimately to identify the optimal conditions to degrade or remove from the wastewater both traditional and anthropogenic recalcitrant pollutants, such as hydrocarbons, pharmaceuticals, personal care products. Optimal pollutant elimination is achieved if the contact time between microbial biomass and the contaminated water is sufficiently long. The contact time depends on the hydraulic residence time distribution (HRTD) and is controlled by the hydrodynamic properties of the system. Previous reports noted that poor hydrodynamic behaviour is frequent, with water flowing mainly through preferential paths resulting in a broad HRTD. In such systems the flow rate must be decreased to allow a sufficient proportion of the wastewater to experience the minimum residence time. The pollutant removal efficiency can therefore be significantly reduced, potentially leading to the failure of the system. The aim of this work was to analyse the effect of the heterogeneous distribution of the hydraulic properties of the porous substrate on the HRTD and treatment efficiency, and to develop an improved design methodology to reduce the risk of system failure and to optimize existing systems showing poor hydrodynamics. Numerical modelling was used to evaluate the effect of substrate heterogeneity on the breakthrough curves of

  4. A Coupled Finite-Volume Model for 2-D Surface and 3-D Subsurface Flows

    USDA-ARS?s Scientific Manuscript database

    Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed; therefore, hydrologic modeling tools should consider these interactions to provide reliable predictions, especially during rainfall-runoff processes. This paper presents a fully implicit coupled...

  5. Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin, southern India

    NASA Astrophysics Data System (ADS)

    Senthilkumar, M.; Elango, L.

    2011-06-01

    Groundwater modelling is widely used as a management tool to understand the behaviour of aquifer systems under different hydrological stresses, whether induced naturally or by humans. The objective of this study was to assess the effect of a subsurface barrier on groundwater flow in the Palar River basin, Tamil Nadu, southern India. Groundwater is supplied to a nearby nuclear power plant and groundwater also supplies irrigation, industrial and domestic needs. In order to meet the increasing demand for groundwater for the nuclear power station, a subsurface barrier/dam was proposed across Palar River to increase the groundwater heads and to minimise the subsurface discharge of groundwater into the sea. The groundwater model used in this study predicted that groundwater levels would increase by about 0.1-0.3 m extending out a distance of about 1.5-2 km from the upstream side of the barrier, while on the downstream side, the groundwater head would lower by about 0.1-0.2 m. The model also predicted that with the subsurface barrier in place the additional groundwater requirement of approximately 13,600 m3/day (3 million gallons (UK)/day) can be met with minimum decline in regional groundwater head.

  6. Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands.

    PubMed

    Singhakant, Chatchawal; Koottatep, Thammarat; Satayavivad, Jutamaad

    2009-02-01

    Arsenic (As) removal in pilot-scale subsurface-flow constructed wetlands (CWs) was investigated by comparing between CW units with vetiver grasses (CWplanted) and CW units without vetiver grasses (CWunplanted) in order to determine the roles of vetiver grasses affecting As removal. Based on the data obtained from 147 days of experiment, it is apparent that CWplanted units could remove As significantly higher than those of CWunplanted units with approximately 7-14%. Although analysis of As mass balance in CW units revealed that only 0.5-1.0% of total As was found in vetiver grasses, the As retained within bed of the CWplanted units (23.6-29.7 g) was higher than those in the CWunplanted units (21.3-26.8 g) at the end of the experiment, illustrating the effect of vetiver grasses on As accumulation in the CW units. Determination of As in different fractions in the CW bed suggested that the main mechanism of As retention was due mainly to As entrapment into the porous of bed materials (50-57% of total fraction), this mechanism is likely not affected by the presence of vetiver grasses. However, fraction of As-bound in organic matters that could be released from plant roots decomposition indicated the increase adsorption capacity of CW bed. In addition, organic sulfides produced from their root decomposition could help remove As through the precipitation/co-precipitation process. Under reducing condition in those CWplanted units, As could be leached out in the form of iron and manganese-bound complexes.

  7. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d(-1) in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH4(+) 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  8. [Removal efficiency of nitrogen in aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Wang, Hao-Yun; Song, Ni; Wang, Zhen-Yu

    2011-01-01

    In order to adjust the dissolved oxygen in the traditional subsurface flow constructed wetlands (SFCWs) and increase the purification efficiency of sewage water, the traditional SFCWs were divided into different sections with enhanced functions. Different kinds of aerobic/anaerobic SFCWs were designed to study the influence of ratio and location of aerobic/anaerobic, artificial aeration and other factors on the nitrogen in effluent. The purification efficiency of the water in this study was compared with that in traditional SFCWs. The results showed that the removal efficiencies of NH4(+)-N and TN in traditional SFCWs were 18.4% and 40.6% but 99.7% and 50.7% in aerobic/anaerobic/aerobic SFCWs with aeration (O-A-O SFCWs with aeration) treatment. Aeration in the front and in the rear, and anaerobic treatment in the middle was used in this treatment. Removal efficiency of NH4(+)-N in O-A-O SFCWs with aeration treatment was 100%, while that of O-A-O SFCWs without aeration was about 50%. The removal efficiencies of NH4(+) -N in new SFCWs with aeration in the front and in the rear were increased by 82.81% and 17.91% but 73.16% in the middle. It shows that aeration can significantly improve the removal efficiency of nitrogen, especially NH4(+)-N. Aeration in the front and back can greatly improve the removal efficiency NH4(+)-N and TN. But aeration resulting to oxygen-rich environment is not conducive to the denitrification, which will be an important factor of limiting the TN removal efficiency.

  9. Hierarchical Testing with Automated Document Generation for Amanzi, ASCEM's Subsurface Flow and Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.

    2013-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).

  10. Amanzi and Akuna: Two New Community Codes for Subsurface Contaminant Flow and Transport

    NASA Astrophysics Data System (ADS)

    Dixon, P. R.; Moulton, J. D.; Gorton, I.; Meza, J.; Freshley, M.

    2011-12-01

    The Advanced Simulation Capability for Environmental Management (ASCEM) program is developing a modular and extensible open-source set of tools for understanding the fate and transport of contaminants in natural and engineered systems. These tools not only support a fundamental shift toward standardized assessments of performance and risk for the Department of Energy Office of Environmental Management (DOE-EM) cleanup and closure decisions, but establish a modern high-quality code base for a growing interdisciplinary community. Specifically, ASCEM is leveraging advances and expertise from applied mathematics, computer and computational sciences, and the geosciences, in this new development. A toolset named Akuna will provide capabilities for data management, visualization, conceptual model development, uncertainty quantification, parameter estimation, risk analysis, and decision support. Akuna will integrate with Amanzi, a flexible high performance computing simulator, which is designed to leverage the growing parallelism in modern systems. This talk will describe the approach that we have taken to develop this new open-source capability, including issues of intellectual property, licensing, the developers tool chain, and the users tool chain. The modular and extensible design will be discussed, highlighting the potential for collaboration and inclusion of recent modeling and algorithmic advances. In addition, it will discuss the advantages and challenges of relying on an open-source model that leverages a wide variety of open-source efforts from other programs. Results from early prototype development will be presented to highlight the potential of these new tools to contaminated subsurface environments, including calculations for variably saturated flow, advection of non-reactive species and the reactive-transport of 17 different chemical species on both structured and unstructured meshes.

  11. [Physical and chemical effects and plant growth suitability of substrates in subsurface flow wetland].

    PubMed

    Zhang, Jing; Zhang, Xu; Li, Guang-he; Zhang, Hong-tao

    2006-05-01

    Substrate, which not only takes part in the pollutant-removing, but influences the plant growth, plays an important role in subsurface flow wetland. With X-ray fluorescence measurement and X-ray diffractometer, the elements and minerals in zeolite and shale were confirmed, and the removal mechanics of nitrogen, phosphate and hydrogen ion in substrates were explained respectively. The investigation show that the zeolite has abounded with micropores and mesopores, while the shale has only mesopores, which causes the NH4+ -N adsorption capability of the shale is less than zeolite. The PO4(3-) -P removal and hydrogen ion buffer capacity of shale are greater than those of zeolite because CaCO3 is one of the main contents of shale. In pilot-plant system to treat starch waste water, the reeds and acorus aclamuc were either planted in shale and zeolite, and the phytum's indexes in shale including relative green concentration, average plant height, root stem ratio were higher than those in zeolite. The root vitality of reeds and acorus aclamuc planted in shale were 3.7 and 1.6 times of those in zeolite respectively. Total nitrogen and phosphorus contents in the plant organization of acorus aclamuc in shale were 7.8 and 3.4 times of those in zeolite; total nitrogen and phosphorus contents in the plant organization of reeds in shale were 3.3 and 2.2 times of those in zeolite. The results indicate that shale provides a steady pH for the plant's root in the acid waste water and it is more suitable for plant growth than zeolite.

  12. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    PubMed

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  13. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow

    PubMed Central

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-01-01

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results. PMID:27563907

  14. Stability analysis of the rimming flow inside a uniformly heated rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Kumawat, Tara Chand; Tiwari, Naveen

    2017-03-01

    The stability analysis is presented for a thin viscous liquid film flowing inside a uniformly heated horizontal cylinder that is rotating about its axis. The free surface evolution equation for the liquid-gas interface is obtained by simplifying the Navier-Stokes and energy equations within the lubrication approximation. Various dimensionless numbers are obtained that quantify the effect of gravity, viscous drag, inertia, surface tension, and thermocapillary stress. The film thickness evolution equation is solved numerically to obtain two-dimensional, steady state solutions neglecting axial variations. A liquid pool forms at the bottom of the cylinder when gravity dominates other forces. This liquid pool is shifted in the direction of rotation when inertia or viscous drag is increased. Small axial perturbations are then imposed to the steady solutions to study their stability behavior. It is found that the inertia and capillary pressure destabilize whereas the gravity and thermocapillary stress stabilize the rimming flow. The influence of Marangoni number is reported by computing the stable and unstable parametric regions. Thicker films are shown to be more susceptible to become unstable.

  15. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish.

    PubMed

    Kubo, Fumi; Hablitzel, Bastian; Dal Maschio, Marco; Driever, Wolfgang; Baier, Herwig; Arrenberg, Aristides B

    2014-03-19

    Animals respond to whole-field visual motion with compensatory eye and body movements in order to stabilize both their gaze and position with respect to their surroundings. In zebrafish, rotational stimuli need to be distinguished from translational stimuli to drive the optokinetic and the optomotor responses, respectively. Here, we systematically characterize the neural circuits responsible for these operations using a combination of optogenetic manipulation and in vivo calcium imaging during optic flow stimulation. By recording the activity of thousands of neurons within the area pretectalis (APT), we find four bilateral pairs of clusters that process horizontal whole-field motion and functionally classify eleven prominent neuron types with highly selective response profiles. APT neurons are prevalently direction selective, either monocularly or binocularly driven, and hierarchically organized to distinguish between rotational and translational optic flow. Our data predict a wiring diagram of a neural circuit tailored to drive behavior that compensates for self-motion. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Surface and subsurface flows and fluxes in a Florida salt marsh: Measurements, mass balances and process modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Meile, C. D.; Esch, M.; Gray, E. R.; Cable, J. E.

    2013-12-01

    Coastal wetlands play an important role in the exchange of carbon and nutrients between terrestrial and marine environments, with estimates exceeding 10% of the global ocean C inputs being attributed to wetlands. Constraining such contributions is challenging, as fluxes are bound to vary substantially over a range of timescales, including tidal inundation and seasons. An important factor determining export fluxes are subsurface processes, because fluid passing through the marsh subsurface becomes enriched in inorganic and organic carbon as well as nutrients released during decomposition of organic matter. Thus, even a modest flux of pore water to tidal creeks can lead to a significant loading of carbon and nutrients to the coastal ocean. Here, we present our efforts to quantify the role of groundwater in a microtidal saltmarsh located in the Big Bend region of the Florida Gulf Coast. We established a regional water balance, and from a survey of flow and dissolved organic carbon in tidal creeks between Econfina and Aucilla Rivers provide an estimate of DOC export, indicating that DOC significantly contributes to marsh carbon export. To constrain the role of subsurface processes, we also quantify seepage fluxes of pore water from tidal creek banks, using a combination of field experiments and modeling. Field work involved deploying devices designed to capture pore water seeping from creek banks at multiple heights of the bank. Results show that seepage varies dynamically with the tide, and indicate substantial spatial variability. Additionally, numerical flow modeling was used to assess the experimental design and the impact of the positioning of the seepage collector at the creek bank. Simulation results show significant variation in seepage with vertical position in the creek bank. This information on flow magnitude and dynamics was then combined with concentration measurements in creek and pore waters to scale up from individual observations to provide estimates

  17. Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to uncertainty

    NASA Astrophysics Data System (ADS)

    Khaninezhad, Mohammadreza Mohammad; Jafarpour, Behnam; Li, Lianlin

    2012-04-01

    We introduced sparse geologic dictionaries for formulating and solving subsurface flow model calibration problems in Part I. A key assumption was the availability of a reliable prior model library for construction of a relevant sparse geologic dictionary that was used to constrain the inversion solution. In practice, however, the spatial connectivity in rock physical property distributions has to be inferred from uncertain and incomplete sources of information, including qualitative geologic interpretations, formation type and outcrop maps, as well as scattered measurements (e.g., well core, log data, and seismic maps). Thus, the geologic continuity model that is used for generating prior models is likely to carry significant uncertainty. In Part II, we investigate the performance of the proposed method under uncertain and incorrect prior continuity models. We show that, unlike the conventional reduced-order parameterization methods such as truncated SVD, diverse geologic dictionaries are robust against uncertainty in the structural prior model. This robustness is attributed to the selection property of the sparse reconstruction algorithm and the connectivity exhibited by the dictionary elements. Under highly uncertain prior models, the reconstruction problem is reduced to identifying and combining relevant elements from a large and diverse geologic dictionary. Diversity of the dictionary further enhances solution sparsity since a large number of dictionary elements will have negligible contribution to the solution. Consequently, the inversion provides considerable flexibility to accommodate significant levels of variability (uncertainty) in prior geologic models. As an extreme case, we also evaluate the performance of the proposed method when even the formation type (e.g., Gaussian versus non-Gaussian) is uncertain. In addition, we examine the sensitivity of the proposed method to noise in the flow data, where we observe solution underestimation effects due to l1

  18. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between

  19. Study of the horizontal and vertical dispersion at the atmospheric flow at the Alc

    NASA Astrophysics Data System (ADS)

    Pires, L.; Roballo, S.; Fisch, G.; Avelar, A.; Girardi, R.; Gielow, R.

    2009-04-01

    The Alcântara Launching Center (ALC) region is situated in the north coast of the Maranhão state and it was simulated in a wind tunnel with an open circuit at Institute Technologic of Aeronautics (ITA). The ALC topography possesses typical characteristics of smooth surface (ocean) close to a roughness surface (continent). The local coast has a relative topographical variation (coastal cliffs) with inclination and 50 m height, being the top a plain area. A mock-up model has been constructed to be inserted at the wind tunnel for the measurements. The Integration Mobile Tower (IMT) is placed at 150 m from the coastal cliff. Consequently the rockets can suffer the influence from intense turbulence resultant of the modification of the wind profile of the proceeding from the ocean as ascending vertically from thr IMT. It was used the Particle Image Velocimetrýs (PIV) technique for the analysis of the vertical dispersion in the central lane from the ocean until the IMT and the hot wire anemometry technique for the horizontal dispersion. The analysis of the vertical dispersion was carried through locating the PIV transversally to the model that simulates the ALC. The vorticity generated above of the coastal cliff has the same intensity of the vorticity generated at the IMT (-2000 s-1) being these the zones of higher turbulence. With regard to the horizontal flow one noticed that the low levels (below 10 m) presented the great speed fluctuations close the coastal cliff. In the high levels (above 10 m), this fluctuations diminished. The high values of turbulent intensities after the step, in the low levels, due to recirculation characterized for low values of speeds average and hight speed fluctuations also was verified in the vertical dispersion.

  20. Phosphorus removal in laboratory-scale unvegetated vertical subsurface flow constructed wetland systems using alum sludge as main substrate.

    PubMed

    Babatunde, A O; Zhao, Y Q

    2009-01-01

    This research has two eventual goals: (1) To optimize performance of subsurface constructed wetlands for removal of phosphorus (P) (2) To demonstrate that dewatered alum sludge (a by-product), can be reused as a constructed wetland substrate. To achieve these, alum sludge from a water treatment plant was characterized and used as main substrate in four experimental vertical sub-surface flow constructed wetland systems treating dairy farm wastewater. Results show that the alum sludge has suitable hydraulic characteristics (uniformity coefficient = 3.6) for use as a substrate, and in the batch studies, up to 48.6 mg-P was removed by 1 g of the alum sludge at a P concentration of 360 mg-P/l and a dosage of 5 g/l. Results from the experimental systems highlight the significant P removal ability of the alum sludge. However, the inclusion of pea gravel at the infiltrative surface of some of the systems had a negative effect on the P removal performance. Sequential P-fractionation results show that there was no significant increase in the easily extractable P, but for total P, there was significant increase, although this was found to decrease with depth. This study shows that the novel use of dewatered alum sludge can bring about high P removal in vertical subsurface flow constructed wetland systems.

  1. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  2. Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel

    SciTech Connect

    Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1996-02-01

    Various measurement tools of chaos theory were applied to analyze two-phase pressure signals with the objective to identify and interpret flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic in nature. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identification of certain two-phase flow patterns and transitions.

  3. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems

    NASA Astrophysics Data System (ADS)

    Mayer, Alex S.; Kelley, C. T.; Miller, Cass T.

    Estimation problems arise routinely in subsurface hydrology for applications that range from water resources management to water quality protection to subsurface restoration. Interest in optimal design of such systems has increased over the last two decades and this area is considered an important and active area of research. In this work, we review the state of the art, assess important challenges that must be resolved to reach a mature level of understanding, and summarize some promising approaches that might help meet some of the challenges. While much has been accomplished to date, we conclude that more work remains before comprehensive, efficient, and robust solution methods exist to solve the most challenging applications in subsurface science. We suggest that future directions of research include the application of direct search solution methods, and developments in stochastic and multi-objective optimization. We present a set of comprehensive test problems for use in the research community as a means for benchmarking and comparing optimization approaches.

  4. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  5. Nutrient removal in subsurface flow constructed wetlands for application in sensitive regions.

    PubMed

    Rustige, H; Platzer, C

    2001-01-01

    One of the most interesting sites for research on CWs in Germany has been established in Wiedersberg (Saxonia). The multi-stage concept with primary settling, vertical and horizontal flow reed bed followed by UV-disinfection and a special phosphorus filter bed, allows numerous ways of operation and investigations. Denitrification can be improved by recirculation through VF bed and sedimentation tank or by means of adding carbonaceous water from the primary stage to a second level within the VFB or directly to the following HF bed. In order to investigate the efficiency of P-elimination four kinds of natural sands containing different amounts of iron have been used. To maintain a long-term capacity for P-reduction an additional filter bed is filled with gravelly sand which had been used for the precipitation of iron from drinking water before. After saturating with P this filter medium can be exchanged easily. A result of more than one year of operation is the high performance rate for adsorption of phosphorus by enriched iron on drinking water filter sand. At a total loading rate of 350 g P/m3 filter medium 250 g P/m3 have been adsorbed. Design considerations can not be given yet. The median denitrification rate at VFB is 1.3 g N m(-2) d(-1) and at HFB is 0.25 g N m(-2) d(-1). The low denitrifcation rate of HFB might be due to a very high quota of wastewater dilution by storm- and ground-water of 100 to 200 percent. The investigations on this wastewater treatment plant will be continued until June 2001 and experiments with filter columns will be added.

  6. Assessing the efficiency of an unplanted horizontal flow constructed wetland to reduce some emerging organic micropollutants. Preliminary results

    NASA Astrophysics Data System (ADS)

    Tapias, Josefina C.; Vila, Marta; Himi, Mahjoub; Salvadó, Victoria; Casas, Albert; Hidalgo, Manuela

    2017-04-01

    The presence of emerging organic contaminants (EOC) such as pharmaceutical and personal care products, pesticides or antiseptics in wastewater is an increasing concern worldwide due to their potential toxicological effects for humans and other living organisms. Because of their low concentration and persistence their removal using conventional treatment technologies is often incomplete and for this reason there is a growing interest for assessing the efficiency of alternative wastewater treatment technologies such as constructed wetlands (CWs). CWs are engineered systems for wastewater treatment plant (WWTP) designed to take advantage of many of the same processes that occur in natural wetlands, but within a more controlled environment. CWs are a cost-effective alternative to conventional wastewater treatment plants especially in the context of small communities with less than 2000 people equivalent. Our study has been conducted at the Verdú WWTP (Lleida, Catalonia, NE Spain). This system has a primary treatment consisting on three septic tanks in parallel with a volume of 50 m3 and three chambers each one. The primary effluent is distributed to four parallel horizontal subsurface flow (HSSF) CWs. Originally the system was planted with common reed (Phragmites australis), but currently after twelve years of service the system show evidences of clogging and then gravel bed was replaced and plants removed. After the HSSF CWs, there are two wastewater stabilization ponds (WSPs) followed by two smaller polishing horizontal HSSF CWs. Excellent overall treatment performance was exhibited on the elimination of conventional water quality parameters (93-98% average removal efficiency for TSS, COD, BOD5 and NTK), and its final effluent proved to comply with existing Spanish guidelines. Sampling has been conducted along two years at different seasons and examined EOC substances included analgesic and anti-inflammatory drugs (ibuprofen, diclofenac, and naproxene

  7. Design, implementation and results of an autonomous hydrogeophysical monitoring system to monitor subsurface flow at the Hanford 300 area

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Ward, A.

    2007-12-01

    Time lapse electrical data (both self potential and electrical resistivity data) can provide information on subsurface flow, and over the last several years there has been an increase in the interest of automating hydrogeophysical data acquisition systems. Such systems require both adaptations to hardware and system setup, and a well designed computational backend allowing for the management and processing of such data. The 300 area at Hanford is the location of multiple DOE Office of Science and Environmental Management funded research efforts which seek to understand the groundwater and contaminant behavior at this site. The groundwater head distribution and resulting flow at this site is known to be strongly influenced by the adjacent Columbia river, and there is an interest in mapping out the spatiotemporal flow directions at this site. The site has been extensively characterized using electrical resistivity measurements, and the geometries and resistivities of subsurface formations are well known both from borings and geophysical characterization efforts. In addition, the overall Hanford 300 area contains 8 continuously recording wells which monitor groundwater level and conductivity at the site at 15 minute intervals, as well as adjacent monitoring stations which record river stage. An autonomous, one hundred electrode SP system was installed at the Hanford 300 area over a 300 x 300 m sub part of the site. Data from both the hydrological sensors and geophysical systems is collected automatically, and transferred to a central database server located at the Idaho National Laboratory. Once data is arrived, data qa/qc and data reduction are run automatically to create time lapse maps of self potential values. We will discuss the design, implementation and results obtained with this system (including ongoing modeling and inversion efforts for the data collected with these systems) as well as the potential of these hydrogeophysical monitoring systems to provide

  8. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].

    PubMed

    Dai, Yuan-yuan; Yang, Xin-ping; Zhou, Li-xiang

    2008-12-01

    Nitrogen removal efficiency was investigated in three subsurface flow constructed wetlands (CWs) with and without reed. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere. The CWs with root bag enwrapped reed root (hereinafter called as mesh CWs) and other CWs were fed with artificial ammonium-rich wastewater. The results indicated that the COD and N removal occurred mainly in the front of CWs, and C and nitrogen removal occurred concurrently along the stream way. When C/N ratio of influent was 5, the removal efficiencies of NH4+ -N in control CWs, reed CWs and mesh CWs were 66.2%, 94.2% and 82.2%, respectively. TN removal efficiencies were 67.2%, 90.7% and 76.1% respectively. Simultaneous nitrification and denitrification phenomenon in this study was also observed. The removal efficiency of organic carbon was different from nitrogen removal efficiency, mesh CWs showed the highest COD removal efficiency with 80.9%, while control CWs and reed CWs were 72.2% and 56.2%, respectively. C/N ratio of wastewater throughout the bed was more than 5 in three CWs, which indicated carbon source supply was enough for denitrification. The oxidation-reduction position (ORP) and concentration of total organic carbon in rhizosphere and non-rhizosphere were detected. The ORP in the front of mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in mesh CWs, which were 11-311 mV and 62-261 mV, respectively. Root exudates also showed the difference between rhizosphere and non-rhizosphere in mesh CWs, the TOC of them were 21.3-54.6 mg x L(-1) and 6.65-12.0 mg x L(-1). Due to the higher ORP and concentration of TOC, the nitrogen removal efficiency in plant CWs was much higher than that in control CWs.

  9. Substrata effects on bacterial biofilm development in a subsurface flow dairy waste treatment wetland.

    PubMed

    Silyn-Roberts, G; Lewis, G

    2003-01-01

    Biofilm development on two distinct rock substrata was investigated both in vitro and in a subsurface flow wastewater treatment wetland in order to determine the effect of hydrophobicity on initial bacterial adsorption, tertiary biofilm development and microbial population structure. Two commonly used wetland rock types, slag (a hydrophobic by-product of the steel smelter industry) and greywacke (a more hydrophilic sedimentary rock) were evaluated. In vitro investigations of initial microbial adsorption trends showed that the more hydrophobic slag displayed rapid bacterial adsorption rates compared to greywacke. Mean microbial adsorption rates of a mixed wetland bacterial population over 5 hours, described using a first order kinetics model, were 1.3 x 10(-12) m/sec for slag and consistently lower at 8.7 x 10(-13) m/sec for greywacke. Pristine rock studs of the two substrata were also exposed to wetland microbial communities during a six week field trial using confocal scanning laser microscopy to determine tertiary biofilm structure and fluorescent in situ hybridisation to investigate bacterial populations. During the first five weeks of growth CSLM analysis revealed that 75% of biofilms on slag were thicker and had greater coverage compared with those grown on greywacke. After six weeks of growth over 50% of the tertiary biofilms were structurally very similar on both rock types and only 25% of those grown on slag were larger than those on greywacke. In situ hybridisation analysis of bacterial populations revealed very little difference in population structure between biofilms grown on slag and those grown on greywacke. Eubacteria were present as a very high proportion of total bacteria throughout biofilm development (74.3%). The beta subgroup was the most populous of the Proteobacteria (31.4%) followed by the gamma subgroup (13.4%) and the alpha subgroup (1.3%). The results of this study suggest that slag, as a more hydrophobic substratum, promotes the initial

  10. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  11. Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh

    2017-08-01

    We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive

  12. The numerical modelling of falling film thickness flow on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Hassan, I. A.; Sadikin, A.; Isa, N. Mat

    2017-04-01

    This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.

  13. Sulfamethoxazole and ciprofloxacin removal using a horizontal-flow anaerobic immobilized biomass reactor.

    PubMed

    Chatila, Sami; Amparo, Maura R; Carvalho, Lucas S; Penteado, Eduardo D; Tomita, Inês N; Santos-Neto, Álvaro J; Lima Gomes, Paulo C F; Zaiat, Marcelo

    2016-01-01

    The antibiotics sulfamethoxazole (SMTX) and ciprofloxacin (CIP) are commonly used in human and veterinary medicine, which explains their occurrence in wastewater. Anaerobic reactors are low-cost, simple and suitable technology to wastewater treatment, but there is a lack of studies related to the removal efficiency of antibiotics. To overcome this knowledge gap, the objective of this study was to evaluate the removal kinetics of SMTX and CIP using a horizontal-flow anaerobic immobilized biomass reactor. Two different concentrations were evaluated, for SMTX 20 and 40 μg L(-1); for CIP 2.0 and 5.0 μg L(-1). The affluent and effluent analysis was carried out in liquid chromatography/tandem mass spectrometry (LC-MS/MS) with the sample preparation procedure using an off-line solid-phase extraction. This method was developed, validated and successfully applied for monitoring the affluent and effluent samples. The removal efficiency found for both antibiotics at the two concentrations studied was 97%. Chemical oxygen demand (COD) exhibited kinetic constants that were different from that observed for the antibiotics, indicating the absence of co-metabolism. Also, though the antibiotic concentration was increased, there was no inhibitory effect in the removal of COD and antibiotics.

  14. Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors.

    PubMed

    Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E

    2009-10-01

    This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.

  15. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.

  16. Experimental mixed convection from a large, vertical plate in a horizontal flow

    NASA Astrophysics Data System (ADS)

    Siebers, D. L.; Moffat, R. J.; Schwind, R. G.

    Mixed-convection heat transfer coefficients have been measured on a 3M x 3M vertical plate, parallel to a horizontal wind. Measurements were made at 105 locations on the plate, at each of 36 combinations of plate temperature and wind speed. The plate temperature was varied between 40 and 600 C, with wind speeds from 0 to 6 M/s. The region of mixed-convection effects on the average heat transfer from the plate lies between Gr/Re-squared values of 0.7 and 10.0. Outside that region, the average heat transfer coefficient can be calculated using correlations for pure forced or pure free convection. Boundary layer flow-angle measurements (not presented here) showed mixed convection effects on the hydrodynamics for all Gr/Re-squared values tested except pure free convection. Increasing the plate temperature at constant velocity caused transition to move upstream and reduced the slope of the heat transfer coefficient variation with x-distance in the turbulent region.

  17. Nitrogen dynamics and removal in a horizontal flow biofilm reactor for wastewater treatment.

    PubMed

    Clifford, E; Nielsen, M; Sørensen, K; Rodgers, M

    2010-07-01

    A horizontal flow biofilm reactor (HFBR) designed for the treatment of synthetic wastewater (SWW) was studied to examine the spatial distribution and dynamics of nitrogen transformation processes. Detailed analyses of bulk water and biomass samples, giving substrate and proportions of ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) gradients in the HFBR, were carried out using chemical analyses, sensor rate measurements and molecular techniques. Based on these results, proposals for the design of HFBR systems are presented. The HFBR comprised a stack of 60 polystyrene sheets with 10-mm deep frustums. SWW was intermittently dosed at two points, Sheets 1 and 38, in a 2 to 1 volume ratio respectively. Removals of 85.7% COD, 97.4% 5-day biochemical oxygen demand (BOD(5)) and 61.7% TN were recorded during the study. In the nitrification zones of the HFBR, which were separated by a step-feed zone, little variation in nitrification activity was found, despite decreasing in situ ammonia concentrations. The results further indicate significant simultaneous nitrification and denitrification (SND) activity in the nitrifying zones of the HFBR. Sensor measurements showed a linear increase in potential nitrification rates at temperatures between 7 and 16 degrees C, and similar rates of nitrification were measured at concentrations between 1 and 20mg NH(4)-N/l. These results can be used to optimise HFBR reactor design. The HFBR technology could provide an alternative, low maintenance, economically efficient system for carbon and nitrogen removal for low flow wastewater discharges. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Acidic mine drainage abatement in an anaerobic sub-surface flow wetland environment - case history of the treatment system at Corsica, PA

    SciTech Connect

    Dietz, J.M.; Stidinger, D.M.

    1996-12-31

    Wetland Treatment Systems (WTS) have been constructed over the past decade for the treatment of Acidic Mine Drainage (AMD). Potential benefits of anaerobic sub-surface flow treatment were initially identified from attempts to improve effectiveness of a surface flow wetland at the Jennings Environmental Education Center in western Pennsylvania which, although not completely successful, resulted in acidity removal rates two to four times greater than pre-modification rates. This study was conducted to investigate the potential benefits of sub-surface flow design, which utilizes a sub-surface collection system, in comparison to conventional surface flow design. Two field-scale WTS, each containing anaerobic surface flow and sub-surface flow treatment cells (approximately 100 m{sup 2} each), were constructed along an existing AMD discharge, near Corsica, Pennsylvania, with a 3-4 pH, 250-400 mg/L (as CaCO{sub 3}) acidity, 20-40 mg/L iron, 15-40 mg/L manganese and 10-30 mg/L aluminum. Sampling of the WTS included two elements: a weekly monitoring program from March 1992 through November 1992 to collect discharge water quality data; and a post-flow design was found to provide statistically greater acidity removal with an average rate of 61.8 grams per day per square meter (GDM), in comparison to surface flow which had an average rate of 4.78 GDM, and provided effluent alkalinities greater than 100 mg/L (as CaCO{sub 3}) and pH greater than 6.5 at the flows and loading evaluated. Removal rates for iron and aluminum removal of 3.02 and 2.48 GDM in the sub-surface flow design were also significantly greater than surface flow design which had removal rates of 1.89 and 0.20 GDM, respectively. Manganese removal was ineffective in both surface and sub-surface flow designs.

  19. Characterization of flow pattern transitions for horizontal liquid-liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Zong, Yan-Bo; Wang, Hong-Mei; Yan, Cong; Gao, Zhong-Ke; Jin, Ning-De

    2017-03-01

    Horizontal oil-water two-phase flows often exist in many industrial processes. Uncovering the dynamic mechanism of the flow pattern transition is of great significance for modeling the flow parameters. In this study we propose a method called multi-scale distribution entropy (MSDE) in a coupled 3D phase space, and use it to characterize the flow pattern transitions in horizontal oil-water two-phase flows. Firstly, the proposed MSDE is validated with Lorenz system and ARFIMA processes. Interestingly, it is found that the MSDE is dramatically associated with the cross-correlations of the coupled time series. Then, through conducting the experiment of horizontal oil-water two-phase flows, the upstream and downstream flow information is collected using a conductance cross-correlation velocity probe. The coupled cross-correlated signals are investigated using the MSDE method, and the results indicate that the MSDE is an effective tool uncovering the complex dynamic behaviors of flow pattern transitions.

  20. Laminar boundary layer flow of saturated vapor and its condensate over a horizontal tube

    NASA Astrophysics Data System (ADS)

    Smyrnaios, D. N.; Pelekasis, N. A.; Tsamopoulos, J. A.

    2002-06-01

    The steady two-dimensional laminar flow of a stream of saturated vapor flowing over a tube that is kept at a uniform temperature, below the saturation temperature, is examined. Owing to the temperature difference between the vapor stream and the solid surface a film of condensate is generated that flows along the surface due to shear, pressure-drop, and gravity. In the limit as the boundary layer and film thickness remain smaller than the radius of curvature of the surface a simplified lubrication-type formulation describes the temperature and flow fields in the film, whereas the usual boundary layer formulation is applied in the vapor boundary layer. The case of flow past a horizontal cylinder of radius R is investigated numerically with the oncoming stream aligned with gravity. The parameters that control momentum and heat transfer in this problem are the viscosity ratio, μcs/μss, the density ratio, ρcs/ρss, the Prandtl number, Pr=cpcsμcs/kcs, the Froude number, Fr=U∞2/(gπR), and finally the thickness ratio between the condensate and the vapor boundary layer, ɛ, which is also a measure of the temperature difference between the vapor stream and the tube wall. Then, the Nusselt number and the skin friction coefficient, averaged over the upper half of the cylinder, are calculated for a wide parameter range. When Fr is very small and ɛ relatively large the flow remains attached until the trailing stagnation point of the cylinder. As the effect of adverse pressure drop becomes more pronounced (Fr increases or ɛ decreases) it is shown that the solution exhibits two different types of singularity in the rear part of the cylinder. The first one is a typical Goldstein singularity because it appears at the tube wall and it is associated with vanishing skin friction (wall shear) and rapidly increasing film thickness. The second one takes place near the interface between the vapor stream and the film of condensate in a region where very small velocities prevail in

  1. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow

    USDA-ARS?s Scientific Manuscript database

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to asse...

  2. Removal of microbial pathogens in a sandy gravel aquifer under forced-gradient subsurface flow conditions

    NASA Astrophysics Data System (ADS)

    Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul

    2017-04-01

    Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.

  3. Hydrologic Systems in Transition - Historical Observations and Modeling of Subsurface Flow in Discontinuous Permafrost Basins

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Kurylyk, B. L.; Striegl, R. G.

    2016-12-01

    Though boundary conditions routinely change through time across hydrologic landscapes, hydrostratigraphy and subsurface physical properties are generally considered to be static over timescales of interest for water resource investigations. However, these assumptions do not apply to permafrost systems that are vulnerable to changes in hydraulic, thermal, and mechanical subsurface properties upon thaw. Thaw-induced changes in the subsurface must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of freshwater in boreal regions. Due to imperfect knowledge of past, current, and future subsurface conditions, it is necessary to integrate historical observations, current characterization information, and hydrologic modeling to better understand and anticipate changes in water resources and fluxes at local to basin scales. We present an overview of historical trend analyses and supportive modeling studies used to infer hydrologic changes linked to various modes of thaw in discontinuous permafrost. We discuss how this collective work provides insight into important factors that control the rates and hydrologic responses of permafrost thaw. Realizing that response across heterogeneous systems will be neither spatially uniform nor synchronous, this synthesis offers a framework for discussing vulnerabilities and impacts of permafrost thaw on hydrologic processes at various spatial and temporal scales.

  4. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow

    USDA-ARS?s Scientific Manuscript database

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...

  5. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  6. Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew; Bloxham, Jeremy

    1991-01-01

    The problem of calculating the temporal evolution of both the radial and horizontal poloidal components of a field, given an initial field and the flow and shear, is first considered. Attention is then given to the inverse problem of determining the flow and shear, given an initial field and its temporal evolution. The nonuniqueness inherent in such inversions is discussed, and it is shown that part of the nonuniqueness in the shear is closely related to that in the flow derived from just the radial induction equation.

  7. Case study: Does wall permeability influence the flow and heat transfer in horizontal fractures in an EGS?

    NASA Astrophysics Data System (ADS)

    Mohais, R. E.; Xu, C.; Dowd, P. A.

    2011-12-01

    Estimating spatially-variable parameter values for physically-based models presents a major challenge in catchment hydrology. Characterization of subsurface heterogeneity and natural structures associated with pedogenesis and bioturbation therefore has great potential to inform integrated hydrologic models. Soil structures at the pore and pedon scale have an aggregated influence on the hydraulic properties needed to simulate the flow of water and transport of solutes at the hillslope, catchment, and watershed scales. Similarly, inverse model estimates of effective hydraulic properties based on observed hydrologic-response to natural rainfall are useful for identifying the hydraulically important soil structures, weathering horizons, and natural heterogeneities. This work presents examples of hydrologic response for selected experimental catchments simulated with a fully-coupled surface/ subsurface flow model in combination with a variety of field experiments in soil physics. The simulati